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A Universal Property of the Cayley-Chow Space
of Algebraic Cycles.

Lucio GUERRA (¥)

For every projective scheme X and projective embedding e: X — P,
there is a reduced scheme C, (X, ¢) parametrizing all cycles of pure di-
mension n with support in X. The construction is carried over in terms
of the given embedding, so that in particular the space of cycles
C, (X, e) comes out equipped with a partition into disjoint subschemes
C,, (X, e), each endowed with a natural projective embedding, for all
degrees k of cycles in P. The idea goes back to Cayley [4], but the effec-
tive construction is due to Chow [5]. In recent times new important ap-
plications appeared [3],[6],[7] which motivate the present contribution
to a long standing problem of setting suitable foundations.

Over the complex field, there is a theorem of Barlet [2] saying that
different projective embeddings e¢ do always give rise to isomorphic
schemes C, (X, e). This is not true in positive characteristics as shown
by Nagata[13]. We therefore confine ourselves to complex schemes.

The question arises how to describe morphisms T — C, (X, e) intrin-
sically by means of incidence correspondences (cycles) Z in T X X, with-
out reference to the embedding. This would be an «explicit» universal
property for C, (X, e), for the essential independence of ¢ is already an
«implicit» one.

In general, a (relative) incidence cycle Z only induces a regular map
on the smooth locus T, — C, (X, ¢). The geometrically relevant point is
therefore to determine when the induced map on T, admits a continu-
ous extension f;: T — C, (X, e), what we call a «semi-regular» (ratio-
nal) map. This requires a careful study of the limit behaviour of fibre
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cycles, when approaching a singular point moving along the smooth lo-
cus in the parameter variety T. We prove that there is a unique «limit
cycle» along any path contained within a given branch of T at the singu-
lar point. The «regular» cycles Z, those which correspond to semi-regu-
lar maps into C, (X, e), are therefore characterized by the property that
the limit cycle is the same one along every branch. This is the main re-
sult of the present paper, which is missing in the existing literature.

More precisely, we prove that the space of cycles C,(X, e) repre-
sents a certain functor of regular relative cycles on the category of re-
duced schemes and semi-regular maps. This implies the earlier result of
Andreotti-Norguet [1], that the semi-normalization of C,(X, e) is es-
sentially independent of the embedding. Finally, once a (regular) cycle
Z is known to determine a semi-regular map f;, then the property of f;
being everywhere regular is essentially independent of the embedding
¢, according to the theorem of Barlet.

Up to date. While the present paper was in the publication proce-
dure, the author had the opportunity of looking into the first chapter of
a forthcoming book (J. Kollar, Rational Curves on Algebraic Varieties,
preliminary version (1994)), containing a treatment of the same subject.
However, there are relevant differences both in the methods and in the
final results.

1. - The space of cycles.

An introduction to the space of cycles.

Let V be a complex vector space of dimension = 1, and let P = P(V)
be the associated complex projective space. By the symbol x we will de-
note both a point in P and any vector in V representing that point.
Likewise, by the symbol » we will denote both a linear form belonging
to the dual space VV and the corresponding point in PV = P(VV).

Let Z be any subvariety of dimension » and degree k in P. There is
an irreducible polynomial F';(u,, ..., u,), homogeneous with respect to
each w;, such that F;(u,, ..., u,) = 0 if and only if there is some point
2 € Z which satisfies uy(x) = ... = u, (x) = 0, i.e. if and only if the linear
space L defined by the linear forms w,, ..., 4, meets Z. This polynomial
F;, which is unique up to proportionality, is called the Cayley-Chow
form, or simply the associated form, of the variety Z, and its coeffi-
cients are called the coordinates of Z. The associated form of a positive
cycle Z = X, a;Z; of pure dimension » in P is defined as F; = HF;;’. IftF
is an associated form, we denote in turn by Z(F') the unique cycle whose
associated form is F.
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PROPOSITION 1.1. The polynomial Fz has degree k = deg(Z) with
respect to each w;[10; p.41].

