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REND. SEM. MAT. UNIv. PADOVA, Vol. 90 (1993)

Cohomological Interpretation
of Hypergeometric Series.

B. DWORK (*)

Introduction.

In joint work with F. Loeser[D-L1, 2] we have given a cohomologi-
cal interpretation of generalized hypergeometric series by means of ex-
ponential modules. In this note we give a new explanation of this rela-
tion. This new exposition involves §5, 6 and in particular Proposi-
tion 5.6. This article is based on lectures given at Oklahoma State Universi-
ty during the fall of 1992. We take this opportunity to thank the Mathe-
matic Department of OSU for its hospitality.

1. The arithmetic gamma function.

For l e Z we define (z), € Q(z) to be (I'(z + 1))/I'(z). The following
properties are trivial:

11) (»)p=1;
12) (@y==2:z+1..(z+1-1) ifl=1;

1

-1DE-2)...z=-0D iri=1.

13) (@)=

We conclude that:

(1.4) the function (z), takes finite values in C if we insist that for
ze N*, [ should be in N;

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura ed Applicata, Via
Belzoni 7, Padova (Italy).
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(1.5) the function (z); takes values in C* if in addition we insist
that for ze N, [ should lie in — N;

18)  ()y=(-1'/(1-2);
17 ifleN*,zeN, then (z);=0if z < —1.
(1.8) if ye N, zeZ then as elements of Q(x),
(x + 2), (), = (x + y), (x),

and each factor takes values in C if we insist that x + ye — N
whenever xeZ and ze —N*-

2. Hypergeometric series.

Let A be an m X » matrix with coefficients in Z and let [, ..., [,, be
Z-linear forms in (sy, ..., s,) defined by

ll (S) All Aln $

l,,(8) A . Ayl \Sn
Let a =(ay, ..., a,,) € C™ satisfy the condition (cf. (1.4)):
2.1) if ;e N* then A;;e N (1<j=<n).

Subject to this condition we define a formal power series in =
= (4, ...t,) with coefficients in Q = Q(a)

=) (=)
2.2) y(a,t) = 2 (=h) (, ) l;[l(ai)h(sw

SeN™ s1l...8,!

For comparison with classical formulae it is sometimes convenient to
let 7, U & be a partition of {1, 2, ..., m} and rewrite this last factor by
means of

I1 (ay),
te Fo ()

A =-a)_ym(-14® "

1€ 5]

Let 8, =t;(3/3t)), 1<j<m. Let R =Q()[¢, ..., &,]. We define Ala)
to be the left ideal of ® containing all 6 € ® such that 6y(a,t) =0.

23) _l;-[l(ai)zi(s) =
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3. Exponential modules.

We associate with hypergeometric series two exponential modules.
Let

3.1) R =) [Xy, ..., Xp, X7, ..., X'
Let ge R’

)

n
—gt, X) =z + ... + X + 2 ;X4
Jj=1

where for 1 <j < n, XA” = [[ X4, Let E; = X;(3/0X,), g; = E;g (1 <
i=1

sj<m)andlet D, ;,=E;+ a; +g;, a differential operator on R'. We

define an Q(t)/Q-connection o on R’ by

i —_ -_—i _a.._g_ <97 <
c(atj)—a] atj+6tj’ for 1sj<n.

The operators D, 1,4, ..., Dy m,¢) o1, ... 7, commute. We define W', , =
=R'/ > D, ;R', an Q(t)-space with connection induced by ¢. Then
i=1

Wy is a left (%, =Q()[oy, ..., 9,])-module. The non-commutative
ring R, is isomorphic to the ring ® of §2 under the mapping

R 9

cr.( ER atn)H(al, vees )

Let ¥, (a) be the annihilator in &, of[1], the class of 1 in W', ,. The ob-
ject of this note (cf. Corollary 6.5) is to give a new, possibly more ele-
mentary, proof of Theorem C of [D-L2] which shows that under certain
conditions ¥, (@) is isomorphic via ¢ to U(a).

3.2. To construct the second exponential module associated with hy-
pergeometric series, let ©; U &, be a partition of {1, 2, ..., m} satisfy-
ing the condition:

3.2.1) if te ©, then A;;eN for j=1,2, ..., n.
(Thus if A; ;e —N* for some j then i € ©,). Let Hy = Z™ (the support
of R'). Let H, be the subset
ﬁ0= {uEH()IuiEN if iE@z}.
Let R be the subring of R’ consisting of the Q(t)-span of {X* |u € H,}.
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By (3.2.1), g € R and the differential operators {Dy, i, th<isms {oi}i<j<n

are stable on R. We define 9, ; = =R/ Z D, ; R which is again a left
(R, = Q(#) [0y, ..., a,])-module. =

Let 1 be the class of 1in W, ;. Let 9, (@) denote the annihilator of 1
in &.

