RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

SERGIO CAMPANATO

Partial Hölder continuity of solutions of quasilinear parabolic systems of second order with linear growth

Rendiconti del Seminario Matematico della Università di Padova, tome 64 (1981), p. 59-75

http://www.numdam.org/item?id=RSMUP 1981 64 59 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1981, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Partial Hölder Continuity of Solutions of Quasilinear Parabolic Systems of Second Order with Linear Growth.

SERGIO CAMPANATO (*)

1. Introduction.

Let Ω be a bounded open set of R^n , n > 2 (1), with sufficiently smooth boundary $\partial \Omega$, for instance of class C^3 . Let N be an integer >1, (|) and $\|\cdot\|$ the scalar product and the norm in R^N (2). If $u: \Omega \to R^N$, we set $Du = (D_1u|...|D_nu)$ where $D_i = \partial/\partial x_i$. In general $p = (p^1|...|p^n)$, $p^i \in R^N$, denotes a vector of R^{nN} , x is a point of R^n $t \in R$ and X = (x, t).

$$B(x_0, \sigma) = \{x \in \mathbb{R}^n \colon ||x - x_0|| < \sigma\}.$$

$$Q = \Omega \times (-T, 0)$$
 with $T > 0$.

If $X_0 = (x_0, t)$, we set

$$Q(X_0, \sigma) = B(x_0, \sigma) \times (t_0 - \sigma^2, t_0)$$
.

We say that $Q(X_0, \sigma) \subset Q$ if

$$B(x_0, \sigma) \subset\subset \Omega$$
 and $\sigma^2 < t_0 + T \leqslant T$

- (*) Indirizzo dell'A.: Istituto Matematico L. Tonelli Via Buonarroti 2 56100 Pisa.
- (1) This is just to fix ideas; the case n=2 can be dealt with by trivial modifications.
- (2) In general $(|)_k$, $||\cdot||_k$ are the scalar product and the norm in \mathbb{R}^k . We shall omit the index k if there is not ambiguity of writing.

 $H^{k,p}$ and $H_0^{k,p}$ are the usual Sobolev spaces. If p=2 we write simply H^k and H_0^k .

Let us consider the quasilinear parabolic system of second order

$$(1.1) \qquad -\sum_{ij=1}^{n} D_{i}(A_{ij}(X, u)D_{j}u) + \frac{\partial u}{\partial t} = -\sum_{i=1}^{n} D_{i}f^{i}(X, u) + f^{0}(X, u, Du)$$

where A_{ij} are $N \times N$ matrices which are uniformly continuous and bounded in $\overline{Q} \times R^N$ and satisfy the strong ellipticity condition

 $f^i(X, u)$, i = 1, ..., n, and $f^0(X, u, p)$ are vectors of \mathbb{R}^N , measurable in $X \in Q$ and continuous in u and (u, p) respectively. Suppose that f^i , f^0 have linear growth

(1.3)
$$||f^i(X, u)|| \leq g_i(X) + c||u||, \quad i = 1, ..., n$$

(1.4)
$$||f^{0}(X, u, p)|| \leq g_{0}(X) + c\{||u|| + \sum_{i} ||p^{i}||\}$$

with

(1.5)
$$g = \left(\sum_{i} D_{i} g_{i} + g_{0}\right) \in L^{2}(-T, 0, H^{-1}(\Omega)).$$

We set, for the sake of brevity,

(1.6)
$$Eu = -\sum_{ij} D_i (A_{ij}(X, u)D_j u) + \frac{\partial u}{\partial t},$$

(1.7)
$$F = -\sum_{i} D_{i} f^{i}(X, u) + f^{0}(X, u, Du) ,$$

$$(1.8) \hspace{1cm} a(u,\varphi) = \int\limits_{\mathbb{R}} \sum\limits_{ij} \left(A_{ij} D_j u \middle| D_i \varphi \right) - \left(u \middle| \frac{\partial \varphi}{\partial t} \right) dX \; ,$$

(1.9)
$$\langle F, \varphi \rangle = \int_{a} \sum_{i} (f^{i}|D_{i}\varphi) + (f^{0}|\varphi) dX$$
,

$$(1.10) \hspace{1cm} W(Q) = L^2(-T, 0, H^1_0(\Omega, R^{\scriptscriptstyle N})) \cap H^1(-T, 0, L^2(\Omega, R^{\scriptscriptstyle N})) \ .$$

A solution of system (1.1) is a vector $u \in L^2(-T, 0, H^1(\Omega, \mathbb{R}^n))$ such that

(1.11)
$$\begin{aligned} a(u,\varphi) &= \langle F,\varphi\rangle\,, \\ \forall \varphi \in W(Q)\colon \varphi(x,-T) &= \varphi(x,0) = 0 \qquad \text{ in } \Omega\,. \end{aligned}$$

A solution of Cauchy-Dirichlet problem

$$Eu=F \qquad \qquad ext{in } Q \ u=0 \qquad \qquad ext{on } \partial \Omega imes (-T,0) \ u(x,-T)=0 \qquad ext{in } \Omega$$

is a vector $u \in L^2(-T, 0, H_0^1(\Omega, \mathbb{R}^N))$ such that

(1.13)
$$a(u, \varphi) = \langle F, \varphi \rangle ,$$

$$\forall \varphi \in W(Q) \colon \varphi(x, 0) = 0 \quad \text{in } \Omega .$$

It is known that, even if g is smooth, there are solutions of system (1.1) which fail to be Hölder continuous in Q (3). We shall prove, in section 3, the following partial Hölder continuity result:

THEOREM 1.I. If $u \in L^2(-T, 0, H^1(\Omega, \mathbb{R}^N))$ is a solution of system (1.1) and

$$(1.14) egin{array}{ll} g_i \in L^p(Q) \;, & i=1,...,n \;, \ g_0 \in L^p(-T,\,0,\,L^{pn/(n+2)}(\Omega)) & ext{ with } p>n+2 \;, \end{array}$$

then there is a set $Q_0 \subset Q$, closed in Q, such that

$$(1.15) \qquad \mathcal{M}_n(Q_0) = 0$$

$$(1.16) u \in C^{0,\alpha}(Q \setminus Q_0, R^n), \forall \alpha < 1 - \frac{n+2}{p}$$

and for every open subset $A \subset\subset Q \setminus Q_0$

$$(1.17) [u]_{\alpha,\overline{A}} \leqslant c \left\{ 1 + \int_{a} ||u||^{2} + \sum_{i} ||D_{i}u||^{2} dX \right\}^{(4)}.$$

- (3) i.e. on every compact set $\mathbb{K} \subset Q$.
- (4) C depends on the $L^2(Q)$ -norm of g_i , g_0 and on the distance of \overline{A} from the parabolic boundary of Q.

Here \mathcal{M}_n is the *n*-dimensional Hausdorff measure with respect to the metric

(1.18)
$$\delta(X, Y) = \max\{\|x - y\|, |t - \tau|^{\frac{1}{2}}\}, \quad X = (x, t), Y = (y, \tau)$$

and also Hölder continuity in (1.16) is related to this metric.

The previous result is proved also in [9] with a different technique, for the special case $f^i = f^0 = 0$ (5).

The method of this paper can be exstended to the case of systems of order $2m \ge 2$ and to more general growth conditions on the vectors f^i , f^0 .

In order to prove theorem 1.I we need a local L^p regularity result of this kind: We set

(1.19)
$$\xi = (n+2) \left(1 - \frac{2}{p} \right),$$

$$(1.20) \qquad \varPhi(X_0,\sigma) = \sigma^{\xi} + \int\limits_{Q(X_0,\sigma)} \lVert u \rVert^2 + \sum\limits_i \lVert D_i u \rVert^2 + \sigma^{-2} \lVert u - u_{\sigma} \rVert^2 \, dX$$

where u_{σ} is the average of u on $Q(X_0, \sigma)$

$$u_{\sigma} = \int_{Q(X_0,\sigma)} u(X) dX.$$

THEOREM 1.II. If $u \in L^2(-T, 0, H^1(\Omega, \mathbb{R}^N))$ is a solution of system (1.1) and (1.14) holds, then we can find q > 2 such that $\forall Q(X_0, 2\sigma) \subset Q$ with $\sigma \leqslant 1$

(1.21)
$$\left(\int_{Q(X_0,\sigma)} \sum_{i} \|D_i u\|^q dX \right)^{2/q} \leqslant c\sigma^{-(n+2)} \Phi(X_0, 2\sigma) .$$

Theorem 1.II easily follows, via Hölder inequality, from the following local L^q result proved in [5]:

THEOREM 1.III. If u is a solution of system (1.1), we can find

(5) In this case α can be every real number less than 1, because we are in the situation $g_i, g_0 \in L^{\infty}(Q)$.

 $p_{\mathrm{o}},\, 2 < p_{\mathrm{o}} \leqslant 2$ * (6), such that if

then $\forall Q(X_0, 2\sigma) \subset\subset Q$ with $\sigma \leqslant 1$

$$\begin{split} (1.23) \qquad & \left(\int\limits_{Q(X_0,\sigma)} \sum\limits_{i} \|D_i u\|^q \, dX\right)^{1/q} \leqslant c \left(\int\limits_{Q(X_0,2\sigma)} \sum\limits_{i} |g_i|^q \, dX\right)^{1/q} + \\ & + c\sigma^{1+n(1/q-\frac{1}{2})} \left\{\int\limits_{t_0-4\sigma^2}^{t_0} & \|g_0\|_{L^2(B(x_0,2\sigma))}^q \, dt\right\}^{1/q} + c\sigma^{(n+2)(1/q-\frac{1}{2})} \{\Phi(X_0,2\sigma)\}^{\frac{1}{2}} \, . \end{split}$$

In fact, by Hölder inequality

$$\bigg(\int\limits_{Q(X_0,2\sigma)} \sum_i |g_i|^q \, dX\bigg)^{\!1/q} \! \leqslant \! c\sigma^{(n+2)(1/q-1/p)} \! \bigg(\int\limits_{Q} \sum_i |g_i|^p \, dX\bigg)^{\!1/p} \, .$$

In the same way, as pn/(n+2) > 2 and we can suppose $q \le p$,

$$\bigg(\int\limits_{t_0-4\sigma^2}^{t_0} \!\!\! \|g_0\|_{L^2(B(x_0,2\sigma))}^{q} \, dt \bigg)^{1/q} \!\!\! \leqslant \!\!\! c\sigma^{2(1/q-1/p)+(n/2)(1-2(n+2)/pn)} \bigg(\int\limits_{-T}^{0} \!\!\! \|g_0\|_{L^{pn/(n+2)}(\Omega)}^{p} \, dt \bigg)^{1/p} \; .$$

From (1.23), as $\sigma \leq 1$, we then get

$$\left(\int\limits_{Q(X_0,\sigma)} \sum_i \|D_i u\|^q dX\right)^{1/q} \leqslant c\sigma^{(n+2)(1/q-1/p)} + c\sigma^{(n+2)(1/q-\frac{1}{2})} [\Phi(X_0, 2\sigma)]^{\frac{1}{2}}$$

and therefore (1.21).

