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A Universal Property of the Cayley-Chow Space
of Algebraic Cycles.

LUCIO GUERRA(*)

For every projective scheme X and projective embedding e : X - P,
there is a reduced scheme Cn (X, e ) parametrizing all cycles of pure di-
mension n with support in X. The construction is carried over in terms
of the given embedding, so that in particular the space of cycles
Cn (X, e) comes out equipped with a partition into disjoint subschemes
Cn, k (X, e), each endowed with a natural projective embedding, for all
degrees k of cycles in P. The idea goes back to Cayley [4], but the effec-
tive construction is due to Chow [5]. In recent times new important ap-
plications appeared [3], [6], [7] which motivate the present contribution
to a long standing problem of setting suitable foundations.

Over the complex field, there is a theorem of Barlet [2] saying that
different projective embeddings e do always give rise to isomorphic
schemes Cn (X, e). This is not true in positive characteristics as shown
by Nagata [13]. We therefore confine ourselves to complex schemes.

The question arises how to describe morphisms T - Cn (X, e ) intrin-
sically by means of incidence correspondences (cycles) Z in T x X, with-
out reference to the embedding. This would be an «explicit» universal
property for Cn (X, e ), for the essential independence of e is already an
«implicit» one.

In general, a (relative) incidence cycle Z only induces a regular map
on the smooth locus T 8m - Cn (X, e). The geometrically relevant point is
therefore to determine when the induced map on T 8m admits a continu-
ous extension fz: T - Cn (X, e), what we call a « semi-regular » (ratio-
nal) map. This requires a careful study of the limit behaviour of fibre

(*) Indirizzo dell’A..: Dipartimento di Matematica, Universita di Perugia, Via
Vanvitelli 1, 06123 Perugia.
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cycles, when approaching a singular point moving along the smooth lo-
cus in the parameter variety T. We prove that there is a unique «limit
cycles along any path contained within a given branch of T at the singu-
lar point. The «regular» cycles Z, those which correspond to semi-regu-
lar maps into Cn (X, e), are therefore characterized by the property that
the limit cycle is the same one along every branch. This is the main re-
sult of the present paper, which is missing in the existing literature.

More precisely, we prove that the space of cycles Cn (X, e) repre-
sents a certain functor of regular relative cycles on the category of re-
duced schemes and semi-regular maps. This implies the earlier result of
Andreotti-Norguet [ 1 ], that the semi-normalization of Cn (X, e) is es-

sentially independent of the embedding. Finally, once a (regular) cycle
Z is known to determine a semi-regular map fz, then the property of fz
being everywhere regular is essentially independent of the embedding
e, according to the theorem of Barlet.

Up to date. While the present paper was in the publication proce-
dure, the author had the opportunity of looking into the first chapter of
a forthcoming book (J. Kollar, Rational Curves on Algebraic Varieties,
preliminary version (1994)), containing a treatment of the same subject.
However, there are relevant differences both in the methods and in the
final results.

1. - The space of cycles.

An introduction to the space of cycles.
Let V be a complex vector space of dimension &#x3E;- 1, and let P = P(V)

be the associated complex projective space. By the symbol x we will de-
note both a point in P and any vector in V representing that point.
Likewise, by the symbol u we will denote both a linear form belonging
to the dual space VI and the corresponding point in P~ = 

Let Z be any subvariety of dimension n and degree k in P. There is
an irreducible polynomial Fz(uo, ... , un), homogeneous with respect to
each such that ... , un) = 0 if and only if there is some point
x E Z which satisfies uo (x) _ ... = un (x) = 0, i.e. if and only if the linear
space L defined by the linear forms uo , ... , un meets Z. This polynomial
Fz, which is unique up to proportionality, is called the Cayley-Chow
fore, or simply the associated form, of the variety Z, and its coeffi-
cients are called the coordinates of Z. The associated form of a positive
cycle Z = E ai Zi of pure dimension n in P is defined as Fz = TIFz:. If F
is an associated form, we denote in turn by Z(F) the unique cycle whose
associated form is F.
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PROPOSITION 1.1. The polynomials Fz has degree k = deg(Z) with
respect to each ui [10; p. 41].

