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Essentially Indecomposable Modules Over
a Complete Discrete Valuation Ring.

B. GOLDSMITH (*)

1. Introduction.

Torsion-free modules over a complete discrete valuation ring R
are markedly different from abelian groups or modules over an in-
complete discrete valuation ring in that the only indecomposable
modules which exist have rank 1 and so are isomorphic to R itself
or the field, Q, of fractions of 1~ ([7], p. 45). In this paper we inves-

tigate how close a reduced torsion-free R-module of infinite rank can
come to being indecomposable. In particular we establish in § 4 the
existence of essentially indecomposable modules with basic submodules
of countable rank. The results here bear a strong resemblance to
results on p-groups ([2], [5], [9] and [10]). Notation follows the stand-

ard works of Fuchs [3], [4] while set-theoretic concepts, y which are
kept to a minimum, may be found in Jech [6].

2. Maximal pure submodules.

Let .R denote a complete discrete valuation ring of cardinality v
with unique prime p. For an infinite cardinal ~ we let S;. (or just S
if no ambiguity is possible) denote a free .R-module of rank A. Cle-

arly SA is not complete in the p-adic topology and we denote its

completion by 8a (or just ~) .

(*) Indirizzo dell’A.: Dublin Institute of Technology, Dublin 8, Ireland
and Dublin Institute for Advanced Studies, Dublin 4, Ireland.
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DEFINITION. A R-module X is said to be a maximal pure sub-

module of the complete R-module ~§ if X is a pure submodule of ~S
containing S and the field of fractions of I~. We remark

that if X is a maximal pure submodule of S then for any x e 8%X,
we have ~S’ == X, .x~* .

LEMMA 2.1. If G and X are pure submodules of S containing
then if and only if there is an automorphism 6 of S with
GO = K.

PROOF. The sufficiency is clear, we establish necessity . Let q be
an isomorphism from G onto K. Then o extends uniquely to an endo-
morphism §3 of ~S. Similarly if y is the inverse of q, it extends to an
endomorphism y of 8. However since G and IT are dense subsets
of the Hausdorff space S, it follows easily that §3§J and §J§3 act as the
identity on 8. Thus 0 = ~ is the required automorphism.

Before examining the endomorphism rings of maximal pure sub-
modules of Ag, we introduce the concept of an inessential endomorphism
(cf. [5]). Let X be a pure submodule of S containing S, then, as we
noted in the proof of Lemma 2.1, any endomorphism 99 of X has a
unique extension ~ to an endomorphism of /§. We define an endo-
morphism of X to be inessential if its unique extension to ~S’ maps ~S
into X. It is easily seen that the difference of two inessential endo-
morphisms is inessential while the composition of tw o endomorphisms
is inessential when either factor is inessential. Thus the inessential

endomorphisms of X form a two-sided ideal in the endomorphism
ring E(X) of X.

THEOREM 2.2. For any infinite cardinal A, there exists an R-module
G, with basic submodule of rank h, such that E(G) is the ring split
extension of R by I(G),

PROOF. Let S be a free R-module of rank A and let G be any
maximal pure submodule of S. Clearly S is basic in G. We may

identify E(G) as a subring of E(8) by identifying each endomorphism P
in E(G) with its unique extension P in E(S). With this identification
I(G) is a left ideal of .E(~).

Pick x E Then for arbitrary T in E(G) we must have q(x’) -
- tx + g, some q, t E R, g E G. Since every element of .R is a product
of a power of p and a unit, there is no loss in generality in supposing
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q = pr, t = ps. We consider two cases:

In this case pr(z§3 - = g. The purity of G in 9 implies that
ps-r1 ) belongs to G. Since G is invariant ps-rl and

G, x~* _ 8, it is clear that - p s-r 1 ) is contained in G. Thus

I(G) and so E( G) _ .R + I(G).

We show that this case cannot arise. As before we can show that
E G and deduce that pr-S§3 -1 E I (G) . Suppose pr-S§3 -

-1 = 0, where 0 E I(G). Since r &#x3E; s, belongs to the Jacobson
radical of (see [8]) and this forces 0 to be a unit in E(8). How-
ever since G is certainly not a homomorphic image of 9, I(G) is a

proper left ideal of which contains a unit-contradiction. So
case (ii) does not arise.

Since G is pure in 8, R n I (G) = 0 and qua’ modules, .E(G) _ .R ~+
However this is clearly a ring split extension also and we

have established the result.

3. Essentially-rigid systems of R-modules.

As we noted in the introduction indecomposable .R-modules have
rank 1 whereas indecomposable abelian groups of arbitrary large rank
exist [11]. One useful tool in the investigation of indecomposable
abelian groups was the concept of a rigid system of groups (see [4],
§ 88). In this section we define and explore an analagous concept
for R-modules.

