RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

JINDŘICH BEČVÁŘ

Abelian groups in which every Γ -isotype subgroup is a pure subgroup, resp. an isotype subgroup

Rendiconti del Seminario Matematico della Università di Padova, tome 62 (1980), p. 251-259

http://www.numdam.org/item?id=RSMUP 1980 62 251 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1980, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Abelian Groups in which Every Γ -Isotype Subgroup is a Pure Subgroup, Resp. an Isotype Subgroup.

JINDŘICH BEČVÁŘ (*)

All groups considered in this paper are abelian. Concerning the terminology and notation, we refer to [3]. In addition, if G is a group then G_t and G_p are the torsion part of G and the p-component of G_t respectively. Let G be a group and p a prime. Following Rangaswamy [10] we say that a subgroup H of G is p-absorbing, resp. absorbing in G if $(G/H)_p = 0$, resp. $(G/H)_t = 0$. A subgroup H of G is said to be isotype in G if $p^{\alpha}H = H \cap p^{\alpha}G$ for all primes p and all ordinals α . Recall that if H is p-absorbing in G then $p^{\alpha}H = H \cap p^{\alpha}G$ for every ordinal G (see lemma 103.1 [3]).

Let N be the set of all positive integers, $p_1, p_2, ...$ be the sequence of all primes in the natural order and $\mathcal K$ the class of all sequences $(\alpha_1, \alpha_2, ...)$, where each α_i is either an ordinal or the symbol ∞ which is considered to be larger than any ordinal. Let G be a group and $\Gamma = (\alpha_1, \alpha_2, ...) \in \mathcal K$. A subgroup H of G is said to be Γ -isotype in G if $p_i^\beta H = H \cap p_i^\beta G$ for every $i \in \mathbb N$ and for every ordinal $\beta \leqslant \alpha_i$. If $\Gamma = (0, 0, ...)$, $\Gamma = (1, 1, ...)$, $\Gamma = (\omega, \omega, ...)$, $\Gamma = (\infty, \infty, ...)$ then Γ -isotype subgroups of G are precisely subgroups, neat subgroups, pure subgroups, isotype subgroups respectively. Note that if $\Gamma = (\alpha_1, \alpha_2, ...)$, $\Gamma' = (\alpha'_1, \alpha'_2, ...) \in \mathcal K$ and $\Gamma \leqslant \Gamma'$ (i.e. $\alpha_i \leqslant \alpha'_i$ for each $i \in \mathbb N$) then every Γ' -isotype subgroup of G is Γ -isotype in G. Let G be a g-group, g be an ordinal or the symbol g. A subgroup G of G is said to be g-isotype in G if $g \in H = H \cap g \in G$ for every ordinal $g \leqslant g$.

A direct sum of cyclic groups of the same order p^e is denoted by B_e .

^(*) Indirizzo dell'A.: Matematicko-Fyzikální Fakulta, Universita Karlova - Sokolovská 83 - 18600 Praha 8 (Československo).

The purpose of this paper is to describe the classes of all groups in which every Γ -isotype subgroup is a neat, a pure, an isotype subgroup, a direct summand, an absolute direct summand, an absorbing subgroup respectively. Here are so generalized the results of this type from [1], [2], [4], [6]-[9], [11], [13] (see [1]-introduction).

LEMMA 1. Let G be a torsion group and $\Gamma = (\alpha_1, \alpha_2, ...) \in \mathcal{H}$. A subgroup H of G is Γ -isotype in G iff H_{p_i} is α_i -isotype in G_{p_i} for every $i \in \mathbb{N}$.

Proof. Obvious.

LEMMA 2. Let G be a p-group, $g \in G$ an element of order p^i , $k \in \mathbb{N}$, $k \leq i$. The subgroup $\langle g \rangle$ is k-isotype in G iff $h^g(p^{k-1}g) = k-1$. Moreover, the subgroup $\langle g \rangle$ is pure (isotype) in G iff $h^g(p^{i-1}g) = i-1$.

PROOF. Easy.

LEMMA 3. Let H be a subgroup of a group G and p a prime. If G_p is divisible and $pH = H \cap pG$ then $p^{\alpha}H = H \cap p^{\alpha}G$ for every ordinal α .

