RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

JOHN D. O'NEILL

Measurable products of modules

Rendiconti del Seminario Matematico della Università di Padova, tome 73 (1985), p. 261-269

http://www.numdam.org/item?id=RSMUP_1985__73__261_0

© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Measurable Products of Modules.

JOHN D. O'NEILL

Summary - In this paper all groups are abelian, rings are associative with identity, and modules are left unitary. We are interested in modules of the form $\prod G_i$, a direct product of submodules G_i over an index set I.

Many theorems about such modules require that |I| be non-measurable. Here we let I be arbitrary, put mild restrictions on the G_i 's, and obtain new results. In Section I we eqtablish some decomposition theorems. We then apply them to homomorphisms of the form $f\colon \prod G_i\to A$ where: in Section 2 A is a slender module and in Section 3 A is an infinite direct sum of submodules.

0. Preliminaries.

Let I be a set and P(I) its power set. Here (as in [3]) |I| is measurable if there is a 0,1 countably additive function μ on P(I) such that $\mu(I)=1$ and $\mu(\{i\})=0$ for each $i\in I$. If no such function exists, |I| is non-measurable. If β is the least measurable cardinal, it is a regular limit cardinal such that $\alpha < \beta$ implies $2^{\alpha} < \beta$. If all sets are constructible (V=L), measurable cardinals do not exist. A good discussion of these matters may be found in [5].

If $(S, +, \cdot)$ is a Boolean ring, an ideal K is here called a γ -ideal if, whenever $\{s_1, s_2, ...\}$ is a countable set of orthogonal elements in $S, \sum_{n \geq k} s_n \in K$ for some k in N, the natural numbers,

Let R be a ring and A a R-module. A filter F is a set of principal

(*) Indirizzo dell'A.: University of Detroit, Detroit, Michigan 48221

right ideals in R such that, for each aR, bR in F, there is a cR in F contained in aR and bR. A is torsion-free if, for $r \in R$ and $x \in A$, rx = 0 implies r = 0 or x = 0. A is divisible if rA = A for all non-zero r in R. D(A) is the maximal divisible submodule of A and A is reduced if D(A) = 0.

In general our terminology agrees with that in Fuchs [3].

1. Decomposition theorems.

We begin with a set-theoretic lemma. We omit its proof since its statements are well-known or easily proved (e.g. see page 161 in II of [3] or pages 342-356 in [5]).

LEMMA 1.1. Let I be a set, S = P(I), and K a proper γ -ideal in the Boolean ring $(S, +, \cdot)$.

- (a) S/K is finite and there are orthogonal elements, say u_1 , ..., u_e , in S which map onto the atoms of S/K.
- (b) If $\{s_j\}$, $j \in J$, is a set of orthogonal elements in S, almost all s_j 's are in K. If |J| is non-measurable, then $\sum_{J'} s_j \in K$ for some cofinite subset J' of J.
- (c) If |I| is non-measurable, then K=P(I') for some cofinite subset I' of I.

REMARK. If K is an ideal of finite index in a complete Boolean ring, it need not be a γ -ideal (consider $S=2^N$ and let K be a maximal ideal containing $2^{(N)}$). However, if I is a set, then |I| is measurable if and only if S=P(I) has a proper γ -ideal K containing the atoms of S.

We now use Lemma 1.1 to obtain decompositions of specific modules. In the next two theorems the ring R is arbitrary.

THEOREM 1.2. Let $X=\prod_I G_i$ be a R-module where the G_i 's are pairwise isomorphic of non-measurable cardinality. If K is a proper γ -ideal in S=P(I) and $H=\langle \prod_s G_i \colon s\in K\rangle$, then $X=L\oplus H$ where $L\cong\bigoplus_E G_i$ for some finite subset E of I. If I is infinite, then $X\cong H$.

