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Distributional Boundary Values in D’LP (IV).

RICHARD D. CARMICHAEL (*)

1. - Introduction.

In this paper we add information to [3, section IV] where we have
obtained results concerning the Cauchy and Poisson integrals of distri-
butions in 5)’ corresponding to generalized half planes. Here we show
that many of the results of [3, section IV] hold for further values of p
than previously obtained and also prove additional results.

The n-dimensional notation to be used in this paper will be exactly
as described in [2, section II] and in [3, section II]. We note especially
the following notation. Throughout this paper a ((11’ ..., (1n), n being
the dimension, is an n-tuple where ~~ _ ~ 1, j = 1, ... , n. For each
of the 2 ~ n-tuples a we put Ca = = 1~ For

each of these 2 n octants Cj we correspondingly define the 2 n general-
ized half planes in Cn as 07
j = 1, ... , n~. The reader should review the definitions and properties
of the function spaces I and B and the generalized
function spaces 8’ and 0’, contained in Schwartz [7, pp. 199-205
and pp. 233-248]. All other needed definitions, such as that of Fourier
transform, are contained in [3, section II].

2. - The Cauchy and Poisson kernel functions.

For each of the 2n6 put

(*) Author’s address : Department of Mathematics, Wake Forest University,
Winston-Salem, North Carolina, 27109 U.S.A.
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where

is the Cauchy kernel corresponding to the generalized half
plane B6. It is implicit by the analysis of Tillmann [8] that

(lip) -f- (llq) = 1, 1 C p C 00, as a function of t E Rn,
for arbitrary z E Ba . But for every q, 
by [7, pp. 199-200]. We thus have proved the following fact.

LEMMA 2.1..For each let z E Ba . As a f unction of tERn,

We note two false statements in [3, p. 259, lines 5-7]. As we have
shown above is an element of 33 contrary to the false as-
sertion in [3, p. 259, lines 5-6]. Further, as we shall see in section 3 of
this paper, the Cauchy integral C(U; z E B6 ) is well defined for ~,

and [3, Theorem 3] does hold for p = 1.
Now put

for each a where z = x -f- iy E Ba and z) is the Poisson
kernel corresponding to Ba . Let a be any n-tuple of nonnegative
integers and let Z E Ba be arbitrary but fixed. By the generalized
Leibnitz rule we have

where the differential operator J9~ is defined in [2, p. 37]. From (2.2),
and similarly as func-
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tions of t E Rn. Thus by (2.4), z)) ELI r) L-. But Li () L- C El,
1 p  oo. We conclude that z) E for all q, 1 ~ q c oo; and

z) E 93 also since c 93 for every q, 1 c q  oo, [7, pp. 199-200].
This proves the following result.

LEMMA 2.2. For each n-tuple 0’, let z E Ba. As cc functions of t E R",

3. - The Cauchy integral.

1  p  oo, is the dual space (space of continuous linear f unc-
tionals) of (ljp) + = 1; while is the dual space of lib
[7, p. 200]. Thus let for any p, For each

n-tuple a put

which is the Cauchy integral of ZT corresponding to Ba. According
to Lemma 2.1, C( ZT ; z E Ba) is a well defined function of z E Ba.

THEOREM 3.1. Let 7 1 ~p C 00. For each 0’, C( tI ; z E B6)
is acn analytic function of z E Ba such that

where M is a positive constant, which is independent of z E Ba, and
each mj, j = 1, ... , n, is a nonnegative integer.

PROOF. For 1  p the desired results have been proved by
Tillmann [8]. We now prove these facts for p = 1. By Schwartz
[7, 7 p. 201], U E D§&#x3E; implies

where k is some nonnegative integer and the a are n-tuples of non-
negative integers. Recall our definition of the differential operator Dt
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given in [2, p. 37]. Using (2.1) and (3.3) we have

For each oc in (3.4) put

Let 8 be an arbitrary compact subset of Ba and let z vary over S for
the moment; there exist numbers 0, j = 1, ... , n, depending only
on S such that 0 for all y = ..., for which z = x +
+ iy E S. Thus for all z = x + iy and all tERn we have

Recalling that each fa(t) we see that the right side of (3.6) is
an L" function of that is independent of z = x -E- iy E S. Thus

by [1, p. 295, Theorem B.4], each Fa(z) defined in (3.5) is analytic
in B6; hence so is because of (3.4). By analysis as in (3.6)
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we have f or z E B(1 that

The growth (3.2) for p = 1 follows easily now by combining (3.4)
and (3.7) where is defined in (3.5) for each «, The proof
is complete.