4. Dual modules.

4.1. We construct a space adjoint to R'. Let

> B, -)%—1; |B, € Q(t) Yu e HOJ

’ILEHO

an (Q(t)-space (not a ring) whose elements include infinite sums over
Hy(=7Z™). We have a pairing R'* X R'— Q(t) given by

(8*, &) (&, E)d=efthe coefficient of X° in £*¢.

By this pairing we identify R'* with Hom (R', Q(t)) and adjoint to
D, ; : we have

D¥i,i=-Ei+a;+g;, (1sism).

The connection on R'* takes the form

*_a._=* i—a—g <j<
o—(atj T o (ISISM

and we have the basic relation
4.1.1) %(5*, ) =(of&*, &) + (£%, 05¢).

7 m
We define X, , to be the annihilator of > D, ; R’ in &'*, ie

i=1
Ke o= {E*eR'™*|D¥, ,£*=0, 1<i<m}.

We have a connection on X;, induced by the restriction of
{GJ }1<]<n

It is known[D, chap. 9] that X, . is a finite Q(¢)-space and if ¢* =
2 B,(1/X*), B, € Q[t]Vu, satisfies the conditions that DE; &%=

= 0 1 < i <m, then {*e ;‘Ka,t®g(t)-Q((t))

4.2. The Q-space X, ¢ is easily described. If is of dimension 1; we de-
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scribe a basis element £ . If a satisfies the condition
(4.2.1) a;¢ N* for any ie {1, ..., m}

then we may take

(422) to= 2 = @,

ueHy Xu i

If on the contrary & is the set of all 7 such that a; ¢ N* and &' is the
complementary set in {1, 2, ..., m} then a basis is given by

423) c:,(,:l'[( S (a)“’) 1T x#- exp( ZX,.).

e | m=—= X ie®'
We now put

Ea = Choexp(gt, X) - g(0, X)).
We conclude that

4.24.1) £e MEZ: ﬁﬂﬂtll
4.2.42) Dy EX,=0, 1<ism,
(4.24.3) ofési=0, 1sjsmn.

Therefore £¥ , is a horizontal element of X ; ®qu) 2(t).

PROPOSITION 4.2.5.
(4.25.1) If a satisfies (4.2.1) then

y(a'v t) = <E:,t! 1>
(4.25.2) If a satisfies 2.1 but not (4.2.1) then
0=(&x,1).

Proor. The first assertion follows by a routine calculation using
(4.2.2) The second assertion follows from the fact that if a, e N* then
by (4.2.3) the support of £ , lies in ; = 1 while by (2.1) the support of
9(t,X)—9g(0,X) lies in u; =0 and hence the same holds for
exp (g(t, X) — g(0, X)). The assertion now follows from the defini-
tions.

PROPOSITION 4.2.6. If a satisfies (4.2.1) then U, (a)c U(a).
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ProOF. If 6e R then by (4.1.1), (4.2.5.1)
ot, &)y = (&k ,6(t, ta) 1)
and so if 6(t, to)[1] = 0 in W', , then 6(¢, &)y = 0.
REMARK 4.2.6.1. We say that «y is a period of[1]».

REMARK 4.2.6.2. The conclusion of the proposition need not hold if

1 1
(4.2.1) is not satisfied. Thus if m=3,n=1,A=| 1 J,a=| 1 |, then
-1 -1

(1 +te)[1] = 0 while y(a, t) = X (t*/s + 1) (cf. Proposition 7.4).
8=0
4.3. Adjoint of R. Let

uEH()

[ > B,— |B e.Q(t)VueHo]

The pairing of R'* with R’ restricts to a pairing of R * with R by which
R * may be ldentlﬁed with Hom (R, £(t)). The injection R o R' has an

adjoint mapping, ¥ _ of R'* onto R*, a projection
1 . =
}7_ _l_ _ -5(7 if ueHo ,
X . =
0 ifu=H,.

The adjoint of D, ;. is now

% —_ < * y
Da,i,t“T—o a,i,t 9 l1sism

and the connection on R * is given by

We again have the relation
43.1) (a* E)y=(GFE* E)+ (&% 0;¢) for (6%, &)eR*XR.
We define :)Za,t to be the annihilator of Y D, ;R in R*, ie.

={&*eR*|D¥, £*=0, 1 <i<m}.