2. Some lemmas.

We list in this section a few lemmas that will be used in the rest of the work.

We set
$$Q(\sigma) = Q(0, \sigma)$$
 and $B(\sigma) = B(0, \sigma)$.

(6) 2* = 2n/(n-2) is the Sobolev exponent.

LEMMA 2.1. For every $u \in L^2(-\sigma^2, 0, H^1(B(\sigma), R^N)) \cap H^{\frac{1}{2}}(-\sigma^2, 0, L^2(B(\sigma), R^N))$ the following inequality holds

(2.1)
$$\int_{Q(\sigma)} \|u - u_{Q(\sigma)}\|^2 dX \leq c\sigma^2 \left\{ \int_{Q(\sigma)} \sum_{i} \|D_i u\|^2 dX + \int_{-\sigma^2 - \sigma^2}^{0} \int_{B(\sigma)}^{0} \frac{\|u(x, t) - u(x, \xi)\|^2}{|t - \xi|^2} dx \right\}.$$

Inequality (2.1) is well known; we give the proof for the reader's convenience:

$$\begin{split} \int\limits_{Q(\sigma)} & \|u-u_{Q(\sigma)}\|^2 \, dX \leqslant \int\limits_{Q(\sigma)} dx \, dt \int\limits_{Q(\sigma)} \|u(x,\,t)-u(y,\,\xi)\|^2 \, dy \, d\xi \leqslant \\ & \leqslant c \, \bigg\{ \int\limits_{-\sigma^2}^0 dt \int\limits_{B(\sigma)} dx \int\limits_{B(\sigma)} \|u(x,\,t)-u(y,\,t)\|^2 \, dy \, + \\ & + \sigma^{-2} \int\limits_{-\sigma^2}^0 dt \int\limits_{B(\sigma)}^0 d\xi \int\limits_{B(\sigma)} \|u(y,\,t)-u(y,\,\xi)\|^2 \, dy \bigg\} \leqslant \\ & \leqslant c\sigma^2 \, \bigg\{ \int\limits_{Q(\sigma)} \sum_i \|D_i u\|^2 \, dX \, + \int\limits_{-\sigma^2}^0 dt \int\limits_{B(\sigma)}^0 d\xi \int\limits_{B(\sigma)} \frac{\|u(y,\,t)-u(y,\,\xi)\|^2}{|t-\xi|^2} \, dy \bigg\} \, . \end{split}$$

Let B_{ij} be $N \times N$ constant matrices which satisfy the strong ellipticity condition

Let f^i belong to $L^2(Q(\sigma), R^N)$ and let $v \in L^2(-\sigma^2, 0, H^1(B(\sigma), R^N))$ be a solution of the following parabolic system

$$\begin{array}{ccc} \int\limits_{Q(\sigma)} \sum_{ij} \left(B_{ij} D_{j} v | D_{i} \varphi\right) - \left(v \left| \frac{\partial \varphi}{\partial t} \right) dX = \int\limits_{Q(\sigma)} \sum_{i} \left(f^{i} | D_{i} \varphi\right) dX \;, \\ \forall \varphi \in C_{0}^{\infty} \big(Q(\sigma), \, R^{N} \big) \;. \end{array}$$

LEMMA 2.II. If hypotheses (2.2), (2.3) hold, then for every $\tau \in (0, 1)$

$$(2.4) \quad \int\limits_{Q(\tau\sigma)} \sum_{i} \|D_{i}v\|^{2} dX \leqslant c \left\{ \tau^{n+2} \int\limits_{Q(\sigma)} \sum_{i} \|D_{i}v\|^{2} dX + \int\limits_{Q(\sigma)} \sum_{i} \|f^{i}\|^{2} dX \right\},$$

$$(2.5) \quad \int_{Q(\tau\sigma)} \|v - v_{\tau\sigma}\|^2 dX \leqslant c \left\{ \tau^{n+4} \int_{Q(\sigma)} \|v - v_{\sigma}\|^2 dX + \tau^2 \sigma^2 \int_{Q(\sigma)} \sum_i \|f^i\|^2 dX \right\}.$$

PROOF. In $Q(\sigma)$, v = V + W where W is the solution of Cauchy-Dirichlet problem

$$(2.6) \qquad W \in L^{2}(-\sigma^{2}, 0, H_{0}^{1}(B(\sigma), R^{N})),$$

$$\int_{Q(\sigma)} \sum_{ij} (B_{ij}D_{j}W|D_{i}\varphi) - \left(W\left|\frac{\partial \varphi}{\partial t}\right)dX = \int_{Q(\sigma)} \sum_{i} (f^{i}|D_{i}\varphi) dX,$$

$$\forall \varphi \in W(Q(\sigma)) \colon \varphi(x, 0) = 0 \text{ in } B(\sigma),$$

whereas

$$V \in L^2ig(-\sigma^2,\,0,\,H^1(B(\sigma),\,R^N)ig)\,, \ \left(2.7
ight) \quad \int\limits_{Q(\sigma)} \sum\limits_{ij} ig(B_{ij}D_j\,V|D_iarphi) - ig(V\left|rac{\partialarphi}{\partial t}
ight)\!dX = 0\;, \qquad orall arphi \in C_0^\inftyig(Q(\sigma),\,R^Nig)\;.$$