PROOF. Let $\pi_i: G_i \to G$ be an isomorphism for some group G and each i. Let u_1, \ldots, u_e be as in Lemma 1.1. For each u_n let $A_n =$

 $= \left\{ \sum_{u_n} \pi_i^{-1}(g) \colon g \in G \right\}. \quad \text{Clearly each } A_n \cong G \text{ and we set } L = \bigoplus_{i=1}^{e} A_n.$ We claim $X = L \oplus H$. Let $x = \sum_{i \in s} x_i$, $x_i \in G_i$, be an element in X. If $s \in S$, we define $x_s = \sum_{i \in s} x_i$. Hence $x = \sum_{G} x_{s_g}$ where $i \in s_g$ exactly if $\pi_i(x_i) = g \in G$. Since the s_g 's partition I and |G| is non-measurable, $\sum_{G'} s_g \in K$ for some cofinite subset G' of G by Lemma 1.1 and so $\sum_{G'} x_{s_g}$ is in H. Now x will be in L + H if we can show x_{s_g} is in it for any fixed g. But $s_g = \sum_{G} a_n u_n + v$ where each $a_n = 0$ or 1 and $v \in K$. So $x_{s_g} = \sum_{G} a_n x_{u_n} + x_v - 2\sum_{G} a_n x_{u_n v}$, which is in L + H ($u_n v$ is in K). Suppose now $y_1 + \ldots + y_e + z = 0$ with y_n in A_n and z in H. For any fixed n and some i in u_n the ith component of z is 0 since u_n is not in K. Hence the ith component of y_n is 0 and $y_n = 0$. Therefore z = 0 and $x = L \oplus H$, as desired. If z = 0 consists of one element from each z = 0 and z = 0. Since z = 0 and z = 0 is infinite.

THEOREM 1.3. Let $X=\prod_I G_i$ be a R-module where each G_i and the set of their isomorphism classes have non-measurable cardinality. If K is a γ -ideal in S=P(I) and $H=\langle \prod_s G_i \colon s\in K \rangle$, then $X=L\oplus H$ where, for some finite subset E, $L\cong\bigoplus_E G_i$ and $H\cong\prod_{I\subseteq E} G_i$.

PROOF. Write $I=\bigcup_{J}s_{j}$ where $i,\ i'$ are in the same s_{j} exactly if $G_{i}\cong G_{i'}$. Then $\{s_{j}\}$ partitions $I,\ |J|$ is non-measurable, and $\prod_{I}G_{i}=\prod_{J}G_{s_{j}}$ where $G_{s_{j}}=\prod_{i\in s_{j}}G_{i}$. By Lemma 1.1 there is a J' cofinite in J such that $\sum_{J}s_{j}\in K$ and $\prod_{J'}G_{s_{j}}\in H$. For fixed j $G_{s_{j}}$ is a product of isomorphic groups and, if $S_{j}=P(s_{j})$, then $K_{j}=S_{j}\cap K$ is a γ -ideal in S_{j} . By the last theorem $G_{s_{j}}=L_{j}\oplus H_{j}$ where $H_{j}=\langle\prod_{s}G_{i}\colon s\in K_{j}\rangle$ and, for a finite subset t_{j} of s_{j} , $L_{j}\cong\bigoplus_{t_{j}}G_{i}$ and $H_{j}\cong\prod_{s_{j}}G_{i}$. So $X=\bigoplus_{J\setminus J'}L_{j}\oplus\prod_{J}H_{j}\oplus\prod_{J'}G_{s_{j}}$ Let L be the left sum and let H' be the module in the bracket. If $E=\bigcup_{J\setminus J'}t_{j}$, we have $L\cong\bigoplus_{E}G_{i}$ and $H'\cong\prod_{I\setminus E}G_{i}$. Since $H'\subseteq H$ and $H\cap L=0$, H=H' and the proof is complete.

Our next proposition will prove useful later.

PROPOSITION 1.4. Let $\{G_i\}$, $i \in I$, be a set of *R*-modules and let *V* be the set of their isomorphism classes.

- (a) If |R| and each $|G_i|$ is $\leq \alpha$, a fixed non-measurable cardinal, then |V| is non-measurable.
- (b) If each $|G_i|$ and |V| are non-measurable, then $|G_i| \leq \alpha$ for some non-measurable α and all i.

