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Finite Groups with a Standard-Component
of Type L3(4), II.

CHENG KAI-NAH - DIETER HELD (*)

0. Introduction.

In this paper we finish the investigation of the La(4)-type standard-
subgroup problem. Because of the result of [3] we have to treat here
only the case in which the 2-rank of the center of the standard-sub-
group is equal to 1, that is, we assume in what follows that the 2-part
of the center is cyclic and different from (1~.

The results obtained in [5] will be assumed; we shall retain the
notations introduced there. As in [5], we consider a fixed standard-
subgroup A of our group G with A/Z(A) gz La(4) and put .g = G(A).
By X we denote a fixed S2-subgroup of N(A) and put X n A = S,
.X = Q. Thus, X is  contained » in (QS, 

here ~S = (Q r1 A, n, Í, Il, À, ~, ~), where the relations be-
tween the generators are those valid in P E SyI2(La(4)) but modulo

of course 
The Schur-multiplier of La(4) is isomorphic to Z4XZ4XZa. Thus,

we have to handle the cases Q Z2 and Q r1 ~S ~ Z4. The case

Q n S = ~1~ has been treated in [3], and there it is proved that
then G is isomorphic to the sporadic simple group of Suzuki. Thus,
making use of all earlier results we shall have proved the following
theorem:

(*) Indirizzo degli AA.: CHENG KAI-NAH : Dept. of Mathematics, National
University of Singapore, Kent Ridge, Singapore; D. HEL’D : Math. Institut,
Universitât Mainz, Mainz, Rep. Fed. Tedesca.
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THEOREM. Let G be a finite, nonabelian simple group which pos-
sesses a standard-subgroup A such that is isomorphic to L3(4).
Then, G is isomorphic to Sz, He, or O’N.

Here, Sz, He, and O’N denote the sporadic simple groups discov-
ered by Suzuki, Held, and O’Nan, respectively. We remark that by
a result of Aschbacher, Q is elementary abelian if the 2-rank of K is
greater than 1. In that case we put 

1. The case Q r1 ~S’ ^~ Z2 .

(1.1) properties of subgroups of N(.A).

We have Q n A = Z2; clearly I03(A)1 e {1, 3}. Now, A is quasi-
simple, and so, A is an epimorphic image of the full covering group
of Zs(4). Thus, A is an epimorphic image of the perfect central ex-
tension of by L3(4).

Since such an extension possesses an automorphism of order 3
acting fixed-point-free on the 2-part of its center, we see that

Aj03(A) is uniquely determined up to isomorphism. Using the results
of [5] we get the following relations :

From the results of [5], we get that A possesses the « field »-auto-
morphism q and the « transpose-inverse »-automorphism x. Thus,
aut(A)/A is a four-group. As in [5], we get

Every involution of S lies in 1~1 or ~2. Set ~Si = = n1(Q)Ri.
Then, Si = .Ri if m(Q) = 1; and m(Q) &#x3E; 1. As q
has no roots in S see (1.3)-we get that = SlS2 with
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It is clear that ~S/~q~ is isomorphic to a S2-subgroup of L3(4) and that
NA(S)/Z(A) is isomorphic to a S2-normalizer of -Lg(4). There is an

element g E as in [5]-such that g operates on
S mod ~~ in the following way.

Further, acting with g on suitable commutators, one obtains

In particular, Z(S)e = (q, n, rl’ splits into three conjugate classes
under NA(S) with representatives q, n, and qn.

Obviously, 3 does not divide the order of since an

automorphism of order 3 of the full cover of L,(4) which is not inner
acts fixed-point-free on the 2-part of the Schur-multiplier. Thus,
N(A) = AKX and q~ = Z(A)2.

(1.2) LEMMA. The subgroups Si and ~S2 are the only elementary
abelian subgroups of X of their orders.

PROOF. This is a direct consequence of the structures of S, Q,
and SQ.

(1.3) LEMMA. The involution q has no root in S and X E SyI2(G).
If i is an involution in QS, then i is contained in Si or S2. Further,
i is conjugate to an involution in Qi(Q) (n) under A.

PROOF. Let x be a root of q in S; set

j = 1 and 2, and S = _Then, x is an involution of ~S. The
structure of ~S’ gives Hence, x E R1 or Since .R~
is elementary abelian for j E {1, 2}, we get x2 = 1. Thus, q has no
root in ,~. In particular, q has no root in n1 (Q S) _ 

Let Xi be a subgroup of G which contains X as a subgroup of
index 2. Then, Xi normalizes (q, n, r) = S’ = (SZl(Q) S)’. Under the
action of NA(S) the set (q, n, 7:)# splits into three classes with repre-
sentatives q, n, Clearly, Xi cannot centralize q, and Xl normalizes
n1(Q)s. Now, n has the root IÀÂE and qn has the root ft’, and both
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IÀÂE and 03BCC lie in 8 ç n1(Q)s. But q has no root in S, and so, q has
no root in Qi(Q)S. It follows X E Syl2(G).