For any square matrix A of order n + 1, the substitution u =
= (U, ...y Up) > AU = (uq, ..., U,), Whereu, = Zaijuj,replacesthelin-

ear forms u by linear forms u' belonging to tﬁe subspace generated
by u. The substitution F(u)+— F(Au) defines an action of the general
linear group GL(n + 1) on the space of polynomials in uq, ..., U%,,
which is identified with the symmetric algebra of the vector space
®n+1 (V \% )

PROPOSITION 1.2. The polynomial Fj satisfies the identity:
Fz;(Au) = det(AY*F;(u),
where k = deg(Z)[1; p. 43].

A polynomial F(u) satisfying F(Au) = det(A)* F(u) for some integer
k = 0 is called a relative invariant of GL(n + 1), or else an absolute in-
variant of the special linear group SL(n + 1). There is a canonical map-

pmg
j: SCA™H(VV)) - S(D™1(VY))

of the symmetric algebra of the vector space /A"*!(VV) onto a subalge-
bra of the ring of polynomials in %, ..., %,, sending an element F of the
former into that polynomial F'' such that F' (ug, ..., ,) = F(ug A\ ... A
A u,). From invariant theory we recall the following:

THEOREM 1.3 (first main theorem on covariant invariants of SL(n +
+1)). The subring of S(B"*1(VV)) consisting of the invariants of
SL(n + 1) is the image through j of S(/A\"*1(VV))[15; p.45, Thm.
2.6.A].

In other words, the polynomials in u, ..., %, which are invariant
under the action of SL(n + 1) are those which can be written as polyno-
mials in the wedge product uy A ... Au,, though not in a unique
way.

In the projective space P( /A"*1(VV)) the classes of the decompos-
able (n + 1)-vectors uy A ... A u, form the support of the Grassmann
variety G = G"*! of linear spaces of codimension n + 1 in P. The
ideal of G is the kernel of 7, hence 5(S( /A"**(VV))) is the coordinate
ring of G.
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THEOREM 14. The coordinate ring j(S( A\"*1(VV))) is a unique
factorization domain [14; p. 38, Prop. 8.5].

Every homogeneous invariant polynomial F ej(S( A"*'(VV))), in
particular an associated form F';, defines an hypersurface section of G
and, because of the theorem, every effective Cartier divisor in G is an
hypersurface section. Note here that the factorizations of F' in the coor-
dinate ring of G and in S(@"*(VV)) are the same one[9; 1.5].

For given integers n = 0, k 2 1, let F,, , be the projective space as-
sociated to the vector space of polynomials F(u,, ..., %,) which are ho-
mogeneous of degree k with respect to each u; and invariant under
SL(n + 1), i.e. the k-th graded piece of j(S( /A"*1(VV))). As usual, we
denote by F both such a polynomial and the corresponding point in
F,, x. Let us denote by C, = C,, ;(P) the set of associated points F; e
eF,  of cycles Z of pure dimension » and degree k in P.

THEOREM 1.5. C, ; is an algebraic subset of F, . Proofs are found
in [5; satz 2], [10; p. 57, Thm. II].

For any (closed) projective embedding e: X — P, the set C, (X, e)
of associated points of cycles of pure dimension n and degree k in P
whose support is contained in e(X) is an algebraic subset of C, ;=
= Cy, 1 (P), which will be considered endowed with its reduced scheme
structure. Let C, (X, e) be the disjoint sum over k of all C, (X, e).

Furthermore, the set of pairs (¥, x) € C, , X P such that the point
belongs to the support of the cycle Z(F) is an algebraic subset U, , the
incidence subset, and there is an analogous incidence subset within
Cor(X,e) X X.

We end with a helpful definition. Any purely dimensional cycle Z of
degree k in P may uniquely be written as a linear combination Z =
=a 2y + ... + a,Z,, with multiplicities 1 < @, < ... < a,, such that each
Z; is a simple cycle (no multiple components) and Z;, Z; have no com-
mon components for each pair ¢ # j. Let k; := deg(Z)).

DEFINITION 1.6. With the above notations, we call the 2s-tuple

0:= (a,l, ceey Qg kl’ ceny ks)

the type of Z and a type of cycles of degree k. Let C,, 4 denote the set of
associated points of cycles Z of type 6.

The collection of all C, 4 is a partition of C, j into disjoint locally
closed subsets [9; § 2]. Therefore, if T is a variety and f: T —>C, ;is a
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regular map, there is a unique 0 such that f(T) gﬁn, eand f(T)YNC,, o#
# @ (hence f~!(C,, ¢) is a dense open subset of T').

