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Measurable Products of Modules.

JOHN D. O’NEILL

SUMMARY - In this paper all groups are abelian, rings are associative with
identity, and modules are left unitary. We are interested in modules
of the form a direct product of submodules Gi over an index set I.

1

Many theorems about such modules require that III be non-measurable.
Here we let 1 be arbitrary, put mild restrictions on the Gi’s, and obtain
new results. In Section I we eqtablish some decomposition theorems.
We then apply them to homomorphisms of the form f : n Gi 2013~ A where :
in Section 2 .d is a slender module and in Section 3 A is an infinite direct
sum of submodules.

0. Prellminaries.

Let I be a set and P(I) its power set. Here (as in [3]) III is measurable
if there is a 0,1 countably additive function 03BC on P(I) such that = 1

and = 0 for each If no such function exists, ~I~ is non-
measurable. If f3 is the least measurable cardinal, it is a regular limit
cardinal such that a  f3 implies 2e  ~8. If all sets are constructible

( Tr = Z), measurable cardinals do not exist. A good discussion of
these matters may be found in [5].

If (~ +, .) is a Boolean ring, an ideal .~ is here called a y-ideal
if, whenever s2 , ...} is a countable set of orthogonal elements in
S, 1 sn E .K for some k in N, the natural numbers,

n&#x3E;k

Let .Z~ be a ring and A a R-module. A filter F is a set of principal

(*) Indirizzo dell’A.: University of Detroit, Detroit, Michigan 48221
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right ideals in .R such that, for each a.R, bR in F, there is a cR in F
contained in aR and is torsion-free if, for r E .R and x E .A, rx = 0
implies r = 0 or x = 0. A is divisible if rA = A for all non-zero r
in .R. D(A) is the maximal divisible submodule of A and A is reduced
if D(A) = 0.

In general our terminology agrees with that in Fuchs [3].

1. Decomposition theorems.

We begin with a set-theoretic lemma. We omit its proof since
its statements are well-known or easily proved (e.g. see page 161 in
II of [3] or pages 342-356 in [5]).

LEMMA 1.1. Let I be a set, S = P(I ), and g a proper y-ideal
in the Boolean ring (S, +, .).

(a) S¡K is finite and there are orthogonal elements, say ul,
... , Ue, in S which map onto the atoms of SIK.

(b) If J, is a set of orthogonal elements in S, almost
all s~’s are in .g. If JJI is non-measurable, then sj E K for some
cofinite subset J’ of J. ~

(c) If III is non-measurable, then K = P(I’) for some cofinite
subset I’ of I.

REMARK. If g is an ideal of finite index in a complete Boolean
ring, it need not be a y-ideal (consider S = 2N and let K be a maximal
ideal containing 2(N». However, if I is a set, then |I| is measurable
if and only if S = P(I) has a proper y-ideal K containing the atoms
of S.
We now use Lemma 1.1 to obtain decompositions of specific

modules. In the next two theorems the ring .Z~ is arbitrary.

THEOREM 1.2. Let X be a R-module where the G,ls are
1

pairwise isomorphic of non-measurable cardinality. If .g is a proper

y-ideal in S = P(I ) and H = IIGi:s e K), then X = H where
s

0 Gi for some finite subset E of I. If I is infinite, H.
E

P;&#x26;OOF. Let Gi - G be an isomorphism for some group G and
each i. Let Ut, u, be as in Lemma 1.1. For each un let An =
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e

== ~~ ~i ~(g) : g E G). Clearly each An ~ G and we set L = 0 An.
un 1

We claim X = Let x = ~ xi , xi E Gi , be an element in X .
1

If s E S, we define xs == .2 Xi. Hence x == .2 XSg where i E sg exactly
iEs G 

if ni(xi) = g E G. Since the sg’s partition land IGI is non-measurable,
~ Sg E K for some cofinite subset G’ of G by Lemma 1.1 and 
G’ G’ 

"

is in .H. Now X will be in .L + H if we can show xsg is in it for any
fixed g. But sg == ~ -+- v where each an = 0 or 1 and v E K.