An involution i of QS has the form i = and s e S. There-

fore, 1 = i2 = u2 s2, so that U2 = s-2 E Q = q). Since q has no root
in S, we get u2 = S-2 = 1. Thus, u E n1(Q) and s E .Rl u .R2 . Thus, i

lies in S1 or S2, 1 where SI= for j E {1, 2}. As AIZ(A) pos-
sesses exactly one class of involutions and [Q, A]= (1 &#x3E;, one gets
that i is conjugate to an element of 

(1.4) LEMMA. Depending on X, one has :

PROOF. The first two assertions follow immediately from the
structure of the automorphism group of ~(4). Now, q, ~c,

Note that = n. The lemma is proved.

(1.5) LEMMA. Let with y E m, Let z be an

involution from QSy. Then, Sz contains at most two classes of involu-
tions under G with representatives z and qz. If y 99, then 
n&#x3E; and z y nz. If y = cpx, then - ~~~ and z -- nz. If

y = x, then Cs(z) == (q, n, i) and z - nz under S.

PROOF. As in [5], one shows that Cs(z) Let y E 

Then, we have = (n). Since n E Z(~S), it follows ==

= (n). We have = nr. Because of c e Z(~), we get -ruz = nr. Thus,
ZT = nz and z - nz in S.

Let y = x. We know that Cs(x) = (q, = Z(S). Hence,
Cs(z) = (q, n, r). Put z = usx, where u E Q and s E ~S. As in [5], one
shows that ssxEQ n S; it follows S-2SX-1SX = [s, x] E (Q n ~)s~ ç 8’ =
= q, ~z, 7:). Hence, s E Cs(x mod s’) = g, ~, Ty Â~&#x3E;. Denote the
latter group by E. We have E’= (1). Compute: [x, Â~] = _

~,~~,~ = gnr, [x, pÀ8] = n, and [x, pÇ$] _ gr.
It follows that
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holds under E. Since E’ _ ~1~ and [u, E] _ (1&#x3E;, we get

under E. The Lemma is proved.

(1.6) LEMMA. Two involutions of are conjugate in G
if, y and only if, y they are conjugate in N(nl(Q)8) S N(A).

PROOF. Note that nl(Q8) = is the subgroup of .X which
is generated by all subgroups of X which are isomorphic to Sl. Let x

and y be two involutions of Then, &#x26;2,(QS) lies in C(x) t1
n C(y). Assume that there is g E G such that y. Denote by X x
a S2-subgroup of C(x) containing &#x26;2,(QS) and by X~ a S2-subgroup
of C(y) containing &#x26;2,(QS). Then, X~ for some h E C(y). Clearly,
gh E N(nl(QS)) and oeoh = yh = y. Since S’= ~q, n, i), and
since q is the only element of S’ which has no root in nl(QS), the
assertion follows.

(1.7) LEMMA. (i) Let m(Q) = 1, and let ~q, s~ be a four-group
contained in QS. q in G. (ii) Let m(Q) &#x3E; 1. Then,
q~ is strongly closed in QS with respect to G. If i is an involution
of S and for some g E G, then ig E S. Further, n t-I-I qn. In

particular, QS c X.

PROOF. Assume first that m(Q) = 1. Then (q,8) and ~q, n) are
conjugate via an element of A. We have (q, Z(&#x26;2,(Q) S), and by
assumption &#x26;2,,(Q) S = S. Application of (1.6) gives that G-conjugates
in q, ~~ are conjugate under the action of N(S) which lies in N(A) =
== A.KX. Clearly, KX C N(S) and [~q, n), .KX] _ (1). So, a conjuga-
tion of two elements should be performed by an element of A n N(S).
But q, ~, and qn are representatives of N~(~S)-classes. Assume now
that m(Q) &#x3E; 1. If g is conjugate to an element q’ of QS, then-by
the structure of A-we may assume that q’ lies in Q(n). We have
Q(n) C Z(QS) ; note that Qi(Q) S = QS. Application of (1.6) yields that
q - q’ holds in N(A). But N(A) = AKX, and so, we must have

q=g’.
Let i be an involution of S and let for some g E G. We

may assume m(Q) &#x3E; 1. There are elements such that 2ga, ib
lie in Z(Q~S). Application of (1.6) yields that iga and ib are

conjugate in N(A) ; let c be the conjugating element of N(A) with
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iua = ibc. Obviously, il" lies in A, and so, iuaE A. It follows 
Assume By (1.6) this conjugation is

performed by an element of N(A). But N(A) = AKX, and so, the
conjugation is done by an element of A. Since ~, qn lie in

Z(~S), the conjugation is done by an element of N(S) n A. But this
is not the case. The element q is not conjugate to any element dif-
ferent from g in Q~S. Application of a well-known result of Glauber-
man yields QS c X.

(1.8) LEMMA. Let y with y e Then, q is not

conjugate to an element of QSy.

PROOF. Assume z for z E QSy. Let y = 99. From (1.5)
we get ?S1(CS(z)) = n&#x3E; and under rS. Let X E SyI2(Cs(z))
with 1 D Let Â be the unique standard-subgroup of C(z) ; note

Then, Q ~ Q,
~S’ ~ s, and z~ = Q r~ ~S’~ ~ Further, = 1 ~~ Since ~~ _

we Since z s Rz and we get a
contradiction to (1.7). In the case y one arrives at a contradic-
tion in the same way. The lemma is proved.

(1.9) LEMMA. The case X = does not occur.