Proof. (a) Let Y be a free R-module of rank α . Then $G_i \cong Y/H_i$ for some H_i and each i. The number of distinct submodules of Y is $\leqslant 2^{|Y|} \leqslant 2^{\alpha}$ which is non-measurable since α is. So |V| is non-measurable since α is. So |V| is non-measurable cardinal (it's an ordinal). Let J be a subset of I such that the ordinals $|G_i|$, $j \in J$, are distinct with least upper bound $\alpha \leqslant \beta$. Since β is a regular cardinal if $\alpha = \beta$, we have $\beta = |J| \leqslant |V| < \beta$, a contradiction. So $\alpha < \beta$.

2. Slender modules.

In this section we apply the theorems of the last section to mappings of the form $f: \prod_I G_i \to A$ where A is a slender R-module. In the literature there appear various definitions of a «slender» module (or group). Actually these definitions are essentially the same as we shall show. Therefore, we define: a R-module A is slender if it satisfies any (hence all) of the four conditions of Proposition 2.1.

Proposition 2.1. Let A be a R-module. The following are equivalent.

- (1) If $f: \mathbb{R}^N \to A$ is a homomorphism, almost all components in \mathbb{R}^N map to 0.
- (2) If $f: \mathbb{R}^N \to A$ is a homomorphism, there is a cofinite subset C in N such that $f(\mathbb{R}^c) = 0$.
- (3) If $\{G_n\}$, $n \in \mathbb{N}$, is a countable set of \mathbb{R} -modules and $f: \prod_{n \to A} G_n \to A$ is a homomorphism, then $f(\prod_{n \ge k} G_n) = 0$ for some k in \mathbb{N} .
- (4) If $\{G_n\}$, $n \in \mathbb{N}$, is a countable set of \mathbb{R} -modules and $f: \prod_{N} G_n \to A$ is a homomorphism, then $f(G_n) = 0$ for almost all n in \mathbb{N} .

PROOF. (1) \Rightarrow (2). We write $R^N = \prod_N Re_n$ where e_n is a N-tuple with 1 in the nth position and 0 elsewhere. It suffices to assume $f(e_n) = 0$ for all n but $f(x) \neq 0$ for some $x \in R^N$ and to derive a contradiction. Write $x = \sum r_n e_n$, $r_n \in R$, and, for each n in N, set $a_n = x - (r_1 e_1 + \ldots + r_n e_n)$. For each k the kth component in R^N of a_n is 0 for almost all n. Hence, if $B = \prod_i Ra_n$, there is a natural imbedding $\varphi \colon B \to R^N$ with $\varphi(a_n) = a_n$ for each n. Consider the map $f \colon B \to A$. Since $f\varphi(a_n) = f(x) \neq 0$ for each n, we have a contradiction of (1) with respect to $f\varphi$. Therefore (1) \Rightarrow (2).

 $(2)\Rightarrow (3).$ Suppose (3) is false. For each k in N choose $x_k\in\prod_{n\geqslant k}G_n$ so that $f(x_k)\neq 0$. There is a natural map $\varphi\colon R^N\to\prod G_n$ carrying e_n to x_n . Then $f\varphi\colon R^N\to A$ is a homomorphism and by (2) $f\varphi\Bigl(\prod_{k\geqslant m}Rx_k\Bigr)=0$ for some m. So $0=f\varphi(x_k)=f(x_k)$ for $k\geqslant m$, a contradiction. Thus $(2)\Rightarrow (3).$ Clearly $(3)\Rightarrow (4)\Rightarrow (1)$ and the proposition is true.

REMARK. (1) is the definition of slender used by Fuchs [3, vol. II, pg. 159] in the case R = Z and A is torsion-free (a slender R-module is torsion-free if R = Z but not in general. See Example 3 on p. 399 of [4]). (2) and (3) are the definitions of slender used in [2] and [4].

We now apply Theorem 1.3 to a map from a direct product of modules to a slender module.

THEOREM 2.2. Let $X=\prod_I G_i$ be a module where each $|G_i|$ and the set of their isomorphism classes are non-measurable. If $f\colon X\to A$ is a homomorphism and A is slender, then $X=L\oplus H$ where f(H)=0 and, for some finite subset $E,\ L\cong\bigoplus_E G_i$ and $H\cong\prod_{I\searrow E} G_i$.