It is known [11] that $W \in H^{\frac{1}{2}}(-\sigma^2, 0, L^2(B(\sigma), \mathbb{R}^N))$ and

$$(2.8) \int\limits_{Q(\sigma)} \sum_{i} \|D_{i}W\|^{2} dX + \int\limits_{-\sigma^{2}}^{0} d\xi \int\limits_{B(\sigma)}^{0} \frac{\|W(x,t) - W(x,\xi)\|^{2}}{|t - \xi|^{2}} dx \leq c \int\limits_{Q(\sigma)} \sum_{i} \|f^{i}\|^{2} dX$$

where c is invariant with respect to the homothetical transformation

$$(2.9) x = \sigma y, t = \sigma^2 \xi$$

V verifies the following inequalities, as shown in [1]: $\forall \tau \in (0, 1)$

(2.10)
$$\int_{Q(\tau\sigma)} \sum_{i} \|D_{i}V\|^{2} dX \leqslant c\tau^{n+2} \int_{Q(\sigma)} \sum_{i} \|D_{i}V\|^{2} dX ,$$

(2.11)
$$\int\limits_{Q(\tau\sigma)} \| \, V - V_{\tau\sigma} \|^{\, 2} \, dX \leqslant c \tau^{n+4} \int\limits_{Q(\sigma)} \| \, V - V_{\sigma} \|^{\, 2} \, dX \; ,$$

here c is invariant under transformation (2.9).

(2.4) follows from (2.10) and (2.8) in a standard way. On the other hand, from (2.11) we get

$$\begin{split} &(2.12) \quad \int\limits_{Q(\tau\sigma)} &\|v-v_{\tau\sigma}\|^{\,2} \, dX \leqslant \\ &\leqslant c \left\{ \tau^{\,n+4} \!\! \int\limits_{Q(\sigma)} &\|v-v_{\sigma}\|^{\,2} \, dX \, + \int\limits_{Q(\tau\sigma)} &\|W-W_{\tau\sigma}\|^{\,2} \, dX \, + \, \tau^{\,2} \!\! \int\limits_{Q(\sigma)} &\|W-W_{\sigma}\|^{\,2} \, dX \right\} \, . \end{split}$$

But lemma 2.I and (2.8) imply that

$$(2.13) \quad \int\limits_{Q(\tau\sigma)} \!\!\! \|W - W_{\tau\sigma}\|^2 \, dX \, + \, \tau^2 \! \int\limits_{Q(\sigma)} \!\!\! \|W - W_{\sigma}\|^2 \, dX \! \leqslant \! c \tau^2 \sigma^2 \! \int\limits_{Q(\sigma)} \!\!\! \sum_i \|f^i\|^2 \, dX \, .$$

Then (2.5) follows from (2.12), (2.13).

LEMMA 2.III. If $v \in L^2(Q(\sigma), R^N)$ then for every $\tau \in (0, 1)$

(2.14)
$$\int_{Q(\tau\sigma)} \|v\|^2 dX \leqslant c \left\{ \tau^{n+2} \int_{Q(\sigma)} \|v\|^2 dX + \int_{Q(\sigma)} \|v - v_\sigma\|^2 dX \right\}$$

(2.14) is a trivial consequence of the following estimate

$$\int\limits_{Q(\tau\sigma)} \lVert v\rVert^2 \, dX \!\leqslant\! c \left\{ \int\limits_{Q(\sigma)} \lVert v-v_\sigma\rVert^2 \, dX + \operatorname{meas} Q(\tau\sigma)\lVert v_\sigma\rVert^2 \right\}.$$

LEMMA 2.IV. Let φ , ψ be non negative functions defined in $(0, \sigma]$, let α be positive, A > 1, B and M > 0 and suppose that $\forall \tau \in (0, 1)$ and $\forall \rho \leqslant \sigma$

(2.15)
$$\begin{aligned} \varphi(\tau_{\varrho}) \leqslant A \tau^{\alpha} \varphi(\varrho) + \psi(\varrho) , \\ \psi(\tau_{\varrho}) \leqslant B \tau^{\alpha} \psi(\varrho) + M , \end{aligned}$$

then $\forall \tau \in (0, 1)$ and $\forall \varepsilon \in (0, \alpha)$

(2.16)
$$\varphi(\tau\sigma) \leqslant A \tau^{\alpha - \varepsilon} \{ \varphi(\sigma) + KB \psi(\sigma) \} + CM$$

where K, C depend on A, α , ε .

The proof is the same as in lemma 2.IV of [4].

LEMMA 2.V. Let φ , ω_1 defined in (0, d], and ω_2 , defined in $(0, +\infty)$ be non negative and nondecreasing functions. Let A, α be positive constants and $0 \leqslant \beta < \alpha$. Suppose that $\forall \tau \in (0, 1)$ and $\forall \sigma \in (0, d]$

(2.17)
$$\varphi(\tau\sigma) \leq \{A\tau^{\alpha} + \omega_{1}(\sigma) + \omega_{2}(\sigma^{-\beta}\varphi(\sigma))\} \cdot \varphi(\sigma).$$

If for a fixed $\varepsilon \in (0, \alpha - \beta)$ we can find $\sigma_{\varepsilon} \in (0, d]$ such that

(2.18)
$$\omega_1(\sigma_{\varepsilon}) + \omega_2(\sigma_{\varepsilon}^{-\beta}\varphi(\sigma_{\varepsilon})) < (1+A)^{-\alpha/\varepsilon}$$

then $\forall \tau \in (0,1)$

(2.19)
$$\varphi(\tau\sigma_{\varepsilon}) \leqslant B\tau^{\alpha-\varepsilon}\varphi(\sigma_{\varepsilon}), \quad B = (1+A)^{(\alpha-\varepsilon)/\varepsilon}.$$

See for example [6], lemma 1.IV.

