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Approximate and Relaxed Solutions
of Differential Inclusions.

GIOVANNI COLOMBO (*)

1. Introduction.

Let I’: R"+" -~ 2Rn be a bounded multifunction. A comparison be-
tween the problems

and

has been carried out in many papers. In particular, Wazewski [12]
proved that, for a continuous .I", every solution of (2) is a uniform

limit of functions Yk(.) such that

(according to Wazewski’s definitions: every trajectory of co F is a
quasitrajectory of where ext co F(t, x) indicates the closure
of the extremal points of the closed convex hull of F(t, x)) . A result
in the same direction was proved later by Filippov [5]: he showed
that if .~’ is Lipschitzean (with respect to the Hausdorff distance)
and compact valued, then the set S, of solutions to (1) is dense in the
set S of solutions to (2), for the uniform convergence topology. Fi-

lippov’s theorem was generalized by Pianigiani [9], Tolstonogov and

(*) Indirizzo dell’A. : International School for Advanced Studies (S.I.S.S.A.),
str. Costiera 11, 1-34014 Trieste, Italy.
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Finogenko [11], Ornelas [8], and, from other viewpoints, by Bres-
san [2] and Cellina [4], always under the assumption of continuity
(or lower semicontinuity) for F. There is, however, a counterexample
due to Plig [10], showing that Filippov’s theorem is false when .I’ is

only continuous. Moreover, it is well known that if F is upper semi-
continuous solutions to (1) may not exist. Therefore, when F’ is less
than continuous one can still pay attention to the problem of inves-
tigating the relationships between the solutions of (2), i.e. the «re-
laged » solutions of (1), and the approximate solutions of (1).

In this paper we prove an analogue of Wazewski’s result, without
requiring any continuity assumption on F (indeed F must only be
bounded$. Our approach relies on a different notion of quasitrajec-
tory and on a relaxed equation more general than (2). The present
result can also be regarded as a multivalued generalization of a the-
orem by HAjek [7, Corollaries 5.6, 5.7], concerning discontinuous dif-
ferential equations.

2. Notations and basic definitions.

Let X, Y be subsets of Rn and let x e R". We define Y) =
7 the open s-neighbourhood of ~’ as B(X, 8) =

= ly c Rn: d(y, ~’)  s} and the separation between .Y and Y as

the Hausdorff distance between X
and Y is Y) = max {h*(X, Y), h*( Y, X)}. The closed convex hull
of X is indicated by co X. If X is convex, we define as the set
of all the extreme points of ~, i.e. the set of all the points x E X such
that no nondegenerate segment in X exists which contains x in its
relative interior; its closure is indicated by W X. The set theoretic
difference and the symmetric difference between .X and Y are deno-
ted, respectively, by XgY and X4 Y, while 2R’ means the family of
all nonempty subsets of Rn.

Let Q C Rn be an open set and Q --~ 2R" be a multifunction.
We say T to be bounded if there exists M &#x3E; 0 such that F(x) ~ B(0, M)
for every The following continuity concept is mainly conside-
red :

r is Hausdorff-upper semicontinuous in Q iff
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The graph of r, graph is the set We

recall that a h-u. s. e. multifunction with closed values has closed

graph; conversely, y a bounded map with closed graph is h-u. s. c.
A regularization of a bounded (possibly non-measurable) multifunc-

tion F can be constructed as follows:

DEFINITION 1. Let bounded multifunction. The

A-u.s.c., convex-valued regularization of F is the map

The map (~ can be seen as the smallest multifunction r with con-
vex values and closed graph such that ..T(x) for every x E D.
Notice that (~ is bounded by the same constant as F.

We now introduce an analogue of WazeWSki’s concept of quasi-
trajectory, which is more suitable for u. s. c. maps.

DEFINITION 2. Let F: S2 --~ 2R" be a bounded multivalued map and
R a compact interval. An absolutely continuous f unction x : I - Q

such that for a.e. t E I (i.e. a solution of the differential
inclusion x is said a trajectory o f a f unction y : I --~ Q is
called a quasitrajectory of F if there exists a sequence of measurable
f unctions I -&#x3E; Rn such that ~k -~ 0 uniformly on I and a sequence

of solutions o f

defined on I, which converges to y uniformly on I.

The above definition of quasitrajectory is entirely analogous to
the concept of Hermes solution of the control system x = u),
u E x) given in HAjek [7, Definition 2.3]. The difference between
Definition. 2 and Watewskils definition of quasitrajectory consists in
the type of perturbation of the field : in (3) there is an « outer» per-
turbation, while in (4) an  inner » one.

Finally, we say that an absolutely continuous function u : I -+ itn
is a quasipotygonat if its derivative it is a simple function with re-
spect to the «-algebra £ of Lebesgue measurable subsets of the in-
terval T.
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3. Main result.

Let to , T E R, T &#x3E; 0 : in what follows, I indicates the interval
[to , to -E- T ]. The announced result is

THEOREM 1. Let F: Q - 2Rn be ac bounded multifunction, let G be
its h-u.s.c., convex-valued regularization, acnd let xo E S2. Then x : ~ --~ S~
is a trajectory o f G if and only if it is a quasitrajectory o f F (according
to De f inition 2). More precisely, for every solution x of X E G(x), x(to) = xo
and for every s &#x3E; 0 there exist a quasipolygonal function y : I --~ S2 and
a f unction E: I --~ Rn such that y(to) = xo, - y(t) (  c,  s for
every t E I and

.llloreover, the same holds with ext eo F in place of F.

