RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITA DI PADOVA

JOHN D. O’NEILL
Measurable products of modules

Rendiconti del Seminario Matematico della Universita di Padova,
tome 73 (1985), p. 261-269

<http://www.numdam.org/item?id=RSMUP_1985__73__ 261_0>

© Rendiconti del Seminario Matematico della Universita di Padova, 1985, tous
droits réservés.

L’acces aux archives de la revue « Rendiconti del Seminario Matematico
della Universita di Padova » (http://rendiconti.math.unipd.it/) implique 1’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RSMUP_1985__73__261_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

REND. SEM. MAT. UN1v. PADOVA, Vol. 73 (1985)

Measurable Products of Modules.

JoHN D. O’NEILL

SuMMARY - In this paper all groups are abelian, rings are associative with
identity, and modules are left unitary. We are interested in modules
of the form [] G;, a direct product of submodules @; over an index set I.

I
Many theorems about such modules require that |I| be non-measurable.
Here we let I be arbitrary, put mild restrictions on the G;’s, and obtain
new results. In Section I we eqtablish some decomposition theorems.
We then apply them to homomorphisms of the form f: [ G; — A where:
in Section 2 4 is a slender module and in Section 3 A4 is an infinite direct
sum of submodules.

0. Preliminaries.

Let I be a set and P(I) its power set. Here (as in [3]) |I| is measurable
if thereis a 0,1 countably additive function x on P(I) such that u(I) = 1
and u({i}) = 0 for each icI. If no such function exists, |I| is non-
measurable. If § is the least measurable cardinal, it is a regular limit
cardinal such that « << implies 2¢ <. If all sets are constructible
(V= L), measurable cardinals do not exist. A good discussion of
these matters may be found in [5].

If (8, 4+, -) is a Boolean ring, an ideal K is here called a y-ideal
if, whenever {s,, 8,, ...} is a countable set of orthogonal elements in

8, > s.€ K for some k in N, the natural numbers,
n=k

Let R be a ring and A a R-module. A filter F' is a set of principal

(*) Indirizzo dell’A.: University of Detroit, Detroit, Michigan 48221
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right ideals in R such that, for each aR, bR in F, there is a ¢R in F
contained in aR and bR. A is torsion-free if, forre Randrxe A,re =0
implies »r =0 or = 0. A is divisible if rA = A for all non-zero r
in B. D(A) is the maximal divisible submodule of A and 4 is reduced
if D(4) = 0.

In general our terminology agrees with that in Fuchs [3].

1. Decomposition theorems.

We begin with a set-theoretic lemma. We omit its proof since
its statements are well-known or easily proved (e.g. see page 161 in
II of [3] or pages 342-356 in [5]).

LemMMA 1.1. Let I be a set, § = P(I), and K a proper y-ideal
in the Boolean ring (8§, 4, -).

(@) S/K is finite and there are orthogonal elements, say wu,,
...y U,y in § which map onto the atoms of S/K.

(b) If {s;}, jed, is a set of orthogonal elements in S, almost
all s;’s are in K. If |J| is non-measurable, then Zs,eK for some
cofinite subset J' of J.

(¢) If |I| is non-measurable, then K = P(I') for some cofinite
subset I’ of I.

REMARK. If K is an ideal of finite index in a complete Boolean
ring, it need not be a y-ideal (consider § = 2% and let K be a maximal
ideal containing 2®). However, if I is a set, then |I| is measurable
if and only if § = P(I) has a proper y-ideal K containing the atoms
of S.

We now use Lemma 1.1 to obtain decompositions of specific
modules. In the next two theorems the ring R is arbitrary.

