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Approximate and Relaxed Solutions
of Differential Inclusions.

GIOVANNI COoLOMBO (*)

1. Introduction.

Let F: R+ — 2R" be 3 bounded multifunetion. A comparison be-
tween the problems

1) zeF(, x)
and
(2) % €co F(t, x)

has been carried out in many papers. In particular, Wazewski [12]
proved that, for a continuous F, every solution of (2) is a uniform
limit of functions y,(:) such that

3) d(gi(t), ext €0 F(t, y:(t))) >0  for ae. ¢.

(according to Wazewski’s definitions: every trajectory of co F is a
quasitrajectory of exfco F, where ext co F(¢, #) indicates the closure
of the extremal points of the closed convex hull of F(, #)). A result
in the same direction was proved later by Filippov [6]: he showed
that if P is Lipschitzean (with respect to the Hausdorff distance)
and compact valued, then the set S, of solutions to (1) is dense in the
set S of solutions to (2), for the uniform convergence topology. Fi-
lippov’s theorem was generalized by Pianigiani [9], Tolstonogov and

(*) Indirizzo dell’A.: International School for Advanced Studies (S.I.8.8.A.),
str. Costiera 11, 1-34014 Trieste, Italy.



230 Giovanni Colombo

Finogenko [11], Ornelas [8], and, from other viewpoints, by Bres-
san [2] and Cellina [4], always under the assumption of continuity
(or lower semicontinuity) for F. There is, however, a counterexample
due to Pli§ [10], showing that Filippov’s theorem is false when F is
only continuous. Moreover, it is well known that if 7' is upper semi-
continuous solutions to (1) may not exist. Therefore, when F is less
than continuous one can still pay attention to the problem of inves-
tigating the relationships between the solutions of (2), i.e. the «re-
laxed » solutions of (1), and the approximate solutions of (1).

In this paper we prove an analogue of Wazewski’s result, without
requiring any continuity assumption on F (indeed F must only be
bounded). Our approach relies on a different notion of quasitrajec-
tory and on a relaxed equation more general than (2). The present
result can also be regarded as a multivalued generalization of a the-
orem by Hajek [7, Corollaries 5.6, 5.7], concerning discontinuous dif-
ferential equations.

2. Notations and basic definitions.

Let X, Y be subsets of R* and let x e R*. We define d(z, Y) =
= inf {|x — y|: y € ¥}, the open e-neighbourhood of X as B(X,¢) =
= {yeRm: d(y, X) <e} and the separation between X and Y as
h*(X, Y) = sup {d(v, Y): € X}; the Hausdorff distance between X
and Y is (X, ¥Y) = max {h*(X, Y), #*(Y, X)}. The closed convex hull
of X is indicated by co X. If X is convex, we define ext X as the set
of all the extreme points of X, i.e. the set of all the points # € X such
that no nondegenerate segment in X exists which contains # in its
relative interior; its closure is indicated by ext X. The set theoretic
difference and the symmetric difference between X and Y are deno-
ted, respectively, by X\ Y and XAY, while 2R" means the family of
all nonempty subsets of R~

Let QCR* be an open set and I': 2 — 2R" be a multifunction.
We say I" to be bounded if there exists M > 0 such that I'(x) C B(0, M)
for every z€ 2. The following continuity concept is mainly conside-
red:

I' is Hausdorff-upper semicontinuous (h-u.s.c.) in Q iff

Vo, € 2,Ve> 0 16 > 0 such that x € B(w,, 8) implies
W*(F (), F(wo)) < &.
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The graph of I', graph {I'}, is the set {(#,y) eR*XR":y e I'(z)}. We
recall that a h-u.s.c. multifunction with closed values has closed
graph; conversely, a bounded map with closed graph is h-u.s.c.

A regularization of a bounded (possibly non-measurable) multifune-
tion F can be constructed as follows:

DEFINITION 1. Let F: Q — 2R" be a bounded multifunction. The
h-u.s.c., convex-valued regularization of F is the map

G: Q2R G@)=co{u:ueck(y),ly— x| <e}.

>0

The map G can be seen as the smallest multifunction I" with con-
vex values and closed graph such that F(x) C I'(x) for every xe€ Q.
Notice that G is bounded by the same constant as F.

We now introduce an analogue of Wazewski’s concept of quasi-
trajectory, which is more suitable for u.s.c. maps.

DEFINITION 2. Let I': Q — 2R" be a bounded multivalued map and
ICR a compact interval. An absolutely continuous function x:I — Q2
such that &(t) € I'(x(t)) for a.e. teI (i.e. o solution of the differential
inclusion &€ I'(x)) is said a trajectory of I'; a function y:I — Q is
called a quasitrajectory of I' if there exwists a sequence of measurable
functions &.: I — R" such that & — 0 uniformly on I and a sequence
W)=y Of solutions of

(4) i (t) € F(’“k(t) + Ek(t)) ’

defined on I, which converges to y uniformly on I.