We extend the concept of inessential to homomorphisms between
different reduced torsion-free R-modules by defining ==

= where P denotes the unique extension
of 99 to a 0l;.

DEFINITION. A family (j E J) of reduced torsion-free R-modules
is said to be essentially rigid if

for all i, j E J.
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Suppose throughout this section that 1~ is a complete discrete

valuation ring of cardinality v and h is an infinite cardinal satisfying
p = ~,~° = 21 and For an infinite cardinal (1, let (1+ denote the

successor of or. We can now state the main result of this section.

THEOREM 3.1. If 2 is an infinite cardinal with the property that
p = Amo = 21 and R is a complete discrete valuation ring of cardinality

then there exists an essentially-rigid family of R-modules having
p+ members.

REMARK. (i) By assuming G.C.H. we may, of course replace ft+
by 2 ~.

(ii) Cardinals of the form 2 do exist for values of 2

other than A - ~o e.g. assuming G.C.H., any cardinal of cofinality
~o will do.

LEMMA 3.2. Let V be a vector space of dimension a, an infinite

cardinal, over a field. Let fwil (i  ~) be a family of subspaces of V
indexed by the cardinal B  a, such that dim Wi = a for all i  fl.
Then there exist a+ subspaces {U} of V such that each subspace U
is of codimension 1 in V and no subspace is contained in any
subspacc U.

PROOF. By a result of Beaumont and Pierce (Ll]), Lemma 5.2)
there exists at least one such subspace, Uo say. Suppose that the
subspaces {Ui} (i  Z) have been constructed Then the

set of subspaces consisting of the given Wi together with the con-
structed subspaces Ui constitutes a family of at most a subspaces
each of dimension a. Applying Beaumont and Pierce’s result to this
family yields another subspace of codimension 1. Call this subspace
U~ . The result follows easily by transfinite induction.

LEMMA 3.3. If S is free of rank h then there exist p+ maximal
pure submodules of ~S with the property that none of them contains a
submodule isomorphic to 8.

PROOF. Since is free of - max But v p
implies that So 9/S is a Q-vector space
of dimension n = lN0. Now let (k E iT) be the collection of sub-
modules of 9 which are isomorphic to ~S’. Each of these submodules
is determined by an endomorphism of ~S. However each endomorphism
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of l# is completely determined by its action on S which has rank A,
so _ 11/’ - (21)1 = 2A = it. Hence (k E K) is a family of
at most It submodules of 8. 

_

Let Wk = 8)*18. Then (k is a family of at

most u subspaces of the Q-vector space which has dimension It.
Since it folloTv-s that each has di -

mension ,u. By Lemma 3.2 we can find p+ subspaces U such that
no Wk is contained in any U and, moreover, each U has codimen-
sion 1 in 818. If G is a submodule of 8 with GI8 = U, then G is a
maximal pure submodule of /S and clearly no Wk is contained in any G.
Thus w e have constructed the required family of u+ maximal pure
submodules.

Let 9), denote the collection of all maximal pure submodules of 8¡.
which do not contain an isomorphic copy of 9,z.

LEMMA 3.4. If (a  ~) is a subset of ga and Ifll then there

exist fl+ submodules G in such that Hom G) = for all

aB.

PROOF. The proof is similar to that of Lemma 3.3. Suppose {Wai}
denotes the set of endomorphic images of Ga which have rank p. Then
for each a, the set is of cardinality at most p. Since 

the union of all such collections is a set of at most p submodules of /?.
Call this set ‘LU. Now let ‘l~ denote the set of endomorphic images
of Aq which are isomorphic to ~S. Then i0 U ‘l~ is a collection of at
most p submodules say U u 9Y - (Xz) (i _ ,u) . Note that each

Xi has rank p. Set Xi = ~Xi -+- then (i  _,u) is a collec
tion of p subspaces of the Q-vector space 818 and each X has dimen--
sion p. By Lemma 3.2 there exist u+ maximal subspaces U such that
no Xi is contained in a U. Choose a maximal pure submodule G
such that U. Clearly 

Now consider Hom (Ga, G) for any el. If cp: Ga -~- G is not ines-
sential then Ker ~ is contained in Ga which forces Ker ~ to have rank
less than p. But then Im G«/Ker 99 is an endomorphic image of
Ga of rank p and is contained in G-contradiction. So we conclude

that Hom (Ga, G) = for each «.

LEMMA 3.5. Given any maximal pure submodule G of there

are at most p maximal pure submodules G of 8;. for which Hom 
G) =F 1i(G).
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PROOF. Suppose there exists a family (Gz) (i E J) of more than p
submodules. For each pick a homomorphism Then

is a family of more than p endomorphisms of ga. Since

IE(SJ.) _ ,u, we must for some i -=F- j E J. But then

Thus Ti is inessential-contradiction. This establishes the lemma.