PROOF. For S = P(I) let $K = \{s \in S : f(\prod_s G_i) = 0\}$. Clearly K is an ideal and it is a γ -ideal by (3) of Proposition 2.1. Theorem 1.3 completes the proof.

COROLLARY 2.3. Let R be a commutative integral domain not a field and let A be a countable torsion-free reduced R-module. If R-module X equals $\prod_I G_i$ where $|G_i| \leqslant \alpha$ for some non-measurable α and all i and if $f \colon X \to A$ is a homomorphism, then $X = L \oplus H$ where f(H) = 0 and, for some finite subset E, $L \cong \bigoplus_E G_i$ and $H \cong \prod_{I \subseteq E} G_i$.

Proof. We assume A is non-zero and hence |R| is countable. Thus the set of isomorphism classes of the G_i 's is non-measurable by Proposition 1.4. The result now follows from Theorem 2.2.

Corollary 2.4. Let A be a torsion-free abelian group which does not contain a copy of Q, Z^N , or the p-adic integers for a prime p. Let $X = \prod_I G_i$ be an abelian group where $|G_i| \leqslant \alpha$ for some non-measurable α abd all i. If $f: X \to A$ is a homomorphism, then $X = L \oplus H$ where f(H) = 0 and, for some finite E, $L \cong \bigoplus_E G_i$ and $H \cong \prod_{I \in E} G_i$.

PROOF. A is a slender Z-module by Theorem 95.3 in [3]. Proposition 1.4 and Theorem 2.2 complete the proof.

NOTE. If $\{G_i\}$ is a set of indecomposable groups of non-measurable cardinality, the least upper bound of $|G_i|$ may not be non-measurable. There exists arbitrarily large indecomposable groups (Theorem 2.1 in [7]),

3. Direct products and sums.

Suppose $X=\prod_I G_i$, $A=\bigoplus_J A_j$ are modules and $f\colon X\to A$ is a homomorphism. Most known theorems dealing with this situation require that |I| be non-measurable (see [6] for references). In this section we let I be arbitrary, put some restrictions on the G_i 's and obtain new results. Other results with I arbitrary may be found in part 2 of [6]. By f_j we will mean the map f followed by the projection to A_j .

THEOREM 3.1. Let $X = \prod_I G_i$, $A = \bigoplus_J A_j$ be two R-modules and let $f\colon X \to A$ be a homomorphism. Suppose each G_i and the set of their isomorphism classes have non-measurable cardinality. If (a) F is a filter of non-zero principal right ideals in R or (b) R is a commutative integral domain, then $X = L \oplus H$ where $L \cong \bigoplus_E G_i$ and $H \cong \prod_{I \subseteq E} G_i$ for some finite E such that, for some non-zero b in R, $bf_i(H)$ is contained in $(a) \cap rA$ or (b) D(A) for almost all j in J.

PROOF. Let S = P(I). (a) Let $K = \{s \in S : \text{for some } r_s R \text{ in } F \text{ we have } r_s f_j \Big(\prod_s G_i\Big) \subseteq \bigcap_{rR \in F} rA \text{ for almost all } j \text{ in } J \}$.

It is easy to see that K is an ideal in S and it is a γ -ideal by Chase's Theorem (Theorem 2.1 in [1] or Theorem 1.1 in [6]). Conclusion (a) follows immediately from Theorem 1.3 above and from Theorem 1.3 in [6]. (b) Let $K = \{s \in S: \text{ for some } r_s \neq 0 \text{ in } R \text{ we have } r_s f_j (\prod_s G_i) \subseteq D(A) \text{ for almost all } j\}$. Then K is a γ -ideal in S by Theorem 1.5 in [6] and, from that theorem and Theorem 1.3 above, we have conclusion (b).

We next apply Theorem 3.1 to the case where f is the identity map. For best results we let A be torsion free.