THEOREM 1.2. Let X = [][ @; be a R-module where the G’s are

I
pairwise isomorphic of non-measurable cardinality. If K is a proper
y-ideal in 8 = P(I) and H = {[] G,:s€ K), then X = L@ H where
8

L ~ (—D G, for some finite subset E of I. If I is infinite, then X ~ H.
E

PRroOF. Let 7;: G; — G be an isomorphism for some group G and
each ¢. Let u,,...,u, be as in Lemma 1.1. For each u, let 4, =
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={Zn{1(g):geG}. Clearly each A,~G and we set L=@A,.
Un 1
We claim X = LD H. Let « = Y x;, «;€ G;, be an element in X.
T

If se 8, we define #, = > #,. Hence z = sz” where ¢ € s, exactly
i€g G

if ;;(x;) = g € G. Since the s,’s partition I and |G| is non-measurable,

> s, € K for some cofinite subset ¢’ of G by Lemma 1.1 and so > z,,

G’ @

is in H. Now # will be in L + H if we can show z,, is in it for any
fixed g. But s, = za,,u,.—l— v where each a,=0 or 1 and ve K.
So z,, = Y a,2,, + ®,— 2> a,%, ,, which is in L 4+ H (u,v is in K).
Suppose now ¥, + ... + 9, + 2 =0 with y, in 4, and 2z in H. For
any fixed n and some ¢ in %, the ith component of 2 is 0 since u,, is not
in K. Hence the ith component of ¥, is 0 and y, = 0. Therefore
2=0 and X = L® H, as desired. If E consists of one element
from each u,, then L ~ (—BG Since X = L® [] G, we have H ~

INE
~[]G: =X if Iis mﬁnlte
INE
THEOREM 1.3. Let X = [] @, be a R-module where each G; and
I

the set of their isomorphism classes have non-measurable cardinality.
If K is a y-ideal in § = P(I) and H={][G;:s€ K), then X =

= L@ H where, for some finite subset B, L ~ @ G, and H ~ ([ G;.
E INE

ProoF. Write I = |J s; where ¢, 4’ are in the same s, exactly if
J
G; ~ G;.. Then {s;} partitions I, |J| is non-measurable, and [] @ =
i
= HG-', where G, = [] 6¢:. By Lemma 1.1 there is a J' cofinite

=

in J such that Zs, € K and HG € H. For fixed j @, is a product

of isomorphic groups and, if S = P(s;), then K; = 8§, N K is a p-ideal
in 8,. By the last theorem G, = L;® H; where H; = {[] Gi:s € K,)
8

and, for a finite subset ¢; of s;, L; :(—DG and H; ~ [] G;. So
83\
X = @L,@[@IL@HG ] Let L be the left sum and let H' be

the module in the bracket If E=|t, we have L ~ @G, and
INJ’ E

"~ ]] G Since H'CH and HNL =0, H= H' and the proof
INE
is complete.

Our next proposition will prove useful later.
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PrOPOSITION 1.4. Let {G'}, ¢ € I, be a set of R-modules and let V
be the set of their isomorphism classes.

(a) If |R| and each |G,| is < a, a fixed non-measurable cardinal,
then |V| is non-measurable.

(b) If each |G, and |V| are non-measurable, then |G,|<a for
some non-measurable « and all <.

PRrROOF. (a) Let Y be a free R-module of rank «. Then ¢; ~ Y/H,
for some H; and each ¢. The number of distinct submodules of Y
is < 2!¥1< 2= which is non-measurable since « is. So |V| is non-measur-
able since « is. So |V| is non-mesaurable. (b) Let 8 be the least non-
measurable cardinal (it’s an ordinal). Let J be a subset of I such that
the ordinals |G|, jeJ, are distinet with least upper bound «<§g.
Since f is a regular cardinal if « = f, we have § = |J|<|V|<f, a
contradiction. So « < f.

2. Slender modules.

In this section we apply the theorems of the last section to map-
pings of the form f: [[ @, —.4 where 4 is a slender R-module. In
I

the literature there appear various definitions of a «slender » module
(or group). Actually these definitions are essentially the same as
we shall show. Therefore, we define: a R-module A4 is slender if it
satisfies any (hence all) of the four conditions of Proposition 2.1.

ProposITION 2.1. Let A be a R-module. The following are equi-
valent.

(1) If f: R¥ - A is a homomorphism, almost all components
in R¥ map to 0.

(2) If f: R¥ - 4 is a homomorphism, there is a cofinite sub-
set C in N such that f(R°) = 0. .

