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A Maximal Regularity Result with Applications
to Parabolic Problems

with Nonhomogeneous Boundary Conditions.

DAVIDE GUIDETTI (*)

Introduction.

The aim of this paper is to study mixed problems of parabolic
type with nonhomogeneous (possibly nonlinear) boundary conditions.

The main tool is a certain maximal regularity result (theorem 2.1)
allowing to study the general problem by simple contraction mapping
arguments. The basic idea comes from B. Terreni’s [TEI ] and starts,
from an explicit representation of the solution (formula 12) together
with suitable estimates in the linear autonomous case.

However, while Terreni’s results are ultimately based on time
regularity assumptions, here everything is done starting from a

suitable spatial regularity of the data on the lines of Da Prato-

Grisvard’s work in the case of homogeneous boundary conditions
(see [DPG]). Also we remark that this approach allows to avoid

regularity assumptions on the initial datum of the kind of Terreni’s
conditions 5.1, which seems to cause some difficulties, for example
in the study of global solutions. Finally, we consider equations and
not system. The extension to this more general case does not seem
to introduce further difficulties.

The paper is arranged as follows: the first paragraph contains the
general properties of little Nikolskii spaces, which are the basic spaces

(*) Indirizzo dell’A.: Dipartimento di Matematica, Piazza di Porta S. Do-
nato 5, 40127 Bologna, Italy.
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we shall use, with a brief study of linear elliptic problems, which is
necessary in the following and some variants of the results of sec-
tion 2 in [TE]. Here the basic results are propositions 1.4 and 1.5.
The second paragraph is dedicated to the study of the parabolic auto-
nomous problem and is directed to prove the basic maximal regularity
result, theorem 2.1. The third paragraph contains a simple result of
perturbation, with the study of linear nonautonomous problems. The
fourth and final section is dedicated to quasilinear problems.

Finally, we specify that the expressions C and « const» will be
used to indicate constant which may change from time to time.

l. Elliptic problems in little-Nikolskii spaces.

We shall be concerned with a class of subspaces of Lp(Rn), the
so called little Nikolskii spaces if {) E ]0, 1],
p e [1, + it is defined as

with the usual modification if p = + oo and the natural norm. We
remark that the space is exactly the space of function of

class ek which are bounded and little-holder continuous with all the
derivatives of order not exceeding k.

Now, let S~ be an open (nonempty) subset of Rn with suitably
smooth boundary. We indicate with To the trace operator To f = 118.0.
We pose

with the natural norm of quotient space 11.I!k+8,v,.o.
The proof of the following result is routine (see also [ZO] for other

results of multiplication in Besov and Nikolskii spaces):

PROPOSITION 1.1. - Let Q be an open (nonempty) subset o f 
~ E ~,~(,~), u ~ ~,~(S~). Then au E a~~(S2) 

An easy consequence of proposition 1.1 is the following : consider a
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differential operator

Our interest in these spaces lies on the following facts: if Ao, A,
are a couple of compatible Banach spaces (see [BL] 2.3), and if we
denote with (Ao, (ore ]0, 1 [) the continuous interpolation space
determined by Ao, .~1 (see [DPG]), for U fol,

with

(here and in the following, if J, E R, [~,] will be the integer part of A).
The well known Calderon-Stein extension theorem implies (see [ST],

ch. VI, th. 5):

PROPOSITION 1.2. Let Q be an open subset o f Rn satisfying the as-

Assume Ao , A are compatible Banach spaces and let - E ]0, 1 [.
We recall that ~4. is of class A1) (see for example [GR] def. 4)
it (Ao, A C (Ao, .Å.1)s,oo (continuous inclusions) (here ( , )s,~,
is the real interpolation functor of indexes s, 

PROPOSITION 1.3. Let Q be an open subset o f Rn sactisfying the as-
sumptions o f [ST], ch. VI, 3.3..F’or p E ]1, + 00[, 7c E N U we

put Assume so, SI, 82E R, 0  so  st  s2.
Then ~,~ (S~) is o f class A§’(Q)).