PROOF. Assume by way of contradiction that X = Since
we get from (1.7) and a result of Glauberman that q is

conjugate to an involution z of We know that Cs(x) = ~~, ~, ~~
and that

holds under S.
Let X E with Cx(z) ç X . Define Q, ~S’, and Â as in (1.8).

Then, 2, and so, ~n, qi) (1~. Assume that n lies
in Then, we get R E /§ from (1.7), and we know that z ~ zn. How-
ever, this contradicts (1.7) as z&#x3E; = Q n S. If qui or qRt is in 
then we get the same contradiction, since (gr, and by (1.7).

(1.10) LEMMA. Under the assumptions of the theorem the case
Q does not occur.

PROOF. Application of (1.7), (1.8), (1.9) and a result of Glauberman
yields that X = x~, and that q is conjugate to an involution z
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of QSM. We know that q is not conjugate to an involution of Q8cp U
U We have 7:fP = 7:fP" = [cp, MI E Q.

Let Q, ~S’, X, and Â be the subgroups of C(z) defined as in (1.8).
Then, (z) = /$ r1 /§ and XjQS is a four-group. We know that Cs(z) =
- ~~, n, z~ and that z ~ nz - gnrz holds under the action of S.
As z is isolated in we see as above that n, qT, QS.

If T Í then ~~S’~q, z~ = X and n E QSq U Q~~, since 
Q,9. If r E then, as we must have 7: E If in

addition n e then we would obtain E QS which is not the

case. Hence we have to handle the following two possibilities:

Suppose that X = i) and n E Then, qn E Since

qn we get qn E S. The G-fusion of the involutions
of QS yields i by (1. 7 ) . Consider in Si. We know
that q - z - holds in G. It follows qnr - T.

Since Sy with y E me contains at most two G-classes of in-

volutions, we get under ~S’. Using the structure of NA(S), we
get gn - nr - i qr. It follows in G, against (1.7 ) .

Suppose now that X = r) and n e Then, nr e and

so, nr E S. Consider the set (z, nr)qz in Sqi. We know that qrz -
- z and q ~ qr. Hence, qr - qrz - qR. Since in z, nr)gr
there are at most two G-classes of involutions, we derive qr - qn.
However, n is conjugate to qi via a 3-element in NA(S), and this
gives a contradiction. ,

Finally, we handle the case (b). Here, we have 
and T E Thus, z E ~S’. Consider the set ~z, which lies in 

We know that q, and gn - ~c. Hence,
in ~z, r)qn we have three G-classes of involutions against the fact
that in there are at most two G-classes of involutions. This final
contradiction proves the lemma.

2. The case 

(2.1) properties of subgroups o f N(A).

We are interested in the possible structures for S. Set t~
With t2 = q and = (t, yr~ T, p, À, 1, 8).
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We put

where ce, E {0~ 1} and t-1 = t3. If 8 E 8, then o(s) = o(sq) if
s ~ q. We replace by nr and by 7: without changing the
defining relations of S. Interchanging t and t-1 if necessary, we may
put [p, ~] = tn. Thus, we get:

where ce E {0, 1}. Furthermore, we have the freedom to choose p, Â, ~,
and e to be involutions, since for each x G (p, Ã, ~, e} either o(x) = 2
or o(tx) = 2, y and the commutator relations given above remain un-
changed with tx in place of x.

There is an element g in which acts fixed-point-free
on S modulo t&#x3E; in the following way:

In fact, = Z(A)S(g). We have tn = Lu, Ç]ù [~,, ~] = 7:, and
so, @ gn2 = q~; this means that either o(n) = 4 and o(z) = 2, or
o(n) = 2 and o(-r) = 4. We compute:

thus = = z2, and so, = Í. One obtains two cases:

Put ~t, n, Z, p, ~,~ andR2 = (t, n, r, ~, 8). Then, S = 
Clearly, D(S) = S’ = ~t, ~, ~~. If ~S’ = D(S) = Z(S), then S would be
special, and hence, S’ would be elementary abelian, namely: Let

x, y E ~S; then [x, y] e Z(S) and [x, y]2 = = 1, since 
c D(S); hence every commutator of S has order 2 or 1 which implies
that S’ is elementary abelian. This is, however, not the case. Thus,
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Z(S) c t, ~c, ~~, and since g acts fixed-point-free on ~, z~, t~/~t~, we
get Z~S~ _ ~.

It follows that not both .Rl and R2 are abelian. We know that
ç (t, n, r) = ~2. Assume that Ri was abelian. Put R* -

We have and so, &#x26;2,(Rl) is elementary
abelian of order 25. From the Jordan-canonical-form of ~ and e on

we get ~»)I &#x3E;4. Since s = CS(I~1) «’, ~~, we see that

CRi(«, ~~) lies in Z(S). But Z(s) _ t~, and we have derived a
contradiction. Thus, (1~. Similarly, we get 1). It fol-
lows R’ 1 = = qi.