DEFINITION 1.7. In the above setting we say that the regular map
fis of type 6.

2. - Families of cycles.

Some general setting for families of cycles.

By a scheme we mean any disjoint union of separated schemes of fi-
nite type over the complex field, for which the irreducible components
still make sense. This is a useful generality for the parameter schemes
of families, which in addition will always be reduced. Moreover, a sub-
scheme will always be closed, a variety will be an integral scheme, and
a point will be a closed point.

Let T be a parameter variety, m := dim(T'), X a carrier scheme, Z a
cycle of pure dimension m + n on T X X, p: |Z| — T the restriction of
prp to the support of Z, and write the reduced fibre p ~!(f),eq as t X
X |Z|;. We always assume that p is a proper map, which happens of
course if the carrier X is projective. We say that Z is a relative cycle of
relative dimension % over T if every fibre of p has pure dimension 7. So
every irreducible component of |Z| projects onto T. If Z = [U] is the
cycle of a closed subscheme U of T' X X (of pure dimension m + %) as de-
fined in [8; 1.5], then also there is a collection of fibre schemes U(t),
closed subschemes of the carrier X, with support U(t).eq = | Z];.

In this setting, for every smooth point ¢ € T, there is a fibre cycle
Z(t) of pure dimension » with support |Z|;. If Z = [U] then Z(t) gives
to every irreducible component Y of U(t) the multiplicity of the prima-
ry ideal generated by the maximal ideal of the local ring of T at ¢ inside
the local ring of U along t X Y[8; 10.1.1]./This definition then extends
by linearity.

All these cycles Z(t) are algebraically equivalent on X (as T is irre-
ducible). If X = P they all have one and the same degree. If the carrier
X also is smooth, then Z-(t X X) =t X Z(t) holds [8; 10.1.2], which clas-
sically was a definition.

Consider in particular the case of fibre dimension » = 0. Then p is a
finite map. Assume that Z = [U] with U reduced. Then the ramifica-
tion index of p at (t, x) € | Z| is equal to the multiplicity of the fibre cy-
cle Z(t) at x, for every te T,,[8; 7.1.15].

Topologically, the ramification index of p at any point (¢, x) is the
cardinality of |Z(¢t')| N N for all sufficiently small neighborhoods N of
x and every t' € T,, near ¢ (in the complex topology) and out of the



132 Lucio Guerra

branch locus of p[11; 8.12]. If T is locally irreducible (unibranch) at ¢,
then the ramification formula holds [11; 3.25]

Let us write «ramif. p at (¢, x)» or else «ramif. [U]|T at (¢, «)» for
the ramification index, and by linearity define «ramif. Z|T at (¢, x)» for
every cycle Z of relative dimension 0 over T'. This preserves the usual
properties of ramification indices, such as the ramification formula, for
instance.

A topological description of the ramification index of a cycle Z at a
point (¢, x) is in terms of cycles of the form Z(t')|N, sum of points be-
longing to |Z(t')| N N each counted with the same multiplicity as in
Z(t"), for every sufficiently small neighborhood N of x and point ¢’ e
e T, sufficiently near t.

LEmMA 2.1. Assume that T is a locally irreducible variety. There
are neighborhood bases in the complex topologies of T and X such that,
for every (t,x)e |Z|, and basic neighborhoods T' of teT, N of
rvelX,

ramif, Z|T at (¢, ) = degZ(t')|N
holds for t' e T, N T"'.

ProoF. By linearity, we may assume Z = [U] with U reduced. A
standard elementary argument involving some general topology of lo-
cally compact spaces tells us that, for every connected open subset T'’
of T and every open subset U’ of p ~1(T"') with U’ Np 1 (T') = @, the
restriction p': U’ — T’ still is a finite map (of analytic spaces), and the
open subsets U’ of some p ~1(T'’) as before form a basis in U. Thus a ba-
sis in X consists of the open subsets N such that U' = U N (T' X N) is in
the basis of U.

The basic neighborhoods U' of a given point (¢, x), such that
degp| U’ takes the smallest value = ramif. p at (¢, x), clearly still form
a neighborhood basis at that point. Similarly, a basis of neighborhoods
N at a given point « is defined.