SO xsg === .2 anxun + xv- 2~ which is in .L + H (unv is in K).
Suppose now 2/1 + ... + ye + z = 0 with yn in An and z in ~H. For

any fixed n and some i in un the ith component of z is 0 since un is not
in K. Hence the ith component of yn is 0 and yn = 0. Therefore
z = 0 and X = H, as desired. If E consists of one element

from each un, then Since X = Gi, we 
E i%E

0:!. 0 infinite.
IBE

THEOREM 1.3. Let X == 0 Gi be a .R-module where each Gi and
i

the set of their isomorphism classes have non-measurable cardinality.
If K is a y-ideal in S = P(I ) and then X =

s

== where, for some finite subset .E, Gi and Gi .
E 

PROOF. Write I = U S; where i, i’ are in the same s; exactly if
J

Then partitions I, IJI is non-measurable, and 0 Gi =
i

- ~ G8~ where GS~ _ ~ Gi . By Lemma 1.1 there is a J’ cofinite
J 

in J such that E sj E K and 0 For fixed j Gs is a product
J’ J’

of isomorphic groups and, if S; = P(s;), then K; _ 8; r1 .K is a y-ideal
in By the last theorem 6~ = where Hj == 0 E K;)

s

and, for a finite subset t; of S;, Gi and Gi. So
t..f 1,

Let Z be the left sum and let H’ be

the module in the bracket. If E = we have and
E

Gi . Since Hf ç H and H r1 L = 0, H = H’ and the proof
IBE

is complete.
Our next proposition will prove useful later.
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PROPOSITION 1.4. Let E I, be a set of R-modules and let V
be the set of their isomorphism classes.

(c~) If and each is c «, a fixed non-measurable cardinal,
then 1 VI is non-measurable.

(b) If each and IVI are non-measurable, then for
some non-measurable x and all i.

PROOF. (a) Let Y be a free R-module of rank a. Then Y/.Hi
for some .H~i and each i. The number of distinct submodules of Y

is  2~~ 2~ which is non-measurable since a is. So 1 VI is non-measur-
able sincex is. So is non-mesaurable. (b) Let P be the least non-
measurable cardinal (it’s an ordinal). Let J be a subset of I such that
the ordinals are distinct with least upper bound 

Since B is a regular cardinal if a = B, we have B =  fl, a
contradiction. So « C fl.

2. Slender modules.

In this section we apply the theorems of the last section to map-
pings of the form f : - A where .A. is a slender R-module. In

i

the literature there appear various definitions of a « slender » module

(or group). Actually these definitions are essentially the same as
we shall show. Therefore, we define : a R-module A is slender if it
satisfies any (hence all) of the four conditions of Proposition 2.1.

PROPOSITION 2.1. Let A be a R-module. The following are equi-
valent.

(1) If is a homomorphism, almost all components
in map to 0.

(2) If f: RN - A is a homomorphism, there is a cofinite sub-
set C in N such that = 0. 

,

(3) If ~Gn~, nEN, is a countable set of R-modnles and f : A
is a homomorphism, then Gnj = 0 for some k in N. N

n&#x3E;k

(4) If {Gn}, nEN, is a countable set of R-modnles and f : fI Gn-A
is a homomorphism, then f(G,) = 0 for almost all n in N.
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PROOF. (1) =&#x3E;(2). We write where en is a N-tuple
N

with 1 in the nth position and 0 elsewhere. It suffices to assume
= 0 for all n but f (x) ~ 0 for some x e RN and to derive a con-

tradiction. Write, x and, for each n in N, set an =
== ... + rien). For each k the kth component in RN of
an is 0 for almost all n. Hence, if B = Il Ra,,,, there is a natural

imbedding with g(an) == an for each n. Consider the map

f : B - A. Since = f (x) ~ 0 for each n, we have a contradic-
tion of (1) with respect to fg. Therefore (1) =&#x3E;(2).

(2) ~ (3). Suppose (3) is false. For each k in N choose xk E FI Gn
n&#x3E;k

so that ~ 0. There is a natural map g: RN - FI Gn carrying en
to xn . RN - A is a homomorphism and by (2) = 0

k&#x3E;m

for some m. So 0 = for a contradiction. Thus

(2) ~ (3). Clearly (3) ~ (4) ~ (1) and the proposition is true.

REMARK. (1) is the definition of slender used by Fuchs [3, vol. 11,
pg. 159] in the case .1~ = Z and A is torsion-free (a slender R-module
is torsion-free if .I~ = Z but not in general. See Example 3 on p. 399
of [4]). (2) and (3) are the definitions of slender used in [2] and [4].

We now apply Theorem 1.3 to a map from a direct product of
modules to a slender module.

THEOREM 2.2. Let X be a module where each and
i

the set of their isomorphism classes are non-measurable. If f: X -~ A
is a homomorphism and A is slender, then .X = L (f) H where = 0

and, for some finite subset E, .L ~ ~ 6~ and H FI Gi .
E IBE

PROOF. For S = P(I ) let .K is E S : f(fl Gi) = 01. Clearly K
8

is an ideal and it is a y-ideal by (3) of Proposition 2.1. Theorem 1.3
completes the proof.

COROLLARY 2.3. Let .R be a commutative integral domain not
a field and let A be a countable torsion-free reduced R-module. If

R-module X equals II Gi where for some non-measurable a
1

and all i and if f : X - A is a homomorphism, then X = where
= 0 and, for some finite subset E, L = + Gi and Gi .