We have a connection on X, ; induced by {5*}i<jcm.
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4.4. We describe the Q-space X, ¢. It is of dimension 1. If a satisfies
the condition

(44.01) if a;e N* then ie ©,,
then the basis element of X, o may be chosen to be
- 1 B
44.2) Fro= 2 - L@
uweH, X i=1

(The formula is the same as in (4.2.2) but the sum is over a smaller set).
By (1.4) this series is well defined. If on the contrary &, = FU F
where a; ¢ N* for all e Fand a; e N* for all i € F, then the basis ele-
ment may by chosen to be

~ 3 u; (i i .
443) Exo=[] X @ 7 > a)“’-HX{‘*-exp(—ZXi)-

€S, uieN X,ul ie Fuel X:L, ieF ieF

We now put

EX,=7_tkoexp(g(t, X) — g(0, X)).

We conclude that

4.4.4.1) Froe > I,

ueH, X
(4.44.2) D¥, t¥,=0, 1sism,
(4.44.3) GXEX,=0, 1<j<n.

PROPOSITION 4.4.5. If a satisfies both (2.1) and (4.4.1) then
y(a’ t) = (g:,h 1>
If a fails to satisfy (4.4.1) but does satisfy (2.1) then

0=<g:,t, 1).

ProoF. The proof is the same as that of Proposition 4.2.5, except
that for the first assertion we must use (3.2.1)
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PROPOSITION 4.4.6. If a satisfies both (2.1) and (4.4.1) then
U, (a) cUa),
ie. y(a,t) is a period of 1, the class of 1 in W, ;.
ProoF. The proof is the same as that of Proposition 4.2.6.

REMARK 4.4.7. Trivially %, (a) c ¥, (a).

5. Differential relations.
The symbols A4, a,d, R are as in § 2.

NoTATION 5.0. For N™, let
hy(a,¢) = Q(ai +1;(8)),, € QL]

For 1 <j <n we define m-tuples in N™, v 4@ by

v =sup(0,4;,), wu?=sup(0, -4 ;).
Thus
(5.0.1) AD = ) — 4, |
We define

Li(a, t, 8) = 8johyi(a, 8) + tjh,u(a, 8).
For x e R let x = sup (0, —x), © = sup (0, x).
PROPOSITION 5.1. If a satisfies (2.1) then L;(a,t, 8) € A(a).

PRrooF. It is enough to check that for se N, s;=1
—t.)% (—t;)% 1!
(% ot —

s;! i(g-1

(5.1.1) 8

(6.12)  (a; + L))y (@) = (@; + L;(8 — €)) (@)y6-) »

where ¢; is the unit vector in the j-th direction in n-space. The second
relation follows from v — [;(¢;) = u”.
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PropPosITION 5.2. For we N, subject to 2.1, we have

G21)  hya—w, 8y —w, ) = yla, ) f_’io(a,- — W) -

Proor. If a satisfies (2.1) then so does a — w and hence both y(a, t)
and y(a — w, t) are well defined. The assertion follows from (1.8), from
which we deduce (a; — w; + 1;(8))y, (@; — W;)y,) = (@) () (@5 — W;),, for
all se N".

REMARK 5.2.2. If, say, aje —N*, w; =1+ |a;|, then the right
hand side in 5.2.1 is zero.

ProPOSITION 5.3. If u,ve N™, a e C™ then

hy(a + u)h,(a) = hy,y(a).

ProoF. If is enough to check that (a; + u; +1;(8))y, (a; + ; (&), =
= (a; + li(é‘)))uiJ,vi.

PROPOSITION 54. If a e C™ then

Li(a + ) ola; + L)) = (a; + L;(8) + li(s;) ) o L (a).

ProoF. The assertion is equivalent to the two identities in the
commutative ring Q[¢]

(641) Gl (a+ e, 8)(a; + () = (a; + () + 1i(¢;) ) 8 by (a, &),
(542)  hyn(a+ e, 8) (s + L(8) = (@i + L@+ &) + L)) by (@, 8),

Discarding the obviously identical factors on the two side of these as-
sertions, we reduce, using [;(¢;) = Zi, j= ui”), to the assertions

(41 (@ + 1+ ;)0 (a; + 1) = (a; + L) + ) (g; + ()0,
(542) (a;+1+ li(a))viu) (a; + 48) = (a; + ,;(8) + o) (a; + li(a))vi(j) .

These assertion are implied by the identity (x + 1), = (x + b) (x), for
beN.
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PROPOSITION 5.5. For ae C™, ve N™
Li(a +v, &) hy(a, 8) = h,(a + Us;), 8) L;(a, &)
where i(—e]_) is the m-tuple ( 21—(5, l—(_e;).

Proor. We use induction on E v; = weight (v). The assertion is

trivial for weight (v) =0 and the case of weight (v) =1 is given by
Proposition 5.4. By that proposition (with a replaced by a + v)

Li(a+v+e;,8)(a;+ v+ 48) = (a; + v + 1;(8) + () ) Li(a + v, 8).