THEOREM 3.2. Let A be a torsion-free R-module with decompositions $A = \prod_I G_i = \bigoplus_J A_j$ where $|G_i| \leqslant \alpha$ for some non-measurable α and all i. If F is a filter of non-zero principal right ideals in R such that $\bigcap_{rR \in F} rA = 0$ or if R is a commutative integral domain and D(A) = 0, then there are finite subsets I_1 in I and I_2 in such that $\bigoplus_{I_1} G_i \cong B \oplus \bigoplus_{I_2} A_j$ with $B \subseteq \bigoplus_{I_2} A_j$.

PROOF. Since A is torsion-free, we may assume $|R| \leqslant \alpha$. By Proposition 1.4 the set of isomorphism classes of the G_i 's has non-measurable cardinality. Let f be the identity map in Theorem 3.1. By that theorem and the fact that A is torsion-free we have, for some finite subsets I_1 in I and I_2 in I, I in I with I in I and I in I

If R = Z and A in the last theorem is just an abelian group, torsion-freeness is not required to obtain a meaningful decomposition theorem.

THEOREM 3.3. Let $A=\prod_I G_i=\bigoplus_J A_j$ be a reduced abelian group where $|G_i| \leqslant \alpha$ for some non-measurable α and all i. There are decompositions $G_i=B_i \oplus C_i, \ A_j=T_j \oplus U_j$ and finite subsets I_1 in I, J_1 in J such that

(a)
$$\prod_I B_i \cong \bigoplus_I T_i$$
 and is bounded

(b)
$$\prod_I C_i \cong \bigoplus_J U_j$$

(c)
$$\bigoplus_{I_i} U_i = P \oplus Q$$
 such that

(i)
$$\bigoplus_{I_1} C_i \cong Q \oplus \left(\bigoplus_{J \setminus J_1} U_j \right)$$

(ii)
$$\prod_{I \searrow I_1} C_i \cong P$$
 .

PROOF. By Proposition 1.4 the set of isomorphism classes to which the G_i 's belong has non-measurable cardinality. By Theorem 3.1 (with f the identity map and D(A) = 0) there is a decomposition $A = L \oplus H$ and finite subsets I_1 and I_2 such that $I_2 \oplus \bigoplus_{I_1} G_i$, $I_2 \oplus \bigoplus_{I_2} G_i$, and $I_3 \oplus \bigoplus_{I_2} G_i$ for some $I_3 \oplus I_4$ for some $I_4 \oplus I_4$ for $I_4 \oplus I_4$ for $I_5 \oplus I_4$ for $I_6 \oplus I_4$

COROLLARY 3.4. Suppose $A = \prod_{I} G_i$ is a reduced abelian group, $|G_i| \leqslant \alpha$ for some non-measurable α and all i, and let β be an infinite cardinal. Then A is a direct sum of β non-zero subgroups if and only if (a) some finite sum of G_i 's is or (b), for some n in N, each G_i has a n-bounded direct summand B_i such that $|\prod_{I} B_i| \geqslant \beta$.

PROOF. Sufficiency is clear. To show necessity set $A = \bigoplus_{J} A_J$, $A_J \neq 0$ and $|J| = \beta$, and apply Theorem 3.3. Assume the decompositions there have been made and $\left|\prod_{I} B_i\right| < \beta$. By (c) then $\bigoplus_{I_1} C_1$ is a direct sum of β non-zero subgroups.

REFERENCES

- [1] S. U. Chase, On direct sums and products of modules, Pacific Journal of Mathematics, 12 (1962), pp. 847-854.
- [2] M. Dugas R. Gobel, Quotients of reflexive modules, Fundamenta Mathematicae, 114 (1981), pp. 17-28.
- [3] L. Fuchs, Infinite Abelian Groups, Academic Press, Vol. I (1970), Vol. II (1973).
- [4] E. L. LADY, Stender rings and modules, Pacific Journal of Mathematics, 49 (1973), pp. 397-406.

- [5] A. Levy, Basic Set Theory, Springer-Verlag, 1979.
- [6] J. D. O'NEILL, On direct products of modules, Comm. in Alg., to appear.
- [7] S. Shelah, Infinite abelian groups, Whitehead Problem and some constructions, Israel Journal of Mathematics, 21 (1975), pp. 243-256.

Manoscritto pervenuto in redazione il 11 maggio 1984