RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

PIERMARCO CANNARSA

On a maximum principle for elliptic systems with constant coefficients

Rendiconti del Seminario Matematico della Università di Padova, tome 64 (1981), p. 77-84

http://www.numdam.org/item?id=RSMUP_1981__64__77_0

© Rendiconti del Seminario Matematico della Università di Padova, 1981, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On a Maximum Principle for Elliptic Systems with Constant Coefficients.

PIERMARCO CANNARSA (*)

1. Introduction.

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set and let N be a positive integer. Let $(|)_N$, $\| \|_N$ be the scalar product and the norm in \mathbb{R}^N (1). We set $D_i = \partial/\partial x_i$, i = 1, ..., n.

Let $H^1(\Omega, \mathbb{R}^N)$ be the usual Sobolev space of vectors $u: \Omega \to \mathbb{R}^N$ with norm

(1.1)
$$\|u\|_{H^1(\Omega,R^N)} = \left\{ \int_{\Omega} \|u\|^2 dx + \int_{\Omega} \int_{i=1}^n \|D_i u\|^2 dx \right\}^{\frac{1}{2}}$$

and let $H_0^1(\Omega, \mathbb{R}^N)$ be the closure of $C_0^{\infty}(\Omega, \mathbb{R}^N)$ with respect to norm (1.1).

Let $L^{2,\lambda}(\Omega, \mathbb{R}^{N})$, $0 < \lambda < n$, be the Banach space defined as follows

$$L^{2,\lambda}(\Omega,\,R^{\scriptscriptstyle N})=\left\{u\in L^2(\Omega,\,R^{\scriptscriptstyle N})\colon \|u\|_{L^{2,\lambda}(\Omega,R^{\scriptscriptstyle N})}^2=\sup_{\substack{arrho>0\xi \in \overline{\Omega}}}arrho^{-\lambda}\int\limits_{B(x,arrho)\cap\,\Omega}\|u\|^2\,dy<+\infty
ight\}$$

(here
$$B(x, \varrho) = \{y \in \mathbb{R}^n : ||x - y|| < \varrho\}$$
) and

$$H^{1,(\lambda)}(\varOmega,\,R^{\scriptscriptstyle N})=\{u\in H^1(\varOmega,\,R^{\scriptscriptstyle N})\colon D_iu\in L^{2,\lambda}(\varOmega,\,R^{\scriptscriptstyle N}),\,1\leqslant i\leqslant n\}$$

- (*) Indirizzo dell'A.: Scuola Normale Superiore Piazza dei Cavalieri 7 56100 Pisa.
 - (1) We shall often omit the subscript N and write simply (|), ||||.

 $H^{1,(\lambda)}(\Omega, \mathbb{R}^N)$ is a Banach space with norm

$$\|u\|_{H^{1,(\lambda)}(\Omega,R^N)} = \|u\|_{L^{2}(\Omega,R^N)} + \sum_{i=1}^{n} \|D_i u\|_{L^{2,\lambda}(\Omega,R^N)}.$$

Let $A_{ij}(x)$ (i, j = 1, ..., n) be $N \times N$ matrices satisfying the ellipticity condition

(1.2)
$$\sum_{i,j=1}^{n} \xi_{i} \xi_{j} (A_{ij}(x) \eta | \eta)_{N} \geqslant \nu \|\xi\|_{n}^{2} \|\eta\|_{N}^{2}, \quad \nu > 0,$$
$$\forall x \in \overline{\Omega}, \ \forall \xi \in \mathbb{R}^{n}, \ \forall \eta \in \mathbb{R}^{N}.$$

The following regularity theorem is proved in [1] (2)