The above definition of quasitrajectory is entirely analogous to
the concept of Hermes solution of the control system 2 = f(t, x, u),
u € W(?, ) given in Hajek [7, Definition 2.3]. The difference between
Definition 2 and Wazewski’s definition of quasitrajectory consists in
the type of perturbation of the field: in (3) there is an « outer » per-
turbation, while in (4) an «inner» one.

Finally, we say that an absolutely continuous function #:I — Rr
is a quasipolygonal if its derivative @ is a simple function with re-
spect to the o-algebra £ of Lebesgue measurable subsets of the in-
terval I.



232 Giovanni Colombo

3. Main result.

Let %, TeR, T>0: in what follows, I indicates the interval
[toy o + T'). The announced result is

THEOREM 1. Let F: Q — 2R" be a bounded multifunction, let G be
its h-u.s.c., convex-valued regularization, and let xo€ Q. Then x: I — Q
i8 a trajectory of G if and only if it is a quasitrajectory of F (according
to Definition 2). More precisely, for every solution x of & € G(x), x(t,) = w,
and for every & > 0 there exist a quasipolygonal function y: I — 2 and
a function &: I —R" such that y(t,) = x,, |©(t) — y(t)| <&, |E@)] < & for
every tel and

y(t)e F(y(t) + &@F)) for ae. tel.

Moreover, the same holds with ext co F im place of F.

The proof of Theorem 1 is a refinement of the argument presen-
ted in [1, Theorem 2.4.2] to demonstrate Wazewski’s theorem. We
begin by stating a lemma contained in a paper of Cellina [3, Theo-
rem 1], which is itself of interest, because it provides a kind of uni-
form upper semicontinuity for a map defined on a compact space.

ProrosITION 1 (Cellina). Let (X, dy), (X, d,) be two metric spaces,
with X compact, and I': X — 2¥ be a h-u.s.c. multivalued map. Then,
for every &> 0 there exists 6 > 0 such that

Vo e X 32’ € B, 8): I'(B(=, 8)) C B(I'(x'), €) .

Proor. Fix £>0 and, for each xe€ X, define the function
o(*): X >R as

(3) ol@) = sup {6> 0: 32’ € B(x, 9): I'(B(x, 8)) C B(I'(x), &)} .

To prove our thesis we are going to show that g(xr) is positive and
bounded away from zero on X.

By the h-u.s.c. of I, for every € X there exists #(x) > 0 such
that F(B(w, n(w)))gB(F(m), €). Therefore, setting #'=« in (5), we
see that 0<#n(r)<pe(x). Assume now, by contradiction that there
exist two sequences ((,), and (v,), such that {,€R, (,|0, z,€X
and g(z,) <,. By the compactness of X, we can suppose that
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*, =&, € X. Consider the number 7, = #(x%,): when dz(2., %) <7,/2,
we have

I’(B(m,,, "70/2)) < F(B(ww "70)) c B(F(%)y 6‘) ’

and therefore go(x,)>7/2, a contradiction. m

ProOF OoF THEOREM 1. Since the map G is h-u.s.c. with compact
convex values, it is well known that the differential inclusion % € G(u),
u(t,) = @, admits solutions. Let therefore x: I — Q2 be one such so-
lution, and fix ¢ > 0. We can suppose B(z(I), 2¢) C 2 and also that
F and G are bounded by M >1. The function I': I —2R", I'(t) =
= G(x(t)), is h-u.s.c. By Proposition 1 there exists a é < ¢/6 M such
that

(6) Vtel It'eB(t, 0): |t— s| <= I'(s)CB(I(), e/18T) .

Partition I into N intervals I, = [¢;,%;1,] of length T/N <§, such

that MT|/N<¢/9. For ¢ =0, .., N—1, choose a point t;e B(t;, J)

such that (6) holds for ¢ = t;, #'=t; and define &, = I'(t;) = G((t)).
Fix now i€ {0, ..., N—1} and consider a partition of the set

Si = U I (t)
lely
made of a finite number of Borel subsets §;; having diameter not
larger than ¢/187; choose moreover a subset J,C I, such that
meas (J;) = meas (I;,) and #%(t) exists for each ted;. Set H; =
= {teJ;: &(t) € 8} and xi(*) = xgm,(*), and let z;; be some point in
8;;. Since z;;€8;, by (6) and by our choice of the interval I,,

) (25, D;) < e[18T .

Define the map z: I, — R~ as 2(f) = > 2 %,(t) if t e J; for some 1,

2
and 2(t) = 0 if ¢t ¢ |J J;: # is a simple function such that |2(t) — &(f)|<
<e/18T for every te|JJ;. The derivative of the quasitrajectory we
are looking for will be obtained from this first approximation of .
By (7) and by the definition of G(x), for each ¢, j there exist fini-
tely many points @, 9. and coefficients o,;; such that

8) o450 — w(t:)] <ef3, YincF(@),

) >0, Soy=1, c
k

<18'—17.