PROOF. Obviously, H_p is neat in G_p and hence H_p is divisible. Write $H = H_p \oplus H'$ and $G = G_p \oplus G'$, where $H' \in G'$. Since H' is p-absorbing in G', the result follows.

LEMMA 4. Let G be a p-group and $k \in \mathbb{N}$. If every k-isotype subgroup of G is a pure subgroup of G then either $G = D \oplus B$, where D is divisible and $p^{k-1}B = 0$, or $p^{k-1}G = B_e \oplus B_{e+1}$ for some $e \in \mathbb{N}$.

PROOF. Let $G = D \oplus B$, where D is nonzero divisible and B is reduced. Suppose $B = \langle a \rangle \oplus B'$, where $o(a) = p^j$ and $j \geqslant k$; let $d \in D$ be an element of order p^{j+1} . By lemma 2, $\langle a+d \rangle$ is k-isotype in G but is not pure in G—a contradiction. Hence $p^{k-1}B = 0$.

Let G be reduced. Suppose $G = \langle a \rangle \oplus \langle b \rangle \oplus G'$, where $o(a) = p^j$, $o(b) = p^m$ and $m-2 \geqslant j \geqslant k$. By lemma 2, the subgroup $\langle a+pb \rangle$ is k-isotype in G but is not pure in G—a contradiction. If B is a basic subgroup of G then obviously $G = B = B_1 \oplus ... \oplus B_{k-1} \oplus B_m \oplus B_{m+1}$, where $m \geqslant k$, and hence $p^{k-1}G = B_e \oplus B_{e+1}$ (e = m-k+1).

LEMMA 5. Let G be a group, p a prime and $\alpha < \beta$ ordinals. If $p^{\beta}G_{p}$ is not essential in $p^{\alpha}G_{p}$ and either $p^{\beta+1}G_{p}$ is nonzero or $p^{\beta}G$ is not torsion then there is a sugroup H of G with following properties: H is q-absorbing in G for every prime $q \neq p$, $p^{\gamma}H = H \cap p^{\gamma}G$ for every ordinal $\gamma \leqslant \alpha + 1$ and $p^{\beta+1}H \neq H \cap p^{\beta+1}G$.

Proof (see lemma 3 [1]). There is a nonzero element $n \in p^{\alpha}G_{p}[p]$ such that $\langle n \rangle \cap p^{\beta}G_{p} = 0$. Let $g \in p^{\beta}G$ such that either $0 \neq pg \in G_{p}$ or $o(g) = \infty$. Write $X = \langle p^{\beta}G[p], pg, n + g \rangle$. It is easy to see that $\langle n \rangle \cap X = 0$. Let H be an $\langle n \rangle$ -high subgroup of G containing X. By [5], $p^{\gamma}H = H \cap p^{\gamma}G$ for every ordinal $\gamma \leqslant \alpha + 1$. Since $p^{\beta}G[p] \subset H$, $p^{\beta+1}H \neq H \cap p^{\beta+1}G$. By lemma 6 [1], H is q-absorbing in G for every prime $q \neq p$.

THEOREM 1. Let G be a group and $\Gamma = (\alpha_1, \alpha_2, ...) \in \mathcal{H}$. The following are equivalent:

- (i) Every Γ -isotype subgroup of G is a pure subgroup of G.
- (ii) For every $i \in \mathbb{N}$, if $\alpha_i < \omega$ then either $G_{p_i} = D \oplus B$, where D is divisible and $p_i^{\alpha_i-1}B = 0$, or G is torsion and G_{p_i} is elementary or G is torsion and $p_i^{\alpha_i-1}G_{p_i} = B_e \oplus B_{e+1}$ for some $e \in \mathbb{N}$.