THEOREM 1.I. Let $\Omega \subset\subset R^n$ be a C^1 (3) open set, $u \in H^{1,(\lambda)}(\Omega, R^N)$, $f_i \in L^{2,\lambda}(\Omega, R^N)$ ($0 < \lambda < n$, i = 1, ..., n) and let A_i , be continuous in $\overline{\Omega}$ and satisfy (1.2). Then, if v is the solution of Dirichlet problem

$$(1.3) \quad \left\{ \begin{array}{l} v-u \in H^1_0(\Omega,\,R^{\scriptscriptstyle N}) \;, \\ \\ \int\limits_{\Omega} \sum\limits_{i,j=1}^n \left(A_{ij}(x)D_jv|D_i\varphi\right)\,dx = \int\limits_{\Omega} \sum\limits_{i=1}^n (f_i|D_i\varphi)\,dx \qquad \, \forall \varphi \in H^1_0(\Omega,\,R^{\scriptscriptstyle N}) \;, \end{array} \right.$$

v belongs to $H^{1,(\lambda)}(\Omega, \mathbb{R}^{\mathbb{N}})$ and

$$(1.4) ||v||_{H^{1,(\lambda)}(\Omega,R^N)} \leq C_1 \left\{ \sum_{i=1}^n ||f_i||_{L^{1,\lambda}(\Omega,R^N)} + ||u||_{H^{1,(\lambda)}(\Omega,R^N)} \right\}.$$

In this paper we prove a more specific regularity result which can be summarized as follows

THEOREM 1.II. Let $\Omega \subset\subset R^n$ be a C^1 convex (4) open set, let u belong to $H^{1,(n-2)}\cap L^{\infty}(\Omega,R^N)$ and let A^0_{ij} be $N\times N$ constant matrices satisfying

- (2) In [1] the result is stated in the case of only one equation; it is known that it holds unchanged in the case of systems.
- (3) We say that a bounded open set $\Omega \subset \mathbb{R}^n$ is of class C^1 if for every point $x_0 \in \partial \Omega$ we can find an open neighbourhood $\Omega(x^0)$ and a C^1 homeomorfism $x \to \phi(x)$ which maps $\overline{\Omega(x^0)}$ onto $\overline{B(0,1)}$, $\Omega(x^0) \cap \Omega$ onto the set $\{x \in B(0,1): x_n > 0\}$ and $\Omega(x^0) \cap \partial \Omega$ onto $\{x \in B(0,1): x_n = 0\}$.
 - (4) The hypothesis that Ω is convex may be eliminated.

(1.2). Then, if v is the solution of Dirichlet problem

$$(1.5) \qquad \left\{ \begin{array}{l} v - u \in H^1_0(\Omega, R^N) \;, \\ \\ \int_{\Omega} \sum_{i,j=1}^n (A^0_{ij} D_j v | D_i \varphi) \; dx = 0 \qquad \quad \forall \varphi \in H^1_0(\Omega, R^N) \;, \end{array} \right.$$

v belongs to $H^{1,(n-2)} \cap L^{\infty}(\Omega, \mathbb{R}^N)$ and

$$(1.6) \qquad \sup_{\varOmega} \|v\| \, + \sum_{i=1}^n \|D_i v\|_{L^{\mathbf{2},n-\mathbf{2}}(\varOmega,R^N)} \leqslant C_2 \Big\{ \sup_{\varOmega} \|u\| \, + \sum_{i=1}^n \|D_i u\|_{L^{\mathbf{2},n-\mathbf{2}}(\varOmega,R^N)} \Big\} \, .$$

A trivial consequence of theorem 1.II is the following maximum principle

THEOREM 1.III. Let $\Omega \subset \Lambda \subset \mathbb{R}^n$, be two open sets and let Ω be convex (4) and of class C^1 . Let $u \in H^1 \cap L^{\infty}(\Lambda, \mathbb{R}^N)$ be such that

(1.7)
$$D_{i}u \in L^{2,n-2}(\Omega, R^{N}) , \quad 1 \leqslant i \leqslant n ,$$

$$\sum_{i=1}^{n} \|D_{i}u\|_{L^{2,n-2}(\Omega, R^{N})} \leqslant C_{3} \sup_{A} \|u\| .$$

Then, if v is the solution of Dirichlet problem (1.5), v verifies the following inequality

(1.8)
$$\sup_{C} \|v\| \leqslant C_4 \sup_{A} \|u\|.$$

Property (1.7) is quite usual in the study of nonlinear elliptic systems; consider, for example, the following problem.