PROOF OF THEOREM 3.1. Choose Go to be any member of 9A. Sup-
pose the essentially-rigid family (a  ~8) has been constructed

for fl  /-l+. By Lemma 3.4 there exist It+ maximal pure submodules G
such that Hom (Ga, G) = Ia(G). However for each there are,

by Lemma 3.5, at most p of these submodules G for which Horn (G,
G«) # I(Ga). Then deleting all such submodules G deletes at most /-l
submodules from the original collection So there exists
G e tlli with Hom (G, Ga) = and Hom (Ga, G) = Ia(G) for all «  fl.
Set G~ = G. Then the family is essentially-rigid. The

proof is completed by transfinite induction.

4. Essentially-indecomposable modules.

In this section we show that a slightly stronger result than The-
orem 3.1 can be deduced and apply this new result to the construc-
tion of essentially indecomposable modules.

We shall use the term basic rank of a homomorphism to denote
the rank of a basic submodule of the image of the homomorphism.

DEFINITION. If S is a free .R-module of infinite rank A and X
is a pure submodule of ~S containing S, then we define

and ~ has basic rank  A)

Clearly la(X) is an ideal in E(X).

THEOREM 4.1. If R is a complete discrete valuation ring of car-
dinality v and A is an infinite cardinal such that p = ÂNo = 2l and

then there exists a family of y+ R-modules such
that
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(i) for each j E J, E(Gj) = RQ 1;.(Gj);

(ii) for distinct j, k E J, every homomorphism Gi ~ Gk is ines-
sential and has basic rank less than A

PROOF. This stronge result comes by observing in the proof of
Theorem 3.1 that all of the modules constructed actually belong to
, . Since the image of an inessential homomorphism is complete, it
must be the completion of a free module of rank less than A. This

gives the desired result.
Recall that Eo(G) denotes the ideal of E(G) consisting of all endo-

morphisms of finite rank.

COROLLARY 4.2 (G.C.H.). If R is a complete discrete valuation

ring of cardinality 2No, then there exists a family of 22No 1-~ modules

( j E J) each with basic submodules of rank No such that

(i) for E(Gj) = RQ+ E,,(Gj);

(ii) for distinct j, k E J, every homomorphism G~ - G, has finite
rank.

PROOF. Since 2No, we see that 2 - No sat-
isfies the cardinality requirements of Theorem 4.1. However if a

homomorphism from Gi has finite basic rank then it clearly also has
finite rank. The result now follows from Theorem 4.1 and G.C.H.

DEFINITION. If 2 is an infinite cardinal we say that a reduced
torsion-free R-module G is h-essentially indecomposable if in any

decomposition G = one of A, B is the completion of a free
module of rank less then }~.

In the case A _ No we are requiring that in any direct decomposi-
tion one of the summands is complete of finite rank. A module with
this property is said to be essentially indecomposable (cf. essentially
indecomposable p-groups, [9], § 15).

The existence of h-essentially indecomposable modules follows rath-
er easily from Theorem 4.1 in the case ~,~° = 2A. For if G is one of

the modules constructed in Theorem 4.1 and we have a decomposition
G = B with associated projections 11:l and ~z2, then one of 11:1’ ~c2

belongs to since the quotient is a domain. If n1 E
E then clearly A is the completion of a free R-module of rank
less then A. In particular if ~, _ No we have established the existence
of ° 

essentially indecomposable R-modules for any complete dis-

crete valuation ring .R of cardinality 2m-.
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We conclude this section by constructing an essentially indecom-
posable module which is not a maximal pure submodule of a complete
module.

PROPOSITION 4.3. If 1~ is a complete discrete valuation ring of
cardinality 2m- and S is a free R-Inodule of countably infinite rank,
then there exists a pure submodule H of ~S containing S with 
~Q@Q and such that E(H) _ .R (D Eo(H).

PROOF. Choose distinct maximal pure submodules G and Gl belong-
ing to the family constructed in Corollary 4.2. Set 

Clearly and both inclusions are pure. Also 

Let ~S = H, x, ~~* where G = H, x~* and G1= H, y~* . Let 99 be

any endomorphism of H. Then as in the proof of Theorem 2.2 ive

may write

where q, a, B, Y, d E R and h,,, H.

Now 1 and so maps G into G,. From the

properties of G and G1 we conclude that a1 is an inessential

endomorphism. It follows as in the proof of Theorem 2.2, that ØIG
belongs to Hence w e can write q = r + 0 where 
0 E l(G,). But then 0 E E(H) r1 I(G1) = E(H) n Eo(H). So

T E .R Q+ Eo(H) and E(H) ~ 1~ Q+ Eo(H). The reverse inequality is clearly
true so E(H) = R 0 E(H).
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