For any square matrix A of order n + 1, the substitution u =

- (uo , ..., un) H Au = (uo , ... , un ), where u’i aij uj, replaces the lin-
ear forms u by linear forms u’ belonging to the subspace generated
by u . The substitution defines an action of the general
linear group GL(n + 1 ) on the space of polynomials in uo , 9 ... , un ,
which is identified with the symmetric algebra of the vector space
Een+ 

PROPOSITION 1.2. The polynomial Fz satisfies the identity:

A polynomial F(u) satisfying F(Au ) = det (A)k F(u) for some integer
k ~ 0 is called a relative invariant of GL(n + 1), or else an absolute in-
variant of the special linear group SL(n + 1). There is a canonical map-
ping

of the symmetric algebra of the vector space /~ n + (V~) onto a subalge-
bra of the ring of polynomials in uo , ... , un , sending an element F of the
former into that polynomial F’ such that F’ (uo , ... , un) = F(uo A ... A
A From invariant theory we recall the following:

THEOREM 1.3 (first main theorem on covariant invariants of ,SL(n +
+ 1)). The subring of S( consisting of the invariants of
SL ( n + 1 ) is the image through j of S( /~ n + 1 ( v v ) ) ~ 15; p. 45, Thm.
2.6.A].

In other words, the polynomials in uo , ... , un which are invariant
under the action of ,SL(n + 1) are those which can be written as polyno-
mials in the wedge product uo A ... A un , though not in a unique
way.

In the projective space P( /~ n+ 1 (Vv )) the classes of the decompos-
able (n + 1 )-vectors uo A ... A u, form the support of the Grassmann
variety G = of linear spaces of codimension n + 1 in P. The
ideal of G is the kernel of j, is the coordinate

ring of G.
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THEOREM 1.4. The coordinate unique
factorization dorn,ain [14; p. 38, Prop. 8.5].

Every homogeneous invariant polynomial in

particular an associated form defines an hypersurface section of G
and, because of the theorem, every effective Cartier divisor in G is an
hypersurface section. Note here that the factorizations of F in the coor-
dinate ring of G and in are the same one [9; 1.5].

For given integers n * 0, k ~ 1, let be the projective space as-
sociated to the vector space of polynomials F(uo , ... , un) which are ho-
mogeneous of degree k with respect to each ui and invariant under
SL(n + 1)’, i.e. the k-th graded piece of j(S( As usual, we
denote by F both such a polynomial and the corresponding point in
Fn, k . Let us denote by Cn, k = Cn, k (P) the set of associated points Fz E

of cycles Z of pure dimension n and degree k in P.

THEOREM 1.5. Cn, k is an algebraic subset of F n, k. Proofs are found
in [5; satz 2], [10; p. 57, Thm. II].

For any (closed) projective embedding e: the set e)
of associated points of cycles of pure dimension n and degree k in P
whose support is contained in e(X) is an algebraic subset of C,,, k =
= Cn, k (P), which will be considered endowed with its reduced scheme
structure. Let Cn (X, e) be the disjoint sum over k of all Cn, k (X, e).

Furthermore, the set of pairs (F, x) E x P such that the point x
belongs to the support of the cycle Z(F) is an algebraic subset IJn, k , the
incidence subset, and there is an analogous incidence subset within
Cn, k (X, e) x X.
We end with a helpful definition. Any purely dimensional cycle Z of

degree k in P may uniquely be written as a linear combination Z =
= + ... + a$ Z$ , with multiplicities 1  al  ...  a,,, such that each

Zi is a simple cycle (no multiple components) and Zi , Zj have no com-
mon components for each pair i ~ j. Let ki : = deg(Zi).

DEFINITION 1.6. With the above notations, we call the 2s-tuple

the type of Z and a type of cycles of degree 1~. Let Cn, 0 denote the set of
associated points of cycles Z of type 8.