Multiplying on the right by &,(a, ¢), the left side becomes L;(a + v +
+ &, ) byy.,(a, 8) while the right side becomes (a;+v; +1;(8) +
+1;(c;)) L;i(a + v, &) hy(a, &), which by the induction hypothesis is
(@; + v; + 1;(8) + li(;)) hy(a + I;(¢)), 8) Lj(a, 8) which coincides with
hyie; (@ + Uej), 8) Li(a, 8).

DEFINITION 5.5.1. For 6 € Q[t, ¢] viewed as a polynomial ring in
t=(t, ..., t,) with coefficients in Q[s], let

rank 6 = '21 sup (0, deg, 6).
j=

For ae C™ let B(a) =2 Qlt, 61L;j(a, 8), a left ideal in Q[t, 6.

PROPOSITION 5.6. Let ae C™. For 6 € Q[t, ¢], let
n Iz
w =, sup(0, degtjo)'v")
i=1

an element of N™. There exists P e Q[é] such that
bohy,(a—w)eP + B(a —w).

The assertion remains valid if w is replaced by w+u for any
ue N™,

ProoF. The assertion is trivial if rank6 = 0. We use induction on
the rank of 6. We may assume deg; 6 = 1. We write

(5.6.1) 0=P1t1+P2
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where Py, P, e Q[t, 8], with deg; P, =0 and
(5.6.2) Sup (deg, Py, deg, P;) <deg,0, 2sj<n.
Multiplyng on the right we obtain
(563) 6oh,m(a—vY, 8) = Pitihw(a—vD,8) + Py =
=P Li(a—v?Y,8)+ P,
(5.64) P3=P,oh,w(a—vY,8), Py=—-Péh,w(a—v?,8)+P;.
It follows from these formulae that
(5.6.5) deg, Py <deg,6—3;;, 1<j<n

and hence P, < rank 6. Letting w’' = w — v? and applying the induction
hypothesis to a — vV,

(5.6.6) Pyohy (a—vV —w',8)eP+ Ba—w)

where P € Q[¢]. Multiplying (5.6.3) on the right by &, (a — v¥ —w', &)
and applying Proposition 5.3 with (a,u,v) replaced by (a — v —
—w', w', v'Y) we obtain

(5.6.8) 6oh,(a—w)=PLi(a—vY,8)oh, (a—vP—w, )+
+Pyohy, (a— vV —w',d).

Applying Proposition 5.5 with (a,v,j) replaced by (a —w, w', 1) we
see that the first term on the right side of (5.6.7) lies in B(a — w). By
(5.6.6) the second term lies in P + B(a — w). This completes the proof
of the proposition.

PROPOSITION 5.7. If a satisfies (2.1) and if 6 € U(a) N Q[¢, 8] then
the operator P of Proposition 5.6 lies in Ula — w) N Q[S].

Proor. It follows from Proposition 5.1 that B(a — w)c U(a — w).
It follows from Proposition 5.2 that 60k, (a — w) € A(a — w). The asser-
tion is now clear.

6. Differential relations for o.

We consider k,(a, t) and L;(a, t, tc) elements of R, defined as in
5.0 but with 9/3t; replaced by s; for 1 <j < mn.
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ProposITION 6.1. For ue N*, a e C™
(6.1.1) hy(a, to) [t] = [X*] in W', ;

6.1.2) hy(a,te)1 =X*,  the class of X" in W, ;.

ProOF. We observe that

3
a; + I (to) = az+2Au( §t+tj5%)=
J

=18) +a; —é At XA =)+ a+ g+ X
Thus
(6.1.3) a;+1;(te) =)+ X, —E;+ D, ; ;.
Thus for ve Z™
(6.1.4) (a; + ;(te)) [X"] = [(X; — E)) X"]
and so (6.1.1) is a consequence of the caleulation for u € N™

(6.1.5) [, - E),1=X".
i=1

The proof of (6.1.2) is precisely the same except that (6.1.4) now takes
the form

(6.16)  (a;+ (1)) X? = the class in W, , of (X — E;)X"

for all ve H, and in particular for all v e N™.
PROPOSITION 6.2.

6.2.1) Li(a,ts)[1]=0 in W', ,,

(6.2.2) Li(a,t0)1 =0 in 0, ,.

Proor. It follows from the definition and Prop0s1t10n 6. 1 that we
need only show the vanishing of the class of t;o;X*” + t; X" @ This is

trivial since o;X*” = (3g/at;)-X*” = — x4+ = X"m.

REMARK 6.2.3. Proposition 6.2 together with (4.4.5) gives a second
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proof of Proposition 5.1. (We may assume (2.1) and then choose &, so
that (3.2.1) and (4.4.1) are satisfied).