Of course Ra(z - t) does not belong to as a function 
f or z arbitrary in Ba . Thus we can not let p = oo in Theorem 3.1
because C( U; z c- Ba) does not exist for U E Theorem 3.1 extends
the corresponding information of Tillmann [8] to the case p = 1.

Now consider any of the 2 n n-tuples 0’ and the corresponding gen-
eralized half plane B6 . Let  p  2, such that 1I = 9,
where V e S’ and supp So = {t: - cxJ  = 1, ... , Let

denote the characteristic function of So and define the C°° func-
tion «(t) as in [3, p. 258] corresponding to So. Notice that

as in [3, p. 258, lines 19-20], where the Fourier transform in (3.8) is
the El transform and hence also the S’ Fourier transform. Thus be-
cause of (3.8),

as a function of x E Rn for arbitrary Y E Ca, and (3.8) implies

with this inverse Fourier transform being in S’ [7, p. 250]. Using the
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fact (3.9) and the proof of [7, p. 270, lines 3-17] we now have

with this equality holding in 8’ and the convolution on the left being
the distributional convolution [7, Chapter 6]. But U= 9 in 8’ im-

plies in 8’. Combining this with (3.10) and (3.11) we get

in S’ and hence

in ~’. Our method of obtaining (3.12) gives an alternate method of
obtaining the equality [3, p. 258, (12)], and note that we have this
equality now under the assumption 1 c p c 2. (Recall that
[3, Theorem 3] did not include the case p = 1.) With the equality
(3.12) now obtained under the specified assumptions for 1 p c 2 and
with Theorem 3.1 above, we now state that [3, Theorem 3] holds for
p = 1 also in which case q = oo there. The techniques to prove the
stated conclusions are the same for p = 1 as for 1 C p ~ 2 with the
exception that we now use our proof of (3.12) above to obtain [3,
p. 258, (12)]. In addition we can now state a growth condition on
C( U; z e Bj) because of Theorem 3.1. For completeness we now state
our extension of [3, Theorem 3].

THEOREM 3.2. Let B6 be any of the 2 n generalized half planes in ~Cn.
Let U E Ð:p, such that U = f, where V E 8’ supp ( Y) C

C S06 = {t: - oo  6jtj  0, j = 1, ..., n}. The V = E(-1)|B|tB(t), hB(t) E 
|B|m

E Lq, + (1lq) = 1; C( U; analytic in B6 and satis f ies (3.2 ) ;
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as elements o f 8’; and C( U; z E Ba) - U E in the strong (and weak)
topology o f 8’ as Im (z) - 0.

The above convergence of C( U; z E Ba) - U E in the strong
topology of S’ as Im (z) ~ 0 is proved as follows. After obtaining
(3.13 ) we use the same proof as in [3, Theorem 3] to show that

in the weak topology of 8’ as Im (z) -~ 0. But 8 is a Montel space
[7, p. 235]; hence by [4, p. 510, Corollary 8.4.9] the convergence in
(3.14) is in the strong topology of 8’.

As a result of Theorem 3.2, the extension of [3, Theorem 3], and
its proof, the results [3, Corollary 1 and Theorem 5] hold also for
1 p 2 by using the same proofs as before. Note that [3, Theorem 6]
has already been obtained for 1 ~~ c 2.

4. - The Poisson integral.

Let for any p , For each a put

which is the Poisson integral of ZT. By Lemma 2.2, P( U; is

a well defined function of z E Ba. Note that the Poisson integral
P(U; z E Ba) is well defined for U E while C( U; z E Ba) is not defined
for this is because .K6(t; z) E while R6(z - t) does not.

In general P( U; z E Bj) is not an analytic function which is in contrast
to the Cauchy integral. However, the result [3, Theorem 7] holds for
1 ~ p ~ oo by the same proof as before for the case 1  p  00; hence
we have extended this result to include the case p = 1 and 
now; and P( U; z E Ba) is an n-harmonic function for I

We note a misprint in the proof of [3, Theorem 7]; [3,
p. 262, line 19] should read

[3, Theorems 8 and 10] related the Poisson integral with the Cauchy
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integral and the Fourier-Laplace transform. Because of the preceding
information in this paper, these two theorems can now be seen to hold
for by the same proofs as given in [3, Thorems 8
and 10] since we now know that the analysis on which these proofs
are based holds for 1 c p c 2.

