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Remarks on the Yaamabe Problem

and the Palais-Smale Condition.

D. FORTUNATO - G. PALMIERI (*) (**)

0. Introduction.

Let if be a C°° compact Riemannian manifold of dimension n ~ 3.
Let g(x) be its metric and .R(x) its scalar curvature. An important
problem concerning the scalar curvature is the Yamabe problem:
does there exist a metric g’ conformal to g, such that the scalar curva-
ture .R of the metric is constant?

Since the pionering paper of Yamabe [11] appeared, several authors
have studied this problem (cp. [1, 9, 10] and the references contained
in [3]).

If we consider the conformal deformation in the form g’ = u4~~n-2) g
(with U E oeo, u &#x3E; 0), the Yamabe problem is reduced (cp. [1, 9, 1-1-1)
to the following eigenvalue problem:

where y = 4(n -1 )/(n - 2), L1 denotes the Laplace-Beltrami operator
corresponding to g and 2* = 2n/(n - 2).

We denote by Hl the Sobolev space on .~, i.e. ,~1 is the completion

(*) Indirizzo degli AA. : Dipartimento di Matematica, University di Bari,
Via G. Fortunato, 70125 Bari, Italy.
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e 60%) and by G.N.A.F.A. of C.N.R.
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of the space OOO(M) with respect to the norm

where 

La(a &#x3E; 1 ) denotes the space of the functions on M which are 0153-

integrable. Moreover we set

clearly if u minimizes the functional

on the manifold in 81

u is a weak solution of (0.1) and R is the minimum of y on V. Then
by a regularity result of Trudinger (cp. [9, Th. 3]) ~c is C°°. Moreover,
since IVlu11 = IVul (cp. [3, prop. 3.49]), we can assume that 
Then (cp. [3, prop. 3.75]) we deduce that u &#x3E; 0.

Therefore the Yamabe problem is solved if the functional y can
be minimized on V. Since H1 is not compactly embedded into E2*
it is not easy to find a minimum directly. In [1, 9, 11] the following
approximation-procedure has been used. Since the embedding Hi - .Lq
(q C 2*) is compact the problem

can be easily solved; then, by taking the limit for q 2013" 2*, it is possible,
in some cases, to solve (0.1).

If S~ is a bounded domain in R", set
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It is known (cp. [2, 8]) that is independent of ,S~ and

where con denotes the area of the unit n-dimensional sphere 8n .
Using the « approximation-method » Aubin [1~ Th. 7] proved the

following Theorem.

THEOREM 0.1. Suppose that

Then there exists u E T~ which minimized 1jJ Iv.

In [1] Aubin has also pointed out that

is a conformal invariant and that the inequality

holds for any compact n-dimensional Riemmanian manifold.
In this paper we prove that Viv satisfies the Palais-Smale (P-S)

condition in the range ]- 00, (cp. lemma 1.1). Then Theorem 0.1
can be proved directly using standard variational arguments.

Moreover we show that "Plv does not satisfy the (P-S) condition

at c = yS (cp. Th. 2.1, 2.2).
It can be proved also that slight perturbations of (0.1) have always

a solution. More precisely we consider the following perturbed eigen-
value problem:

and we prove the following

THEOREM 0.2. Let n ~ 4, than f or any c &#x3E; 0, (0.4) possesses a solution.
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Observe that Theorem 0.2 is similar to a result obtained by Brezis
and Nirenberg (cp. [4, Th. 11]) in the context of elliptic boundary
value problems on a bounded domain 

Let us finally recall that another direct proof of Theorem 0.I is
contained in [10].

1. Proof of Theorem 0.1, 0.2.

The following lemma plays a fundamental role in proving Theo-
rems 0.1, 0.2.

LEMMA 1.1. The defined by (0.2) and (0.3) satisfies
the Palais-Smale condition in ]- 00, in the following sense:

Then contains a subsequence converging strongly in Hi.