PROOF. If is sufficient to consider the case S2 = Rn.
One has
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iteration property. In the same way,

It remains to show that

If is the closure of in As 
ç and is dense in B;:1 (Rn), the result follows. If s1 e Z,
by theorem 6.4.4 in [BL]y for p E ]1, 2],

So the result is proved.
Now we consider a bounded open subset S~ of Rn with boundary

of class and a linear differential operator A(x, a) = ~ aa(x) 8"
of order 2m. We assume that: 

(A2) A(x, 8) is properly elliptic.

(A3) There exists ~o E ]nl2, ~c[ such that

For k = 1, ... , m a linear differential operators
is given, in such a way that:

(B3) For k = 1, ... , m, the boundary 8Q is noncharacteristic in
each of its points with respect to a).
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(B4) At each point x E 8Q, if v(x) is the inward unit vector

to 8Q in x and ~ ~ 0 any real vector parallel to the boundary in x,
we indicate with t)($, A) the j-th root with positive imaginary part
of the polynomial in + zv(x)) - A. Then, if 
the m polynomials + = 1, ..., ml are linearly inde-

pendent modulo

We shall consider the problem

We remark that a priori estimates for (1) (case of regular prob-
lems) were obtained, for example, in [ADN], [BR1, 2, 3], [AR], [TR].

Here, we need the following

PROPOSITION 1.4. Consider (1) with the assumptions (A1 )-(A3),

u E W2m,p(Q) and solves (1), then u E ~,pm+ ~(S~) and

with C independent o f u.

PROOF. First of all, we look for an appropriate a priori estimate.
We start by assuming that U C ~,~m+8(S~), supp B (xO, r) with XO E Q,
r  dist (x°, By the a priori estimates of [BR1, 2, 3] and [ADN],
one has

For 0  I~I  dist

which, by assumption (A1), implies
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and

(here const (x°, r) indicates a constant depending on 0153O, r).
Next, let x° E aS2, r &#x3E; r’ &#x3E; 0, u E Â;m+8(Q), u(x) = 0 if B(x°, r’).

Then, ~c solves

If r is sufficiently small, there exist operators 8), 8) with
coefficients in and 02m-mk+l(,Q) respectively, satisfying (A1 )-(A3),
(B1 )- (B4 ) and coinciding with and in 

By well known results (see [AG]~, there exists Âo E C such that

has a unique solution

which belongs to -

By interpolation,
and

Applying this estimate to (3) and using the fact that, if r’ is small

enough

by localization one draws (2), under the 
Now assume only that Again using Agmon’s results,

one proves that there exists such that
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has a unique solution
and

Consider

with

(the existence of follows from the density of in /~(R")).
For r large enough the problem

has a unique solution a in

which belongs to
The usual interpolation argument proves that, if

Now assume is a solution of (1 ), with

Let be the solution (belonging to

One has

and, using independent of r.
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Then, for r, s E N,

The a priori estimate gives

with s(r, s) - 0 as r, s -~ + oo.
It is easily seen that lIu(r)- (r - + 00). From this the

result follows.
The following proposition is on the lines of inequality (2.13) in [TE1] :

PROPOSITIOH 1.5. Assume (A1)-(A3), (B1 )-(B3) are satislied. Let
A = with 1  p  -~- 00, 0  0  p-1. There exists

C ~ 0 such that, i f u E solves A (x, = f in S~

For the proof we need the following lenama :

LEMMA p &#x3E; 1, 0  0  p-1. If zs a family
o f 01 functions in R such that 

’

with A independent o f g and r.
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PROOF. As 0  p-1, if we defines g ^ (x) = g(x) if 0153n&#x3E;O, g ^ (x) = 0
if 0, we have that g"e and (see the
result of [SH] and interpolate) . 

’ ’ 

One has also

First o f all,

aLs8ume h = (0, q), with q&#x3E;r. Then

Assume h = (0, ’1]), 0  ’1]  r.
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One has

The case h = (0, q), with 1J  0, can be treated in the same way.
So,

and the result is proved.

PROOF OF PROPOSITION 1.5. From [AG1] one draws the existence
of such that, if larg 
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For every x° E ôD there exists an open neighbourhood U of x°,
~ : of class 02m+l, such that

As Q is bounded, there exist with corresponding neigh-
bourhoods and diffeomorphisms 0,,, ..1 (P,, such that

x

3D C (J Let {1pl’ ..., be a partition of unity in a neighbourhood
~=1

of 3Dy such the supp 1pj ç; ~7, (i = 1, ...~). Let be a family
of 000 functions in R, such that = 1 if X,.(t) = 0 if t &#x3E; r,

Now we remark that, if g c /~(R~ 1  p  + oo, 0  0  and

supple This implies that

(by lemma 1.6)

With the same method,
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so that

Choosing r = IÂ-1!(2,m) and using the moment inequality implied by
prop. 1.3, the result follows.