With respect to these neighborhood bases, since mult. Z(t') at « =
= ramif. p at (', x), one has:

deg Z(t')|N = X ramif. p at (t', ),
sum over z € |Z(t')] NN, ie. over (t',x)ep~'(¢') N U’. Therefore
deg Z(t')|N = degp|U’

is just the ramification formula for the finite map p|U’ at t’, holding
because T,,, N T' is connected (as T is locally irreducible). And ram-
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if. Z|T at (t,x)=ramif. p at (¢, ) =degp|U’ is just by defini-
tion. =

Taking fibre cycles is a special case of refined pull-back[8; 8.1.2].
Let a: S— T be any morphism of varieties such that a(S) N T, = @.
There is in S X X a unique relative cycle a'Z over S such that
(a'Z)(s) = Z(as) for every s e Sy, N a1 (Tyy).

We define it as follows. By linearity we are reduced to the case Z =
=[U], U a closed subscheme of T' X X. Assume first that T' is smooth.
Every irreducible component Y of the fibre product Ug :=8 XU is
«proper»,ie. of dimY = dim S + » (= is from [8; Lemma 7.1], < is from
the present setting). This implies that the refined pull-back a'Z, which
is in principle only defined as a cycle class on Ug, is indeed a true cycle.
It gives to Y as before the multiplicity of the primary ideal generated
by the ideal of Ug in S X U inside the local ring of S X U along Y[8;
7.1.1]. For general T, using the restriction a ~!(T,,) = T, take the re-
fined pull-back of the restriction of Z to p (T,,), it is a cycle on
a Y (Tg) X7p 1 (Tsy), and take then its closure in S X 7 U. If we denote
by t again the inclusion mapping of the smooth one-point scheme ¢ € T,
into T, then t'Z = Z(t).

3. - Regular families.

Consider now again a relative cycle Z over T in T' X X, and any (pos-
sibly singular) point ¢t € T'. There are germs of maps a: (S, s) — (T, 1),
a(s) = t, where S is a smooth curve and a(S — s) c T, . For every such
a there is a unique local irreducible component T’ of the germ (T, t)
such that a(S) c 7' (inclusion of germs), and every local component 7'’
is run by some a. For every a as before, define Z(t, ) := a'Z(s). Clear-
ly Z@t, a) = Z(t) if t € T,,,. We call the collection of Z(¢, ), for every t
and a, the full family of cycles defined by Z. They all belong to one and
the same algebraic equivalence class on X.

LEMMA 3.1. Let v: T — T be the normalization map and consider
the relative cycle v'Z over T. There is a bijection between points t' e
e v~ 1(t) and branches T ' of the germ (T, t), such that the neighborhood
of t' covers through v the corresponding branch T'. Every curve
a: S—>T, a(s) =t, with a(S — 8) c Ty, has a unique lifting a: S — T,
a(s) =t', such that o =vo a. Then:

Zt, a) =v'Z(t',q).

Proor. Nothing but ¢'Z =a'(v'Z). =
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We therefore assume from now on that we are given a locally irre-
ducible variety T. Assume moreover that the carrier X is a projective
scheme. We are going to prove that Z(Z, a) is then independent of a. By
linearity, we may also assume that Z = [U] with Uc T X X a reduced
subscheme.

Choose now a projective embedding e: X<~ P, and denote by e. Z
the image of Z in T X P (under 1y X e). However we will usually omit
reference to ¢ in the notation, except sometimes to remark what could
in principle depend on it. Using the embedding, we find a «limit cycle»
of Z(t'), as t' € T, tends to t. It could be described as the unique cycle
whose section with a general linear space L(%) is the limit of the family
of linear sections Z(t')-L(u), as t’ tends to ¢, where the limit in a family
of 0-cycles is meant as the limit fibre in a ramified covering, with multi-
plicities viewed as ramification indices. This is in the spirit of some ear-
ly treatment of intersection multiplicities.

Let G denote in this section the grassmannian of linear spaces of
codimension 7 in P, where % is the relative dimension of Z over T, and
let L c P X G be the universal linear space over G, whose fibre cycles
we denote by L(u), instead of L(u). The diagram

l )
U ->P
l
T

determines a mapping &: U XpL — T X G, whose reduced fibre over
(t', ) is the support of | Z|;» N L(u). The set (T X G)y of all (¢', ) such
that dim|Z|; N L(») =0 is a dense open subset of T X G, and so is
a1 (T X G), too. Similarly define (T, X G),. The restriction = ~1(T X
X G)y— (T X G), is a finite map.