The collection of all Cn, 8 is a partition of Cn, k into disjoint locally
closed subsets [9; § 2]. Therefore, if T is a variety and f: T ~ is a
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regular map, there is a unique 8 such that f ( T ) c and f ( T ) n 
~ ~ (hence f -1 ( Cn, e ) is a dense open subset of T). 

’

DEFINITION 1.7. In the above setting we say that the regular map
f is of type 8.

2. - Families of cycles.

Some general setting for families of cycles.
By a scheme we mean any disjoint union of separated schemes of fi-

nite type over the complex field, for which the irreducible components
still make sense. This is a useful generality for the parameter schemes
of families, which in addition will always be reduced. Moreover, a sub-
scheme will always be closed, a variety will be an integral scheme, and
a point will be a closed point.

Let T be a parameter variety, m : = dim ( T ), X a carrier scheme, Z a
cycle of pure dimension m + n on T x X, p: I Z 2013&#x3E; T the restriction of

prT to the support of Z, and write the reduced fibre as t x
x We always assume that p is a proper map, which happens of
course if the carrier X is projective. We say that Z is a relative cycle of
relative dimension n over T if every fibre of p has pure dimension n. So
every irreducible component of Z ~ I projects onto T. If Z = [ U] is the
cycle of a closed subscheme U of T x X (of pure dimension m + n) as de-
fined in [8; 1.5], then also there is a collection of fibre schemes U(t),
closed subschemes of the carrier X, with support 

In this setting, for every smooth point t E T 8m there is a fibres cycle
Z( t ) of pure dimension n with support IZlt. If Z = [ U] then Z( t ) gives
to every irreducible component Y of U( t ) the multiplicity of the prima-
ry ideal generated by the maximal ideal of the local ring of T at t inside
the local ring of U along t x Y [8; 10.1.1]. ’This definition then extends
by linearity.

All these cycles Z(t) are algebraically equivalent on X (as T is irre-
ducible). If X = P they all have one and the same degree. If the carrier
X also is smooth, then Z ~ (t x X) = t x Z(t) holds [8; 10.1.2], which clas-
sically was a definition.

Consider in particular the case of fibre dimension n = 0. Then p is a
finite map. Assume that Z = [ U] with U reduced. Then the ramifica-
tion index of p at (t, x ) E ~ Z ~ I is equal to the multiplicity of the fibre cy-
cle Z(t) at x, for every t E T 8m [8; 7.1.15].

Topologically, the ramification index of p at any point (t, x) is the
cardinality of I nN for all sufficiently small neighborhoods N of
x and every t’ e near t (in the complex topology) and out of the
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branch locus of p [11; 3.12]. If T is locally irreducible (unibranch) at t,
then the ramification formula holds [11; 3.25]

Let us write «ramif. p at (t, x ) » or else «ramif. [ U] ~ T at ( t, x ) » for
the ramification index, and by linearity define «ramif. Z [ T at (t, x)» for
every cycle Z of relative dimension 0 over T. This preserves the usual
properties of ramification indices, such as the ramification formula, for
instance.
A topological description of the ramification index of a cycle Z at a

point (t, x) is in terms of cycles of the form sum of points be-
longing to fl N each counted with the same multiplicity as in
Z( t ’ ), for every sufficiently small neighborhood N of x and point t ’ E
E Tsm sufficiently near t.

LEMMA 2.1. Assume that T is a locally irreducible variety. There
are neighborhood bases in the complex topologies of T and X such that,
for every ( t, x ) E ~ Z ~ , and basic neighborhoods T ’ of t E T, N of
x E X,

PROOF. By linearity, we may assume Z = [ U] with U reduced. A
standard elementary argument involving some general topology of lo-
cally compact spaces tells us that, for every connected open subset T ’
of T and every open subset U’ with aU’ fl p -1 ( T ’ ) = 0, the
restriction p’ : U’ -~ T ’ still is a finite map (of analytic spaces), and the
open subsets U’ of some p -1 ( T ’ ) as before form a basis in U. Thus a ba-
sis in X consists of the open subsets N such that 
the basis of U.

