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Finite Groups with a Standard-Component
of Type L,4), 1L

CHENG KAI-NAH - DIETER HELD (%)

0. Introduction.

In this paper we finish the investigation of the L,(4)-type standard-
subgroup problem. Because of the result of [3] we have to treat here
only the case in which the 2-rank of the center of the standard-sub-
group is equal to 1, that is, we assume in what follows that the 2-part
of the center is cyclic and different from <{1).

The results obtained in [5] will be assumed; we shall retain the
notations introduced there. As in [5], we consider a fixed standard-
subgroup A of our group G with A/Z(A4) ~ L,(4) and put K = CG(4).
By X we denote a fixed S,-subgroup of N(4) and put XN 4 = §,
XN K =¢@. Thus, X is «contained » in {Q8, QS{p>, @8{x>, QSpx),
Q8{p, %>}; here 8§ =<Q N A, =n, v, pu, 4, , £, where the relations be-
tween the generators are those valid in P € Syl,(L;(4)) but modulo
QN A; of course P~8/Q N A.

The Schur-multiplier of IL,;(4) is isomorphic to Z,XZ,X Z,. Thus,
we have to handle the cases QNS ~Z, and QNS =~ Z,. The case
@ N S =<1> has been treated in [3], and there it is proved that
then G is isomorphic to the sporadic simple group of Suzuki. Thus,
making use of all earlier results we shall have proved the following
theorem:

(*) Indirizzo degli AA.: CHENG Ka1-NaHu: Dept. of Mathematics, National
University of Singapore, Kent Ridge, Singapore; D. HELD: Math. Institut,
Universitdt Mainz, Mainz, Rep. Fed. Tedesca.



148 Cheng Kai-Nah - Dieter Held

THEOREM. Let G be a finite, nonabelian simple group which pos-
sesses a standard-subgroup A such that A/Z(A) is isomorphic to L,(4).
Then, G is isomorphic to Sz, He, or O’N.

Here, Sz, He, and O’N denote the sporadic simple groups discov-
ered by Suzuki, Held, and O’Nan, respectively. We remark that by
a result of Aschbacher, @ is elementary abelian if the 2-rank of K is
greater than 1. In that case we put Q= F,..

1. The case QNS =~1Z,.

(1.1) Some properties of subgroups of N(A).

We have Q N A =~ Z,; clearly |O4(4)| € {1,3}. Now, A is quasi-
simple, and 8o, A is an epimorphic image of the full covering group
of I,(4). Thus, 4 is an epimorphic image of the perfect central ex-
tension of Z,XZ,XZ; by Ls(4).

Since such an extension possesses an automorphism of order 3
acting fixed—point—free on the 2-part of its center, we see that
A[O,(A) is uniquely determined up to isomorphism. Using the results
of [b] we get the following relations:

[,uy‘f]::nry [Z,E]ZT, [/L,C]qut, [}'7C]:an7
-R1:<Q77t’77.u7}*>%R2:<q,”77,57§>%E2‘y Hp=QN8.
From the results of [5], we get that A possesses the «field »-auto-

morphism ¢ and the «transpose-inverse »-automorphism »x. Thus,
aut(A4)/A is a four-group. As in [5], we get

p: ¢—~¢q, @W—>m, T->AT;
% q¢—>¢q, @®T—>T, T—>T;
pn: q—~q, @®—>mW, T—>AT.

Every involution of § lies in R, or R,. Set S;= ,(QR;) = ,(Q)R;.
Then, S;= R; if m(Q) = 1; and 8;= QR;=~ E,n if m(Q) >1. As q
has no roots in S—see (1.3)—we get that £,(@S) = 8,8, with

(RI(QS))’Z gy 7,y T> .
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It is clear that S/<{g) is isomorphic to a S,-subgroup of IL,(4) and that
N.(8)/Z(A) is isomorphic to a S,-normalizer of I,(4). There is an
element g € N (S)\Z(A)S—defined as in [5]—such that g operates on
S mod <{g) in the following way.

g:w—>ar >v, pw—pri—>i, C—>C(&E—>E.
Further, acting with g on suitable commutators, one obtains
g: w—>qur —>qT .

In particular, Z(S)*= (¢, ®, v)* splits into three conjugate classes
under IN,(S) with representatives ¢, w, and qrx.

Obviously, 3 does not divide the order of N(4)/AK, since an
automorphism of order 3 of the full cover of L,(4) which is not inner
acts fixed-point-free on the 2-part of the Schur-multiplier. Thus,
N(A) = AKX and {g) = Z(A),.

(1.2) LEMMA. The subgroups S, and S, are the only elementary
abelian subgroups of X of their orders.

Proor. This is a direct consequence of the structures of S, @,
and SQ.

(1.3) LEMMA. The involution ¢ has no root in 8 and X e Syl,(@).
If 4 is an involution in @8, then ¢ is contained in 8, or 8,. Further,
4 is conjugate to an involution in ,(Q)<{x) under A.

PRrROOF. Let x be a root of q in §; set
z =L, Rf = Ri/<Q> ’

j=1 and 2, and 8§ = §8/{¢>. Then, % is an involution of S. The
structure of S gives Ze R, U R,. Hence, € R, or e R,. Since R,
is elementary abelian for je {1,2}, we get #2=1. Thus, ¢ has no
root in S. In particular, ¢ has no root in ,(@S) = 8,8,.

Let X; be a subgroup of @ which contains X as a subgroup of
index 2. Then, X, normalizes (¢, 7, 7> = 8'= (,(@)S)’. Under the
action of N,(8) the set <{gq, m, vDf splits into three classes with repre-
sentatives ¢, @, gn. Clearly, X, cannot centralize ¢, and X, normalizes
Q,(Q)8. Now, = has the root uAé and gz has the root ul, and both
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uAé and p¢ lie in 8 C L,(Q)8. But g has no root in 8§, and so, ¢ has
no root in £,(Q)S. It follows X € Syl, (G).

An involution ¢ of @S has the form ¢ = us, ue@ and s€ 8. There-
fore, 1 = i*= u?s?, so that u2= s2€ Q N § = {¢>. Since ¢ has no root
in 8, we get u?= s2=1. Thus, v € R,(Q) and se R, U R,. Thus, ¢
lies in 8, or 8,, where 8;= ,(Q)R; for je {1,2}. As A/Z(A) pos-
sesses exactly one class of involutions and [@Q, A] = (1), one gets
that ¢ is conjugate to an element of €,(Q)<{x)>.