3. The partial Hölder continuity theorem.

In this section we prove theorem 1.I.

Suppose hypotheses (1.2), (1.3), (1.4), (1.14) hold and let $u \in L^2(-T, 0, H^1(\Omega, \mathbb{R}^N))$ be a solution in Q of system (1.1).

$$p>n+2\Rightarrow g_i\in L^2(Q)\,, \quad i=0,...,n$$

we get from (1.3), (1.4)

$$f^{0}(X, u, Du) \in L^{2}(Q, R^{N})$$
 and $f^{i}(X, u) \in L^{2}(Q, R^{N})$, $i = 1, ..., n$.

Then [11] and a standard localizing argument (see [5], n. 4) imply that for every cylinder $Q^* = \Omega^* \times (-\lambda T, 0)$ with $\Omega^* \subset \Omega$ and $\lambda \in (0, 1)$

$$u\in H^{rac{1}{2}}(--\lambda T,\,0,\,L^2(arOmega^*,\,R^N))$$

and

$$(3.1) \qquad \int_{Q^*} \sum_{i} \|D_{i}u\|^{2} dX + \int_{-\lambda T}^{0} dt \int_{-\lambda T}^{0} d\eta \int_{\Omega^*} \frac{\|u(x,t) - u(x,\eta)\|^{2}}{|t - \eta|^{2}} dx \leq c \left\{ 1 + \int_{\Omega} \|u\|^{2} + \sum_{i} \|D_{i}u\|^{2} dX \right\}.$$

Here c depends on the $L^2(Q)$ -norms of g_i , g_0 and on the distance of Q^* from the parabolic boundary of Q (7).

Hence, by lemma 2.1, $\forall Q(X_0, \sigma) \subset Q$

(3.2)
$$\sigma^{-2} \int_{Q(X_0,\sigma)} \|u - u_\sigma\|^2 dX \leqslant c \left\{ 1 + \int_{Q} \|u\|^2 + \sum_{i} \|D_i u\|^2 dX \right\}$$

where c depends on the $L^2(Q)$ -norms of g_i , g_0 and on the distance of $Q(X_0, \sigma)$ from the parabolic boundary of Q.

For the hypotheses we formulated on matrices $A_{ij}(X, u)$ we can find a bounded continuous function $\omega(\eta)$, defined for $\eta \geqslant 0$, which is increasing, concave, such that $\omega(0) = 0$ and $\forall X, Y \in \overline{Q}$ and $\forall u, v \in R^N$

$$(3.3) \qquad \left\{ \sum_{ij} \|A_{ij}(X, u) - A_{ij}(Y, v)\|^2 \right\}^{\frac{1}{2}} \leqslant \omega \left(\delta^2(X, Y) + \|u - v\|^2 \right)$$

where $\delta(X, Y)$ is the parabolic distance (1.18).

We can now prove the following lemma:

LEMMA 3.I. If u is a solution of system (1.1) under the hypotheses (1.14), then $\forall Q(X_0, \sigma) \subset Q$ with $\sigma \leq 2$, $\forall \tau \in (0, 1)$ and $\forall \lambda \in (n, \xi)$

$$(3.4) \quad [\Phi(X_0, \tau\sigma) \leqslant K\Phi(X_0, \sigma) \{\tau^{\lambda} + \sigma^{\varepsilon} + [\omega(\varepsilon\sigma^{-n}\Phi(X_0, \sigma))]^{1-2/r}\}$$

where

$$\varepsilon = 2\left(1 - \frac{2}{p}\right)$$

and ω is defined as in (3.3).

PROOF. By theorem 1.II, we can find r>2 such that $\forall Q(X_0, 2\sigma)\subset\subset Q$ with $\sigma\leqslant 1$

(3.6)
$$\left[\int_{a(X_i,\sigma)} \left(\sum_i \|D_i u\|^2 \right)^{r/2} dX \right]^{2/r} \leq c \sigma^{(n+2)(2/r-1)} \Phi(X_0, 2\sigma) .$$

(7)
$$\Omega \times \{-T\} \cup \partial \Omega \times (-T, 0)$$
.

Consider $Q(X_0, 2\sigma) \subset Q$ with $\sigma \leq 1$. For the sake of brevity we set

$$egin{aligned} A_{ij}^{0} &= A_{ij}(X_{0},\,u_{Q(X_{0},\sigma)})\;, \ a_{0}(u,\,arphi) &= \int\limits_{Q(X_{0},\sigma)} \sum\limits_{ij} \left(A_{ij}^{0}D_{j}u|D_{i}arphi
ight) - \left(u\left|rac{\partialarphi}{\partial t}
ight)dX\;. \end{aligned}$$