2. Linear autonomous parabolic problems.

Now we shall use the results of paragraph 1 to obtain a maxima
regularity result for linear autonomous parabolic problems like

As already declared, the main tool will be an explicit representation
of the solution, following a method developed in [TE1]. We remark
that theorems of maximal regularity with nonautonomous boundary
conditions were also obtained, for example, by Solonnikov in a series
of papers (see [501, 2]) in the more general case of systems, by
Agranovich-Vishik [AV] (anisotropic Sobolev spaces), Lunardi [LU]
and [TE2] (spaces of continuous and holder continuous functions).
However the result of theorem 2.1 seems to be new.

Now, assume that

satisfy the assumptions
Define:

A is the infinitesimal generator of an analytic semigroup {exp (tA):
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00} in For simplicity, we shall assume (this is not restrictive
at all) that c {~ Re z  0}. Fix 0 e ]0, p-1[ and let u be a
solution of (9), ~eCi([0,T];~))nC([0,T];~+~)) (here and
in the following we identify mappings of (t, x) with corresponding
mappings of t with values in a space of functions of domain S~).

Then necessarily IE C([0, T] ; ~,~(S~)), 
(1~ - 1, ..., m). By the

moment inequality, y which is a consequence of proposition 1.3,
~~i-~/(2~)(~~~+~)) ~ ~ is a Banach space, oc=]0,l[,
),£%([0, T]; E) = l$([0, T]; E) lim sup ~(t - t E

= T]; E?~. This implies

Therefore, we can assume

Finally, necessarily, Bk( ~ , 8) uo - gk(O) = 0, for k = 1, .. , m.

Now, suppose A For k = 1, ... , m the problem

has a unique solution M=JV~(~)~, By proposi-
tion 1.4, if and

oriented from - 00 exp (- irpo) to + 00 exp (iØo).
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We have the following

THEOREM 2.1. Assume (A1)-(A3), (B1 )-(B4) are 8atisfied.

Then, (9) has ac unique solution

We start by remarking that, owing to (11),

Vg E so that the last integral in (12) converges, at least
in EP(Q). To prove theorem 2.1, we start by considering the first

integral in (12):

LEMMA 2.2. Let
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PROOF. As 0  0  Â:(Q) = (LP(Q), D(A))0/(2m) (See [DPG],
th. 6.10). So, by [DPG] th. 3.1, we conclude that T]; W2m,v(Q))
and A(., 8) u E 0([0, T]; ~,~ (,~ ) ) . Therefore the result follows from
proposition 1.4.

LEMMA 2.3. Let

with g(0) = 0 . Put

T hen u is the only solution in

PROOF. One has u(t) = uo(t) + with

We indicate with 03B3t the positively oriented boundary of

Then
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This proves that

Further, [0, T],

and

so that we have

and this implies

Further,

and so

by the residue theorem, as the integral is absolutely convergent in
So
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Analogous considerations take to

plying Fubini and Cauchy theorems). So we can say that
W2m, V(Q)),

Now fix E E ]0, T[ and define, for t E [8, T],

Thinking of Us as a function with values in one can differentiate
and obtain
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So we have proved that, for every t E ]0, T], u’(t) exists in LP(92) and
equals A( ., 8)u(t). A passage to the limit as gives the final
result.

LEMMA 2.4. Let

PROOF. By Lemma 2.4,

As already mentioned, A§(Q) = (Lp(S~), so, by theorem 2.5

in [DPG], if then if and only if
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Further, an equivalent norm in ~,~(S~) is

We pose, for

We recall that z(3) - 0 (3 -~ 0 ) .
One has

(owing to proposition 1.5)
4--

On the other hand,
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Further,

so that

It is also easily seen that, for a figed t, I1(~, t) + I2(~, t) ~ 0 (~ -~ + 

tion 1.4. Analogous estimates prove that 
Next, we consider A( ~ , 
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($ - + oo) and is uniformly majorized by

Also,

which can be treated as the foregoing integral.
To prove that Ul E 0([0, T]; 22-+O(S?) it is sufficient to remark

that, 7 for

and to observe that

and apply methods analogous to the foregoing estimates.