(1.4) LEmMA. Depending on X, one has:

Cs(p) =<g 7 pd Ey=2Z, XDy and GYCs(p)) = {(n);
CS(”) =<q m, 1) = Fys;
Cs(or) = {q, pAétry =~Z,XZ, and TYCs(px) = (7).

Proor. The first two assertions follow immediately from the
structure of the automorphism group of L,;(4). Now, Cs(px) C {q, =,
urkt, ultd.

We compute uiér = puréntr = Euint = prélE, uMlar = urér, and
ulr B Lumt = plll, plat = plonar = plrq.

Note that (uAét)?= mn. The lemma is proved.

(1.5) LEMMA. Let ye X\Q8 with ye{p, %, px}. Let z be an
involution from @Sy. Then, Sz contains at most two classes of involu-
tions under G with representatives z and gz. If y = ¢, then & (Cs(2)) =
= (@) and z 3" nz. If y = @, then Q!(Cs(2)) = <(x) and z~mz. If
y = x, then Cy(z) = {q,n, ) and 2 ~naz 3 Q72 ~ gqnrz under 8§.

PROOF. As in [5], one shows that Cs(2) 37 Cs(y). Let y € {p, px}.
Then, we have G*(Cs(y)) = <{z). Since z € Z(8), it follows B(Cs(2)) =
= {m)y. We have t¥= mrr. Because of v € Z(S), we get 7*= mwr. Thus,
2*=mz and 2~ nz in 8.

Let y=x. We know that Cg(x) = {q,w, > = Z(S). Hence,
Cs(z) = {¢, m, ). Put 2 = usx, where w € Q and s€ 8. As in [5], one
shows that ss*eQ N S; it follows s—2sx~1sx = [s,x] € (@ N S)(s?> C 8" =
= {q, =, v). Hence, s € Cs(» mod 8') = {q, =, 7, pAé, ;). Denote the
latter group by E. We have E'= {1). Compute: [», A{] = »x"1{Axi{ =
WAL = qar, [%, paE) = m, and [x, ul€] = gv.

It follows that

K~ TR~ TR~ TTH
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holds under E. Since E'= (1> and [u, E] = {1>, we get
B~ TR~ (T2 ~ qRTZ

under E. The Lemma is proved.

(1.6) LEMMA. Two involutions of Z(£,(Q)8) are conjugate in @
if, and only if, they are conjugate in IN(£,(Q)8) C N(A).

ProoF. Note that £,(QS) = 2,(Q)S is the subgroup of X which
is generated by all subgroups of X which are isomorphic to S;. Let x
and y be two involutions of Z(2,(Q8)). Then, £,(Q8) lies in C(x) N
N C(y). Assume that there is g € G such that 2= y. Denote by X,
a S,-subgroup of C(x) containing €,(@8) and by X, a S,-subgroup
of C(y) containing ,(QS). Then, X**= X, for some he C(y). Clearly,
gh € N(2,(Q8)) and 2™ = y* = y. Since (2,(98))'= §8'= (g, =, 7, and
since ¢q is the only element of S’ which has no root in €,(Q8), the
assertion follows.

(1.7) LEMMA. (i) Let m(Q) = 1, and let {q,s> be a four-group
contained in @S. Then, q ~ gs ~ s ~ ¢ in G. (ii) Let m(Q) > 1. Then,
{g)> is strongly closed in @8 with respect to &. If 4 is an involution
of § and @8 for some ge (@, then °eS. Further, m ~ gn. In
particular, @S c X.

Proor. Assume first that m(Q) = 1. Then <{q, s) and (g, n) are
conjugate via an element of A. We have {q, @) C Z(R,(Q)8), and by
assumption £2,(Q)S = S. Application of (1.6) gives that G-conjugates
in (g, @) are conjugate under the action of N(S) which lies in N(4) =
= AKX. Clearly, KX C N(8) and [{g, ®), KX] = {1). So, a conjuga-
tion of two elements should be performed by an element of A N IN(S).
But ¢, 7, and ¢gm are representatives of IN,(S)-classes. Assume now
that m(Q) > 1. If q is conjugate to an element ¢’ of @8, then—by
the structure of A—we may assume that ¢’ lies in @<{(x>. We have
Q{my C Z(Q8); note that 2,(Q)S = @S. Application of (1.6) yields that
¢~ ¢ holds in N(4). But N(4) = AKX, and so, we must have
9=4q.

Let ¢ be an involution of S and let “€ Q8 for some ge G. We
may assume m(Q) > 1. There are elements a, b € A such that 4,
lie in Q{xn) C Z(QS). Application of (1.6) yields that i** and 4° are
conjugate in IN(A); let ¢ be the conjugating element of N(A4) with
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4 = 4%, QObviously, ¢*° lies in A4, and so, e A. It follows i’
eANQS=7.. Assume that #~gqn. By (1.6) this conjugation is
performed by an element of N(4). But N(4) = AKX, and so, the
conjugation w~ gz is done by an element of A. Since =z, g lie in
Z(8), the conjugation is done by an element of IN(S) N A. But this
is not the case. The element ¢ is not conjugate to any element dif-
ferent from ¢ in @S. Application of a well-known result of Glauber-
man Yyields @8 c X.

(1.8) LEMMA. Let ye X\QS with ye€ {p, p»}. Then, ¢ is not
conjugate to an element of QSy.

Proo¥. Assume that ¢~z for 2€QSy. Let y = ¢. From (1.5)
we get GY(Cs(2)) = (x> and z2~mz under S. Let X e Syl,(Cs(2))
with X 2 Cy(2). Let 4 be the unique standard-subgroup of C(z); note
that A~A4 in §. Set § = XN C(A) and § =X N A. Then, §~¢q,
S~8, and ) =@ N S. Further, T}(X/G]) = <1>. Since (n) =
= G1(Cs(?)), we get m€@S. Since z + nz and az e @S\ (D, we get a
contradiction to (1.7). In the case y = @x one arrives at a contradic-
tion in the same way. The lemma is proved.

(1.9) LemmA. The case X = QS{x) does not occur.

Proor. Assume by way of contradiction that X = @S8<{x)>. Since
X e8yl, (G), we get from (1.7) and a result of Glauberman that ¢ is
conjugate to an involution z of QSx. We know that Cs(x) = {q, w, 7>
and that

B~ TE~ QTR ~ QT2

holds under S.