E 
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PROOF. We assume A is non-zero and hence is countable.
Thus the set of isomorphism classes of the Gi’s is non-measurable

by Proposition 1.4. The result now follows from Theorem 2.2.

COROLLARY 2.4. Let A be a torsion-free abelian group which
does not contain a copy of Q, ZN, or the p-adic integers for a prime p.
Let X be an abelian group where  a for some non-measur-

1

able oc abd all i. If f : X - A is a homomorphism, then X L (B H
where f (.H~) = 0 and, for some finite E, L  i and H Il Gà .

E IBE

PROOF. A is a slender Z-module by Theorem 95.3 in [3]. Proposi-
tion 1.4 and Theorem 2.2 complete the proof.

NOTE. If is a set of indecomposable groups of non-measurable
cardinality, the least upper bound of may not be non-measurable.
There exists arbitrarily large indecomposable groups (Theorem 2.1
in [7]),

3. Direct products and sums.

Suppose are modules and f : X -~ .A is a
i J

homomorphism. Most known theorems dealing with this situation
require that |I| be non-measurable (see [6] for references). In this
section we let I be arbitrary, put some restrictions on the Gi’s and
obtain new results. Other results with I arbitrary may be found
in part 2 of [6]. By fi we will mean the map f followed by the projec-
tion to A~ .

THEOBEM 3.1. Let be two R-modules
i J

and let f : X - A be a homomorphism. Suppose each Gi and the set
of their isomorphism classes have non-measurable cardinality. If (a)
.F’ is a filter of non-zero principal right ideals in .R or (b) R is a commuta-
tive integral domain, then ~’ _ where L "’-.1 E8 Gi 

E

for some finite E such that, for some non-zero b in =R, is
IBE
contained in (a) n rA or (b) D(A) for almost all j in J.
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PROOF. Let 8 = P(I). (a) Let K = is E S: for some rsR in F
we have Gi) z for almost all j in JI.s rReF

It is easy to see that K is an ideal in ~S and it is a y-ideal by Chase’s
Theorem (Theorem 2.1 in [1] or Theorem 1.1 in [6]). Conclusion (a)
follows immediately from Theorem 1.3 above and from Theorem 1.3
in [6]. (b) Let .g = is E S: for some rs # 0 we have Gi) ç

8

c D(A) for almost all ji. Then K is a y-ideal in S by Theorem 1.5 in
[6] and, from that theorem and Theorem 1.3 above, we have conclu-
sion (b).

We next apply Theorem 3.1 to the case where f is the identity
map. For best results we let A be torsion free.

THEOREM 3.2. Let A be a torsion-free .R-module with decomposi-
tions A where c a for some non-measurable a

i J

and all i. If .h is a filter of non-zero principal right ideals in R such
that n rA = 0 or if .R is a commutative integral domain and D(A) = 0,

rREF

then there are finite subsets h in I and J1 in such that B 0153

PROOF. Since .A is torsion-free, we may assume c a. By Proposi-
tion 1.4 the set of isomorphism classes of the Gi’s has non-measurable
cardinality. Let f be the identity map in Theorem 3.1. By that theorem
and the fact that A is torsion-free we have, for some finite subsets
Il in I and Jl in J, A = Z 0 .H with and H C The

conclusion of the theorem now follows. Il Jl

If R = Z and A in the last theorem is just an abelian group, tor-
sion-freeness is not required to obtain a meaningful decomposition
theorem.

THEOREM 3.3. Let A be a reduced abelian group
i J

where for some non-measurable oc and all i. There are decom-

positions Gi = Bi(f) Ci, A~ and finite subsets Il in I, Ji
in J such that

and is bounded
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PROOF. By Proposition 1.4 the set of isomorphism classes to which
the Gils belong has non-measurable cardinality. By Theorem 3.1
(with f the identity map and D(A) = 0) there is a decomposition
A = L + H and finite subsets h and Ji such that L Gi, H gz

Il

= II Gi, and %H C + Aj for some n in N. Since our goals are iso-
il .

morphisms not identities, we may assume n( n for n in N.
J,

The rest of the proof is exactly like that of Corollary 1.9 in [6].

COROLLARY 3.4. Suppose A is a reduced abelian group,
1

IGil  ce for some non-measurable a and all i, and let fi be an infinite
cardinal. Then A is a direct sum of P non-zero subgroups if and only
if some finite sum of Gi’s is or (b), for some n in N, each G~ has
a n-bounded direct summand Bi such that 

1

PROOF. Sufhciency is clear. To show necessity set A
J

A~ ~ 0 and JJI = ~8, and apply Theorem 3.3. Assume the decomposi-
tions there have been made and ln Bij  ~8. By (c) then Ci is a
direct sum of P non-zero subgroups. ~’
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