PROOF. Assume (i). For each $i \in \mathbb{N}$, every α_i -isotype subgroup of G_{p_i} is Γ -isotype in G and hence pure in G_{p_i} . By lemma 4 and by [4], G_{p_i} is as claimed. Suppose G is not torsion and $\alpha_i = 0$ for some $i \in \mathbb{N}$. If $g \in G$ is an element of infinite order then $g \notin \langle p_i g, G_{p_i} \rangle$ and a subgroup H maximal with respect to the properties $g \notin H$, $\langle p_i g, G_{p_i} \rangle \subset H$ is Γ -isotype in G by lemma 6 [1]. Since H is pure in G, there is an element $h \in H$ such that $p_i g = p_i h$, hence $g - h \in G_{p_i} \subset H$ —a contradiction. Finally, if G is not torsion, $\alpha_i < \omega$ for some $i \in \mathbb{N}$ and $p_i^{\alpha_i - 1} G_{p_i} = B_e \oplus B_{e+1} \neq 0$ then $p_i^{\alpha_i + e} G_{p_i}$ is not essential in $p_i^{\alpha_i - 1} G_{p_i}$, $p_i^{\alpha_i + e} G$ is not torsion and lemma 5 implies a contradiction.

Assume (ii). Let H be an Γ -isotype subgroup of G and $i \in \mathbb{N}$. Write $\beta = \alpha_i$ and $p = p_i$. If $\beta > \omega$ then H is p-pure in G. If $\beta = 0$ then by assumption G is torsion and G_p is elementary; write $G = G_p \oplus G'$ and $H = H_p \oplus H'$. For every $k \in \mathbb{N}$, $p^k H = H' = H \cap G' = H \cap p^k G$, i.e. H is p-pure in G. Let $0 < \beta < \omega$. Suppose that $p^{\beta-1}G_p = B_s \oplus B_{s+1}$ and G is torsion. By lemma 1,

$$p(p^{\beta-1}H_{\boldsymbol{p}}) = H_{\boldsymbol{p}} \cap p(p^{\beta-1}G_{\boldsymbol{p}}) = p^{\beta-1}H_{\boldsymbol{p}} \cap p(p^{\beta-1}G_{\boldsymbol{p}}) \,,$$

i.e. $p^{\beta-1}H_p$ is neat in $p^{\beta-1}G_p$. By [9], $p^{\beta-1}H_p$ is pure in $p^{\beta-1}G_p$ and hence H_p is pure in G_p . Consequently, H is p-pure in G. Suppose that $G_p = D \oplus B$, where D is divisible and $p^{\beta-1}B = 0$. Now,

$$p(p^{\beta-1}H) = H \cap p(p^{\beta-1}G) = p^{\beta-1}H \cap p(p^{\beta-1}G)$$
.

Since $p^{\beta-1}G_p$ is divisible, $p^{\beta-1}H$ is p-pure in $p^{\beta-1}G$ by lemma 3. Therefore H is p-pure in G.

THEOREM 2. Let G be a group and $\Gamma = (\alpha_1, \alpha_2, ...) \in \mathcal{K}$. Every Γ -isotype subgroup of G is a direct summand of G iff the following conditions hold:

- (i) $G = T \oplus D \oplus N$, where T is torsion reduced, D is divisible and N is a direct sum of a finite number mutually isomorphic torsion-free rank one groups;
- (ii) if $\alpha_i < \omega$ then either $p_i^{\alpha_i-1}T_{p_i} = 0$ or G is torsion and G_{p_e} is elementary or G is torsion and $p_i^{\alpha_i-1}G_{p_i} = B_e \oplus B_{e+1}$ for some $e \in \mathbb{N}$;
 - (iii) if $\omega \leqslant \alpha_i$ then T_{p_i} is bounded.

PROOF. If every Γ -isotype subgroup of G is a direct summand of G then every isotype subgroup of G is a direct summand of G and every Γ -isotype subgroup of G is pure in G. Now, theorem 2 [1] and theorem 1 imply (ii). Conversely, by theorem 1, every Γ -isotype subgroup of G is pure in G and by [2], every pure subgroup of G is a direct summand of G.

For the similar result see [12].