Let X € Syl,(C(2)) with C(2) C X. Define @, S, and 4 as in (1.8).
Then, |X: @S| = 2, and so, <m, =) N8 = (1)>. Assume that x lies
in ¢§. Then, we get # € § from (1.7), and we know that z ~ zz. How-
ever, this contradicts (1.7) as &> =@nNS. If qv or gnr is in S,
then we get the same contradiction, since (g7, gnz) C S and by (1.7).

(1.10) LEMMA. Under the assumptions of the theorem the case
QNS =~ Z, does not occur.

PrROOF. Application of (1.7), (1.8), (1.9) and a result of Glauberman
yields that X = @8{¢, ), and that ¢ is conjugate to an involution 2
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of Q8%x. We know that ¢ is not conjugate to an involution of @S¢ U
U Q8Spx. We have 1?2 = %" = q7, [, #] € Q.

Let §, S, X, and A be the subgroups of C(z) defined as in (1.8).
Then, (z> = N § and X/@§ is a four-group. We know that Cs(z) =
= (g, m, ) and that 2 ~ nz ~ qr2 ~ qnrz holds under the action of 8.
As z is isolated in @S, we see as above that z, g7, gz, ¢ ¢ @S.

1t = ¢QS{g>, then §8(q, v> = X and ne@8qu @87, since qnr ¢
¢QS. 1f 7eQ8¢g), then, as qr ¢ @S, we must have ve@S. If in
addition ze@Sq, then we would obtain qmr € @S which is not the
case. Hence we have to handle the following two possibilities:

(a) X = (Q8¢q, 7> and = e @S¢ U @Sr; and
() X = @8, > and 7 e8.

Suppose that X = @S<q, > and ze@8q. Then, gz e@S. Since
gnel and S~8, we get gnel. The G-fusion of the involutions
of Q8 yields gnr ~ ¢ ~ 7 by (1.7). Consider {(gz, 2)7 in Sz. We know
that ¢ ~ 2z~ gnrz holds in G. It follows qnr + qurz ~ 7.

Since Sy with y € {g, x, px} contains at most two G-classes of in-
volutions, we get 7 ~ gnr under S. Using the structure of IN,(S), we
get qu ~ v ~ v and w ~ qnr ~ qr. It follows m ~gn in G, against (1.7).

Suppose now that X = @8<g, v) and =€ @87. Then, ar € @8, and
so, wr € 8. Consider the set (2, #r>qr in Sgz. We know that qrz ~
~zg~gq~qr and g ~ qr. Hence, q7 ~ gtz + qgn. Since in {2, wT)qT
there are at most two G-classes of involutions, we derive g7 ~ qm.
However,  is conjugate to qv via a 3-element in IN,(S), and this
gives a contradiction.

Finally, we handle the case (b) Here, we have X = QS8(q, n)
and 7 €@S. Thus, 7€ &. Consider the set (z, v>¢n which lies in Sgz.
We know that qrrz ~ q, qnr ~ 7 +~ ¢, and ¢gn ~ ¢ and qn ~ n. Hence,
in <z, T>qmw we have three G-classes of involutions against the fact
that in Sqz there are at most two G-classes of involutions. This final
contradiction proves the lemma.

2. The case QNS =~ Z,.

(2.1) Some properties of subgroups of N(A).

We are interested in the possible structures for 8. Set @ N § = (&)
with #2=g¢ and § = {¢, =, 7, u, 4, ¢, &.
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We put
&l = gmr, [4E=¢7, [wll=1tfx, [4L]=1tgnr,

where «,f,y,0€{0,1} and t-1=tq = . If s€ S, then o(s) = o(sq) if
8 #q. We replace ¢*nr by m7 and ¢jr by v without changing the
defining relations of S. Interchanging ¢ and ¢! if necessary, we may
put [u, ] =tx. Thus, we get:

[w, 8l =mr, [LEl=T, [, {] =tm, (4, {1 = tg*nr,

where o € {0, 1}. Furthermore, we have the freedom to choose u, 1, {,
and £ to be involutions, since for each = € {u, 4, {, £} either o(x) = 2
or o(tr) = 2, and the commutator relations given above remain un-
changed with ¢z in place of =.

There is an element g in IV, (S)\Z(4)S which acts fixed-point-free
on S modulo {¢) in the following way:

g:w—>nt >T, Hu—>ul—>1, (—>C&—>E&.

In fact, Ny8) = Z(A4)8{g>. We have tm = [u, (12> [, &] = 7, and
80, qn? = 12€ {q¢); this means that either o(x) = 4 and o(7r) = 2, or
o(n) = 2 and o(t) = 4. We compute:

nr = [p, 15 [pd, L] = [p, CP[4, §] = ta -tg*mr = qg*+HPmtt;
thus wrrr = Atra?t = 72, and so, wrw = 7. One obtains two cases:

a) o(mr) =4 and o(tr) =2; then 7wt = n?, (w, 1) =~ D, and

{70y 17D =2 Q.

b) o(m) = 2 and o(r) = 4; then [m, 7] = 1, and {¢, =, 7> = {, 7,
1> 2 Zy X Zy X Z,.

Put R,= ¢, =, 7, u, Ay and R,= {, =, 7,,&>. Then, § = R, R,.
Clearly, D(S) = 8'= {, =, v>. If 8'= D(S8) = Z(8), then S would be
special, and hence, S’ would be elementary abelian, namely: Let
x, y € 8; then [z, y] e Z(8) and [z, y]*= z2y—'a®y = 1, since GXS)C
C D(8); hence every commutator of § has order 2 or 1 which implies
that 8’ is elementary abelian. This is, however, not the case. Thus,
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Z(8) c {t, =, 1), and since g acts fixed-point-free on (=, 7, t>/{t), we
get Z(8) = <b).

It follows that not both R, and R, are abelian. We know that
BYS8) C (t, 7, > = R,N R,. Assume that R, was abelian. Put R} =
= ,(R,). We have R,/D(R,)~ E;s, and so, £,(R,) is elementary
abelian of order 2°. From the Jordan-canonical-form of { and & on
R}, we get |Cx*(<C,&))|>4. Since 8 = Cy(R,)<, &), we see that
Cx((E, &) lies in Z(S). But Z(8) = (t), and we have derived a
contradiction. Thus, R;7 <1). Similarly, we get R, <1>. It fol-
lows Ry = R,= {¢).