PrOPOSITION 6.3. If 6 A(a) NQlt, 8] then subject to the condi-
tions

(4.2.1) a;¢ N*  for any ie {1, ...m},
(6.3.1) if a,€ —N then A; ;e —-N (1sj<mn).
we have

6oh,(a —w)e Bla —w)
where w s defined in Proposition 5.6.

Proor. It follows from (1.5) and the hypotheses that y(a — w, t) =
= %ﬂC(s)ts where C(s) e C* for all s € N”. The point is that by (4.2.1),
a;—w;e —N=>q,e ~N=1[,(s)e —N by (6.3.1).

Since the operator P of Proposition 5.6 lies in 2[¢] and by Proposi-
tion 5.7 must annihilate y(a — w, t), we conclude that 0 = P(s) C(s) for
all se N” and so P =0, which completes the proof.

PROPOSITION 6.4. If a satisfies (4.2.1) and (6.3.1) then
A (@) > Wa).
ProOF. Let 6 € A(a). Without loss in generality we may assume 6 €
€ Q[t, ¢]. Hence by Proposition 6.3, letting w be as in Proposition 5.6;

foh,(a—w,d) e Bla—w). Thus by (6.2.1), replacing 3/3t; by o;
(1<j<n),

6.4.1) 6t, o) hy(a —w, to)[1]=0 in Wy_y ;.
Thus by (6.1.1)
(6.4.2) 6, ) [X¥]=0 in Wy_, ;.

Now multiplication by X ~* commutes with ¢ and this multiplication
in R’ induces a mapping of W',_,, ; into W', ;. We conclude that

(6.4.3) 6(t, 9)[1]=0 in W', ;.
This completes the proof.
COROLLARY 6.5. Subject to (4.2.1) and (6.3.1), U, (a) = A(a).
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PROPOSITION 6.6. Subject to (2.1), (44.1) and (6.3.1), a period
z= 2 C(s)t* of 1 in Q[t], is uniquely determined by C(0).
seN"

Proor. It follows from (6.2.2) that L;(a, , $)2 =0 and hence
(6.6.1) (1+8)h,m(a, s+ ¢;)C(s + ¢;) + by (a, 8)C(s) =

for each s e N". By (2.1) (a; + 1;(8)),» and (a; + ;(s + ¢;)),& lie in C*
for all s e N*if ¢; € N* Ifa,e —Nthenby(631)A,,e —~Nsov” =0
while (s +¢,) <li(e))=A4;;=-u and so by (1.7), (a;+1L(s+
+¢;)), # 0 and (al +1;(s)),» = 0. We conclude that for all se N*,
C(s + e]) is fixed by C(s). This completes the proof.

COROLLARY 6.7.1. Subject to (2.1), (4.4.1), (6.3.1), y(a, ) is up to a
constant factor the unique period in Q[t] of 1, the class of 1 in
W, ¢

REMARK 6.7.2. We know under the hypotheses of the corollary
that A(a) > U, (a) > B(a). We believe but have not shown equality of U
and ;.

7. Examples.
We give some examples involving a € Z®. In particular we give an

example in which [1] =
Let

-9=X +X2+X3+tXX

X3

Let C be the cone in Q3 generated by ¢, 3, ¢5 and A( = (1, 1, —1)).

This cone is identical with the cone defined by the inequalities f; (u) = 0
(i=1, 2, 3, 4) where

»  a=(ay, ag, ag).

fl(u) = ul ’

fo(u) =wus,
@1 o) =y + ug,

fa(w) = us + ug .

Let H, be the intersection C N Z3. Tt coincides with the monoid gener-
ated by €1, €2, €3, A. Let R be the Q(t) span of {X"}yen, and let W, , =

=R / 121 D, ;R . The mapping of 'Way ¢into W', ; induced by the injection
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R SR’ is known to be an isomorphism subject to condition[D, § 6.4.1]
(7.2) fi(@)¢e N*, i=1,2,3,4.

Furthermore we know that (g;, g», 93) is a regular sequence in B (for
t#0,1, ©) and that any set of representatives in R of a basis of
R/ Z g; R also represents a basis of 1, , and hence represents a basis
of W', ; subject to (7.2). In particular {1 (X;X;/X3)} and {1, X;} rep-
resent bases of W', ; subject to (7.2).

ProprosITION 7.3. U, (0) zs the left ideal generated by (to)?, A(0) is
generated by & and so A0) x U, (0).

ProOF. The operator L; = é&(ag — 8) + t(a; + &) (ay + &) takes the
form L, =(t —1)¢,. Hence by Proposition 6.2

(ta)?[11=0

Since te1 = X; in W'y ; (Proposition 6.1) and since 1, X; represent a ba-
sis of W' ;, it follows that[1] cannot be annihilated by any operator of
degree 1 in . Hence %, (0) is generated by (ts)?. The assertion for 2(0)
follows from (0, t) = 1.