So we have proved that T]; ~,~’~+8(S~)). As (du/dt)(t) =
= A(., a)u(t), 01([0, T]; ~,p(,S~)) and the lemma is completely
established.

PROOF OF THEOREM 2.1. First of all, we remark that it is not

restrictive to assume if mk = 0, so that 
- becomes u - UklaD = 0, with
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Substituting v = u - gk to u, the problem is reduced to the case

g = 0 if mk = 0. Now, u(t) = vo(t) + vl(t), with

By lemmata 2.2 and 2.4,

One has

and so,

Again for 
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so that

From this

Therefore the result follows from proposition 1.4.

3. Perturbations and linear nonautonomous parabolic probleans.

In this section we shall consider certain perturbations of problem (9)
of the kind

For 6 &#x3E; 0 we define

We have :

LEMMA 3.1. Let Xa be ac Banach space o f type a (a E [0, 1[) between
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Further, assume f or l~m~~2m2013 1, Yk, a is a .space 01 type «
and space o f between

Then,

PROOF. In force of lemmata 2.2 and 2.4, M, and 
V6 &#x3E; 0. Moreover, by lemma 2.2,

(const independent of 6 E ]0, T]) .

This proves the result for ~a . An analogous proof is applicable to Nk,,5.

THEOREM 3.2. Consider the problem (14), with M, Nk satislying the
assumptions of lemma 3.1, Nk = 0 i f mk = 0. Then (14) has a unique
solution UE 0([0, T]; ~,D~+e(SZ)) f1 C"([O, T]; ~,~(S2)) for every

PROOF. Exchanging u with u - uo, it is seen that it is not restrictive
to assume 0, 0 (1 c k c m) and look for a solution
in .E7y. So we can consider the equation
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By lemma 3.1, if 6 is suitably small, by the contraction mapping prin-
ciple, (15) has a unique solution in E8. Then one can repeat the process
taking as initial value u(3). As the length of definition of the local
solution does not depend on the starting point, the solution is de-
fined on [0, T].

To give an example of operators and spaces satisfying the assump-
tions of lemma 3.1, consider the space which is of type
a = 1- 0/(2m) between and A,21+0(D) (see proposition 1.3) and
define

Assuming K~

with w(3) -~ 0 (b ~ 0), one has that If Â:(D)).
If 

Now we consider the problem

We h,, ve:

THEOREM 3.3..Assume the assumptions (A1)-(A3), (B1 )-(B4) are

satisfied by Q and the operators A(t, x, a), (Bk(t, x, a)k 1, ’Vt E [0, T]).
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Further :

Then problem (16) has ac unique 80lution u in the space

such that B, (0, ... , 0.

PROOF. For mk = 0, w~e can divide by b(t, x) and assume b(t, x) = 1.
Now, we put v(t) = u(t) - UO. Then, we have

with

Owing to the assumptions,

This shows that we can assume
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Under these (more restrictive) conditions, (16) can be written as

Define as the solution of

in the space

The assumptions (kl)-(k2) assure that, if 6 is sufficiently small, T is
a contraction in Ea, so that (16) has a solution in [0, 6] with 0  8 c T.
Starting from the initial value in 3 one can prolounge the solution
until 25 (if 2~ c T), as the length of the interval of definition of the
local solution does not depend on the starting point and the data.

THEOREM 3.4. Consider the problem



28

with A (t) = A (t, x, a ), Bk (t) = x, a ) satis f ying the assumptions of
theorem 3.3. Further assume that ~ E C([0, T] ; ~,p(S2))), with Xa
intermediate space o f type [0,,I[) between and 

with intermediate spaces of type between, respectively,

Then (18) has a unique solution

PROOF. Analogous to the proof of theorem 3.3, using +
+ M(t) and Bk(t) + Nk(t) instead of A(t) and Bk(t).