Denote by Z-p L the cycle on U Xp . whose fibre cycle is

ZpL)t',u)=2Z(t")-L(u) for (t',u)e Ty X G)y.

The general construction gives Zp L =(Z X G)- (T XL) in T X P X
X G [8; Cor. 10.1]. This provides an interpretation of intersection multi-
plicities as ramification indices:

mult. Z(¢t')-L(u) at * = ramif. Z-pL|T X G at(t', x, u)

for (¢',x, u)en (T, X G)y. The set R, of points (t',x,u)e
e n " }(T X G), where Z -p L has ramification index = m is a closed alge-
braic set.



A universal property of the Cayley-Chow space ete. 135

DEFINITION 3.2. In the present setting, for every irreducible com-
ponent Y of the fibre support |Z|;, define my to be the smallest m such
that (t X Y X G) N YT x G), is contained within R,,. This means
that the ramification index of Z-p L at (t, x, u) is my for almost all
pairs (x, u) with x €Y. Define a «limit cycle» with support |Z|;:

lime. Z:= Y my-Y.

If teT,, then lim,e. Z = Z(t). Indeed, for every Y and almost all
(x,u) with xeY one has: ramif. Z-p L at (¢, 2, ) = mult. Z(t)-
‘L(u) at = (mult. Y in Z(¢)) X (mult. Y -L(u) at x), together with:
(mult. Y-L(u) at ) = 1. _

ProposiTION 3.3. Assume that T is a locally irreducible variety,
and let Z in T X X be a relative cycle over T. Let moreover e: X — P be
a projective embedding. For every curve a: S — T with a(s) =t and
a(S —s)cT,,, then:

Z(t, a) = lim;e. Z .

Proor. Remark that:
Z(t, a):= a'Z(s) = lim,e. @' Z,

as s is a smooth point of S. So what we are going to prove is:

lim,e. a'Z = lim;e. Z .
The following is a pull-back diagram:

Ug XpL —> U XpL

! r
SxG 25 TxG.

Furthermore (a X 1)'(Z-pL)=a'(Z-pL)[8; 62(c)], and a'(ZpL)=
= (a'Z)p LinUg Xp L,becausea'(Z X G-T X L) = a'(Z x G)-a'(T x

XL)=(a'ZxG)-(S§ XL)in 8§ X P X G. In the present situation, the
following holds:

ramif. a'ZpL|S X G at (s, », u) =ramif. ZpL|T X G at (¢, x, u),

which gives the desired formula and so completes the proof. This comes
from:
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LEMMA 34. Assume that T is a locally irreducible variety, and let
Z in T XX be a relative cycle of relative dimension 0 over T. Letl
a: S — T be a regular map of varieties such that a(S) N T, # 0. Then
the pull-back cycle a'Z over S has ramification indices:

ramif. a'Z|S at (s, ) = ramif. Z|T at (as, x).

PROOF. By linearity assume Z = [U] with U reduced. A neighbor-
hood basis at (s, x) € Uy is given by the open subsets of the form Ug N
N (8’ X U') where, for some basic neighborhood 7' of a(s)e T, S’ c
ca~1(T"') is a neighborhood of se S, U’ cp~!(T") is a basic neighbor-
hood of (¢,z)e U of the form U'=UNT' X N where N is a basic
neighborhood of x € X, and the neighborhood bases in T and X are taken
as in lemma (2.1). This implies that

ramif. Z|T at (as, x) = degZ(t')|N

for every t'e€T,,, N T', in particular for t' = a(s') with s’ e S,, N
Na~(T,, NS'. Likewise for such s’

ramif. a'Z|S at (s, x) = dega'Z(s')|N
and clearly a'Z(s')|N =Z(as')IN. m =

THEOREM 3.5. Let Z in T X X be a relative cycle over T, and as-
sume that the carrier X is projective. Then the cycle Z(t, a) is constant
Jor a running within a given local component T' of the germ
(T, t).