A subgroup of A involving A5 acts transitively on This

implies = Z(R2) _ ~.
Clearly, and so, we have Z(X) ç Q; note that Q is

cyclic by a result of Aschbacher. It follows that X E Syl2(G) as

C(q) s N(A).
Since an element of order 5 of A acts fixed-point-free on 

and since is elementary abelian, we deduce that Rl = ~t~ ~ E,
and .R2 = ~t~ ~ E2 , where Ei is extraspecial of order 25 and of type
~8~08~ here J, denotes the central product with amalgamated center
of at least one factor. Clearly, Ei possesses 10 off-central involution
and 20 elements of order 4. Thus, possesses 30 off-central involu-
tions and 30 off-central elements of order 4. The 2-rank of Ei is 2 as
the maximal abelian subgrups of Ei are of type (2, 4). Thus, the 2-rank
of Ri and of I~2 is equal to 3.

We know that tt2&#x3E;, t2 =q, does not possess a root in 

Hence, t has no root in ~S. Let i be an involution in QS. Then, i = us,
and s E S. We have 1 = i2== u2s2, and so, u-2 = = ~t~.

Since t has no root in ~’, we get u-2 = s2e ~q~. Since Q is cyclic
and t E Q, we have u E ~t~. It follows i = us E ~. From the struc-

ture of S f ollows i E .Rl U ~2 ’
Assume by way of contradiction that S had an elementary abelian

subgroup E of order 16. From the structure of Zg(4) we get that if x
is an element of ,RiB~t, ~, ~~, then Cs(x) ç Ri for i E {1, 2}. Since

the 2-rank of Ri is 3, we get for i E {1, 2}. Assume that
27. Then, RIE E rRl~~~, .l~l~~~~~. There is an involu-

tion such that We know that e E .R2. Since

Cs(e) C we get E ç and this is a contradiction. Similarly, one
sees that IR2EI = 2’ does not happen. Assume now that RiE = S
for i = 1 or i = 2. Then, there is an involution and so,

.E ~ Cs(e) ~ .R" ~ ~ i; again we arrived at a contradiction. We have
shown that the 2-rank of QS is precisely 3.
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(2.2) LEMMA. The S2-subgroup Q of I~ is cyclic, = t~ = Z(.Ri)
for i E {1, 2}. If i is an involution of then i is conjugate to
an involution of under A. The involutions of are conjugate
under S.

PROOF. We have to prove only the last assertion. If = 4,
then o(tn) = 2. Olearly, n - nq under .Ri, since .Ei is extraspecial.

(2.3) LEMMA. The case (c~) of (2.1) does not occur. Thus, we have
o(n) = 2~ o(r) = 4, and ~t, ~c, is of type (4, 2, 2).

PROOF. Put V = ~~, n, t1’), and assume that we are in case (a).
Since V = Z2 ( S) and Z( S) _ t~, we get = 2 2 ; note that
~t~ ~~ and ~t~ ~z~ are both normal in S and that t&#x3E;n contains
precisely two involutions; the last assertion is also true for 
Since V = t~ ~ n, with ~, tz~ ~ we get TT n Cs(V) = t&#x3E;,
and so, VCs(V) = S. But S/V is elementary abelian of order 16,
and SIV. Hence, = would be
elementary abelian against the structure of a S2-subgroup of -~3(4).

(2.4) LE&#x3E;rWA. The involutions of form a single conjugate
class. Further, n, does not contain involutions; here
and in what follows, we put V = q, n, Clearly, = 26.

PROOF. The first assertion follows from the fact that 
l’’J Z3(4) and that n - qn under Ri and .R2. Let x be an involution of
C,(V)BV. Then, is elementary abelian of order 16 against
the fact that the 2-rank of S is 3.

(2.5) LEMMA. We have

Further,

PROOF. We know that has exponent 4. The first assertion
follows from the fact that does not contain involutions and
that every involution of QS lies in -B. U.R2; note that ç 
- t, n, ~~. Clearly, 8/Cs(V) is elementary of order 4, and S and
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are g-invariant. The element g acts fixed-point-free on 
and so, A induces an automorphism group isomorphic to A4 of V.
Clearly, X normalizes V, Cs(V), S, and Z2(S) = ~t, n, T). If u E X,
then [q, m] = 1; and also [x, V] = 1, since the centralizer of m involves
a section of A isomorphic to A6, and we know that CS(x) S t, ~, tz~.
If y e then we get from the last section that 
Clearly, C(V) s C(q) = N(A) = gAX with g S C(V). Smce /
C(Y) is a subgroup of Za(2) which has no element of order 7, the
assertion of the lemma follows.

We want to get more information on the multiplication table
of S. Clearly, PÂ or ¡tÀt is an involution. Compute (,u~.~)2 --- n mod ~q~;
thus = 4. It follows that ,u~, ~~ or ,u7~t, ~~ is dihedral of
order 8 with center m ~q, We have shown that ~t, yr, liÂ,
~~ Hence, = t, ne tz, ~~.~ and

= ~t, n, tz, ~, and ICR¡(n)1 = 25 for 1 e {1, 2}. It follows nI’ =
= nÂ = ne = = qn. Further, since the 2-rank m(S) is equal
to 3, we get qtr = ti.

Compute: q = p] 1 [tz, ~,] = q, hence [r, ~,] = q; also 1 = [n,
p] = 1, hence [z, IÀ] = 1. Further, we have 1 = ~] 1

[r, ~~] = 1, and so, zt = qi. It follows t, n, tr, ¡tÀ, ¡tC, ~)
has order 27. Thus, 7t, t-r» = ~t, ~, tr, yÂe, = Cs(V), where
V = = q, ne tzi.