THEOREM 3. Let G be a group and $\Gamma = (\alpha_1, \alpha_2, ...) \in \mathcal{K}$. Every Γ -isotype subgroup of G is an absolute direct summand of G iff G satisfies one of the following two conditions:

- (i) G is torsion and for every $i \in \mathbb{N}$, if $\alpha_i = 0$ then G_{p_i} is elementary, if $0 < \alpha_i$ then either G_{p_i} is divisible or $G_{p_i} = B_e$ for some $e \in \mathbb{N}$.
- (ii) $\alpha_i \neq 0$ for every $i \in \mathbb{N}$ and either G is divisible or $G = G_t \oplus R$, where G_t is divisible and R is of rank one.

PROOF. Every Γ -isotype subgroup of G is an absolute direct summand of G iff every Γ -isotype subgroup of G is a direct summand of G and every direct summand of G is an absolute direct summand of G. Now, theorem 2 and [11] imply the desired result.

THEOREM 4. Let G be a group and $\Gamma = (\alpha_1, \alpha_2, ...) \in \mathcal{K}$. The following are equivalent:

- (i) Every Γ -isotype subgroup of G is a neat subgroup of G.
- (ii) If $\alpha_i = 0$ for some $i \in \mathbb{N}$ then G_{p_i} is elementary and G is torsion.

Proof. Assume (i). Every α_i -isotype subgroup of G_{p_i} is obviously Γ -isotype in G and hence neat in G_{p_i} . By [11], if $\alpha_i = 0$ then G_{p_i} is elementary. Suppose that G is not torsion and $\alpha_i = 0$ for some $i \in \mathbb{N}$. If $g \in G$ is an element of infinite order then a subgroup H of G maximal with respect to the properties $g \notin H$, $\langle p_i g, G_{p_i} \rangle \subset H$ is Γ -isotype in G by lemma 6 [1] but obviously it is not a neat subgroup of G.

Assume (ii). If $\alpha_i > 0$ for each $i \in \mathbb{N}$ then every Γ -isotype subgroup of G is neat in G. Suppose G is torsion and if $\alpha_i = 0$ then G_{p_i} is elementary. If H is an Γ -isotype subgroup of G then H_{p_i} is α_i -isotype in G_{p_i} for each $i \in \mathbb{N}$ and hence neat in G_{p_i} by [11]. Consequently, H is neat in G.

LEMMA 6. Let G be a group, p a prime and β an ordinal. Let H be a $p^{\beta}G$ -high subgroup of G and $a \in p^{\beta}G$. If $p^{\alpha}H_{p} \neq 0$ for each ordinal $\alpha < \beta$ then there is a subgroup X of G such that $p^{\alpha}X = X \cap p^{\alpha}G$ for each ordinal $\alpha \leqslant \beta$ and $p^{\beta}X = \langle a \rangle$.

PROOF. If (o(a), p) = 1 then write $X = \langle a \rangle$ and all is well. Hence suppose that p|o(a) or $o(a) = \infty$.

If β is not a limit ordinal then there is an element $b \in p^{\beta-1}G$ such that pb = a. If $b \notin p^{\beta}G$ then write $a_{\alpha} = b$ for every ordinal $\alpha < \beta$ and $X_{\beta} = \langle b \rangle$. If $b \in p^{\beta}G$ and $0 \neq c \in p^{\beta-1}H[p]$ then $b' = b + c \in p^{\beta-1}G \setminus p^{\beta}G$, pb' = a; in this case write $a_{\alpha} = b'$ for every ordinal $\alpha < \beta$ and $X_{\beta} = \langle b' \rangle$. Obviously $X_{\beta} \cap p^{\beta}G = \langle a \rangle$.