In $Q(X_0, \sigma)$ we write u = v + w where

$$\begin{array}{ll} w \in L^2(t_0 - \sigma^2, \, t_0, \, H^1_0(B(x_0, \, \sigma), \, R^{\scriptscriptstyle N})) \; , \\ \\ (3.7) & a_0(w, \, \varphi) = \int\limits_{Q(X_0, \, \sigma)} \sum\limits_{ij} \left([A^0_{ij} - A_{ij}(X, \, u)] D_j u | D_i \varphi \right) dX + \int\limits_{Q(X_0, \, \sigma)} (f^0 | \varphi) \, dX \; , \\ \\ \forall \varphi \in W \big(Q(X_0, \, \sigma) \big) \colon \, \varphi(x, \, t_0) = 0 \qquad \text{in } B(x_0, \, \sigma) \; , \end{array}$$

whereas

$$(3.8) \qquad \begin{aligned} v \in L^2\big(t_0 - \sigma^2, \, t_0, \, H^1(B(x_0, \, \sigma), \, R^N)\big) \;, \\ a_0(v, \, \varphi) &= \int\limits_{Q(X_0, \, \sigma)} \sum\limits_i \left(f^i \middle| D_i \varphi\right) \, dX \;, \qquad \forall \varphi \in C_0^\infty\big(Q(X_0, \, \sigma), \, R^N\big) \;. \end{aligned}$$

 $\mathbf{A}\mathbf{s}$

$$f^0(X, u, Du) \in L^2(Q)$$

there is one and only one solution w and

$$(3.9) \int_{Q(X_{0},\sigma)} \sum_{i} \|D_{i}w\|^{2} dX + \int_{t_{0}-\sigma^{2}}^{t_{0}} dt \int_{B(x_{0},\sigma)}^{t_{0}} d\eta \int_{B(x_{0},\sigma)} \frac{\|w(x,t)-w(x,\eta)\|^{2}}{|t-\eta|^{2}} dx \leq$$

$$\leq c \int_{Q(X_{0},\sigma)} \sum_{ij} \|A_{ij}^{0} - A_{ij}(X,u)\|^{2} \cdot \sum_{i} \|D_{i}u\|^{2} dX + c\sigma^{2} \int_{Q(X_{0},\sigma)} \|f^{0}(X,u,Du)\|^{2} dX.$$

By Hölder inequality

$$\int_{Q(X_n,\sigma)} |g_0|^2 dX \le c \left[\int_{-T}^0 dt \left(\int_{\Omega} |g_0|^{pn/(n+2)} dx \right)^{(n+2)/n} \right]^{2/p} \sigma^{2(1-2/p)+n-(2/p)(n+2)}.$$

Then, if we take into account (1.14) and if we set

$$(3.10) \varepsilon = 2\left(1 - \frac{2}{p}\right)$$

we have

(3.11)
$$\sigma^2 \int \|f^0(X, u, Du)\|^2 dX \leqslant c \sigma^s \Phi(X_0, \sigma).$$

On the other hand, from (3.3), (3.6) and the fact that ω is concave (8), we get

$$\begin{split} (3.12) & \int\limits_{Q(X_{0},\sigma)} \sum_{ij} \|A_{ij}^{0} - A_{ij}(X,u)\|^{2} \cdot \sum_{i} \|D_{i}u\|^{2} \, dX \leqslant \\ \leqslant & \left[\int\limits_{Q(X_{0},\sigma)} \left(\sum_{i} \|D_{i}u\|^{2} \right)^{r/2} \, dX \right]^{2/r} \cdot \left[\int\limits_{Q(X_{0},\sigma)} \omega(\sigma^{2} + \|u - u_{\sigma}\|^{2}) \, dX \right]^{1-2/r} \leqslant \\ \leqslant & c \varPhi(X_{0}, 2\sigma) \left[\omega \left(\sigma^{2} + \int\limits_{Q(X_{0},\sigma)} \|u - u_{\sigma}\|^{2} \, dX \right) \right]^{1-2/r} \leqslant (9) \\ \leqslant & c \varPhi(X_{0}, 2\sigma) \left[\omega (c\sigma^{-n} \, \varPhi(X_{0},\sigma)) \right]^{1-2/r} \, . \end{split}$$

From (3.9), (3.11), (3.12) and lemma 2.I we draw the conclusion that $\forall \tau \in (0, 1]$

$$(3.13) \int_{Q(X_{0},\sigma)} \sum_{i} \|D_{i}w\|^{2} dX + (\tau\sigma)^{-2} \int_{Q(X_{0},\tau\sigma)} \|w - w_{\tau\sigma}\|^{2} dX \leq \\ \leq c\Phi(X_{0}, 2\sigma) \left\{\sigma^{\varepsilon} + \left[\omega\left(c\sigma^{-n}\Phi(X_{0},\sigma)\right)\right]^{1-2/r}\right\}.$$

If we use lemma 2.II, then we get the following estimate on $v: \forall \tau \in (0,1)$ and $\varrho \leqslant \sigma$

$$(3.14) \qquad \int\limits_{Q(X_{0},\tau_{\mathcal{Q}})^{i}} \sum\limits_{i} \|D_{i}v\|^{2} dX + (\tau_{\mathcal{Q}})^{-2} \int\limits_{Q(X_{0},\tau_{\mathcal{Q}})} \|v - v_{\tau_{\mathcal{Q}}}\|^{2} dX \leqslant$$

$$\leqslant c\tau^{n+2} \int\limits_{Q(X_{0},\varrho)^{i}} \|D_{i}v\|^{2} + \varrho^{-2} \|v - v_{\varrho}\|^{2} dX + c \int\limits_{Q(X_{0},\varrho)^{i}} \sum\limits_{i} \|f^{i}(X,u)\|^{2} dX.$$

(8)
$$\int_{Q(X_0,\sigma)} \omega(\varphi) dX \leq \omega \left(\int_{Q(X_0,\sigma)} \varphi dX \right)$$
.
(9) By (1.19) and the fact that $\sigma \leq 1$.

