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On a Maximum Principle for Elliptic Systems
with Constant Coefficients.

PIERMARCO CANNABSA (*)

1. Introduction.

Let Q c .Rn be a bounded open set and let N be a positive integer.
Let ( ~ )N, 11 be the scalar product and the norm in RN (1). We set
Dz - alaxi, i = 1, ..., n.

Let RN) be the usual Sobolev space of vectors u: S~ ~ RN
with norm

and let RN) be the closure of RN) with respect to norm
(1.1).

Let L2~~(SZ, RN), O c ~, c n, be the Banach space defined as follows

(*) Indirizzo dell’A.: Scuola Normale Superiore - Piazza dei Cavalieri 7 -
56100 Pisa.

(’-) We shall often omit the subscript 1V’ and write simply ( ~ ), ·
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RN) is a Banach space with norm

Let Ai;(x) (i, j = 1, ..., n) be N X N matrices satisfying the ellip-
ticity condition

The following regularity theorem is proved in [1] (2)

THEOREM 1.I. Let Q cc .Rn be a el (3) open set, 2~ E .H1~~~~(S~, RN)_,
f i E L2~~(SZ, RN) (0 c ~, C rc, i = 1, ..., n) and let .Au be continuous in S~
and satisfy (1.2). T hen, if v is the solution of Dirichlet problem

v belongs to RN) and

In this paper we prove a more specific regularity result which
can be summarized as follows

THEOREM 1.11. Let Q cc R" be a C’ convex (4) open set, let u belong
to LCXJ(Q, RN) and let A° be N X N constant matrices satis f ying

(2) In [1] the result is stated in the case of only one equation; it is known
that it holds unchanged in the case of systems.

(3) We say that a bounded open set SZ c Rn is of class Cl if for every point
x° E i)S2 we can find an open neighbourhood S2(x°) and a 01 homeomorfism
x --~ ~ (x) which maps Q(xl) onto B(o, 1 ), S2(x°) n S2 onto the set {x E B(O, 1 ) :
xn &#x3E; 0} and aS2 onto 1 ) : xn = 0~.

(4) The hypothesis that S2 is convex may be eliminated.
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(1.2). Then, if v is the solution of Dirichlet problem

v belongs to 1Z 1’~n-2) n LOO(Q, RN) and

A trivial consequence of theorem 1.II is the following maximum
principle

THEOREM 1.111. Let Q c A cc .Rn, be two open sets and let Q be
convex (4) and of class C’. Let u E R’) be such that

Then, if v is the solution of Dirichlet problem (1.5), v veri f ies the loll
lowing inequality

Property (1.7) is quite usual in the study of nonlinear elliptic
systems; consider, for example, the following problem.

Let A ij(x, w) (i, j = 1, ... , n) be N X N bounded continuous ma-
trices defined in satisfying the following ellipticity condition

Let be measurable and continuous
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in (w, p); suppose also that f has quadratic growth

Finally, y let Dw denote the vector of 

It is then known ([3]) that every solution u E R) of
system

which satisfies the following inequality (with M == sup II u II)
A

is Hölder continuous in where ~lo is closed in ll and such that
0(5) for a certain q &#x3E; 2.

The proof given in [3] needs a boundedness result of the following
kind :

let u E Loo(A, .RN) be a solution of system (1.11 ) veri f ying
(1.12);

let A° (i2 12 ... , n) be constant N X N matrices satisfying
(1.2);

let v be the solution of Dirichlet problem

where 05 does not depend on Xo and r.

(5) a ~ 0, is the a-dimensional Hausdorff measure.
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In order to get (1.13 ), the proof of [3] recalls the maximum prin-
ciple proved in [2], which depends on the possibility of representing v
by adequate potentials.

In section 3 we prove that (1.13) may be obtained in a simpler
way, showing that u verifies the hypotheses of Theorem 1.111.

This method can be extended to more general situations, such
as elliptic systems of order 2m ~ 2, even with continuous coefncients,
and C’ bounded open sets S~ not necessarily convex.

I would like to thank S. Campanato for the useful discussions
we had on this subject.

2. Proof of Theorem 1.11.

Having fixed y E S~, we define

As v solves problem (1.5) and Ao are constant, the following
inequality holds ([l], Lemma 7.1)

On the other hand

As w - u E .RN), Poincaré inequality is valid ([4]) :

(6) As S~ is convex the constant C(n) does not depend on y (in general we
shall write C(n, v, ...) to mean a constant that depends on the algebraic data
n,v,...).
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From (2.1), (2.2) and (2.3) we get

Theorem 1.1 implies that

and

Combining (2.4) and (2.5) we prove (1.6) and the theorem.

3. Application to quasilinear systems.

Let A eRn be a bounded open set. Let u) (1 ~ i, ~  n) be
N x N bounded continuous matrices defined in A X RN, satisfying the
ellipticity condition

Let be measurable in continuous in

(u, p) and with quadratic growth

Let us consider the quasilinear system in divergence form
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The following lemma can be deduced from a « Caccioppoli ine-

quality » proved in [3].
LEMMA 3.1. Let u E RN) be a weak solution of system

(3.3 ) satisfying the following inequality (with M = sup A

Then u E RN) and for every ball B(xO, r) c B(xO, 2r) c A

where C’ depends on M, but neither on r nor on x°.

PROOF. As u E HI r1 Z°°(Il, is a weak solution of (3.3)

Having fixed y e B(x°, r) and 0  cr C we choose 0 e 2r))
with 0 c 6 ~ 1, 0 = 1 in B(y, a) and ~ 2/~.

If we substitute q = 02U in (3.6), we get as in [3] the following
« Caccioppoli inequality » :

Hence, if a is such that

we get

This proves (3.5) and the lemma.

REMARK 3.1. be as in Lemma 3.1 and
consider a ball B(x°, r) c B(x°, 2r) c !1, 0  r  1 . Let Ao (i, 7 = 1, ..., n)
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be constant matrices satisfying the ellipticity condition

Let v be the solution of the following Dirichlet problem

From Lemma 3.1 and Theorem 1.III we draw the conclusion that

Moreover, C* does not depend on x° and r.
The last statement can be shown by a homothetical argument.
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