Let β be a limit ordinal. For each ordinal $\alpha < \beta$ there is an element $x \in p^{\alpha}G \setminus p^{\beta}G$ such that a = px. We use the transfinite induction to define the sets X_{α} , $\alpha \leqslant \beta$: $X_0 = \langle a \rangle$; obviously $X_0 \cap p^{\beta}G =$ $=\langle a \rangle$ and $(G \cap X_0)[p] \subset \langle a \rangle$. Further, $X_1 = \langle X_0, a_1 \rangle$, where $a_1 \in$ $\in pG \setminus p^{\beta}G$ and $pa_1 = a$; obviously $X_1 \cap p^{\beta}G = \langle a \rangle$ and $(pG \cap X_1)[p] \subset pG \setminus p^{\beta}G$ $\subset \langle a \rangle$. Suppose that $X_{\alpha-1}$ has been defined such that $X_{\alpha-1} \cap p^{\beta}G = \langle a \rangle$ and $(p^{\alpha-1}G \cap X_{\alpha-1})[p] \subset \langle a \rangle$, define X_{α} . If there is an element $x \in X_{\alpha-1} \cap p^{\alpha}G$ such that px = a then let $a_{\alpha} = x$ and $X_{\alpha} = X_{\alpha-1}$. Otherwise let $X_{\alpha} = \langle X_{\alpha-1}, a_{\alpha} \rangle$, where $a_{\alpha} \in p^{\alpha} G \setminus p^{\beta} G$ and $pa_{\alpha} = a$. We show that $X_{\alpha} \cap p^{\beta}G = \langle a \rangle$. Let $y + za_{\alpha} \in p^{\beta}G$, where $y \in X_{\alpha-1}$ and z is an integer. Obviously $py \in X_{\alpha-1} \cap p^{\beta}G = \langle a \rangle$; write py = ma, where m is an integer. If (p, m) = 1 then there are integers u, v such that upa + vma = a and hence a = p(ua + vy), $ua + vy \in X_{\alpha-1} \cap p^{\alpha}G$ —a contradiction. Hence m = pm', p(y - m'a) = 0 and $y - m'a \in$ $\in (p^{\alpha-1}G\cap X_{\alpha-1})[p]\subset \langle a
angle. ext{ Therefore } y\in \langle a
angle, \ y+za_{lpha}\in \langle a_{lpha}
angle\cap p^{eta}G=$ $=\langle a\rangle$. Further we show that $(p^{\alpha}G\cap X_{\alpha})[p]\subset\langle a\rangle$. Let $y+za_{\alpha}\in$ $\in (p^{\alpha}G \cap X_{\alpha})[p]$, where $y \in X_{\alpha-1}$ and z is an integer; hence py = -za.

If (p, z) = 1 then a = p(ua - vy), where u, v are integers, $ua - vy \in A_{\alpha-1} \cap p^{\alpha}A$ —a contradiction. Hence

$$z = pz'$$
, $y + z'a \in (p^{\alpha-1}G \cap X_{\alpha-1})[p] \subset \langle a \rangle$

and therefore $y \in \langle a \rangle$. Now, $y + za_{\alpha} \in \langle a \rangle$. Finally, if α is a limit ordinal then let $X_{\alpha} = \bigcup_{\gamma} X_{\gamma}$.

Let X be a subgroup of G maximal with respect to the properties: $X \cap p^{\beta}G = \langle a \rangle$, $X^{\beta} \subset X$. We prove that $p^{\alpha}X = X \cap p^{\alpha}G$ for every $\alpha < \beta$. It is sufficient to show that if this equality holds for $\alpha - 1$ then it holds for α . Let $x \in X \cap p^{\alpha}G$, i.e. x = pg, where $g \in p^{\alpha-1}G$. If $g \in X$ then $g \in X \cap p^{\alpha-1}G = p^{\alpha-1}X$ and $x \in p^{\alpha}X$. If $g \notin X$ then there is an element $y \in X$ and an integer z such that $zg + y \in p^{\beta}G \setminus \langle a \rangle$. Obviously $y \in p^{\alpha-1}G$ and (z, p) = 1. Since $pzg + py \in X \cap p^{\beta}G = \langle a \rangle$, $zx + py = ra = rpa_{\alpha-1}$ and $zx = p(ra_{\alpha-1} - y)$. Now, $ra_{\alpha-1} - y \in X \cap p^{\alpha-1}G = p^{\alpha-1}X$, $zx \in p^{\alpha}X$ and $x \in p^{\alpha}X$.

LEMMA 7. Let G be a p-group and β an ordinal. The following are equivalent:

- (i) Every β -isotype subgroup of G is isotype in G.
- (ii) Either $G = D \oplus B$, where D is divisible and $p^{\gamma}B = 0$ for some ordinal $\gamma < \beta$, or $p^{\beta}G$ is elementary or $p^{\beta-1}G = B_{\epsilon} \oplus B_{\epsilon+1}$ for some $e \in \mathbb{N}$.