Let $A_{ij}(x, w)$ (i, j = 1, ..., n) be $N \times N$ bounded continuous matrices defined in $\overline{A} \times R^N$, satisfying the following ellipticity condition

(1.9)
$$\sum_{i,j=1}^{n} (A_{ij}(x, w) \xi^{j} | \xi^{i}) \geqslant \nu(K) \sum_{i=1}^{n} \| \xi^{i} \|^{2}, \quad \nu > 0,$$

$$\forall (x, w) \in \overline{A} \times \{ \| w \| \leqslant K \}, \ \forall \xi^{1}, ..., \xi^{n} \in R^{N}.$$

Let $f: \Lambda \times R^{N} \times R^{NN} \to R^{N}$ be measurable in $x \in \Lambda$ and continuous

in (w, p); suppose also that f has quadratic growth

(1.10)
$$||f(x, w, p)||_{N} \leq a(K) ||p||_{n\mathbb{N}}^{2} + b(K) ,$$

$$\forall (x, w, p) \in \Lambda \times \{||w|| \leq K\} \times R^{nN} .$$

Finally, let Dw denote the vector $(D_1w|...|D_nw)$ of R^{nN} .

It is then known ([3]) that every solution $u \in H^1 \cap L^{\infty}(\Lambda, \mathbb{R}^N)$ of system

$$(1.11) \qquad \int_{\Lambda} \sum_{i,j=1}^{n} (A_{ij}(x,u)D_{j}u|D_{i}\varphi)_{N} dx = \int_{\Lambda} (f(x,u,Du)|\varphi)_{N} dx$$

$$\forall \varphi \in H_{0}^{1} \cap L^{\infty}(\Lambda, R^{N})$$

which satisfies the following inequality (with $M = \sup_{A} \|u\|$)

$$(1.12) 2Ma(M) < \nu(M)$$

is Hölder continuous in $\Lambda \setminus \Lambda_0$, where Λ_0 is closed in Λ and such that $H_{n-q}(\Lambda_0) = 0$ (5) for a certain q > 2.

The proof given in [3] needs a boundedness result of the following kind:

let $u \in H^1 \cap L^{\infty}(\Lambda, \mathbb{R}^N)$ be a solution of system (1.11) verifying (1.12);

let A_{ij}^{0} (i, j = 1, ..., n) be constant $N \times N$ matrices satisfying (1.2);

let v be the solution of Dirichlet problem

$$\left\{ \begin{array}{l} v - u \in H^1_0 \big(B(x_0, r), \, R^{\scriptscriptstyle N} \big) \ \ with \ \ B(x_0, \, 2r) \subset \cap \ \ A \ \ and \ \ 0 < r \leqslant 1 \\ \\ \int\limits_{B(x_0, r)} \sum\limits_{i,j \, = \, 1}^n (A^0_{ij} D_i v | D_i \varphi) \ dx = 0 \end{array} \right. \qquad \forall \varphi \in H^1_0 \big(B(x_0, \, r), \, R^{\scriptscriptstyle N} \big) \ .$$

Then

$$(1.13) \quad v \in L^{\infty}\big(B(x_0,r),\,R^{\scriptscriptstyle N}\big) \qquad and \qquad \sup_{B(x_0,r)} \|v\| \leqslant C_5 \sup_{\Lambda} \|u\|$$

where C_5 does not depend on x_0 and r.

(5) H_{α} , $\alpha \geqslant 0$, is the α -dimensional Hausdorff measure.

In order to get (1.13), the proof of [3] recalls the maximum principle proved in [2], which depends on the possibility of representing v by adequate potentials.

In section 3 we prove that (1.13) may be obtained in a simpler way, showing that u verifies the hypotheses of Theorem 1.III.

This method can be extended to more general situations, such as elliptic systems of order $2m \ge 2$, even with continuous coefficients, and C^1 bounded open sets Ω not necessarily convex.

I would like to thank S. Campanato for the useful discussions we had on this subject.