ProoF. From lemma (3.1) and proposition (3.3) it follows that
Z(t, a) = v'Z(t',a) = lim, e. v'Z, where t' € v "1 (t) corresponds to the
branch 7', and e: X — P is a chosen projective embedding. ®

Let us say that the relative cycle Z over T is a regular cycle, or de-
fines a regular family of cycles, iff for every t e T the cycle Z(t, a) is
constant, i.e. also independent of the branch T'’, and write in this case
Z(t):=Z({, a).

PROPOSITION 3.6. Let U be a closed subscheme of T X X which
18 flat over T. Then the associated cycle [U] defines a regular
Jamily of cycles

[U1®) = [U®)].
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Proor. If T is smooth then [U)(t) =[U(t)] holds[8; 10.1.2]. If
a: S— T is any map of varieties then a'[U]=[Usl], where Ug:=
=8 Xp U[8; 6.2(b)]. Thus, if S is a smooth curve with a(s) =t, as
usual, it follows that a'[U(s) = [Usl(s) = [Us(s)] = [U(t)], indepen-
dent of a. ®

4. — Induced semi-regular maps.

THEOREM 4.1. Let Z on T X P be a relative cycle of relative dimen-
sion n over a smooth variety T, and let k be the degree of every Z(1).
There is a reqular map f;: T — C,, , sending t € T into the associated
point of Z(t).

Proor. By linearity, we may assume Z = [U] with UcT X P a re-
duced subscheme. Let G be the grassmannian of linear spaces of codi-
mension 7 + 1 in P, and let L. c P X G be the universal linear space
over G. Consider the diagram:

UXxpL->L->G
l !
U -P
I
T

and the induced map 7: U Xp L > T X G.

Projection A: U Xp L. - U is obtained by base extension from the
locally trivial fibration . — P, hence U Xp L is reduced. The image set
(U Xp L) consists of all (¢, u) e T X G such that L(u) meets |Z(t)|. It
has codimension 1 in T X G, as & is birational onto its image. Define
I;:=[UXp L], H; := myI; = [n(U Xp L)]. We claim that the fibre cy-
cle H;(t) is the hypersurface section of G defined by the associated
form of Z(t).

By base extension again we obtain fibrations A,: U(t) Xp L — U(1),
whose pull-backs A} therefore preserve irreducibility of cycles, and
proper projections m,: U(t) Xp L — G, which are still birational onto
their images. Therefore I, := Af Z(1) is nothing but the «incidence cy-
cle» of Z(t), whose projection Hyy := 7, (I5) is the hypersurface sec-
tion of G defined by the associated form of Z(¢). From [8; Prop. 10.1(b)]
we have (A* Z)(t) = A} (Z(1)), i.e. Iz(t) = Izy). From[8; Prop. 10.1(a)]
we have (w4 I7)(t) = w;. (Iz(t)). So finally H;(t) = Hyy . In particular,
its line bundle is O(H, (%)) = Og (k).

Now H is an effective Cartier divisor in T X G and its line bundle
O(Hz) has a unique (up to proportionality) global section @ with
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div(®) = H;. Thus the section @(t):= ®|t X G of O(Hy)|t X G =
= (Hy(t)) has div(P(t)) = H,(t), so that we can identify &(t) with the
associated form of Z(t), up to the identification &(H;(t)) = Og (k) and
the canonical identification of forms F(ug A ... A u,,) of degree k in the
coordinate ring of G with global sections of Og (k). All these identifica-
tions can be made compatible so to define a regular map T —
— PH? (0 (k)) = F,, ; which clearly factors through C, ;. This follows
from a general:

LEMMA 4.2. Let IN be a line bundle on a product variety VX W,
such that every I, := I|v X W belongs to the isomorphism class of
some given line bundle £ on W, and assume that W is a complete vari-
ety. Then there is an isomorphism I = pri (N) ® pri (L) for some line
bundle N on V. If a global section @ € H*(V x W, IK) is given, define
f(w) e H*(W, £) to be the global section corresponding to ®|v X W un-
der the induced isomorphism I, = £. Then f: V— H* (W, £) is a regu-
lar map.