PROOF. Assume (i). If $\beta = 0$ then G is elementary by [4]. If β is a limit ordinal then write $\alpha = \beta$, otherwise write $\alpha = \beta - 1$. Let $p^{\alpha}G = D \oplus R$, where D is divisible and R is reduced. If both D and R are nonzero, write $R = \langle a \rangle \oplus R'$, where $o(a) = p^k$, $k \in \mathbb{N}$. The subgroup $p^{\alpha+k}G$ is not essential in $p^{\alpha}G$, $p^{\alpha+k+1}G\neq 0$ and lemma 5 implies a contradiction. If $p^{\alpha}G$ is reduced and $p^{\alpha}G = \langle a \rangle \oplus \langle b \rangle \oplus R'$, where $o(a) = p^k$, $o(b) = p^j$ and $i - k \ge 2$, then $p^{\alpha+k}G$ is not essential in $p^{\alpha}G$, $p^{\alpha+k+1}G \neq 0$ and lemma 5 implies a contradiction. Consequently, either $p^{\alpha}G$ is nonzero divisible or $p^{\alpha}G = B_{e} \oplus B_{e+1}$ for some $e \in \mathbb{N}$. If $\alpha = \beta - 1$ then we are through, since if $p^{\alpha}G$ is divisible then $G = p^{\alpha}G \oplus B$ and obviously $p^{\alpha}B = 0$. Hence suppose $\alpha = \beta$. $p^{\beta}G$ be nonzero divisible; write $G = p^{\beta}G \oplus B$. If $p^{\gamma}B \neq 0$ for every ordinal $\gamma < \beta$ and $0 \neq a \in p^{\beta}G[p]$ then there is a β -isotype subgroup X of G such that $p^{\beta}X = \langle a \rangle$ by lemma 6. Now, $p^{\beta+1}X = 0 \neq \langle a \rangle =$ $=X\cap p^{\beta+1}G$ —a contradiction. Hence $p^{\gamma}B=0$ for some ordinal $\gamma < \beta$. Let $p^{\beta}G = B_{\epsilon} \oplus B_{\epsilon+1}$ and suppose that $p^{\beta}G$ is not elementary.

If H is $p^{\beta}G$ -high subgroup of G then $p^{\gamma}H \neq 0$ for every ordinal $\gamma < \beta$, since β is a limit ordinal. Let $a \in p^{\beta+1}G[p]$ be a nonzero element. By lemma 6, there is a β -isotype subgroup X of G such that $p^{\beta}X = \langle a \rangle$. Now, $p^{\beta+1}X \neq X \cap p^{\beta+1}G$ —a contradiction. Hence $p^{\beta}G$ is elementary.

Assume (ii). Let H be a β -isotype subgroup of G. If $p^{\beta-1}G==B_{\epsilon}\oplus B_{\epsilon+1}$ then

$$p(p^{\beta-1}H) = p^{\beta}H = H \cap p^{\beta}G = p^{\beta-1}H \cap p(p^{\beta-1}G)$$
,

hence $p^{\beta-1}H$ is neat in $p^{\beta-1}G$ and therefore $p^{\beta-1}H$ is pure in $p^{\beta-1}G$ by [9]. Consequently,

$$p^{n}(p^{\beta-1}H) = p^{\beta-1}H \cap p^{n}(p^{\beta-1}G) = H \cap p^{n}(p^{\beta-1}G)$$

for every natural number n and moreover, if $n \ge e+1$ then $p^n(p^{\beta-1}H)=0$. If $G=D \oplus B$, where D is divisible and $p^{\gamma}B=0$ for some $\gamma < \beta$ then

$$p^{\gamma}H = H \cap p^{\gamma}G = H \cap p^{\beta}G = p^{\beta}H$$
.

If $p^{\beta}G$ is elementary then

$$p^{\beta+1}H = H \cap p^{\beta+1}G = 0.$$

In all cases, H is isotype in G.