2. Proof of Theorem 1.II.

Having fixed $y \in \Omega$, we define

$$d = \operatorname{dist} (y, \partial \Omega) = \|y - z\| \quad \text{with } z \in \partial \Omega .$$

As v solves problem (1.5) and A_{ij}^0 are constant, the following inequality holds ([1], Lemma 7.I)

(2.1)
$$\int\limits_{\mathbb{R}(v,q)} \|v\|^2 dx \leqslant C(v) \left(\frac{\varrho}{d}\right)^n \int\limits_{\mathbb{R}(v,q)} \|v\|^2 dx \qquad \forall 0 < \varrho \leqslant d.$$

On the other hand

(2.2)
$$\int_{B(v,d)} \|v\|^2 dx \leq \int_{B(v,2d) \cap \Omega} \|v\|^2 dx \leq$$

$$\leq C(n) \left[d^n \sup_{\Omega} \|u\|^2 + \int_{B(v,2d) \cap \Omega} \|v - u\|^2 dx \right].$$

As $v - u \in H_0^1(\Omega, \mathbb{R}^N)$, Poincaré inequality is valid ([4]):

$$(2.3) \qquad \int\limits_{B(z,2d)\cap\Omega} \|v-u\|^2 \, dx \leqslant C(n) \, d^2 \int\limits_{B(z,2d)\cap\Omega} \sum_{i=1}^n \|D_i(v-u)\|^2 \, dx \, (^6) \, .$$

(6) As Ω is convex the constant C(n) does not depend on y (in general we shall write C(n, v, ...) to mean a constant that depends on the algebraic data n, v, ...).

From (2.1), (2.2) and (2.3) we get

$$(2.4) \qquad \frac{1}{\varrho^{n}} \int_{B(v,\varrho)} \|v\|^{2} dx \leq \\ \leq C(n,v) \left[\sup_{\Omega} \|u\|^{2} + d^{2-n} \int_{B(v,\varrho)} \sum_{i=1}^{n} \|D_{i}(v-u)\|^{2} dx \right].$$

Theorem 1.I implies that

$$v \in H^{1,(n-2)}(\Omega, \mathbb{R}^N)$$

and

$$||v||_{H^{1,(n-2)}(\Omega,R^N)} \leqslant C_1 ||u||_{H^{1,(n-2)}(\Omega,R^N)}.$$

Combining (2.4) and (2.5) we prove (1.6) and the theorem.

3. Application to quasilinear systems.

Let $A \subset \mathbb{R}^n$ be a bounded open set. Let $A_{ij}(x, u)$ $(1 \leq i, j \leq n)$ be $N \times N$ bounded continuous matrices defined in $\overline{A} \times \mathbb{R}^N$, satisfying the ellipticity condition

$$(3.1) \qquad \sum_{i,j=1}^{n} \left(A_{ij}(x,u) \xi^{j} | \xi^{i} \right) \geqslant \nu(K) \sum_{i=1}^{n} \left\| \xi^{i} \right\|^{2}, \quad \nu > 0,$$

$$\forall (x,u) \in \overline{A} \times \{ \left\| u \right\| \leqslant K \}, \ \forall \xi^{1}, \dots, \xi^{n} \in R^{N}.$$

Let $f: \Lambda \times \mathbb{R}^{N} \times \mathbb{R}^{nN} \to \mathbb{R}^{N}$ be measurable in $x \in \Lambda$, continuous in (u, p) and with quadratic growth

(3.2)
$$||f(x, u, p)||_{N} < a(K) ||p||_{nN}^{2} + b(K),$$

$$\forall (x, u, p) \in \Lambda \times \{||u|| \le K\} \times R^{nN}.$$

Let us consider the quasilinear system in divergence form

(3.3)
$$-\sum_{i,j=1}^{n} D_{i}(A_{ij}(x, u) D_{j}u) = f(x, u, Du), \quad \text{in } \Lambda.$$

The following lemma can be deduced from a «Caccioppoli inequality » proved in [3].

LEMMA 3.I. Let $u \in H^1 \cap L^{\infty}(\Lambda, R^N)$ be a weak solution of system (3.3) satisfying the following inequality (with $M = \sup_{\Lambda} \|u\|$)

$$(3.4) Ma(M) < \nu(M).$$

Then $u \in H^{1,(n-2)}_{loc}(\Lambda, \mathbb{R}^{N})$ and for every ball $B(x^{0}, r) \subset B(x^{0}, 2r) \subset \Lambda$

(3.5)
$$\sum_{i=1}^{n} \|D_{i}u\|_{L^{2,n-2}(B(x^{0}r),R^{N})} \leqslant C' \sup_{\Lambda} \|u\|$$

where C' depends on M, but neither on r nor on xo.