PROPOSITION 7.4.
A ((1,1, —1)) s generated by 1+ to,
A1, 1, —1)) is generated by éo(1—1t)o(1+9).
Therefore

A (1,1, —1) = A(L, 1, -1)).

Proor. Let b= (1, 1, —1). By Proposition 6.1 and Proposition 7.3
X1X2E (tG)(tO‘)l =0 in Wlo,t .

Multiplication by X3 /X; X, in R’ induces an isomorphism of W', ; onto
W, Hence

X;=0 in W,,.
But by Proposition 6.1
XgE(_l_tG)l in W'b,t.

Since X; X, /X; is a basis element (and hence non zero) in W' ; the iso-
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morphism shows 1#0 in W', ;. Thus U, () is generated by 1 + to. The
assertion for A(b) follows form (b, t) = X, t* /(1 + ) which cannot be
annihilated by a first order operator but is annihilated by L;.

PROPOSITION 7.5.
[11=0 in W, 2-1),:-

Proor. By Proposition 6.1, X, = (1 +ts)1 =0 in W', ; where b =
= (1, 1, —1) as in Proposition 7.4. Multiplication by 1/X, induce an iso-
morphism of W’ ; onto W' 2 _y ¢ thus [1] =0 as asserted. '

8. Delsarte sums.

The object of this section is to show that very general exponential
modules have hypergeometric series as periods. We fill in some lacunes
in the corresponding treatment in[D-L2].

Let o, ..., ©™ be a set of elements of Z™ which are linearly inde-

m o
pendent over Q. Let A be the lattice >, Zw®. Let

i=1
= (@)

-h=> X°
i=1

viewed as element of Q[X;, .. X,,, Xi'%, ..., X,'1=R'. Let Ly, ..., Ly,
be Q-linear forms in m variables.

Li(w(k))=3i,k 1$2,k$m.

Let R be the Q span of {X°},.4. Let @ be a set of representatives of
Z™[A. Then R’ G%X“R~ as Q-spaces. Fort=1,2, ..., mletD, ;= E; +
ue

+ a; + hi’ Ei = X,(B/GX,), h’i = Eih.
PROPOSITION 8.1. D, ; is stable on R and on cosets X“R.

Proor. The assertion in easily verified. For later use we state
some formalities. We observe that

hy X

hm Xm(m)
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and hence
X’ = —L;(h)

where if L;(u) =2 C; ,u; then L;(h) denotes X C;  h,. We write
L;(D) =2, C; D, ; and observe that

811 L;(D)=L;(a)+L;(E)+ L;(h) = L;(a) + L;(E) — X** .

ProPOSITION 82. Let W,=R'/X D, ,R', W,=R/> D, ;R
Then

= @ ®a+u-

uea

ProOF. The assertion follows from the direct sum decomposition of
R’ into cosets X*R and from the commutativity relation

Dy, ;o X" = XuDa+u,i-

PROPOSITION 8.3.

@)

ProoF. Let Y;=X“" (=1, ..., m). Then for ve Z™ we compute

Ll(D) Y= (Ll ((l + kﬁ ’l)k(.z)(k)) - Yz) Y = (L,(a) + v; — Yz) Y® .
=1

Thus putting b € Q™, b; = L;(a) we reduce to the case in which —#(X) =
=X; + ... + X, and we must show that W/, is of dimension 1. Summa-
rizing a well known method, we first let B = Q[X;, ..., X,,]. We know
that >, Rh; is a maximal ideal of R and that

(8.3.1) R=016(2 Rh).

Furthermore (hy, ..., hy) is a regular sequence in R and hence any re-
lation 0 = 2 P;h; where P; is homogeneous of degree [ must be trivial

in the sense that

= 21 e Qi
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where each gy, is a homogeneous element of R of degree I — and gy =
= —q;. Thus if £ lies in B, deg& =1 = 1, then its homogeneous part of

maximal degree may be written in the form 2 X, Z; where Z; is homo-

geneous of degree [ — 1 and so 2, X;Z; = ZD,, (=Z)+2(b;+EZ;
which reduces the degree of & modulo >, D, ;®. This shows that

R=01+2 D, ;R .