The basic neighborhoods U’ of a given point ( t, x ), such that

deg pl U’ takes the smallest value = ramif. p at ( t, x), clearly still form
a neighborhood basis at that point. Similarly, a basis of neighborhoods
N at a given point x is defined.

With respect to these neighborhood bases, since mult. Z(t’ ) at x =
= ramif. p at ( t ’ , x), one has:

sum over x E lZ(t’)l n N, i. e. over (t’, x) E p-1(t’) f 1 U’ . Therefore

is just the ramification formula for the finite map p U’ at t’ , holding
because Tsm n T ’ is connected (as T is locally irreducible). And ram-
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if.ZIT at at is just by defini-
tion. 0

Taking fibre cycles is a special case of refined pull-back [8; 8.1.2].
Let a: S ~ T be any morphism of varieties such that a(S) 0.
There is in S x X a unique relative cycle a’ Z over S such that

(a’Z)(s) = Z(as) for every s E Ssm (T 8m).
We define it as follows. By linearity we are reduced to the case Z =

= [ U], U a closed subscheme of T x X. Assume first that T is smooth.
Every irreducible component Y of the fibre product US : = S X T U is
«proper», i.e. of dim Y = dim S + n (~ is from [8; Lemma 7.1], ~ is from
the present setting). This implies that the refined pull-back a’ Z, which
is in principle only defined as a cycle class on US , is indeed a true cycle.
It gives to Y as before the multiplicity of the primary ideal generated
by the ideal of US in ,S x U inside the local ring of S x U along Y [8;
7.1.1]. For general T, using the restriction a -1 (T 8m) - T,,, take the re-
fined pull-back of the restriction of Z it is a cycle on
a -1 ( T~) x T ~ -1 (T sm), and take then its closure in ,S X T U. If we denote
by t again the inclusion mapping of the smooth one-point scheme t E T sm
into T , then t’ Z = Z( t ).

3. - Regular families.

Consider now again a relative cycle Z over T in T x X, and any (pos-
sibly singular) point t E T. There are germs of maps a: (S, s) - (T, t),
a(s) = t, where S is a smooth curve and a(S - s) c T~ . For every such
a there is a unique local irreducible component T ’ of the germ (T, t)
such that a(S) c T ’ (inclusion of germs), and every local component T ’
is run by some a. For every a as before, define Z( t, a ) : = a’ Z( s ). Clear-
ly Z(t, a) = Z(t) if t E T sm. We call the collection of Z( t, a), for every t
and a, the full family of cycles defined by Z. They all belong to one and
the same algebraic equivalence class on X.

LEMMA 3.1. Let v: T - T be the normalization map and consider
the relative cycle v’ Z over T. There is a bijection between points t’ E
E v -1 ( t ) and branches T ’ of the germ ( T , t), such that the neighborhood
of t’ covers through v the corresponding branch T ’ . Every curve
a: S --~ T, a(s) = t, with a(S - s) c has a unique lilting a: S - T,
a(s) = t ’ , such that a = v o a. Then:

PROOF. Nothing but a’ Z = a’ (v’ Z).
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We therefore assume from now on that we are given a locally irre-
ducible variety T. Assume moreover that the carrier X is a projective
scheme. We are going to prove that Z(t, a) is then independent of a. By
linearity, we may also assume that Z = [ U] with U c T x X a reduced
subscheme.

Choose now a projective embedding e : X4P, and denote by e. Z
the image of Z in T x P (under 1 T x e). However we will usually omit
reference to e in the notation, except sometimes to remark what could
in principle depend on it. Using the embedding, we find a «limit cycle»
of Z(t’ ), as t’ E T 8m tends to t. It could be described as the unique cycle
whose section with a general linear space L(u) is the limit of the family
of linear sections Z(t’ ) ~ L(u), as t’ tends to t, where the limit in a family
of 0-cycles is meant as the limit fibre in a ramified covering, with multi-
plicities viewed as ramification indices. This is in the spirit of some ear-
ly treatment of intersection multiplicities.