Put We summarize:

(2.6) LEMMA. We have the following relations for the generators
z, ,u, ~,, ~, ~ of S :

From the action of the outer automorphism group of the full
cover A* of L,(4) on one gets that our standard-subgroup A
possesses the « automorphism ». Put q’ = Lu, Â] and compute q’ =
= Lu, ~,] -~ [~, ~] = #. We want to determine under what conditions
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the elements IÀÂE and commute. Compute: 4.- ~
= = 

We get:

Thus, W is abelian of type (4, 4, 4) if oc = 0, and W’ = ~q~ if a = 1.

(2.8) LEMMA. Let y e with y E {99, m, If QSy contains
an involution y*, then there is an involution z in QSy conjugate to
y* under S which acts on S in the same way as y does.

PROOF. The assertion follows from the proof of [5; Lemma 3.1].

(2.9) Here, we shall study the situation of a subgroup IV of X
with y~- W.

If W is abelian, then W is of type (4, 4, 4); if W’~ 1~, then
W’= ~q~ and Z(W) _ ~t, n, ti) and £Zi( W) = (q, 7t, Note that

exp ( W) = 4. We denote by Y~ a subgroup of X isomorphic to W.
We assume first that W lies m QS. We know that S S,

and since QS/S is cyclic, we get SI;;;.25. Put W = S. We
assume that S. Then, there is an element us of order 4 of 
u e Q+ and s E SR. We compute: u4 = s-4 E S n Q = ~t~, and hence,
u4 = 8-4 = q as t has no root in S, since otherwise u4 = 1 and u E S.
Thus, o(u) = o(s) = 8. Since 1 rVI = 25 and exp (W) = 4, we get
|Ws&#x3E;|&#x3E;26; clearly, s centralizes and operates on W in the
same way as us does. If ¡W(8)B = 28, then W(8) = S, and Z(S) would
contain which is not cyclic. If T~s~ ~ = 2~, then, as 
lies in ZeW(8)), we get a contradiction to Z(S) = t~ by the Jordan-
canonical-form. Thus, we have = 26. If S, then

r1 W has order 24 , and from the structure of W, we see that the
intersection contains a four-group, which lies in the center of W(8)
and of W; note that the 2-rank of QS is 3 and that T~_= W. We get a
contradiction to Z(S) = t~. If = 27, then BW(8) f1 WI = 25
and contains an elementary abelian subgroup of order 8.
Thus, Ql( W) lies in and again we get a contradiction by
the Jordan-canonical-form. The case IW(8)WI = 26 is not possible
as exp ( W) = 4 and o(s) = 8. We have shown that y~ must lie in S.
But then 1 fp n WI ;;;.24, and hence, the center of S would not be cyclic.
It follows that if TV ç QS then W = W.
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Finally, we have to consider the case that ~~ lies in X but not
m QS. Remember that Thus, contains a sub-

group of type (2, 2, 4). Note that Ç; Z(Ir) and that _

= We know that must lie in 8 as XIQS is elementary
and S contains the involutions of QS. Put X* = X/Q, S* = SQIQ,
and y~* = WQ/Q. Then, &#x3E;24@ since exp ( T~) = 4, and also 18* n
r1 W*I &#x3E;2~. As n1(W) ç; S, we see that there is a four-group in S*n y~*
which is centralized by y~*. Let us assume first that X* = S* T~*
and = 4. Then, we get a contradiction, because-computing
in P(q~, x) e Syl, (aut (L3(4)))-we see that r1 C(s2x) is cyclic
for sl, s2 E P; note that m aut (L3(4)) we have c (n, z, ,uA, 
Cp(sx) Ç7 (AÇ, which is abelian of type (4, 4), and

note also that and that r, pâer, 
= Z2XQ8.

Now, we consider the case that = 2. From the struc-
ture of aut (L3(4)) we get that = is impossible, since
Cp(srpu) does not contain a four-group, but contains a four-

group in S*. Thus, either QS(rp) or QSy~ = QS(u).
Assume that = QS(u). We know that C(su) S (t, 11:, tr, ~~,

pÀJ) = W for s e S. Smce exp (X/QS) = 2, we see that S QS,
and so Ul(97) = There is u e Q, SES such that usz e IV,
and so, sx centralizes = elementary abelian group
of order 8. It follows W, and so, = g, n, 

Assume that QS Ù = Clearly, y~ r1 QS = 25. Since n

n QS)IS is contained in the cyclie group QSIS, and since =

= ç S, we get n SI ~2’; note that S(Y~ r1 n

S). Now, is centralized by an element vs99, where
v e Q, SES; hence is centralized by sy. We know that Cs(srp)
is contained m (t, 7r, tr, which group we denote by B. Also
we know that nl( W) lies in RI or R2 . Note that ti for any
s e S. Hence, SZl( y~) # SLl( W). We have IB n R,~ = 25, and so, 

ti) r’1 :&#x3E;22; it follows n = 4. From the struc-
ture of L,(4) follows that lies in Ri or R2. From the

symplectic structure of R. follows = 2¢; note that q E

E as the 2-rank of S is 3. We have derivecl IS n = 24. But

ISQ n Y~~ = 2b. Thus, there exists u e Q, s E S such that us e 
This implies U 1= ~t~. Since we have o(us) = 4, and we
know that s ER., i = 1 or 2, as [s, = (1). This implies s’= 1.
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But then u4 s4 = 1 imphes u4 = 1 and u e (t) which is not possible.
We have shown that in there is only one subgroup isomorpbic
to W, namely W itself. We summerize:

(2.10) LEMMA. Let Y~ be a subgroup of X isomorphic to W and
assume W =1=- W. Then W is not contained in QS, or 

The case 9S!!:: = x) is not possible. If QSy~ = then

(2.11) LEMMA. If q holds in G, then Jt - q holds in 

PROOF. Denote by J the intersection of all subgroups W of X
which are isomorphic to W. Then, &#x26;2,(-W) = Ql(Z(J)).

Assume that holds in G. Denote by XR a S2-subgroup of
which contains X r1 We have W S X r1 X". Thus, &#x26;2,(W)

is normalized by X and Xn, and so, as Z(X) is cychc, we get q - n
in X, Ç: N(Ql(W)),

(2.12) LEMMA. The case QS = X does not occur.

PROOF. Note that in QS there are only two N(A)-classes of involu-
tions with representatives q and By a result of Glauberman we

have g - Jt in G. From (2.11) we get that q and 7r are conjugate under
the action of N(&#x26;2,,(W». Since n has 6 conjugates under N(S), we
see that an element of order 7 of N(V)/C(V) acts fixed-point-free
on V. Thus, G induces Zg(2) on V, against = 4. The

lemma is proved.

(2.13) LEMMA. If cp, x, or ggx are present in X, then CS(cp) ç

PROOF. The assertion is a consequence of (1.4).

(2.14) LEMMA. Let q be conjugate to an involution z in XnQS.
If [t, z] = 1, then holds in G.

PROOF. Let g - z e XnQS and [t, z] = 1. Denote by 1 a S2-sub-
group of Ca(z) with Cx(z) ç X and by À the unique standard-sub-
group of C(z). Put X n Â = S and 1 n C(À) = Ç. We have z E
é Ç n Since elementary abelian and t E X, we get t2 = q E

and so q E S as o(g) = 2. Clearly, g 5~ z. It follows that g is

conjugate to 7r in G, since all involutions of ÂB~z~ are conjugate to Jt ;
note that q 6 /§ c À - A.
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(2.15) LEMMA. We have 991 = x] = [tu, x] = 1. Also oc = 0

if, and only if [t, 991 = 1; further oc = 1 if, and only if [t, x] = 1;
t-I always.

PROOF. Since the centrahzers ouf 99 and x involve La(2) and A5,
respectively, we see easily that and t2, R, tz) c Cs(x). Com-

Lu, C] q- [2, ÇJ] = [2, e][Â, C] E =t(tqaRt)E = tqaR; thus a = 0

if, and only if [t, ~] = 1. Compute further lui = [,u, Ç] # [~~, 2] =
= [~, 2]"[~, 2] = tnqH"; thus a = 1 if, and only if [t, x] = 1. Fmally,
we [,u, ~] # [1, p] = [,u, ~]-1= (tn)-l = and so, 
= t-1, since obviously cpx] = 1 as = 2 2.

(2.16) LEMMA. Let z be an involution of QSX which operates on S
m the same way as x does. If te = t-1, then all elements of q, n,
tz)z are conjugate.

PROOF. We prove the assertion by a series of computations :

thus

Hence,

Also,

Fmally,

ànd it follows

thus
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Here, B and y are suitable exponents ; the proof can also be done by
looking at the structure of Sg, z~.

(2.17) LEMMA. The case X = is not possible.

PROOF. By way of contradiction we assume X = As

always put V = (q, tz). We know that Q, x) centralizes V. Thus,
X/Cx(V) is a four-group and this implies that G does not induce L,(2)
on V. q in G.

We know that all involutions of are conjugate to ~c.

Hence, by a result of Glauberman, there is z E QSx such that z - q
in G and such that z operates in the same way as x does on S. Ap-
plication of (2.14) yields that [z, t] =1= 1 as Jt p q. Application of (2.15)
gives a = 0 as [t, 1.

Let 0, ~S, and Â as in the proof of (2.14). We have z c- r1 ~S.
Obviously, all involutions of are conjugate to R in G. We
have Cs(z) = CS(x) ? q, n, Thus, q, n) k X, and hence q, n) r1
n yS’ ~ 1). Clearly, q 1= Qg, since q ~ z yr in G. It follows
that R or qn lies in Qe. Application of (2.16) yields that z - Zn - zq3r.
But z~ or is in This would give which is not

possible. The lemma is proved.

(2.18) LEMMA. The case X = QS(ç) is not possible.

PROOF. We have = and IX:Cx(n)1 = 2; clearly,

pÇJ) c We know that W is the only subgroup of X isomorphic
to W.

CASE 1. The subgroup W is nonabelian. In that case, we have

W’= q~ and oc 1. Lemma (2.15) implies [t, q~] ~ 1.
Assume that - n. Consider and let X be in Syl2 

such that c X. Since W S X and since Î - X, we see that W
is the unique subgroup of X isomorphic to W. It follows that q and 7r
are conjugate inside N(W). But-as W’= is not possible.

g in G.