A subgroup of A involving A4; acts transitively on R,;/{t). This
implies Z(R,) = Z(R,) = {t).

Clearly, Z(X)C @8, and so, we have Z(X)C@; note that @ is
cyclic by a result of Aschbacher. It follows that X € Syl,(@) as
C(g) € N(4).

Since an element of order 5 of A acts fixed-point-free on RE,/(t),
and since R;/{#*) is elementary abelian, we deduce that R, = {t) A E,
and R,= {t) A\ E,, where E; is extraspecial of order 2% and of type
Dg A Qs; here X denotes the central product with amalgamated center
of at least one factor. Clearly, E, possesses 10 off-central involution
and 20 elements of order 4. Thus, R, possesses 30 off-central involu-
tions and 30 off-central elements of order 4. The 2-rank of E, is 2 as
the maximal abelian subgrups of E, are of type (2, 4). Thus, the 2-rank
of R, and of R, is equal to 3.

We know that #(t2), 2= ¢, does not possess a root in §/{(g).
Hence, t has no root in 8. Let ¢ be an involution in @S. Then, 1 = us,
ue@ and s € S. We have 1 = ¢2= u2s?, and 80, u 2= s2€ QNS = {t).
Since ¢ has no root in S, we get w?= s?e{(g). Since @ is cyclic
and t€@Q, we have u e {t). It follows 4 = us€ S. From the struec-
ture of S follows 1€ R,U R,.

Assume by way of contradiction that § had an elementary abelian
subgroup F of order 16. From the structure of L,(4) we get that if x
is an element of R\ {t,m, 7), then Cs(x)C R, for i€ {l,2}. Since
the 2-rank of R, is 3, we get |R,H|>27 for i€ {1,2}. Assume that
|R.E| = 27. Then, R,E € {R{(), R(&), R((&)}. There is an involu-
tion ee £ such that R,F = R,{¢). We know that ee R,. Since
Cs(e) C R,, we get HC R,, and this is a contradiction. Similarly, one
sees that |R,E| = 27 does not happen. Assume now that R, E = §
for ¢ =1 or ¢ = 2. Then, there is an involution ¢ € E\R,, and so,
ECCs(e) S R;, j+~1; again we arrived at a contradiction. We have
shown that the 2-rank of @S is precisely 3.



156 Cheng Kai-Nah - Dieter Held

(2.2) LEMMA. The 8,-subgroup @ of K is eyclic, Z(8) = {t) = Z(R,)
for i€ {1,2}. If 4 is an involution of Q8\ (g, then i is conjugate to
an involution of {¢)s under A. The involutions of {t)m are conjugate
under 8.

PrOOF. We have to prove only the last assertion. If o(z) = 4,
then o(tm) = 2. Clearly, @ ~ nq under R,, since E; is extraspecial.

(2.3) LEMMA. The case (a) of (2.1) does not occur. Thus, we have
o(m) = 2, o(vr) = 4, and {t,x,tr) is of type (4, 2,2).

PrOOF. Put V = (¢, 7, t7), and assume that we are in case (a).
Since V = Z,(8) and Z(8) = {t), we get |8: Cs(V)| = 22; note that
t)><{my and {t){r) are both normal in § and that (td)m contains
precisely two involutions; the last assertion is also true for (¢)>z.
Since V = &) X <{m, tr) with (m, 17) ~Qs, we get V N Cy(V) = (D,
and so, VCs(V) = 8. But §/V is elementary abelian of order 16,
and Gy(V)[<t>= 8/V. Hence, (V/<ty)(Cs(V)/{t)) = 8/{t> would be
elementary abelian against the structure of a S,-subgroup of IL,(4).

(2.4) LEMMA. The involutions of ANZ(A) form a single conjugate
class. Further, Cs(V)\{q,m,?r) does not contain involutions; here
and in what follows, we put V = (g, x, iz). Clearly, |Cs(V)| = 2¢.

PROOF. The first assertion follows from the fact that A/Z(A) =
=~ Ly(4) and that n ~ ¢z under R, and R,. Let x be an involution of
Cs(V)\V. Then, V X<{&) is elementary abelian of order 16 against
the fact that the 2-rank of § is 3.

(2.5) LEMMA. We have

Q,(BYC.(V))) = &(Co(V) = V = ,(54Q8)) .
Further,
4,, it Xe{Q8, Q840},

Nyw(V)[C(V) :[ .
2y, it Xe{Q8<gd, @8{px), @Q8{p, >}.

PrOOF. We know that §/{g> has exponent 4. The first assertion

follows from the fact that Cs(V)\V does not contain involutions and

that every involution of @S lies in R, U R,; note that &Y(S) C (QS8) =

=<t m, 7). Clearly, 8/Cs(V) is elementary of order 4, and § and
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Cs(V) are g-invariant. The element g acts fixed-point-free on §/(t),
and so, 4 induces an automorphism group isomorphic to A4, of V.
Clearly, X normalizes V, Cs(V), 8, and Z,(8) = <{t,m, v). If x€ X,
then [g, x] = 1; and also [%, V] = 1, since the centralizer of » involves
a section of A isomorphic to A5, and we know that Cs(x) C <t, 7, t7).
If y € {p, px}, then we get from the last section that y &€ Ny, (V)\C(V).
Clearly, G(V) € C(g) = N(4) = KAX with K CC(V). Since Ny (V)/
C(V) is a subgroup of L,(2) which has no element of order 7, the
assertion of the lemma follows.

We want to get more information on the multiplication table
of 8. Clearly, uA or puAt is an involution. Compute (uA£)* = 7 mod {q);
thus o(ulf) = 4. It follows that <{ud, &) or <{ult, £ is dihedral of
order 8 with center in (g, 7)\{¢>. We have shown that (¢, s, Ui,
& = F~Z,XDgand Z(F) = {t, wy. Hence, C, (7)) = {t, m, tr, uA> and
Cp () = by m, i1, &), and |Cp(7)| = 28 for i€ {1,2}. It follows a* =
= n* = qm, n* = a** = qm. Further, since the 2-rank m(S) is equal
to 3, we get (i7)#* = qtr = (17)%, (t7)** = t7.

Compute q =[x, ,u]—> [t7, Al = ¢, hence [z, A] = ¢; also 1 = [n,
1A] 2 (i, w] =1, hence [z, u] = 1. Further, we have 1 = [z, £] %>
[7,£f]1=1, and so, t*=gqv. It follows Cs(n) = <t,m, tr, ul, ui, &
has order 27. Thus, Cs(<t, 7, t7)) = <8, , tr, uA&, ul&> = Cs(V), where
V= 91(Z2(S)) = <{g, =, tT).