Let G denote in this section the grassmannian of linear spaces of
codimension n in P, where n is the relative dimension of Z over T, and
let L c P x G be the universal linear space over G, whose fibre cycles
we denote by L(u), instead of lfa(u). The diagram

determines a mapping 1l: whose reduced fibre over

(t’ , u) is the support The set (T x G)o of all (t’ , u) such
that n L(u) = 0 is a dense open subset of T x G, and so is

x G)o too. Similarly define x G )o . The restriction x

x G)o - ( T x G)o is a finite map.
Denote by Z.p L the cycle on U x p L whose fibre cycle is

The general construction gives Z .p L = (Z x G . (T x L) in T x P x
x G [8; Cor. 10.1]. This provides an interpretation of intersection multi-
plicities as ramification indices:

for (t’ , x, u) E 1l -1 (T 8m x G)o . The set Rm of points (t’ , x, u) E
e 1l -1 ( T x G)o where Z .p L has ramification index * m is a closed alge-
braic set.
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DEFINITION 3.2. In the present setting, for every irreducible com-
ponent Y of the fibre support I Zit, define my to be the smallest m such
that (t x (T x G)o is contained within Rm. This means
that the ramification index of Z.p lf~ at (t, x, u) is my for almost all
pairs (x, u) with x e Y. Define a «limit cycle» with support 

If t e then limt e. Z = Z(t). Indeed, for every Y and almost all
(.c, u) with .c E Y one has: ramif. Z.p L at (t, x, u) = mult. Z(t).
-L(u) at x = (mult. Y in Z(t)) x (mult. Y.L(u) at x), together with:
(mult. y. L(u) at .x-) = 1. ,

PROPOSITION 3.3. Assume that T is a locally irreducible variety,
and let Z in T x X be a relative cycle over T. Let moreover e: ~~ P be
a projective embedding. For every curve a: S - T with a(s) = t and
a(S - s) c T 8m’ then:

PROOF. Remark that:

as s is a smooth point of ,S. So what we are going to prove is:

lims e . a’ Z = limt e. Z.

The following is a pull-back diagram:

Furthermore 6.2(c)], and 
a’ (Z x 

x L) = (a’ Z x ~) ~ (,S x L) in S x P x G. In the present situation, the
following holds:

ramif. at (s, x, u) = ramif. x G at (t, X, ~), I

which gives the desired formula and so completes the proof. This comes
from:
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LEMMA 3.4. Assume that T is a locally irreducible variety, and let
Z in T x X be a relative cycle of relative dimension 0 over T. Let
a: ,S ~ T be a regular map of varieties such that a(S) 0. Then
the pull-back indices: 

0. T~e~

ramif. at (s, x) = ramif. at (as, x) .

PROOF. By linearity assume Z = [ U] with U reduced. A neighbor-
hood basis at (s, x) E Us is given by the open subsets of the form Us n
n (,S’ x U’ ) where, for some basic neighborhood T ’ of a(s) E T, ,S’ c
c a -1 ( T ’ ) is a neighborhood of s e S, is a basic neighbor-
hood of (t, x) E U of the form U’ = unT’ x N where N is a basic
neighborhood of x E X, and the neighborhood bases in T and X are taken
as in lemma (2.1). This implies that

for in particular for t ’ - a ( s ’ ) with 
f1 a -1 ( T~) nS’. Likewise for such s’

and clearly a’ Z( s ’ ) ( N = Z(as’) I N. m 0

THEOREM 3.5. Let Z in T x X be a relative cycle over T, and as-
sume that the carrier X is projective. Then the cycle Z(t, a) is constant
for a running within a given local component T ’ of the germ
(T, t).

PROOF. From lemma (3.1) and proposition (3.3) it follows that

Z(t, a) = v’ Z( t ’ , a) = limt , e . v’ Z, where t ’ E v -’ (t) corresponds to the
branch T ’ , and e: X- P is a chosen projective embedding.