Zij— z il iin
P2
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The function y|I; will be constructed by assigning the vectors y,;; as
derivatives on suitable subsets of I;. To this purpose, select for each

j, by Liapunov’s Convexity Theorem [6, Proposition 1.1], a family
(Ai5(@))aero,1; of Lebesgue measurable subsets of H,; such that

i) Ay(ex) CAy(p) if a<p,
ii) meas (4(x)) = a-meas (H,;) («e€ [0,1]),
and set for each k&
k
Po=0, =1=21 e A Yk = Xa,0)0\dy 1)

Define the simple function p: I — R" as

Ei‘yiik 2iix(?) g for teH,;,
o(t)=1*
0 for te NUH,;,
€5

and set
t
(10) y(t) = @ + [ o(s)ds .
to
Define also the function &: I — R» as

z (mﬁk— y(t)) .xiik(t) fOI‘ tG H” 9

k

0 fOr tEI\UH” )
ij

(11) £t) =

We claim that the function y defined by (10) is the desired appro-
ximation. To see this, notice first that y(t) € F(2) a.e., and there-
fore y is Lipschitzean with the same constant M as 2. Fix teI. For
some 4, t€I; and we have

[y(@) — 2@)| <ly(®) — ()| + ly(t) — @) + o) — 2(0)] .

By our choice of N, the first and the last term of the right-hand side
are smaller than ¢/9. To estimate the second term, remark that, on
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each I,,

fz(s) ds = > meas (H )z,
I !
and

Ij‘g(s) ds -—;f ; (Zk Yie® xi,k(s)) ds = 212 (% o5 eas (H,;) -yijk) .

Thus, by the preceding remark and (9),

<

Z meas (H,;) °(z,~,~—— Z “iik?/iik)
i )

12) ’ fg(s) ds—|z2(s)ds
It It

< meas (I,~)-—8—.

< > meas (H,;)
2 187

Zij— Z e Yiix
k

At each nodal point ¢,, we have, by our choice of z and by (12),

98 — )| <o) — 20— lv0) as| + | f(z(s) — ols)) ds|<
to to

e & £
<'1‘§ —l_ighmea‘s (L‘)'ﬁ<§ ’

and hence

Sup ly(t) — 2(t)| <e/3 .
Finally, by (8), (10) and (11)
y(t) e F(y(t) + &) for ae. tel.
Moreover, for a.e. te€I and for some 1,7, k,
Q)| < o — y()]| < oise— @(t)] +

+ lath) — @(t)] + la(t) — #(0)] + o) — y0)| <5 + g+ g+ 5 =¢

thanks to our choice of é and of N and to (8), (11).
The proof of the necessity is concluded.
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To prove the sufficiency, notice that, by the necessity, the set of
quasitrajectories of F' is nonempty. Let therefore y be one of them,
with sequences &, y: I — R such that &, is measurable and |£.(¢)|— 0
uniformly on I, y is absolutely continuous, ¥:(f) € F(y:(t) 4 &£x(t)) for
a.e. tel and y.(!) — y(t) uniformly on I. Since F is bounded, by a
compactness argument (see Theorem 0.3.4. in [1]) the sequence g, can
be supposed to converge weakly in L(I, R") to . Since G(y)2 F(y)
for every y € 2, we have

d((9x(1), 9a(t)), graph {@}) <d((yx(2), a(2)), graph {F}) = [£(1)] >0 .

Therefore, the Convergence Theorem 1.4.1 in [1] (see also the First
Proof of Theorem 2.1.3 in the same book) can be applied, yielding

(y(2), y(t)) € graph {G},

i.e. y(t) € G(y(t)), and the proof of the sufficiency is concluded.

Finally, remark that the regularization (according to Definition 1)
of the function z — co F(z) is the same as the regularization G of
2 — F(x). Therefore, since by Krein-Milman’s theorem co ext co F(z) =
= co F(z) for every =€ 2, by applying the above arguments to the
function F(x) = ext co F(z), we obtain for F the same results as
for F. The proof of Theorem 1 is concluded. m

COROLLARY. Let F: Q2 —R" be a bounded h-u.s.c. multifunction
with closed values. Then z:I — R~ is a trajectory of co F if and only
if it is a quasitrajectory of extco F.

Indeed, the regularization G(x) coincides with the convexification
co F(x).

REMARKS.

1) The argument of the sufficiency part of Theorem 1 still ap-
plies if the property

lim d((wk(t), @(t)), graph {F}) -0,

k—>o0

which is more general than (4), holds. This approximation is usually
said «in the sense of graph »: it contains both an inner and an outer
perturbation of F.
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Therefore the following statement holds:

If F is (locally) bounded, then every uniform limit of approximate
solutions in the sense of graph of

zeF(x), )=
i8 a solution of the relaxed problem
zteGx), x(,) =uwx.

2) Theorem 1 holds also in the nonautonomous case, provided
the regularization G is made also with respect to time, following
Definition 2.4 in [7].
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