By a result of Glauberman there is an involution z in XBQS such
that z - q m G. We choose z so that z operates on S in the same way
as y does. Denote by X, ~, S, and Â subgroups of Ca(z) as in the
proof of (2.14). Clearly, all involutions of Ç8n(z) are conjugate to R 
in G. We have (q, n) S ç X. But q 0 Qg. Smce IX:QSI = 2,
we get that 71 or q~ lies in Ç8. Thus, ~z or qnz lies in Ç8n(z), and
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this imphes that Jtz or qJtz is conjugate to 7c in G. Compute zz =
= [Â, e]z = [,u, ~] = nz. It follows e = 7rz; but zt = zq, and so,

This is not possible as z p Jt holds in G.

CASE 2. The subgroup W is abelian. In that case we have a = 0.
Lemma (2.15) gives [t, 99] = 1.

We show that is normal m Na(X). Let x e N(X). Then,
x E N(A), and hence, x normalizes X n C(A) = Q. But 
and so, or Clearly, Cx(Jt) and this implies
x E We show further that q&#x3E; char Cx(n). Put G’ = C,(n);
note that X = and t, pÀ, 1) and that [t, ~] = 1 as
ce = 0. Obviously, ç Z(C), and Z(C) s Q7r&#x3E;. Hence, q~ char C.

We assume that holds in G. Let À be the unique standard-
subgroup of type L3(4) in Cg(n) and let X be in Syl2 (C(n)) such that

There is g’ m G such that and X°’= X. We have
-1 as a subgroup of index 2 in X. Since X e Syl2 (G), we may

apply a theorem of Burnside, and get = Cx(n)v for some

This implies g’e It follows [g’, q] = 1 against
qg’ = R. We have shown that R ~ q holds in G. A result of Glauberman
yelds the existence of an element z e with q - z in G. Applica-
tion of (2.14) yields q in G which is a contradiction. The lemma
is proved.

(2.19) LEMMA. Let z be an involution in whieh acts m the
same way as 92m on S. Then, Cs(z) _ q, or (g, and all
involutions of Sz are conjugate to z under S. Further, _

_ for some e e {O, 1}.
PROOF. From (2.13) we get Cs(z) S ~t, Note that tz = t-1

by (2.15). The coset t&#x3E;z consists of four involutions. Computing in
we have and so, Ipx has precisely 26 :23 = 23

conjugates under the action of P in Plpx. Thus, the number of conju-
gates of z under the action of S is at most 8 ~ 4 = 32. This forces

 25 which implies ICs(z)1 = 23. The lemma is proved.

(2.20) If X = QS(lpx), then W is abelian and G mduces
an automorphism group isomorphic to L3(2) on W.

PROOF. Assume that in G. Then, q - we assume

that z acts on S in the same way as Ipx does. Let X, À, ~S’, and Q be
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subgroups of Ca(z) as in the proof of (2.14). Then, 7r or q~ lies m 
and so, nz or q7cz is conjugate to R m G. Application of (2.19) gives
that z - But q - z, and we have got a contradiction. Hence,

holds in G. Now, W is the only subgroup of X isomorphic to W,
and = (q, n, Hence, q holds in NG(W). It follows

and the lemma is proved, since -W’= (q) cannot
happen.

(2.21) LEMMA. Let X = u) and ce = 0. q in G, then q
is not conjugate to an involution of QSx.

PROOF. Assume that we choose z so that it operates
on S as m does. Application of (2.15) yields that [t, z] ~ 1. We have
Cs(z) = q, n, Lemma ~2.16) says that all involutions of Vz are

conjugate to z. Denote by Z~, §, ~, and À subgroups of CQ(z) as in
the proof of (2.14). Since = 4, we have (q, n, ti) r1 =

= Y r1 ,S’ # 1&#x3E;. Let x be a nontrivial element of that intersection.

Then, z - zx - q. Since Q f1 ~S contains z, we have zoe - ~. But this
is against the assumption of the lemma.

(2.22) LEMMA. Let X = x) and ce = 0. If q is conjugate
to an involution z of QS99, then q holds in G.

PROOF. From (2.15) we get [t, 9)] = 1. Application of (2.14) yelds
the assertion.

(2.23) LEMMA. Let X = QS(g;, u) and 0:: = 0. Then, n - q in

No(V).

PROOF. By way of contradiction assume that q i, n in G. By a
result of Glauberman, q ·r z for z in Q899, QSx, or Application
of (2.21) and (2.22) yelds that We get from (2.19) that
z Let Â, X, ~, and ~S’ be subgroups of C(z) as in the proof
of (2.14). We get = (qen) ç,~, Thus, in G. This

implies z - q which is against the assumption. The assertion is
now a consequence of (2.11).

(2.24) LEMMA. Let X = u) and x = 0. Then, Q = ~t~ and
= 210.