PROOF. Let be a sequence which satisfies (1.1) and (1.2).
Then, by (1.2), we easily deduce that we can select a subsequence,
which we continue to denote by {Uj}, such that

Set q;(u) _ 
From (1.1) we deduce that there exists a sequence R s.t.

Then, since IUi/2. = 1 and by using (1.2), we obtain
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We show now that u solves the equation

Let i e 0’(M), then by (1.4), (1.3), (1.5) we deduce that

Then u is a weak solution of (1.6). Then (cp. [9, Th. 3]) u is a C°° solu-
tion of (1.6).

To show that --~ ~c strongly in let

Testing (1.4) with v; , we obtain

By (1.3) we have

Whence from (1.7), (1.8) we deduce that

Now we claim that
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In fact, following an analogous argument as in [5, lemma 2.1], we obtain:

Then, by (1.3) and since U E L2*(.ll~), we have

So (1.10) easily follows from ( i H), (1.11) and (1.5). If c  0 from (1.10)
we deduce that

Whence

u, --~ zc strongly in Hi .

Now suppose that

Using Theorem 2.21 in [3] (cp. also [5, lemma 2.5]) we have

By (
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Let us now prove that

Easy calculations show that

By (1.16) and (1.2) we deduce that

Moreover, since u solves (1.6), we have

From (1.17) and (1.18) we easily deduce (1.15).
By (1.14) and (1.15) we have

Since c  yS, we have

Finally from (1.19) and (~ .20) we deduce that

PROOF OF THEOREM 0.1. The proof of Theorem 0.1 can be deduced
from lemma 1.1 using standard variational arguments. Suppose
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and arguing by contradiction assume that 03BC is not a critical value

for 1plv. Since the (P-S) condition holds in ]- 00, by well known
results (cp. [6, 7]) there exists 8 &#x3E; 0 and an homeomorphism

Obviously this contradicts ,u = inf 1plv. Q.E.D.

REMARK 1.2. From the proofs given before it is easy to see that
lemma 1.1 and Theorem 0.1 still hold if is any smooth function
which does not represent necessarily the scalar curvature of M.

Moreover lemma 1.1 and Theorem 0.1 hold also, with obvious
changes, if we replace M with a bounded open set n &#x3E; 3, and
H1 with the Sobolev space In this setting Theorem 0.1 becomes
a variant of Lemma 1.2 in [4].

REMARK 1.3. In order to apply Theorem 0.1 it is important to
find conditions which guarantee

It is easy to see that if we assume fR(x) dM  (meas M)(n-2)/n yS,
M

then (1.21) is verified (cp. also [1, 3, 9]).
Other classes of manifolds which satisfy (1.21) can be found

in [1, 3].

2. Remarks about the (P-S) condition and Proof of Theorem 0.2.

For any Riemannian manifold [1, lemma 4] we have

Moreover there exist manifolds, which we call critical, for which
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An example of critical manifold is the n-dimensional sphere 
[1, cor. 4].

For this class of manifolds the (P-S) condition does not hold in
fl = 

In fact the following Theorem holds

THEOREM 2.1. Let lVl be a critical, Riemannian manifolds i.e.

Then does not satisfy the (P-S) condition in p - yS, i.e. there exists
a sequence c V s.t. 1p(Uj) -~ yS and --~ 0 and which is not

precompact in Hi.

PROOF. By a result of Aubin [3, Th. 2.21] there exists a sequence
c V s.t.

Since the manifold .l~ is critical, by (2.1) we deduce that is a

minimizing sequence for 1p Iv .
Now we argue by contradiction and suppose that 1p Iv satisfies

the (P-S) condition at g = yS. Then by using standard variational
arguments (cp. prop. A.1 in Appendix)

Then is precompact in Hl, therefore it contains a subsequence,
which we continue to denote by such that

Then, since IWjI2* = 1, we have = 1. On the other hand = 0.

Therefore we get a contradiction. Q.E.D.

Also manifolds which are not critical do not satisfy the (P-S)
condition at c = yS. More precisely the following Theorem holds
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THEOREM 2.2. Let .M be a 000 Riemannian compact manifold of
dimension n ~ 3. Then the does not satisfy the (P-S) condi-
tion in c = yS.