On the other and, by (1.3) and Hölder inequality

$$\int\limits_{Q(X_0,\varrho)} \sum_i \|f^i(X,\,u)\|^2 \, dX \! \leqslant \! c \left\{ \! \varrho^{\xi} \! + \! \int_{Q(X_0,\varrho)} \! \! \|u\|^2 \, dX \right\} = c \psi(X_0,\,\varrho) \; .$$

Lemma 2.III implies that $\forall \tau \in (0,1)$ and $\varrho \leqslant \sigma$

$$(3.15) \psi(X_0, \tau \varrho) \leqslant c \tau^{\xi} \psi(X_0, \varrho) + c \sigma^{\varepsilon} \Phi(X_0, \sigma).$$

From (3.14), (3.15) and lemma 2.IV we conclude that $\forall \lambda \in (n, \xi)$ and $\forall \tau \in (0, 1)$

$$(3.16) \qquad \begin{aligned} & \int\limits_{Q(X_{\mathbf{0}},\tau\sigma)} \sum_{i} \|D_{i}v\|^{2} + (\tau\sigma)^{-2} \|v-v_{\tau\sigma}\|^{2} \, dX \leqslant \\ & \leqslant c\tau^{\lambda} \!\!\! \int\limits_{Q(X_{\mathbf{0}},\sigma)} \!\!\! \sum_{i} \|D_{i}v\|^{2} + \sigma^{-2} \|v-v_{\sigma}\|^{2} \, dX + c \varPhi(X_{\mathbf{0}},\sigma) \{\tau^{\lambda} + \sigma^{\mathbf{e}}\} \; . \end{aligned}$$

As u=v+w, from (3.13), (3.16) we get by a standard argument that $\forall \tau \in (0,1)$

$$(3.17) \qquad \Phi(X_0, \tau\sigma) - \psi(X_0, \tau\sigma) \leqslant \\ \leqslant c\Phi(X_0, 2\sigma) \{\tau^{\lambda} + \sigma^{\varepsilon} + \lceil \omega(c\sigma^{-n}\Phi(X_0, 2\sigma)) \rceil^{1-2/r} \}.$$

The previous inequality is trivial for $1 \le \tau < 2$ and we can add $\psi(X_0, \tau\sigma)$ to the left hand side because by (3.15)

$$\psi(X_0, \, \tau\sigma) \leqslant c\Phi(X_0, \, \sigma)\{\tau^{\lambda} + \, \sigma^{\varepsilon}\}$$
.

Therefore we have proved (3.4).

We define

$$(3.18) Q_0 = \left\{ X \in Q : \min_{\sigma \to 0} \sigma^{-n} [\Phi(X, \sigma) - \sigma^{\xi}] > 0 \right\}.$$

For a well known theorem (Lebesgue)

$$\lim_{\sigma o 0} \int\limits_{Q(X,\sigma)} \|u(Y) - u_\sigma\|^2 \, dY = 0 \qquad \text{a.e. in } Q \,,$$
 $\lim_{\sigma o 0} \sigma^{-n} \int\limits_{Q(X,\sigma)} \|u(Y)\|^2 + \sum_i \|D_i u(Y)\|^2 \, dY = 0 \qquad \text{a.e. in } Q$

and then

meas.
$$Q_0 = 0$$
.

We can even say something more. We define the Hausdorff measure \mathcal{M}_{α} with respect to the metric δ , as usual,

$$(3.19) \qquad \mathcal{M}_{\alpha}(E) = \liminf_{\sigma \to 0} \left\{ \sum_{i} \delta^{\alpha}(E_{i}) \colon \bigcup_{i} E_{i} \supset E \ \text{ and } \ \delta(E_{i}) < \sigma \right\}$$

where $\delta(E_i)$ is the diameter of E_i with respect to δ . Then, if we argue as in [9] (10), we can show that

$$\mathcal{M}_n(Q_0) = 0.$$

LEMMA 3.II. – If u is a solution of system (1.1) and hypotheses (1.2), (1.3), (1.4), (1.14) are satisfied, then $\forall X_0 \in Q \setminus Q_0$ and $\forall \eta \in (0, \xi - n)$ we can find $\sigma_{\eta} < 1$ and r > 0, with $Q(X_0, r + \sigma_{\eta}) \subset Q$, such that $\forall Y \in Q(X_0, r)$ and $\forall \tau \in (0, 1)$

(3.21)
$$\Phi(Y, \tau \sigma_n) \leqslant c \tau^{\xi - \eta} \Phi(Y, \sigma_n).$$

In particular, Q_0 is closed in Q.

PROOF. Having chosen $X_0 \in Q \setminus Q_0$, we define (11)

(3.22)
$$\omega_1(t) = Kt^{\varepsilon},$$

$$\omega_2(t) = K[\omega(ct)]^{1-2/r},$$

$$G(X_0, \sigma) = \omega_1(\sigma) + \omega_2(\sigma^{-n}\Phi(X_0, \sigma)).$$

As $X_0 \in Q \setminus Q_0$

$$\min_{\sigma \to 0} G(X_0, \sigma) = 0.$$

Having fixed $\eta \in (0, \xi - n)$, we choose $\lambda = \xi - \eta/2$ and $\eta_0 = \eta/2$.

- (10) Proof of Theorem 2.
- (11) K is the constant which appears (3.4).

Therefore

$$\lambda \in (n, \xi)$$
, $\eta_0 \in (0, \lambda - n)$, $\lambda - \lambda_0 = \xi - \eta$.