Put W= Cs(V). We summarize:

(2.6) LEMMA. We have the following relations for the generators
t,m, T, 4y A, 8, & of 8

t=m=1v=u==03==1, B=1=q, [m1]=1,
=mt=nt=qn, at=af=an, =1"=t=qr,
[o0l=1, [uAelyy, [ Elelp; Csn)=tymT,udul, &,
Cs((ty 7y 17)) = (b 7, br, pd, pl&>5 (w8l =ar, [, ¢]=1tm,
LEl=7, [ALC]l=tgnr; g:n—>q*tnr —>qir.

From the action of the outer automorphism group of the full
cover A* of L,(4) on O,(A*) one gets that our standard-subgroup A

possesses the « automorphism ¢x ». Put ¢ = [u, 4] and compute ¢* =
= [u, A1 & [£, ] = ¢*. We want to determine under what conditions
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the elements pié and pZf commute. Compute: uAf * ug'Amté -
wtng' Atqenrntq'é = q*unié S qrumradvé = @l
We get:

(2.7) LEMMA. [pA&, ulE] =1 if and only if, « = 0. Here, [y, Al =
= [¢, &1 = ¢, L€ {1, 2}. Further,

(uA&) = ¢, (ulE)= ¢'tr, (uAGulé)*= q*mir.

Thus, W is abelian of type (4, 4,4) if « = 0, and W'= (g if a=1.

(2.8) LEMMA. Let y € X\@S with y € {p, %, px}. If @Sy contains
an involution y*, then there is an involution z in @Sy conjugate to
y* under § which acts on S in the same way as y does.

ProOF. The assertion follows from the proof of [6; Lemma 3.1].

(2.9) Here, we shall study the situation of a subgroup W oof X
with W~ W.

If W is abelian, then W is of type (4,4,4); if W's (1), then
W'= (g)> and Z(W) = {t,m,tr) and QW) = (¢, n, 7). Note that
exp (W) = 4. We denote by W a subgroup of X isomorphic to W.

We assume first that W lies in @S. We know that QW) cS8,
and since Q8/8 is cyclic, we get |W N §|>2°. Put W=Wn§s. We
assume that W ¢ 8. Then, there is an element us of order 4 of /ANCE
ue@t and se 8. We compute: u*=s*eSNEQ = (), and hence,
ut= s—*= ¢ as ¢ has no root in §, since otherwise u*=1 and u€ 8.
Thus, o(u) = o(s) = 8. Since |W] =25 and exp (W) =4, we get
|W(s>|>2“; clearly, s centralizes Z(W) and operates on W in the
same way as us does. If |[W(s)| = 28, then W{s> = 8, and Z(8) would
contain Q,(W) which is not cyclic. If |W{s)| = 27, then, as QW)
lies in Z(W(s)>), we get a contradiction to Z(S) = (t)> by the Jordan-
canonical-form. Thus, we have |W<s>| =928, If W{(sDW = 8, then
W{s> N W has order 2¢, and from the structure of W, we see that the
intersection contains a four-group, which lies in the center of Ws>
and of W; note that the 2-rank of @S is 3 and that W~ W. We get a
contradiction to Z(8) = (t>. If [W<(s)W| = 27, then |W<{s) N W| = 2°
and W{s>N W contains an elementary abelian subgroup of order 8.
Thus, Q,(W) lies in Z(W{s)W), and again we get a contradiction by
the Jordan-canonical-form. The case |W{s)W| = 2¢ is not possible
as exp (W) = 4 and o(s) = 8. We have shown that W must lie in S.
But then | N W|>2¢, and hence, the center of S would not be eyclic.
It follows that if W CQS then W= W.
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Finally, we have to consider the case that W lies in X but not
in @8. Remember that |X:Q8|<4. Thus, QS "W contains a sub-
group of type (2,2,4). Note that Q,(W)C Z(W) and that QW) =
= GYW). We know that Q,(W) must lie in § as X /@8 is elementary
and S contains the involutions of @§8. Put X*= X/Q, 8*= 89/Q,
and W*= WQ/Q. Then, |W*|>24, since exp (W) = 4, and also [8* N
N W*|>22 As Q.(W) C 8, we see that there is a four-group in §*N W*
which is centralized by W*. Let us assume first that X* = §*W*
and |X*;8* = 4. Then, we get a contradiction, because—computing
in P{g, 2y € Syl, (aut (L3(4)))—We see that Cp(s,p) N C(s,%) is eyclic
for s, 8,€ P;note that in aut (L,(4)) we have Cp(sp) C {m, 7, ud, EX\{z},
Cp(sx) C (AL, pAE) which is abelian of type (4,4), and

Cr(spx) C (m, 7, pAét, ult)\{r} for se P;

note also that {m,7,ud,&> =~ Z,XD, and that (=, v, urér, ulr)> ~
= Zy X Qs.

Now, we consider the case that |Q8 W:QSI = 2. From the struec-
ture of aut (Ly(4)) we get that QSW = Q8{gpx) is impossible, since
Cy(spx) does not contain a four-group, but Z(W*) contains a four-
group in W*N 8*. Thus, either QSW = Q8> or QSW = Q8{x).

Assume that QSW = Q8{(x>. We know that C(sx)C <, =, tr, AL,
uAEy = W for se S. Since exp (X/Q8) = 2, we see that B (W) C @8,
and so SYW) = Q,(W)C 8. There is ueQ, se S such that usx e W,
and so, sx centralizes Q,(Z( W)) = Q,(W), an elementary abelian group
of order 8. Tt follows ,(W)C W, and so, (W) = QW) = {q, =, t7).