PROOF. We know that holds in N(V). Thus, 
- L3(2). Since C(V) S C(q), we get that is a S2-subgroup of

C(V). Clearly, QW(x) is nonabelian, and since QW is abelian, we
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get Z(QW~x)) c QW. Now, Y lies m and since the

2-rank of QS is 3, we get V = Denote by uw an
element of with u E Q, w E W, and o(uw) = 4. Then, U4W4 = 1
which implies u4 = 1, and this means u c- t&#x3E;. Thus, = V =

= (g, Jt, tz) = Z(WQ~x~). We have 2n24 . Assume there were

a subgroup Q*W* in QW(x) isomorphic to QW and different from

QW. Then, (QW)(Q*W*) = and QW r1 Q*W* has order 2"23

and would be contamed m the center of it would follow n = 0

which is not the case. Thus, QW is umque m By the Frat-
tm-argument, N(V) induces an automorphism a of order 7 of QW(x)
which acts fixed-point-free on V, thus has no figed-pomts on QW
as S21(QW) = (g, Jt, This implies that QW is homocyclie, and so,
Q ç y~, The lemma is proved.

(2.25) LEMMA. If a = 0, then the case X = QS(q;, x) is not possible.

PROOF. We have Cx(Y) = Wx~. Since n - q holds m N(V), we
have N(Y)/C(V) -L3(2). Clearly, E Byl2 (C(V)). Smce Cw(x) =
= V, we see that W is the only subgroup of W(x) of its type. We
have N(V). Now, C(V) = (0 X W)(,,). Denote by 17V a sub-
group of C(Y) isomorphic to W and assume W ~ W. Then, (0 X
X = C( V ) . Since we get that WW is a group of order
2’, and so, = 25. But then, a S2-subgroup of C(V) would
have a center of order greater than 8 which is not the case. Hence,
in C(V) the subroup W is umque. It follows that N(V) c N(W), and
hence, N(Y) = N(W). By Frattim’s argument there is an automor-
phism a of order 7 of induced by an element of N(V) which
acts fixed-point-free on V. Hence, C(a) n W~x~ _ (z) has order 2.
Since C(o) n W = 1&#x3E;, we get = W(z). It follows z e Sx.

Clearly, all involutions of W are conjugate in N(V). From the struc-
ture of X we get that X/W is a direct product of (Wx) and a
dihedral group of order 8. Thus, N(W)IC(-W) is isomorphic to L3(2) X Z2’

Denote by N* the subgroup of index 2 of N(W) which contains
C(W) such that N*/C(W) -L3(2). Put X* = X n N*. Then, X* n
m S J W. Note that the involutions of N*/C(W) are all conjugate
in that factor group. Let s be an mvolution of (S r1 X*)BW. If x

is any involution of X*BW, then sC(W)~xC(W) m N*IC(W). We
have sC(W) = s(W X 0) S S X 0; so all involutions of sC(W) are con-
jugate q in G. It follows that all involutions of X* are conju-
gate to q m G; as a matter of fact, S’ lies in X* as S is normalized
by g. Note that X* is a maximal subgroup of X. A transfer lemma
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of J. G. Thompson gives z - q in G. The last statement produces a
contradiction in the following way. In the normalizer of Y in G there
is an element (1’ which centralizes z and conjugates all the elements
of Y~. It follows that z~ XQl(W) lies in the unique standard-sub-
group Az of C(z). Thus, the 2-rank of ,S’ would be 4 which is a

contradiction. The lemma is proved.

(2.26) LEMMA. The case X = QS(rp, x&#x3E; and oc = 1 is not possible.

PROOF. Assume by way of contradiction that in G. Then,
q ~ R holds in N(V). We have C(V) = (QW(x»O, where 0 = O(N(A)).
From Frattini’s argument we get = O(N(QWx~) n N(V)). Since
[0, Y] _ 1 ~, we see that q,....., n happens in N(QWx~). However,
t e Z(Q W(x)) S (Q, n, tT), and therefore q~ char It follows
that q p n holds in G.

From Glauberman’s result we get that q is conjugate to an involu-
tion z in J0.....QS. From (2.14) we get that QSx, since [t, x] = 1.
Assume that z E We assume also that z acts in the same way
omS’ as çx does. Application of (2.19) yields that all involutions of Sz
are conjugate to z. We have = for some e e {0,1}.
Clearly, G In C(z) we choose À, 9, and Î as usual. Then,

We have and so, znqe - 7r in G. However, znqe
lies in Sz and is an involution. Thus, z - 7t, against q - z and
q p TT.

We have still to treat the case that q - z e osç. Denote again
by Â, iq, Î, Q the usual subgroups of C(z). We have =

= as t9l = t-1. Thus, It follows z," q
in G. Now, z and are involutions of Sz. We may assume that z
acts in the same way on 8 as 99 does. Compute: zz = Lu, ~]z = Lu, ~] =
= It follows but zt = zq, and so,

This is not possible as in G.
We are left with the situation of (2.20). We have yY’= 1~, and W

is the only subgroup of its type in X = Now, N(W)fC(W) =
= L3(2) and C(W) = where 0 =O(N(A)). Since N(W) operates
transitively on Q1(W) = V, we see that |Q|  4 as q&#x3E; is not charac-
teristic in WQ. It follows X= Clearly, N(W)/0 is a non-

splitting extension of an abelian group of type (4, 4, 4) by L3(2). By a
result of Alperin, we see that X is isomorphic to a S2-subgroup of
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O’Nan’s simple group. This is enough to get G ~ O’N; but we may
invoke a result of G. Stroth [6] to identify G with O’N.

The theorem is proved.
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