By (3.23) we can find $\sigma_{\eta} < 1$ such that $Q(X_0, \sigma_{\eta}) \subset\subset Q$ and

(3.24)
$$G(X_0, \sigma_n) < (1+K)^{-\lambda/\eta_0}$$
.

As $Y \to G(Y, \sigma_{\eta})$ is continuous in Q, we can find r such that $Q(X_0, r + \sigma_{\eta}) \in Q$ and

$$(3.25) G(Y, \sigma_n) < (1+K)^{-\lambda/\eta_0}, \quad \forall Y \in Q(X_0, r).$$

Then, $\forall Y \in Q(X_0, r)$ and $\forall \sigma \leq 1$ such that $Q(Y, \sigma) \subset Q$, inequality (3.1) and condition (3.25) hold; therefore hypotheses of lemma 2.IV are satisfied with

$$arphi(\sigma)=arPhi(Y,\sigma)\,,$$
 $lpha=\lambda\,,\quad eta=n\,,\quad arepsilon=\eta_0\,,$ $\omega_1,\,\omega_2$ are defined as in $(3.22)\,.$

Hence $\forall \tau \in (0, 1)$ and $\forall Y \in Q(X_0, r)$

In particular

$$\lim_{\sigma\to 0}\sigma^{-n}\varPhi(Y,\sigma)=0.$$

Therefore

$$X_0 \in Q \setminus Q_0 \Rightarrow Q(X_0, r) \subset Q \setminus Q_0$$

which means that $Q \setminus Q_0$ is open and so Q_0 is closed in Q.

Now the partial Hölder continuity theorem easily follows from lemma 3.II. In fact, recalling the definition of Φ , from (3.21) we deduce that, if $X_0 \in Q \setminus Q_0$, $Y \in Q(X_0, r)$ and $\tau \in (0, 1)$, then

$$\int\limits_{Q(Y,\tau\sigma_{\lambda})} \!\!\! \|u-u_{\tau\sigma_{\lambda}}\|^2 \, dX \! \leqslant \! c\tau^{\lambda+2} \varPhi(Y,\sigma_{\lambda}) \;, \quad \, \forall n < \lambda \! < \xi \;.$$

By (3.2)

$$\Phi(Y, \sigma_{\lambda}) \leqslant c \left\{ 1 + \int_{0} \|u\|^{2} + \sum_{i} \|D_{i}u\|^{2} dX \right\}.$$

Therefore $\forall Y \in Q(X_0, r)$ and $\tau \in (0, 1)$

$$\int _{Q(Y, au\sigma_{\lambda})} \!\!\! \|u-u_{ au\sigma_{\lambda}}\|^{\,2} \, dX \!\leqslant\! c au^{\lambda+2} \left\{1 \,+\! \int _{Q} \!\! \|u\|^{\,2} + \sum _{i} \|D_{\,i}u\|^{\,2} \, dX
ight\}.$$

By [8], the previous inequality implies that $u \in C^{0,\alpha}(\overline{Q(X_0, r)})$ (12) $\forall \alpha < 1 - (n+2)/p$ and

$$[u]_{\alpha,\overline{Q(X_0,r)}}^2 \leqslant c \left\{ 1 + \int_{\Omega} \|u\|^2 + \sum_i \|D_i u\|^2 dX \right\}.$$

This proves the theorem.

BIBLIOGRAPHY

- [1] S. CAMPANATO, Equazioni paraboliche del secondo ordine e spazi $\mathcal{L}^{2,\theta}(\Omega,\delta)$, Ann. Mat. Pura e Appl., 73 (1966).
- [2] S. CAMPANATO D. SACCHETTI A. TARSIA, Risultati di regolarità per la soluzione del problema di Cauchy in spazi di Hilbert, Boll. U.M.I., 12 (1975).
- [3] S. CAMPANATO, Regolarità $C^{0,\alpha}$ e regolarità L^p per soluzioni del problema di Cauchy astratto senza l'ipotesi di simmetria, Boll. U.M.I., 14-A (1977).
- [4] S. CAMPANATO, Partial Hölder continuity of the gradient of solutions of some nonlinear elliptic systems, Rend. Sem. Mat. Univ. Padova, 59 (1978).
- [5] S. Campanato, L^p regularity for weak solutions of parabolic systems, Ann. S.N.S. di Pisa, 7 (1980).
- [6] S. CAMPANATO P. CANNARSA, Second order non variational elliptic systems, Boll. U.M.I. 17-B (1980).
- [7] S. CAMPANATO, Sistemi ellittici in forma divergenza. Regolarità all'interno, to appear in « Quaderni » S.N.S. di Pisa (1980).
- [8] G. DA PRATO, $Spazi \ \mathfrak{L}^{(p,\theta)}(\Omega, \delta)$ e loro proprietà, Ann. di Matem. Pura e Appl., **69** (1965).
 - (12) Hölder continuity with respect to the metric δ defined in (1.18).

- [9] M. GIAQUINTA E. GIUSTI, Partial regularity for the solutions to nonlinear parabolic systems, Ann. di Matem. Pura e Appl., 97 (1973).
- [10] O. A. LADYZENSKAJA V. A. SOLONNIKOV N. N. URAL'CEVA, Linear and quasilinear equations of parabolic type, Amer. Mathem. Society, translations of mathematical monographs (1968).
- [11] J. L. Lions, Equations differentielles operationelles, Springer (1961).

Manoscritto pervenuto in redazione il 17 dicembre 1979.