Assume that QSW = QS8<p). Clearly, |W N Q8| = 25. Since S(W N
N @8)/8 is contained in the cyclic group @8/8, and since B(W) =
= Q(W)c 8, we get |W N 8|>2¢; note that S(W N Q8)/8 = (Wn
N QS) /(Wn 8). Now, Q,(W) is centralized by an element vsp, where
veQ, sef8; hence Q,(W) is centralized by sp. We know that Cs(sp)
is contained in i, z, t7, uA, &> which group we denote by B. Also
we know that Q,(W) lies in R, or R,. Note that (t7)*s« ¢tz for any
sefS. Hence, (W)=~ Q,(W). We have |BN R, = 25 and so, |t
7, 17> N Qy(W)|>22; it follows |Q,(W) N Q,(W)| = 4. From the struc-
ture of Ly(4) follows that Cs(Q,(W)) lies in R, or R,. From the
symplectic structure of R, follows |Cs(Q,(W))| =2%; note that ge
€ ,(W) as the 2-rank of § is 3. We have derived |8 N W| =2+ But
|8Q N W| = 25. Thus, there exists u €Q, s € § such that use W\S.
This implies » ¢ (¢t). Since Q,(W)C S, we have o(us) = 4, and we
know that seR;, i =1 or 2, as [s, ,(W)] = <1>. This implies s*= 1.
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But then uts*= 1 implies w*= 1 and » € {¢)> which is not possible.
We have shown that in @S{gp) there is only one subgroup isomorphic
to W, namely W itself. We summerize:

(2.10) LEMMA. Let W be a subgroup of X isomorphic to W and
assume W = W. Then W is not contained in @8, @S<{p)>, or QS{px).
The case QSW = QS8{g, ») is not possible. If QSW = Q8{x), then
QW) = QI(W) = (¢, 7, 7).

(2.11) LeMMA. If 7z~ q holds in G, then m ~ ¢ holds in N(,(W)).

Proor. Denote by J the intersection of all subgroups W of X
which are isomorphic to W. Then, Q,(W) = ,(Z(J)).

Assume that ¢~z holds in @G. Denote by X, a S,-subgroup of
C;(n) which contains X N C(n). We have W< X N X . Thus, (W)
is normalized by X and X, and so, as Z(X) is cyclic, we get ¢~=n
in (X, X,>C N(Q(W)).

(2.12) LEMMA. The case @S = X does not occur.

Proor. Note that in @S there are only two IN(A)-classes of involu-
tions with representatives ¢ and z. By a result of Glauberman we
have ¢~ in G. From (2.11) we get that ¢ and = are conjugate under
the action of N(S,(W)). Since m has 6 conjugates under IN(S), we
see that an element of order 7 of IN(V)/C(V) acts fixed-point-free
on V. Thus, G induces L,(2) on V, against |@S:Cy(V)| = 4. The
lemma is proved.

(2.13) LEMmA. If ¢, %, or @x are present in X, then Cs(¢)C
C by, udy £y Cs(%) C <8y 7, t7), Cs(@x) C ¢, uAfT); further (uiét)? = ¢'m.

ProoF. The assertion is a consequence of (1.4).

(2.14) LEMMA. Let ¢ be conjugate to an involution z in X\@8.
If [t,2] =1, then ¢~ & holds in G.

ProoF. Let g ~2z€ X \@S and [¢,2] = 1. Denote by X a 8,-sub-
group of Cy4(2) with Cy(2)C X and by A the unique standard-sub-
group of Cz). Put N A =78 and XN CA) =§. We have z€
e@nRl. Since X /QS’ is elementary abelian and t € X, we get 2= g€
GQS", and so ge S as o(g) = 2. Clearly, ¢ # 2. It follows that q is
conjugate to m in @, since all involutions of AN(z> are conjugate to m;
note that ge §c 4~ A.
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(2.15) LEMMA. We have [z, ¢] = [m, #] = [tr, %] = 1. Also x = 0
if, and only if [¢, 9] =1; further « =1 if, and only if [t,%] = 1;
t9* = {1 always.

ProoF. Since the centralizers of ¢ and » involve L,(2) and A4;,
respectively, we see easily that = € Cs(p) and <2, m, t7) C Cs(x%). Com-
pute tx = [y, {1-%[4, (&] = [4, E1[4, C)¥ = ©(tq*n7)* = tq*m; thus a=0
if, and only if [#,¢] = 1. Compute further iz = [u,’]-% [L&, A] =
= [, AF[&, A] = trg*t>; thus « = 1 if, and only if [¢, ] = 1. Finally,
we have tm = [y, {] & [, u] = (1, {1 = (tn) ' = t~'x, and so, 7" =
= 171, since obviously [z, px] =1 as |Cy(px)| = 22

(2.16) LEMMA. Let 2 be an involution of @8x which operates on §
in the same way as x does. If #*=¢-1, then all elements of (g, x,
tt)z are conjugate.

PROOF. We prove the assertion by a series of computations:

(WAEY = EtPuP = EulgP = EAugs;

thus
(#ulé2)Edp = ¢**Px, and so, z~q"Pmz~ ¢fz.
Hence,
Z QR ~ qne ~ mz .
Also,

(ulé)* = (CE ptr = Céuq” = Elug™*;
thus (eulé2)ECu = ¢”tr. Hence,

2~ 'tz T Wiz .
Finally,
(MAEULE)* = EAuGPELugHtr
and it follows
(2uAbultz) ECuédu = g*HP+r oty
thus

e~ @ Pratve  ¢Ptrmtrz .
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Here,  and y are suitable exponents; the proof can also be done by
looking at the structure of S{g, 2).

(2.17) LEMMA. The case X = QS{x) is not possible.

Proor. By way of contradiction we assume X = @QS{x). As
always put V = {q, @, tt). We know that (@, x> centralizes V. Thus,
X/C4(V) is a four-group and this implies that G does not induce L,(2)
on V. Hence, & ~ q in G.

We know that all involutions of Q8\(¢> are conjugate to .
Hence, by a result of Glauberman, there is 2z € @8» such that z~gq
in G and such that z operates in the same way as » does on S. Ap-
plication of (2.14) yields that [2,t] %1 as @ ~ q. Application of (2.15)
gives o« =0 as [{, x] # 1.

Let X,@, 8, and 4 as in the proof of (2.14). We have ze{J N S.
Obviously, all involutions of g8\ (z) are conjugate to = in G. We
have Cs(z) = Cs(x) 2 {q, m, tr). Thus, {g, n) C X, and hence <{g, %> N
N Q8 == (1), Clearly, q ¢ @8, since ¢ 2 and ¢ » z in @. It follows
that 7 or gz lies in @S. Application of (2.16) yields that z ~ 27 ~ zg7.
But 2z or zgn is in §8\ (). This would give 2z ~ ¢ ~ z which is not
possible. The lemma is proved.

(2.18) LEMMA. The case X = @QS{p) is not possible.