Proor. That N exists is by the so called zig-zag principle. Since
regularity of fis a local question we may assume that V is affine and N
is trivial on V. Now replacing N with an isomorphic line bundle induces
an isomorphism of I which does not change the map f. So we may also
assume that N' = ©y. In this situation, there is an induced isomorphism
HO(VXW, ) =H"(V, o)) @ H*(W, £). If & is sent into 2 f; ® &,
then f(v) =X fi(v)®;. W ® i

1

PRroPOSITION 4.3. Let Z in T X P be a relative cycle of relative di-
mension n over a variety T, and let k be the degree of Z(t) for t € Ty, .
The closed graph of the induced map T, — C,, ; defines a correspon-
dence f from T into C, . The image set f{t} is the set of associated
points of cycles Z(t, a). In particular, it is a finite set.

Proor. For every curve a: S— T, a(s) =t, a(S —s)cT,,, the
composition S —s— T, —C, ; extends to ¢: S—C, ; and clearly
@(s) ef{t}. This ¢ agrees with the induced map of the relative cycle
a'Z over S, on S — s hence on the whole of S. Thus ¢(s) is the associated
point of Z(t, a). Clearly, every associated form F e f{t} is of the form
F = ¢(s) for some a. ®

In particular, we see that Z being a regular relative cycle over T is a
necessary and sufficient condition for the induced map Ty, — C, ; to
have a continuous extension fz: T — C, ;, what we call a semi-regular
(rational) map.
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DEFINITION 4.4. IfS, T are reduced schemes, we call f; S— T a se-
mi-reqular (rational) map if the restriction S,,, » T is a regular map
and f is continuous, either in the Zariski or in the complex topology,
equivalently. It is necessarily a regular map if S is a semi-normal
variety.

5. — The universal family.

PROPOSITION 5.1. For every semi-regular map f: T — C, i of a va-
riety T, there is in T X P a unique regular cycle Z over T such that

fz=1.

Proor. We begin with a useful remark. Suppose we have found
some dense open subset 7', of T, and in T; X P a relative cycle Z; over
T, such that f(?) is the associated point of Z, () for t € T', . We claim that
the closure Z of Z; in T X P satisfies the theorem.

Consider the normalization map v: T — T. We have the relative cy-
cle v'Z over T with v'Z(t') = Z(vt') if t’ € v "1 (T}). Now v'Z defines a
regular family and induces a regular map f: T'— C, , which clearly
agrees with fov, on v ~!(T) hence on the whole of T. Let a: S— T,
a(s) =t be a smooth curve through ¢ with a(S — s) c T, and take the
lifting @: S — T, a(s) = t'. We know that Z(t, @) = v' Z(t'), and the as-
sociated point of v'Z(t") is f(t') = f(vt') = f(t), hence Z(t, a) is the cycle
of the associated point f(¢), independent of a. This proves the
claim.

We are therefore allowed to assume that T' is smooth and f'is a regu-
lar map. Furthermore, if f is of type 6, we may also assume that
AT) cCy.

We first consider the case 8 = (1; k), when the cycle of f(t) is a sim-
ple cycle for every t. Using the incidence subscheme U, ,cC, , X P,
define U:= (T Xc, , Uy, k)rea> @ closed subscheme of 7' X P, and p:=
:= prp|U. By general dimension and smoothness arguments, we know
that there is some dense open subset T; of T such that: every irre-
ducible component of p ~!(T;) dominates T;, U,, Np (T}) > T, is a
smooth map, U,, N p " (T;) — T} has all fibres of dimension < n. Let Z,
be the cycle of the open subscheme p ~*(T}) of U. Clearly Z, is a relative
cycle over T, and the fibre cycle Z, () is a simple cycle and therefore
agrees with the cycle with associated point f(¢) for ¢t € T';. So the state-
ment follows from the remark at the beginning.