4. Quasilinear problems.

Now, we shall consider quasilinear parabolic problems like

is the set of the derivatives of order j of u).
We mention that quasilinear problems with nonlinear boundary

were considered for example in [FR] (very particular equations of

second order), [AM] (systems in variational form), [AT] (applying the
linear results of [TE1] and finding, by the linearization method, solu-
tions in C1 +"( [o, ~] ; r1 Ca( [o, ~c] ; [GM] (existence of
classical solutions for equations with smooth coefficients and data), [LU]
(applying the results of the linear part).
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Here we shall apply the linearization techniques to (19) using the
results of sections 2 and 3 and finding solutions in C([0, r]; A2 I I (-Q)) n
r1 T]; for some Te]0, T]. We shall employ the follow-
ing assumptions : first of all ,~ is a bounded open subset of Rn, with
boundary of class C°°. If N(j ) is the number of multiindexes of length
not overcoming j, we assume that:

elliptic, there exists §o E ]a/2, n[ such that

(L6) For k = 1, ... , m, 1 and the system of operators
( £ Bk,p(t, x, is normal in 8Q ‘dt E [0, T], VqkERN(mk-1) such"

that, for mj, the coordinates of qj coincide with the correspond-
ing coordinates of qk .

(L7) b’t E [0, T], x E aS2, q c RN(2m-l), let v(x) be the inward unit
vector to 8Q in x 0 any vector parallel to the boundary at x.
Denote by t3 (~; A) the j-th root with positive imaginary part of the
polynomial in x, q; ~ + zv(x)) - A. Then, if IArg 
the m polynomials in x, qk; E + are linearly inde-

m

pendent A)) (with the coordinates of q coincid-
; = i

ing with the corresponding coordinates of qk).
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we pose

We remark that, if
We have:

LEMMA 4.1..Let

PROOF. As
the inequality

(ro bounded on bounded subsets of RN(2m-l) XRN(2m-l») the belonging
of A(u) to C([O, T]; ~,~(SZ)) follows. The continuity of .A. is a conse-

quence of the estimate

(w bounded on bounded subsets of RY(2-- 1&#x3E; X Ri7(2m- 1)).
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We define

Then T]; ~,p(S~~) ; C([0, T]; ~,~(S~)~. From this the com-

plete result follows easily.

In each case,

PROOF. The proof does not differ essentially from the proof of
lemma 4.1, taking into account that, if ~ &#x3E; 2m -1 + np-1 + 0y

LEMMA 4.3. Let

Then and

PROOF. A standard consequence of proposition ~..3.

THEOREM 4.4. Assume (Ll)-(L9) are satis f ied. then there exists
6 E ]0, T] such that (19) has a unique solution in the space
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PROOF. Defining v = u - uo , we can write (19) in the form
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and consider the problem

The operators A(t, x, 8) and Bk(t, x, 8) satisfy the assump-
tions of theorem 3.3, while the operators M(t) verify those of
theorem 3.4, whith .Xa = for 2m -1 + np-I + 0  ~  2m + 0,
owing to lemma 4.1. Further, by lemma 4.2, the operators Nk(t)
are conformal to the conditions of theorem 3.4, with Â;(Q),

Therefore, (21) has a unique solution 
r1 C( (0, T]; ~,~m+8(S~)~. Put z = v - w. Then,

with
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Owing to proposition 1.1 and lemmata 4.1, 4.2, 4.3, Ve &#x3E; 0 there exist

60 c ]0, T], &#x3E; 0, such that Vz1, Z2 E Ea , with 0  6  6,, 

- 0 (3 -~ 0), so that, for 3 suitably small, by the contraction
mapping principle, there exists lVl &#x3E; 0 such that (23) has a unique
fixed point in the set {x E Ed: ||z||EoM}.

We conclude with a simple result of unicity.
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THEOREM 4.5. Under the assumptions (Ll)-(L9) ere satisfied, if

PROOF. Put

Then

Fix ]o, 1 - By theorem 3.3, the problem

has a unique solution v e 01([0, ~] ; h§’(Q)) n C([0, ~] ; h§"’+°’(Q) ).
By theorem 5.4 in the solution v is unique in

As u solves (24) in this space, u = v and so Ci((0, 3] ; £§’(Q)) m
n C( [o, ~] ; 1§°’+ °’(Q)). Therefore the result is proved if 0  1- 
Viceversa, one can iterate the method, starting from the assumption
UE C~(10, 31 1 £I’(Q)) n 0([0, 31 ~,2m+6’(~~1,
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