ProoF. We have Cyi(n) = QCs(m){p> and |X :C(w)| = 2; clearly,
Cs(m) = by, Ty udy ul, &), 8' = Zy(8) = (4, myt1), W = Cs(8') = (¢, ulé,
uLE> C Cy(mw). We know that W is the only subgroup of X isomorphic
to W.

CASE 1. The subgroup W is nonabelian. In that case, we have

=<¢> and « =1. Lemma (2.15) implies [t, ] 1.

Assume that ¢ 5 w. Consider Cy(w), and let X be in Syl, (Cs())
such that Cx(m) C X Since W ¢ X and since X ~ X, we see that W
is the unique subgroup of X isomorphic to W. It follows that ¢ and
are conjugate inside N(W). But—as W'= (¢)—this is not possible.
Hence, w + ¢ in G.

By a result of Glauberman there is an involution z in X\ @8 such
that 2~ ¢ in G. We choose 2z 8o that z operates on § in the same way
as @ does. Denote by X,d, S, and 4 subgroups of Cy(2) as in the
proof of (2.14). Clearly, all involutions of @8\ (z) are conjugate to =
in @. We have (¢, 7> CCx(z)CX. But q¢{S. Since |X:Q8| =2,
we get that & or gm lies in 8. Thus, w2 or gme lies in WSRO and
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this implies that mz or gmz is conjugate to # in @. Compute 7° =
= [4, §F = [, &] = @v. It follows #° = mz; but ' = 2q, and so,

2~ TE~ 7z .
This is not possible as z ~ & holds in G.

CASE 2. The subgroup W is abelian. In that case we have a = 0.
Lemma (2.15) gives [¢, ] = 1.
We show that Cy(m) is normal in Ng(X). Let # € N(X). Then,
x € N(A4), and hence, z normalizes X N C(4) = Q. But Z(X/Q) = {(nQ),
and 8o, #* =z or 7= qm. Clearly, Cx(n) = Cx(gn), and this implies
@ € Ng(Cx(m)). We show further that {¢) char Cx(n). Put ¢ = Cx(n);
note that X = @S8<{¢)> and Cs(p) = (¢, m, ul, &) and that [t,¢] =1 as
o« = 0. Obviously, <t,n) C Z(0), and Z(C) C @<{x)>. Hence, {¢> char C.
We assume that q ~ 7 holds in &. Let A be the unique standard-
subgroup of type L3(4) in Cy() and let X be in Syl, (C ) such that
Cy(n)Cc X. There is g’ in @ such that ¢ =mn and X*= X. We have
Cx(7)” " as a subgroup of index 2 in X. Since X € Syl, (G), we may
apply a theorem of Burnside, and get Cx(m)* = Cx(n)’ for some
y € N(X). This implies g’e N(Cx(rn)). It follows [g',¢] =1 against
¢ = . We have shown that = ~ ¢ holds in @. A result of Glauberman
yields the existence of an element 2z € X\ @S with ¢ ~zin G. Applica-
tion of (2.14) yields m ~ ¢ in @ which is a contradiction. The lemma
is proved.

(2.19) LEMMA. Let z be an involution in @Sgx which acts in the
same way as @x on 8. Then, Cs(z) = {q, pAé7t) or {gq, uAfrt) and all
involutions of 8z are conjugate to z under 8. Further, &*(Cs(z)) =
= {¢*z) for some ¢ € {0,1}.

Proor. From (2.13) we get Cs(z) C<t, uAér)>. Note that #* = ¢!
by (2.15). The coset {t>z consists of four involutions. Computing in
aut(L,(4)) we have Cp(px)=2Q,, and so, gx has precisely 2¢:23— 23
conjugates under the action of P in Pgx. Thus, the number of conju-
gates of 2z under the action of § is at most 8-4 = 32. This forces
|8:Cs(2)| <2 which implies |Cs(2)| = 2°. The lemma is proved.

(2.20) LEMMA. If X = @QS{¢x), then W is abelian and G induces
an automorphism group isomorphic to IL,(2) on W.

PROOF. Assume that ¢ ~ 7 in G. Then, ¢ ~2 € X\ Q8; we assume
that z acts on § in the same way as px does. Let X, 4,5, and § be
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subgroups of Cy(2) as in the proof of (2.14). Then, & or gqn lies in S,
and so, mz or ¢nz is conjugate to sz in G. Application of (2.19) gives
that 2 ~ iz ~ qnz. But ¢ ~ 2, and we have got a contradiction. Hence,
¢~ mholds in @. Now, W is the only subgroup of X isomorphic to W,
and SZI(Z(W)) = (¢, m, tr). Hence, ¢ ~x holds in Ng(W). It follows
N(W)/C(W) =~ L4(2) and the lemma is proved, since W'= {¢)> cannot
happen.

(2.21) LEMMA. Let X = QS<{¢, %) and « = 0. If = +~ qin @&, then g
is not conjugate to an involution of QSx.

PrOOF. Assume that ¢ ~z€QS»; we choose z so that it operates
on S as » does. Application of (2.15) yields that [t,2]~1. We have
Cs(?) = {q, 7, tr)>. Lemma (2.16) says that all involutions of Vz are
conjugate to 2. Denote by X, 8,3, and y:) subgroups of C,(?) as in
the proof of (2.14). Since |X:QS| =4, we have (g, x, >N QS =
= VN8> Let  be a nontrivial element of that intersection.
Then, z~zx~¢q. Since § NS contains #z, we have 2z ~m. But this
is against the assumption of the lemma.

(2.22) LEMMA. Let X = QS<{¢, %) and o« = 0. If ¢q is conjugate
to an involution z of @Sp, then ¢~z holds in G.

Proor. From (2.15) we get [t, ] = 1. Application of (2.14) yields
the assertion.

(2.23) LEMmMA. Let X = QS<{¢,»)> and o« =0. Then, n~¢q in
Ne(V).

ProoF. By way of contradiction assume that ¢ ~ = in G. By a
result of Glauberman, g~ 2 for z in @S¢, @Sx, or QS¢x. Application
of (2.21) and (2.22) yields that z€QSpx. We get from (2.19) that
z~zm~zng. Let A4, X,{, and § be subgroups of C(z) as in the proof
of (2.14). We get B1(Cs(2)) = (g°w) € 8. Thus, 2¢°nr ~ = in G. This
implies z~ m~ ¢ which is against the assumption. The assertion is
now a consequence of (2.11).