(3) If {Gn}, nEN, is a countable set of B-modules and f: [[ G,— A

is a homomorphism, then f(HG,,) =0 for some k in N. ¥
n=k

(4) If{@,},neN, is a countable set of R-modules and f: [[ ¢,—~4
is a homomorphism, then f(@,) = 0 for almost all » in N. ¥
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PROOF. (1) =>(2). We write RY = [] Re, where ¢, is a N-tuple
N

with 1 in the nth position and 0 elsewhere. It suffices to assume
f(e,) = 0 for all » but f(x) = 0 for some # € RY and to derive a con-
tradiction. Write = > r,e,, 7, € R, and, for each n in N, set a, =
=& — (ry6, + ... + 726,). For each k the kth component in R¥ of
a, is 0 for almost all n. Hence, if B = [] Ra,, there is a natural
imbedding ¢: B — R¥ with ¢(a,) = a, for each n. Consider the map
f: B — A. Since fp(a,) = f(x) # 0 for each n, we have a contradic-
tion of (1) with respect to fp. Therefore (1) =>(2).

(2) = (3). Suppose (3) is false. For each k in N choose z, € [ G.
a>k

so that f(z.) # 0. There is a natural map ¢: R¥ — [] @, carrying e,
to z,. Then fp: RY — A is a homomorphism and by (2) f(p( 1T Rack) =0
k=m

for some m. So 0 = fp(x,) = f(x;) for k>m, a contradiction. Thus
(2) = (3). Clearly (3) =>(4) = (1) and the proposition is true.

REMARK. (1) is the definition of slender used by Fuchs [3, vol. IT,
Pg. 159] in the case R = Z and A is torsion-free (a slender R-module
is torsion-free if R — Z but not in general. See Example 3 on p. 399
of [4]). (2) and (3) are the definitions of slender used in [2] and [4].

We now apply Theorem 1.3 to a map from a direct product of
modules to a slender module.

THEOREM 2.2. Let X = [] @ be a module where each |G| and
I

the set of their isomorphism classes are non-measurable. If f: X — 4
is a homomorphism and A is slender, then X = L@ H where f(H) = 0
and, for some finite subset ¥, L ~ @ G; and H ~ [] G..
E INE
PRoOF. For § = P(I) let K ={se8:{([[¢)=0}. Clearly K
8

is an ideal and it is a y-ideal by (3) of Proposition 2.1. Theorem 1.3
completes the proof.

CoroLLARY 2.3. Let R be a commutative integral domain not

a field and let A be a countable torsion-free reduced R-module. If

R-module X equals [] @, where |G;|<« for some non-measurable o
I

and all ¢ and if f: X — 4 is a homomorphism, then X = L@ H where
f(H) = 0 and, for some finite subset B, L ~@ G, and H ~ [] G..
E INE
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ProOF. We assume A is non-zero and hence |R| is countable.
Thus the set of isomorphism classes of the G,’s is non-measurable
by Proposition 1.4. The result now follows from Theorem 2.2.

COROLLARY 2.4. Let A be a torsion-free abelian group which
does not contain a copy of @, Z¥, or the p-adic integers for a prime p.
Let X = [] @, be an abelian group where |@,| <o for some non-measur-

1

able o abd all ¢. If f: X - A is a homomorphism, then X = L® H

where f(H) =0 and, for some finite B, L ~ @G, and H ~ [] G..
E INE

PrOOF. A is a slender Z-module by Theorem 95.3 in [3]. Proposi-
tion 1.4 and Theorem 2.2 complete the proof.

Norte. If {G} is a set of indecomposable groups of non-measurable
cardinality, the least upper bound of |G,| may not be non-measurable.
There exists arbitrarily large indecomposable groups (Theorem 2.1

in [7])7

3. Direct products and sums.

Suppose X = [[G:, 4 =P A, are modules and f: X — 4 is a
I J

homomorphism. Most known theorems dealing with this situation
require that |I| be non-measurable (see [6] for references). In this
section we let I be arbitrary, put some restrictions on the G/’s and
obtain new results. Other results with I arbitrary may be found
in part 2 of [6]. By f;, we will mean the map f followed by the projec-
tion to A4;.