PROOF. As $u \in H^1 \cap L^{\infty}(\Lambda, \mathbb{R}^N)$ is a weak solution of (3.3)

(3.6)
$$\int_{A} \sum_{i,j=1}^{n} \left(A_{ij}(x, u) D_{j} u | D_{i} \varphi \right) dx = \int_{A} \left(f(x, u, Du) | \varphi \right) dx$$

$$\forall \varphi \in H_{0}^{1} \cap L^{\infty}(A, R^{N}).$$

Having fixed $y \in \overline{B(x^0, r)}$ and $0 < \sigma < r/2$, we choose $\theta \in C_0^{\infty}(B(y, 2\sigma))$ with $0 < \theta < 1$, $\theta = 1$ in $B(y, \sigma)$ and $||D\theta|| < 2/\sigma$.

If we substitute $\varphi = \theta^2 u$ in (3.6), we get as in [3] the following «Caccioppoli inequality»:

$$\int_{B(y,\sigma)} \sum_{i=1}^{n} \|D_{i}u\|^{2} dx \leqslant C(v) \left\{ \frac{1}{\sigma^{2}} \int_{B(y,2\sigma)} \|u\|^{2} dx + [b(M)]^{2} \sigma^{n+2} \right\}.$$

Hence, if σ is such that

$$[b(M)]^2\sigma^4 \leqslant \sup_{\Lambda} \|u\|^2$$

we get

$$\int\limits_{B(y,\sigma)} \sum_{i=1}^{n} \|D_{i}u\|^{2} dx \leqslant C' \sigma^{n-2} \sup_{A} \|u\|^{2}.$$

This proves (3.5) and the lemma.

REMARK 3.I. Let $u \in H^1 \cap L^{\infty}(\Lambda, \mathbb{R}^N)$ be as in Lemma 3.I and consider a ball $B(x^0, r) \subset B(x^0, 2r) \subset \Lambda$, $0 < r \le 1$. Let A_{ij}^0 (i, j = 1, ..., n)

be $N \times N$ constant matrices satisfying the ellipticity condition

$$\sum_{i,j=1}^n \xi_i \xi_j (A_{ij}^0 \eta | \eta)_N \geqslant v \| \xi \|_n^2 \| \eta \|_N^2 , \qquad orall \xi \in R^n, \,\, orall \eta \in R^N \,.$$

Let v be the solution of the following Dirichlet problem

$$\left\{ \begin{array}{l} v-u\in H^1_0\big(B(x_0,r),\,R^{\scriptscriptstyle N}\big)\;,\\ \\ \int\limits_{B(x_0,r)}\;\sum\limits_{i,j}\left(A^0_{ij}D_jv|D_j\varphi\right)\,dx=0 & \forall\varphi\in H^1_0\big(B(x_0,r),\,R^{\scriptscriptstyle N}\big)\;. \end{array} \right.$$

From Lemma 3.I and Theorem 1.III we draw the conclusion that

$$\sup_{B(x_0,r)} \|v\| \leqslant C^* \sup_{\Lambda} \|u\|.$$

Moreover, C^* does not depend on x^0 and r. The last statement can be shown by a homothetical argument.

REFERENCES

- [1] S. CAMPANATO, Equazioni ellittiche del II ordine e spazi $\mathfrak{L}^{2,\lambda}$, Ann. Matem. Pura e Appl., **69** (1965).
- [2] A. Canfora, Teorema di massimo modulo e teorema di esistenza per il problema di Dirichlet relativo ai sistemi fortemente ellittici, Ricerche di Mat., 15 (1966).
- [3] M. GIAQUINTA E. GIUSTI, Nonlinear elliptic systems with quadratic growth, Manuscr. Mathem., 24 (1978).
- [4] G. STAMPACCHIA, Sur les espaces de fonctions qui interviennent dans le problèmes aux limites elliptiques, Colloque sur l'Analyse Fonctionnelle, C.B.R.M., Louvain (1960).

Manoscritto pervenuto in redazione il 17 dicembre 1979.