(2.24) LEMmMA. Let X = @8{¢, ) and « = 0. Then, @ = <) and
| X| = 210,

PROOF. We know that g ~z holds in N(V). Thus, N(V)/C(V) =
= L4(2). Since C(V)C C(q), we get that QW<{x) is a §,-subgroup of
C(V). Clearly, QW<{x)> is nonabelian, and since QW is abelian, we
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get Z(QW{x))cQW. Now, V lies in Z(QW{x)), and since the
2-rank of QS is 3, we get V= ,(Z(QW<x))). Denote by uw an
element of Cyqy(x) with u € Q, we W, and o(uw) = 4. Then, uwiw*=1
which implies #*= 1, and this means u € <¢>. Thus, Cew(x) = V =
= {q, =, 1) = Z(WQ{x)). We have |QW| = 2724, Assume there were
a subgroup @*W* in QW{x) isomorphic to QW and different from
QW. Then, (QW)(@*W*) = QW{x> and QW N Q*W* has order 2723
and would be contained in the center of Q W(x); it would follow n = 0
which is not the case. Thus, QW is unique in Q W{(x>. By the Frat-
tini-argument, N(V) induces an automorphism ¢ of order 7 of QW{sx)>
which acts fixed-point-free on V, thus ¢ has no fixed-points on QW
as Q,(QW) = {g, =, tr). This implies that QW is homocyclic, and so,
Q CW. The lemma is proved.

(2.25) LEMMA. If x= 0, then the case X = @S8{g, x> is not possible.

ProoF. We have Cx(V) = W<{x). Since w~ ¢ holds in N(V), we
have N(V)/C(V) =2 Ly(2). Clearly, W{x) € Syl, (C(V)). Since Cy(x) =
=V, we see that W is the only subgroup of W<d{x) of its type. We
have N(W) C N(V). Now, C(V) = (0 x W){x>. Denote by W a sub-
group of C(V) isomorphic to W and assume W= W. Then, (0 X
X W)W = C(V). Since W< C(V), we get that WW is a group of order
27, and so, |[WN WI = 25. But then, a 8,-subgroup of C(V) would
have a center of order greater than 8 which is not the case. Hence,
in C(V) the subroup W is unique. It follows that N(V) < N(W), and
hence, N(V) = N(W). By Frattini’s argument there is an automor-
phism ¢ of order 7 of W{x) induced by an element of N(V) which
acts fixed-point-free on V. Hence, C(c) N W{(x)> = <{z)> has order 2.
Since C(o) N W = (1), we get Wx> = W<z)>. It follows ze Sx.
Clearly, all involutions of W are conjugate in NN(V). From the struc-
ture of X we get that X/W is a direct product of (Wx) and a
dibedral group of order 8. Thus, N(W)/C(W) is isomorphic to L;(2) X Z,.

Denote by N* the subgroup of index 2 of N(W) which containg
C(W) such that N*/C(W)=~L,2). Put X*= X N N*. Then, X*N
N 8> W. Note that the involutions of N*/C(W) are all conjugate
in that factor group. Let s be an involution of (S N X*\W. If x
is any involution of X*\ W, then sG(W)~aC(W) in N*/C(W). We
have sC(W) = s(Wx0)C 8XO0; so all involutions of sC(W) are con-
jugate as w~ q in G. It follows that all involutions of X* are conju-
gate to ¢ in ¢; as a matter of fact, S lies in X* as S is normalized
by g. Note that X* is a maximal subgroup of X. A transfer lemma
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of J. G. Thompson gives 2~ ¢ in G. The last statement produces a
contradiction in the following way. In the normalizer of V in G there
is an element ¢’ which centralizes z and conjugates all the elements
of V#. It follows that (2> X&,(W) lies in the unique standard-sub-
group A, of C(z). Thus, the 2-rank of S would be 4 which is a
contradiction. The lemma is proved.

(2.26) LEMMA. The case X = @S{¢, »> and « = 1 is not possible.

Proor. Assume by way of contradiction that g~z in G. Then,
g ~mholds in N(V). We have C(V) = (QW<x))0, where O = O(N(4)).
From Frattini’s argument we get N(V) = O(N(Q W<x)) N\ N(V)). Since
[0, V] = (1), we see that ¢~z happens in IN(QW<{x)). However,
te Z(QW<{x)) €<Q, m, try, and therefore (¢> char QW{x)y. It follows
that ¢ ~ & holds in @G.

From Glauberman’s result we get that ¢ is conjugate to an involu-
tion 2z in X\ @S. From (2.14) we get that z ¢ @Sx, since [t,x] = 1.
Assume that z € QSpx. We assume also that 2 acts in the same way
on § as gx does. Application of (2.19) yields that all involutions of Sz
are conjugate to z. We have T*(Cs(2)) = <¢°n) for some € {o,1}.
Clearly, # 3 ¢°n. In C(z) we choose 4,{, S, and X as usual. Then,
2e@NS. We have (¢°n) C S, and so, zng*~m in G. However, 2mg°
lies in Sz and is an involution. Thus, z ~ 2zwg®*~ 7, against ¢ ~ 2z and
q ~ 7.

We have still to treat the case that ¢ ~=ze€Q8p. Denote again
by 4,8, X,@ the usual subgroups of C(z). We have &'(Cs(p)) =
= {g°n)> as t#=1"1. Thus, {¢°n)€S. It follows 2¢°m~g°M~7 *2~¢
in G. Now, 2z and ¢*mz are involutions of Sz. We may assume that 2
acts in the same way on § as ¢ does. Compute: 7* = [y, £ = [y, ] =
= mr. It follows 2* = mz; but 2= 2q, and so,

2~ T8~ Q2 .

This is not possible as z ~ & in G.

We are left with the situation of (2.20). We have W= (1), and W
is the only subgroup of its type in X = QS<{px). Now, N(W)/C(W) =
= Ly(2) and C(W) = QWO, where O = O(N(4)). Since N(W) operates
transitively on Q,(W) = V, we see that |@|<4 as {¢)> is not charac-
teristic in WQ. It follows X = S{@x). Clearly, N(W)/O is a non-
splitting extension of an abelian group of type (4, 4, 4) by L,(2). By a
result of Alperin, we see that X is isomorphic to a S,-subgroup of
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O’Nan’s simple group. This is enough to get G ~ O’N; but we may
invoke a result of G. Stroth [6] to identify G with O’N.
The theorem is proved.
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