Let us say that the relative cycle Z over T is a regular cycle, or de-
fines a regular family of cycles, iff for every t E T the cycle Z(t, a) is
constant, i.e. also independent of the branch T ’ , and write in this case
Z(t) : = Z(t, a).

PROPOSITION 3.6. Let U be a closed subscheme of T x X which
is flat over T. Then the associated cycle [ U] defines a regular
family of cycles
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PROOF. If T is smooth then [U](t) = [ U(t)] holds [8; 10.1.2]. If
a: S - T is any map of varieties then a’ [ U] _ [Us], where 
:= S xT U[8; 6.2(b)]. Thus, if S is a smooth curve with a(s) = t, as
usual, it follows that indepen-
dent of a .

4. - Induced semi-regular maps.

THEOREM 4.1. Let Z on T x P be a relative cycle of relative dimen-
sion n over a smooth variety T, and let k be the degree of every Z(t).
There is a regular map fz: T - Cn, k sending t E T into the associated
point of Z(t).

PROOF. By linearity, we may assume Z = [ U] with U c T x P a re-
duced subscheme. Let G be the grassmannian of linear spaces of codi-
mension n + 1 in P, and let L c P x G be the universal linear space
over G. Consider the diagram:

and the induced map 1l: U xp L - T x G.

Projection ~, : U U is obtained by base extension from the
locally trivial fibration 1(~ -~ P, hence U xp L is reduced. The image set
1l(U x p L) consists of all (t, u) E T x G such that L(u) meets It
has codimension 1 in T x G, as .7r is birational onto its image. Define
Iz : = [ U xp L], = [,7r(U xp L)]. We claim that the fibre cy-
cle Hz(t) is the hypersurface section of G defined by the associated
form of Z(t).

By base extension again we obtain fibrations U( t ) xp L - U(t),
whose pull-backs Àt therefore preserve irreducibility of cycles, and
proper projections U( t ) xp L - G, which are still birational onto
their images. Therefore Izet) :_ ~,t Z(t) is nothing but the «incidence cy-
cle» of Z(t), whose projection (I zet» is the hypersurface sec-
tion of G defined by the associated form of Z(t). From [8; Prop. 10.1(b)]
we have (À * Z)(t) = Ài (Z(t)), i.e. IZ (t) = lzet). From [8; Prop. 10.1(a)]
we have 1lt* (Iz (t)). So finally Hz (t) = Hz(t). In particular,
its line bundle is = nG ( k ).

Now Hz is an effective Cartier divisor in T x G and its line bundle
aHz) has a unique (up to proportionality) global section 0 with
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Thus the section of 
= has div (O(t)) = Hz (t), so that we can identify 0(t) with the
associated form of Z(t), up to the identification = and
the canonical identification of forms F(uo A ... A un) of degree k in the
coordinate ring of G with global sections of OG (k). All these identifica-
tions can be made compatible so to define a regular map T-
- PH0 (OG (k)) = which clearly factors through Cn, k . This follows
from a general: 

’

LEMMA 4.2. Let 3ll be a Line bundle on a product variety V x W,
such that every = W v x W belongs to the isomorphism class of
some given Line bundle 2 on W, and assume that W is a complete vari-
ety. Then there is an isomor~phism (X) 0 prW (2) for some line
bundle N on V If a global section (P E H° (V x W, 311) is given, define
f(v) E 2) to be the global section corresponding x W un-
der the induced isomor~phism M4 = ~. Then f: V - HO (W, 2) is a regu-
Lar map.

PROOF. That N exists is by the so called zig-zag principle. Since
regularity of f is a local question we may assume that V is affine and N
is trivial on V. Now replacing with an isomorphic line bundle induces
an isomorphism of 311 which does not change the map f. So we may also
assume that N = OV. In this situation, there is an induced isomorphism
H° (V x = H° (V, c‘~,) ® H° (W, ~). If 0 is sent into 

i

i

PROPOSITION 4.3. Let Z in T x P be a relative cycle of relative di-
mension n over a variety T, and let k be the degree of Z(t) for t E T 8’m.
The closed graph of the induced map T 8’m - Cn, k defines a correspon-
dence f from T into Cn, k . The image set ff t I is the set of associated
points of cycles Z(t, a). In) particular, it is a finite set.