The proof of Theorem 1 is a refinement of the argument presen-
ted in [1, Theorem 2.4.2] to demonstrate Wazewski’s theorem. We
begin by stating a lemma contained in a paper of Cellina [3, Theo-
rem 1], which is itself of interest, because it provides a kind of uni-
form upper semicontinuity for a map defined on a compact space.

PROPOSITION 1 (Cellina). Let (X, d,), (Y, d,) be two metric spaces,
with X compact, and r: ~Y -~ 2p be a h-u.s.e. multivalued map. Then,
for every 8 &#x3E; 0 there exists 6 &#x3E; 0 such that

PROOF. Fix e&#x3E; 0 and, for each define the function
as

To prove our thesis we are going to show that is positive and
bounded away from zero on X.

By the h-u.s.c. of P, for every x e X there exists &#x3E; 0 such
that r~ (x)) ~ ~ B (1’(x), E) . Therefore, setting x’ = x in (5 ), we
see that now, by contradiction that there
exist two sequences and (xn)n such that (n E R, x~ E X

and By the compactness of X, we can suppose that
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xn -~ xa E X. Consider the number qo = r~(xo) : when dg(xn, xo)  ’YJo/2,
we have

and a contradiction.

PROOF OF THEOREM 1. Since the map G is h-u.s.c. with compact
convex values, it is well known that the differential inclusion ai E G(u),

= x,, admits solutions. Let therefore x: I --~ ~ be one such so-

lution, and fix s &#x3E; 0. We can suppose B(x(I ), 2E) C Q and also that
F and G are bounded by M &#x3E; 1. The function .I’: I --~ 2~", =

= G(x(t)), is h-u.s.c. By Proposition 1 there exists a 6  816M such
that

Partition I into N intervals I i = of length such
that For i = 0, ... , N-1, choose a point 
such that (6) holds for t = ti , t’=t§ and define øi = 1 ~’(t~ ) = (~ (x (ti ) ) .

Fix now ...yj~20131} and consider a partition of the set

made of a finite number of Borel subsets having diameter not
larger than sll8T; choose moreover a subset such that

meas (Ji) = meas (Ii) and x(t) exists for each t E Ji. Set 
= and = and let Zij be some point in
S,; . Since by (6) and by our choice of the interval Ii,

Define the map z : I - R" as z(t) if for some i,

and z(t) = 0 if U Ji : z is a simple function such that iz(t) - x(t) 1
c E/18T for every t E U JZ . The derivative of the quasitrajectory we
are looking for will be obtained from this first approximation of x.

By (7) and by the definition of G(x), for each i, j there exist fini-
tely many points Yiik and coefficients aijk such that
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The function y 11, i will be constructed by assigning the vectors as

derivatives on suitable subsets of I,. To this purpose, select for each
j, by Liapunov’s Convexity Theorem [6, Proposition 1.1], a family

11 of Lebesgue measurable subsets of Hij such that

ii) meas = a~meas (Hij) (a E [0, 11),
and set for each k

Define the simple function ~O: I - Rn as

and set

Define also the function I: I - Rn as

We claim that the function y defined by (10) is the desired appro-
ximation. To see this, notice first that E a.e., and there-

fore y is Lipschitzean with the same constant M as x. Fix t E I. For
some i, t E I i and we have

By our choice of N, the first and the last term of the right-hand side
are smaller than 8/9. To estimate the second term, remark that, on
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each li,

and

Thus, by the preceding remark and (9),

At each nodal point th, we have, by our choice of z and by (12),

and hence

Finally, by (8), (10) and (11)

Moreover, for a.e. t E I and for k,

thanks to our choice of 6 and of N and to (8), (11).
The proof of the necessity is concluded.
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To prove the sufficiency, notice that, by the necessity, y the set of
quasitrajectories of .F is nonempty. Let therefore y be one of them,
with sequences such that Ek is measurable and 
uniformly on 1, y is absolutely continuous, F(yk(t) + $k(t)) for
a.e. t E I and ~ y(t) uniformly on I. Since F is bounded, by a
compactness argument (see Theorem 0.3.4. in [1]) the sequence yk can
be supposed to converge weakly in Rn) to ~. Since G(y) D F(y)
for every y E S2, we have

Therefore, the Convergence Theorem 1.4.1 in [1] (see also the First
Proof of Theorem 2.1.3 in the same book) can be applied, yielding

i.e. E G(y(t)), and the proof of the sufficiency is concluded.

Finally, remark that the regularization (according to Definition 1)
of the function x -¿. co is the same as the regularization G of
x --~.F(x). Therefore, since by Krein-Milman’s theorem co ext co F(z) =
= c o for every x e Dy by applying the above arguments to the
function .I’(x) = ext co we obtain for .F’ the same results as

for .F. The proof of Theorem 1 is concluded.

COROLLARY. Let be a bounded multifunction
with closed values. Then 0153: I - Rn is a trajectory of eo F if and only

quasitrajectory o f ext co .~’.
Indeed, the regularization coincides with the convexification

co .F’(x).

REMARKS.

1) The argument of the sufficiency part of Theorem 1 still ap-
plies if the property

which is more general than (4), holds. This approximation is usually
said  in, the sense of graph ~: it contains both an inner and an outer
perturbation of F.
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Therefore the following statement holds:

If F is (locally) bounded, then every uni f orm limit of approximate
solutions in the sense o f graph o f

is a solution of the relaxed problem

2) Theorem 1 holds also in the nonautonomous case, provided
the regularization G is made also with respect to time, following
Definition 2.4 in [7].
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