To show that 1¢ 2, D, ; &, suppose otherwise. So 1 =X, D, ; &; and let
I = sup deg;. Thus &; = P; + Z; where P; is homogeneous of degree [
and deg Z;<l—1. We show that [ cannot be minimal. Clearly
0=2 P;X; and hence 3{g; j} homogeneous of degree -1, g;;=
= —g¢; ; (1 <1,j <m) such that

m m
P;= z q,;X; = 2 D, ;qi;+ e
j=1 j=1
where degp; <! —1. Let & =p; + Z;. Then
m m m
1=2 Da,i5i= .21 Da,i (Ez’ + lea,jqi,j) = lea,iH and deg&'{ <[-1.
1= 1= 1=

This then shows that dim W, = 1 without condition on a. To contin-
ue our demonstration we introduce the hypothesis.

83.2) a; ¢ N* .

This will not be needed for the final proof. Subject to 8.3.2 we show
that for v e N™

(8.3.3) R=X*R+3D,_,.R.

Let ve N™, If v — u e N™ the X” € X“R there is nothing to prove. Sup-
pose that v — u; < 0. Then D,_, ;X” = (a; — (u; — v)) X" — X; X" and
so we may replace X* by X; X" mod > D, ,“R provided a; # u; — v, €
e N*. By iteration, assertion 8.3.3 is clear. R ~

This shows that subject to (8.3.2) the mapping of W, into W,_, in-
duced by multiplication by X* is surjective. The dimensions are equal
and hence the mapping is an isomorphism. Hence subject to (8.3.2) we
have

(83.4) X*RNX D, ,;R=X"2 D, ;R
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Dividing by X* we deduce for all w e N™.

833 )—(1;13 =R+3Dyizik
(83.4') SD.E=REnN g }—}—
Since R’ = uefllm(l/X“)R we deduce

(8.3.3") R'=R+2XD,;R',
(8.3.4") >D,;R=RNXYD,;R".

Thus subject to (8.3.2) the natural mapping of R into R' induces an
isomorphism of @, with W’',. This proves the assertion subject
to (8.3.2).

But given a € C™ there exists w € N™ such that a — u satisfies
(8.3.2). Hence W',_, is of dimension one.

But multiplication in R’ by 1/X* induces an isomorphism of ’,_,
with W’',. This completes the proof.

PrOPOSITION 8.4.

(a) dimension of W', = index of A in Z™,

®) for ve Z™ X"**° = Li(a + v) X* in W,
(¢) x'" H (Li(a + ), X" in W', for (r, ..., €
e N™, =1

ProoF. Part (a) follows from the proceding proposition. As noted
before L;(D) = L;(a) + L;(E) — X w® Assertion (b) follows by comput-

ing L;(D)X". Assertion (c) follows from (b) by induction on Z ;.
We now introduce the hypothesis (for a particular v e Z”‘)

(8.5) Li(a+v)eZ (1<ism).

COROLLARY 8.6. Subject to (8.5)

x0 I o [l Li(a+ ), X" in W, for all (ry,...,7,)eZ™
i=1
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ProoF. It follows from 8.4(b) replacing v by v — w® that
X = (L;(a+v)_ X’ inW,.
The assertion now follows by induction on 2 |7;].

8.7. We now assume that L;(a + v) ¢ Z for any ve Z™ and any 1 <
< 1 < m. This is equivalent to the hypotheses that L;(a + u) ¢ Z for any
# e d. Let

m’*={ ZB,,E},;lB,,te.

veZ™
We define
Ko ={*eR™*|D¥;t*=0,1<i<m}

where D} ; = —E; + a; + h;. Then X, is dual to W', and a dual basis in-
dexed by e @ is given by

u "z (D)
X¥ (ry, .. rm)ezm™ i= 2 rwt

Now let g(t, X) = —h(X) + 2 t;X*”. Multiplication by (2 t; X"”’)

gives an injection of X, into :)L t®0(t)~Q ((t) and the image consists of
horizontal elements, the connection being given by

3 99 .
x= & _ 22 <js<n).
=% ey, (SISM

Let
<Euat Eu aexp(ti“m)

Then for v e a [X”] 1s an element of W', ;= R'/ 2 D, ; s R’ (here &' =
=QWI[X, X!, ..., X,;']) with periods C, , (for each u € @),

Cu, v = <E;, a, b Xv)
We find

Cu,v= 2 H(L (a+u))

seN", reZ™ 31‘ sn i=1
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where
ut+troP+ . +rye™=v+suP+ . +s,u™.
This condition means that
rn=Liv—u+suP+..+s,u™), 1s<ism.

This means that we must restrict s e N” so that
n o
Li(v—u+28jp(”)eZ, 1<i<m.
j=1

We choose N € N such that [; = NL; is a Z-linear form. Having defined
l;, the condition on s is that s e N" and

li(z sjy(j))Eli(u—v)modNZ, 1<si<m.
=1

Fixing u, v this has a finite set of solutions for s mod N. Let S be the set
of representatives of these solutions in the box 0 <s; < N,1<sj<n.If
s is any solution of the congruence in N” then there exists a unique
representation

s=8+N(1, ..., A,) Wwhere A=(A{,...,2,)e N".