PROOF. For every curve a: S ~ T, a(s) = t, the

composition ,S - s ~ T~ ~ Cn, k extends to 99: and clearly
(p(s) This 99 agrees with the induced map of the relative cycle
a’ Z over S, on S - s hence on the whole of S. Thus 99(s) is the associated
point of Z(t, a). Clearly, every associated form is of the form
F = ~(s) for some a. 0

In particular, we see that Z being a regular relative cycle over T is a
necessary and sufficient condition for the induced map T 8’m - Cn, k to
have a continuous extension fz: T ~ what we call a semi-regular
(rational) map.
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DEFINITION 4.4. If S, T are reduced schemes, we call f: S - T a se-
mi-regular (rational) map if the restriction S~ -~ T is a regular map
and f is continuous, either in the Zariski or in the complex topology,
equivalently. It is necessarily a regular map if S is a semi-normal

variety.

5. - The universal family.

PROPOSITION 5.1. For every semi-reguLar map f: va-

riety T, there is in T x P a unique regular cycle Z over T such that
fz =f.

PROOF. We begin with a useful remark. Suppose we have found
some dense open subset T 1 of and in T 1 x P a relative cycle Z, over
T 1 such that f ( t ) is the associated point of ZI (t) for t E T 1. We claim that
the closure Z of Z, in T x P satisfies the theorem.

Consider the normalization map v: 7 --* T. We have the relative cy-
cle v’ Z over T with v’ Z( t ’ ) = Z( vt ’ ) if t ’ E v -1_( T 1 ). Now v’ Z defines a
regular family and induces a regular map f: T --3- which clearly
agrees with f o v, on v -1 (T1) hence on the whole of T. Let a: S -~ T,
a(s) = t be a smooth curve through t with a(S - s) c T~ , and take the
lifting a: S - T, a( s ) = t ’ . We know that Z( t, a) = v’ Z( t ’ ), and the as-
sociated point of v’ Z( t ’ ) is f ( t ’ ) = f ( vt ’ ) = f ( t ), hence Z( t, a) is the cycle
of the associated point f(t), independent of a. This proves the
claim.

We are therefore allowed to assume that T is smooth and f is a regu-
lar map. Furthermore, if f is of type e, we may also assume that
f(T) c Ce.

We first consider the case 8 = ( 1; k ), when the cycle of f ( t ) is a sim-
ple cycle for every t . Using the incidence subscheme X P,
define a closed subscheme of T x P, and p : _
: = prT U. By general dimension and smoothness arguments, we know
that there is some dense open subset 7B of T such that: every irre-
ducible component dominates T 1, is a
smooth map, f1 p -1 ( Tl ) - T1 has all fibres of dimension  n. Let Zi
be the cycle of the open subscheme p -1 (T1) of U. Clearly ZI is a relative
cycle over T1 and the fibre cycle ZI (t) is a simple cycle and therefore
agrees with the cycle with associated point f(t) for t E T 1. So the state-
ment follows from the remark at the beginning.

Next we come to the general case, type 8 = ki ). By means of the
regular map 1jJ: defined by y (Fi , ... , Fg) = we

introduce the space C : _ of all sequences (Fi, .... F,) of
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pairwise coprime simple associated forms, and the bij ective restriction
Then form the fibre diagram:

where The composite map of type
( 1; ki), so by the preceding proof there is a regular cycle 2, in T x P
over T whose fibre over (t, F1, ... , Fs) E T is the cycle of Fi . Define
Zi : _ (1 and then Z: = Clearly Z is a regular cycle
over T such that f(t) is the associated point of Z(t) for every
tET.