TEEOREM 3.1. Let X =[][@G;,, 4 =@ 4; be two R-modules
I J

and let f: X — 4 be a homomorphism. Suppose each G, and the set

of their isomorphism classes have non-measurable cardinality. If (a)

F ig a filter of non-zero principal right ideals in R or (b) R is a commuta-

tive integral domain, then X —= L@ H where L ~ P G; and H =~
E

1 G: for some finite E such that, for some non-zero b in R, bf,(H) is
INE
contained in (a) [ 74 or (b) D(4) for almost all j in J.
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Proor. Let 8 = P(I). (@) Let K ={scS:for some r,R in F
we have r, f,(l_[ Gi) c (N r4 for almost all j in J}.
8 rReF

It is easy to see that K is an ideal in § and it is a y-ideal by Chase’s
Theorem (Theorem 2.1 in [1] or Theorem 1.1 in [6]). Conclusion (a)
follows immediately from Theorem 1.3 above and from Theorem 1.3
in [6]. (b) Let K = {s € S for some 7, = 0 in R we have m‘,-(]—[ G,-) C

8

C D(A) for almost all j}. Then K is a y-ideal in § by Theorem 1.5 in
[6] and, from that theorem and Theorem 1.3 above, we have conclu-
gion (b).

We next apply Theorem 3.1 to the case where f is the identity
map. For best results we let A be torsion free.

THEOREM 3.2. Let A be a torsion-free R-module with decomposi-
tions 4 = HG = @A where |G;|<o« for some non-measurable o

and all <. If Fis a ﬁlter of non-zero principal right ideals in R such

that ()} 74 = 0 or if R is a commutative integral domain and D(4) = 0,
rReF

then there are finite subsets I, in I and J, in such that @ G, ~B®

(@A) with Bc@A

ProoOF. Since A is torsion-free, we may assume |R|<oa. By Proposi-
tion 1.4 the set of isomorphism classes of the G,’s has non-measurable
cardinality. Let f be the identity map in Theorem 3.1. By that theorem
and the fact that A is torsion-free we have, for some finite subsets
I,inI and J, in J, A = L@ H with L ~ P G, and HC@A The
conclusion of the theorem now follows. hL

If R =Z and A in the last theorem is just an abelian group, tor-
sion-freeness is not required to obtain a meaningful decomposition
theorem.

THEOREM 3.3. Let A = [[ G, = @ 4, be a reduced abelian group
1 7

where |G;| <« for some non-measurable « and all ¢. There are decom-
positions G, = B;® C;, 4; = T,® U, and finite subsets I, in I, J,
in J such that

(@) JIB: =@ T, and is bounded
I J

) [1C.=@U
i



268 John D. O’Neill
(¢) @ U; = POQ such that
I
)@ C:=QD (DT
I, INJ1

ii C;~P.
( )11\11
ProoF. By Proposition 1.4 the set of isomorphism classes to which
the Gs belong has non-measurable cardinality. By Theorem 3.1
(with f the identity map and D(A4) = 0) there is a decomposition
= L@ H and finite subsets I, and J, such that L ~ P G;, H ~
I,

~ [] @:, and nH C @ A, for some n in N. Since our goals are iso-
T N\h g1
morphisms not identities, we may assume n( [1e ) (—BA for n in N.
NI
The rest of the proof is exactly like that of Corollary 1.9 in [6].

COROLLARY 3.4. Suppose 4 = ]_[Gi is a reduced abelian group,
I

|G| <« for some non-measurable « and all ¢, and let 8 be an infinite
cardinal. Then A4 is a direct sum of § non-zero subgroups if and only
if (a) some finite sum of G,’s is or (b), for some » in N, each G, has
a m-bounded direct summand B; such that |[] Bi|>p.

I

Proor. Sufficiency is clear. To show necessity set 4 =@ 4,,
J

A;+ 0 and |J| = B, and apply Theorem 3.3. Assume the decomposi-
tions there have been made and |HB ] < f. By (c¢) then @C’l is a
direct sum of § non-zero subgroups.
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