Next we come to the general case, type 6 = (a;; k;). By means of the
regular map y: X;C, ;, — C,  defined by y(Fi, ..., Fy) = [[F, we

introduce the space Cn, 0 := ¥ 1(C,, ) of all sequences (F,, ; .., Fy) of
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pairwise coprime simple associated forms, and the bijective restriction
yp: C,,6— C,, o. Then form the fibre diagram:

T—')Cn,aﬁcn,ki
R
75Cy

where T:=T Xc, 9Cn o. The composn',e map T— Cy,k, is of type
(1; k;), so by the precedmg proof there is a regular cycle Z; in T X P
over T whose fibre over (¢, Fy, ..., Fy) e T is the cycle of F;. Define
Z; := (1 X )4 (Z;) and then Z:= Za,,Z Clearly Z is a regular cycle
over T such that f(t) is the associated point of Z(f) for every
teT. nm

PROPOSITION 5.2. Let Z in T X X be a regular cycle over T, and as-
sume that the carrier X is projective. Let f: S — T be any semi-regular
map of varieties. There is in S X X a unique regular cycle f'Z over S
such that f'Z(s) = Z(f3) for every seS.

Proor. With respect to some projective embedding e: X — P, the
regular cycle Z induces a semi-regular map f;: T — C, , and the com-
posed semi-regular map f; of is in turn induced by a unique regular cy-
cle f'Z over S. ®m

It is easy to extend everything more generally to reduced, not nec-
essarily irreducible, parameter spaces T'. A cycle Z in T X X will be a
relative cycle over T if the projection |Z| — T has all fibres of some
pure dimension » and if, furthermore, every irreducible component of
|Z| projects onto some irreducible component of T'. In other words, for
every irreducible component 7' of T a relative cycle Z' over T' is
given, and Z is the sum of all these Z'. In this setting there are limit cy-
cles Z'(t,a)forte T', and Z will be said to be regular if Z' (¢, a) is in-
dependent both of the curve a and of the irreducible component 7'’ con-
taining ¢. In this case we write Z(t) := Z' (t, a). The cycles Z(t) need not
belong to one and the same algebraic equivalence class on X. They do if
the parameter space T is connected. With these definitions, all the re-
sults in the last two sections hold more generally for any reduced 7. A
regular cycle Z in T X P determines a semi-regular map T — C,, and
indeed T—>Cn i if all cycles Z(t) have a common degree k in P. Con-
versely any semi-regular map f: S — I' determines a pull back f'Z of
regular cycles Z over T, provided that the carrier X is projective.

Therefore, from proposition (5.1) applied to the identity map of
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C,, k, we obtain a regular cycle Z, , over C, ,, which we call the uni-
versal cycle. Summing over k, we also have a universal cycle Z, over
C,. For every projective embedding e: X — P, proposition (5.2) ap-
plied to the inclusion map e, ,: C, (X, e) = C, \ gives a universal cy-
ce Z, (X, e) = e, 1Zn, 1 in Cy (X, e) X X.

6. — The semi-universal property.
The results in the last section allow the following:

DEFINITION 6.1. For every projective carrier scheme X, a set-
valued contravariant functor F,(X) on the category Ry of reduced
schemes T and semi-regular maps f: S — T is constructed, by defining
T, (X)(T) to be the set of all regular cycles Z in T X X of relative dimen-
sion n over T, and F,(X)(f) to be the function Z—f'Z.

Moreover, for every projective embedding e: X — P, a natural
transformation of functors &,(X)X(T)— Homg (T, C, (X, e)) is defined
by Z—f,.z and is in fact an isomorphism. We state this as:

THEOREM 6.2. The space of cycles C, (X, e) represents the functor
F,(X) on the category Ry of reduced schemes and semi-regular
maps.

This implies the following result of Andreotti-Norguet [1; p. 52].

COROLLARY 6.3. Ife, e’ are two projective embeddings of the carri-
er X, there is a semi-isomorphism C,(X, e) = C,(X, e'), i.e. an homeo-
morphism which is an isomorphism of the smooth loci, sending the as-
sociated point of e(Z) into the associated point of e’ (Z) for every cycle
Z of pure dimension n in X.

Actually this is an isomorphism according to[2; p. 115, Cor.].
Concerning the relation to the Hilbert scheme, from proposition
(3.6) and theorem (6.2) we have:

COROLLARY 6.4. Let ¢: X — P be a projective embedding and let
H,(X) be the Hilbert scheme parametrizing closed subschemes U of X
of pure dimension n. There is a semi-regular map H, (X),eq = C, (X, €)
sending the associated (Hilbert) point of the subscheme U into the asso-
ciated (Cayley-Chow) point of the cycle [U].

That this is in fact a regular map is proved in[12; Ch. 5, § 4] and
[2; Ch. V].
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