PROPOSITION 5.2. Let Z in T x X be a regular cycle over T, and as-
sume that the carrier X is projective. Let f: ,S ~ T be any semi-regular
map of varieties. There is in S x X a unique regular cycle f’ Z over S
such that f ’ Z( s ) = Z(fs) for every s E S.

PROOF. With respect to some projective embedding e: X- P, the
regular cycle Z induces a semi-regular map fz: T ~ Cn, k and the com-
posed semi-regular map fz o f is in turn induced by a unique regular cy-

over S.

It is easy to extend everything more generally to reduced, not nec-
essarily irreducible, parameter spaces T . A cycle Z in T x X will be a
relative cycle over T if the projection Z ~ -~ T has all fibres of some
pure dimension n and if, furthermore, every irreducible component of
I Z I projects onto some irreducible component of T. In other words, for
every irreducible component T ’ of T a relative cycle Z’ over T ’ is

given, and Z is the sum of all these Z’ . In this setting there are limit cy-
cles Z’ (t, a) for t E T ’ , and Z will be said to be regular if Z’ (t, a) is in-
dependent both of the curve a and of the irreducible component T ’ con-
taining t. In this case we write Z(t) : = Z’ (t, a). The cycles Z( t ) need not
belong to one and the same algebraic equivalence class on X. They do if
the parameter space T is connected. With these definitions, all the re-
sults in the last two sections hold more generally for any reduced T. A
regular cycle Z in T x P determines a semi-regular map T ~ Cn , and
indeed ~T ~ Cn, k if all cycles Z(t) have a common degree k in P. Con-
versely any semi-regular map f: S - T determines a pull-back f’ Z of
regular cycles Z over T, provided that the carrier X is projective.

Therefore, from proposition (5.1) applied to the identity map of



141

we obtain a regular cycle over Cn, k , which we call the uni-
versal cycle. Summing over 1~, we also have a universal cycle Zn over
Cn . For every projective embedding e: X- P, proposition (5.2) ap-
plied to the inclusion map en  : Cn, k (X, e) ~ Cn, k gives a universal cy-
cle Zn, k (X, e ) = en, k Zn, k in Cn, k (X, e) x X. 

’

6. - The semi-universal property.

The results in the last section allow the following:

DEFINITION 6.1. For every projective carrier scheme X, a set-

valued contravariant functor on the category R0 of reduced
schemes T and semi-regular maps f: S - T is constructed, by defining
~n (X)( T ) to be the set of all regular cycles Z in T x X of relative dimen-
sion n over T, and ~n (X ) ( f ) to be the function Z- f’ Z.

Moreover, for every projective embedding e: X- P, a natural
transformation of functors ~n (X)(T ) --~ Hom, (T, Cn (X, e)) is defined

by and is in fact an isomorphism. We state this as:

THEOREM 6.2. The space of cycles Cn (X, e) represents the functor
on the category fRo of reduced schemes and semi-regular

maps.

This implies the following result of Andreotti-Norguet [1; p. 52].

COROLLARY 6.3. If e, e’ are two projective embeddings of the carri-
er X, there is a semi-isomorphism Cn (X, e) C,,, (X, e ’ ), i. e. an homeo-

morphism which is an isomorphism of the smooth Loci, sending the as-
sociated point of e(Z) into the associated point of e’ (Z) for every cycle
Z of pure dimension n in X.

Actually this is an isomorphism according to [2; p.115, Cor.].
Concerning the relation to the Hilbert scheme, from proposition

(3.6) and theorem (6.2) we have:

COROLLARY 6.4. Let e: X ~ P be a projective embedding and let
Hn (X) be the Hilbert scheme parametrizing closed subschemes U of X
of pure dimension n. There is a semi-regular map Hn (X)red - Cn (X, e)
sending the associated (Hilbert) point of the subscherne U into the asso-
ciated (Cayley-Chow) point of the cycle [U].

That this is in fact a regular map is proved in [12; Ch. 5, § 4] and
[2; Ch. V].
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