Thus
Cu v = E:_ Cu, v, 8
seS
Here
- Na m
Cu, v,§ = t° 2 p A H Li(a + u),i
PN TG + N
j=1
where

ri=Lilv—u +j§1 5+ Ng,l A,-W')) =8 +1;(Z 2,09) =g+ £
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and
.3i=Li(’U— u+ 2 §j,u(j)) eZ,
i=1

i) =1 (2 Ajy(j)), a Z-linear formin 2.
Now
LiCa + w500 = (Bi + Lia + u))s (L (@ + w))p,
ie.

rr - Na m
Cu,v5 = .I:Il(Li(a'l'u))ﬂi'ts 2 n—t__ .

N* 1=1(Yi)fi0)
YN TGy + Nay)!
i=1

where y; =8;+ L;(a + u). To complete the description we use the
Gauss multiplication formula to compute (s + NA)! /st for s, e N, n =
=1. We have

(s+NA)!=I’(1+s+NA)=F(N(A+ 1+8))=

i N N

N-1 .
Las l'[l‘(m ++ —’—)
N-1
(2n)T\/]V

and so dividing by the same formula with A = 0,

(s +N2) aomT 1+ 1
a N 1:10( N +N),\'
Thus
Cyvs= 1 Lita + ), - Bt
U, v, 8 =1 T Bi <. 1 -s-' ?/
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where
/NN
y_,\EENn ol A,
m m N-1 1+s; k.
H)\ = ilf; ! + ‘_]) .
(0)) igl()’)f,(x)/jl;[l o ( N N,
kj#N—l—§j

9. More exponential modules.

_ We mention two more exponential modules, each more natural than
W,,+ of § 3.2 which may be useful in the case in which condition (4.2.1)
is not satisfied.

_ Let 3¢, be the monoid generated by e, ...cp, AD, ..., A™. Let
HX=Z"NC, where C is the cone in R™ generated by

€1y emy A, ., A™ . We construct R (resp: R), the Q(t) span of all
X* for u e 9, (resp: ;). The operators D, i, o operate on these
spaces and the definition of the modules Wa ; (resp: :)Ca 1) is clear. The

adJomt spaces R * and R * are defined as § 3.2 and likewise for 3( .+ and
XK, ¢, the construction of the projections y _, 7 - being obvious.
If a satisfies the condition

9.1) if a;€ N* then C lies in the region u; =0,

then the basis element of 5{&,0 (resp: f)?a,o) may be taken to be

E:,t= E .H(a)u,

ueH, Xu

with a similar formula for £ ¥ 0. We note that condition (9.1) is implied
by 2.1.

If condition 9.1 is not satisfied then a basis may be constructed
using the condition that 2, B,-1/X" lies in X, o if and only if

’MEHO
9.2) (a;+u)B,=B,,., Yued,, 1sism.
The condition for f)?a,o is similar. We put

Lk, =7* X exp(g(t, X) — 9(0, X)).
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The formula for & %1 is similar. Subject to (2.1) we have

yla, t) = (E%, 1) =(E%,, 1).

Letting 1 (resp: i) denote the class of 1 in \?f)a,t (resp: "G?a, ;) we conclude
that y is a period of 1 (resp: 1).

Let U, (a) (resp: 91, (a)) denote the annihilator of 1 (resp: 1) in &;.
The inclusion R cR cR' implies

ﬁlcﬁlcﬂl

and subject to (2.1) we have ‘2[1 c YU, . The advantage of the present sec-

tion is that for all ae C™, 1 is a cyclic element of 'Uf),, .

We do not know if {g;, ..., g} is 2 regular sequence in R (more
precisely if {g;, ..., gn} is a regular sequence in the graded ring associ-
ated with R by means of the grading given by the polyhedron of g) but
we do know that the dimension of ’@‘7‘,, ¢ is bounded by the volume of this
polyhedron.

If however R and R coincide, then (as explained to us by A.
Adolphson) the regular sequence property does follow from the work of
Kouchnirenko. In particular this holds if

n
Zsup(O A )<l forlsism.
=1
An example has been brought our attention by Kita[K1, 2] who has
studied the hypergeometric function that we would associate with

m n m-n—1
-g= 2 Xi + 221 jzl ti,inXn+j/Xm
where m >n 2 1.

If R = R then we may conclude that 9, ; is a differential module-
generated by 1 and has dimension given by the volume of the polyhe-
dron of g. The dimension of W, ; would be the same but we know[1] to
be a generator (as R;-module) only subject to the conditions of[D,
equation 6.13].
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