In order to prove this result we need to introduce some notations.
Lot 6 be a positive number less than the injectivity radius of M.

If P E M we set B(P, ð) the ball of M centered at P and radius o.
Using geodesic local coordinates, if Q E B(P, ð) ~Te have

The metric tensor g can be expressed by

Fix a &#x3E; 0. Suppose &#x3E; 0 we choose

It is not restrictive to assume also

In order to prove Theorem 2.2 we need to introduce a suitable

sequence in V.

Following Aubin [1] we consider the sequence of functions

Observe that the functions solve the

Yamabe equation for ~l = Sn .
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Obviously vk have supports contained in B(P, 3). We set

In order to prove Theorem 2.2 we need the following lemma

LEMMA 2.3..F’or k -~ -~- oo we have the following asymptotic estimates

where

Moreover

and the same asymptotic estimates hold for with different constants.

The proof of lemma 2.3 is quite technical and it will be sketched
in Appendix.

PROOF OF THEOREM 2.2. Consider the sequence defined in (2.6).
Obviously = 1’

Moreover by lemma 2.3

Then is not precompact in Therefore, n to verify that
V’lv does not satisfy the (P-S) condition in yS, we need only to prove
that
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Now

and there exists A &#x3E; 0 such that

By the above expression for we have

where

Moreover it can be verifed that

using (.A..10) in the Appendix

Moreover

where
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Then

Inserting (2.14) into (2.13) and setting

we get

by (2.15), (2.10), (2.11) and lemma 2.3 it is easy to verify that Xk -~ 0
in .L2n~(~ -’- 2) - (~2# ) ~ ~ g-1; in fact

and also

Finally we can argue in an analogous manner if R(P) 0 for

any P.

PROOF OF THEOREM 0.2. We shall prove that for any e &#x3E; 0 the func-

tional
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has a minimum on the manifold

By theorem 0.1 (see also remark 1.2) we need only to show that

If c 0 for any x E M, (2.16) is obviously satisfied.
Suppose now that there exists P E M such that R(P) &#x3E; 0 and

consider the sequence defined by (2.6).
By lemma 2.3 we have

Then we can choose k E N s.t.

Appendix.

In proving Theorem 2.1 we have used the following result :

PROPOSITION A.1. Let j be a 01 functional on an Hilbert manifold V.
Suppose that f is bounded f rom below and that it satisfies the Palais-
Smale condition at 03BC = inf f , in the following sense :

then is precompact. Tlnder the above assumption for every minimizing
sequence for f 2ve have df(wn) ~ 0.
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The proof of proposition A.1 is deduced by following standard
variational arguments. For completeness we shall give a sketch of
the proof.

Since f satisfies the (P-S) condition the set

is compact.
and consider the neighborhood of K, defined by

In correspondence of Nk, there exists E &#x3E; 0 and an homeomorphism
q: V s.t.

Then

Now consider (mn) c V s.t.

Then by (A.0) there exists nk s.t. for n &#x3E; nk

Therefore, since K, is compact there exists subsequence converging
to u E then ~ 0. Q.E.D.

Let us give a sketch of the proof of Lemma 2.3. Set
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Then (cp. [1, lemma 1]) we have

where is a suitable constant depending on the metric. Set

Then

Inserting (A.1) in (A.4) we have

where

Then by using the Taylor formula for the factor

and observing that for p and q positives
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we get

where

Moreover it can be verified that the following asymptotic expansions
hold:

where

where



64

where

Moreover

where

Then, since u,L = the asymptotic expansions (2.7), (2.9), are
easily derived. Q.E.D.

Notes added in proofs. After submission of this paper we have known that
R. Schoen (Conformal deformation o f a Riemannian metric to constant scalar

curvature, preprint) has proved that for a manifold conformally different
from Sn, the conformal invariant fl is (strictly) less then y~S; then the Yamabe
conjecture is positively solved.
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