We now extend [3, Theorem 9] by obtaining this result for U e D§p
for 1 p  00, and give a separate proof. Further, our extension
is slightly more general than [3, Theorem 9]. Our result is as follows.

THEOREM 4.1. Let !7e ~Lp , 1 c p c oo. For any o f the 2" n-tupl es rr

we have

f or e 

Theorem 4.1 is more general than [3, Theorem 9] since S c DL1.
Our present proof of Theorem 4.1 relies on the following two lemmas.

LEMMA 4.1. Let any o f the 2" n-tuples 0’
we 

for every qJ E 

PROOF. Let 99 E A change of variable yields

for E C6 and t E Rn where

By the proof of Lemma 2.2, for all q, 
as a function of x E Rn for y E Ca arbitrary. Thus by [7, p. 201, Th6o-

XXV] we have y) E I)., for every q, as a func-



211

tion of x E Rn for y E Ca arbitrary. Hence for we

have that the distributional convolution

by [7, p. 203, Th6or6me XXVI]. Thus for any (p E ~L1, ~ U * y), q;&#x3E;
exists because of (4.6); and

by the definition of distributional convolution ([7, Chapter 6] or [3,
p. 251].) Combining (4.4) and (4.7) we obtain for y E C6 that

which proves that the right side of (4.3) is well defined for any y E Ca.
For 1 c p c oo, we have by the characterization theorem of
Schwartz [7, p. 201, Théorème XXV] that

for some nonnegative integer m. Using (4.8), a change of order of
integration, which is valid here, and the fact that differentiation can
be taken under the integral sign as needed below, we obtain for any
y E C6 that

which proves (4.3). The proof is complete.
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LEMMA 4.2. For any o f the 2n 
p E ÐL1. We have

in the topology o f for all q, 1  q  oo, and in the topology of 93.

PROOF. For 99 E and any n-tuple oc of nonnegative integers,
we have using (4.4) that

where y ) is defined in (4.5) and the differentiation under the
integral sign is valid. Now q G implies Vf,,(t) = E By
[7, p. 200], for all q, and DL1 c B c Now

- .ga(t; z) defined in (2.3) is the Poisson kernel function for the tube Ba
in Cn corresponding to the cone C,, in hence z) is an approxi-
mate identity [6, Proposition 2]. y) is also an approximate
identity.) Using (4.10) and [6, Proposition 2] we have

where for all :q, as noted

above. Now using (4.11), [6, Proposition 2], and the same method of
proof used in [5, Theorem on pp. 17-19, Theorem on p. 32] we have

for any q, 1 c q  00, any n-tuple a of nonnegative integers, and any
(4.12) thus proves (4.9) in the topology of Dzq for all q,
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1  00. Further, T E c 93 c Dz w implies Pa(t) = D’(99(t)) E Dz&#x3E; c
c for any n-tuple a of non-negative integers; and by the defi-

nition of Pa(t) -~ 0 as It -~ oo with Pa(t) being continuous and
bounded on Rn. This implies that llE«(t) = is uniformly con-
tinuous and bounded Thus by the proof of [6, Proposi-
tion 3, ( b ) ] we have

uniformly for From this and (4.10) it follows that

which proves (4.9) in the topology of I~ and in the topology of
93 « ÐLoo. The proof is complete.

We now give the

PROOF OF THEOREM 4.1. For any q E the proof of Lemma 4.1
yields that U, (Kj(t ; x + iy), exists for y E C~. The con-

tinuity of and Lemma 4.2 combine to prove

and  U, is well defined for 99 E since Ð L1 ç Ð LQ for all q, 1  q  oo,
and ct. The desired result (4.2) follows now by combining (4.13)
and (4.3). The proof of Theorem 4.1 is complete.

If p = oo in Theorem 4.1, then (4.2) proves that P( U; (x + iy) E
in exactly the weak topology of 5)’. L as y - 0, y E Ca,

since (4.2) holds for each g E whose dual space is 
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