THEOREM 5. Let G be a group and $\Gamma = (\alpha_1, \alpha_2, ...) \in \mathcal{K}$. The following statements are equivalent:

- (i) Every Γ -isotype subgroup of G is isotype in G.
- (ii) For every $i \in \mathbb{N}$, either $G_{p_i}^{i} = D \oplus B$, where D is divisible and $p_i^{\gamma}B = 0$ for some ordinal $\gamma < \alpha_i$, or $p_i^{\alpha_i}G$ is torsion and $p_i^{\alpha_i}G_{p_i}$ is elementary or $p_i^{\alpha_i}G$ is torsion and $p_i^{\alpha_i-1}G_{p_i} = B_e \oplus B_{e+1}$ for some $e \in \mathbb{N}$.

Proof. Assume (i). Every α_i -isotype subgroup of G_{p_i} is isotype in G_{p_i} and hence G_{p_i} is as claimed in (ii) by lemma 7. Let $i \in \mathbb{N}$; write $\beta = \alpha_i$ and $p = p_i$. Suppose that $p^{\beta}G$ is not torsion. If $p^{\beta-1}G_p = B_e \oplus B_{e+1} \neq 0$ then $p^{\beta+e}G_p$ is not essential in $p^{\beta-1}G_p$ and $p^{\beta+e}G$ is not torsion. If $p^{\beta}G_p$ is nonzero elementary then $p^{\beta+1}G_p$ is not essential in $p^{\beta}G_p$ and $p^{\beta+1}G$ is not torsion. In these both cases, lemma 5 implies a contradiction.

Suppose that $p^{\beta}G$ is not torsion, $p^{\beta}G_{p}=0$ and $p^{\gamma}G_{p}\neq0$ for each ordinal $\gamma < \beta$. Let $a \in p^{\beta}G$, $o(a) = \infty$ and A be a $p^{\beta}G$ -high subgroup of G containing G_n . Hence $p^{\gamma}A_n \neq 0$ for each ordinal $\gamma < \beta$. By lemma 6, there is a subgroup X of G such that $p^{\gamma}X = X \cap p^{\gamma}G$ for every ordinal $\gamma \leqslant \beta$ and $p^{\beta}X = \langle pa \rangle$. Let H be a subgroup of G maximal with respect to the properties: $X \subset H$, $a \notin H$. By lemma 6 [1], H is q-absorbing in G for every $q \neq p$. We prove that $p^{\gamma}H = H \cap p^{\gamma}G$ for each ordinal $\gamma \leq \beta$. It is sufficient to show that if this equality holds for $\gamma - 1 < \beta$ then it holds also for γ . Let $h \in H \cap p^{\gamma}G$; there is $q \in p^{\gamma-1}G$ such that h = pq. Obviously $h \in p^{\gamma-1}H$. If $q \in H$ then If $q \notin H$ then $a \in \langle q, H \rangle$, i.e. a = zq + h', where $h' \in H$ and z is an integer. Now, (z, p) = 1 and $h' \in H \cap p^{\gamma-1}G = p^{\gamma-1}H$. Further, $pa = zh + ph' \in p^{\beta}X \subset p^{\gamma}X$, there is $x' \in p^{\gamma-1}X$ such that zh + ph' = px'. Hence zh = p(x' - h'), where $x' - h' \in p^{\gamma - 1}H$, and therefore $zh \in p^{\gamma}H$. Now, $ph \in p^{\gamma}H$, $zh \in p^{\gamma}H$ and (p, z) = 1 imply $h \in p^{\gamma}H$. Hence H is Γ -isotype in G. Finally, $pa \in H \cap p^{\beta+1}G \setminus p^{\beta+1}H$. For, if pa = py, where $y \in p^{\beta}H$, then $a - y \in G_p \cap p^{\beta}G = 0$, $a \in H$ —a contradiction. Consequently, H is not isotype in G.

Assume (ii). If H is a Γ -isotype subgroup of G then H_t is Γ -isotype in G_t and by lemma 1, each H_{p_t} is α_i -isotype in G_{p_t} . By lemma 7, each H_{p_t} is isotype in G_{p_t} and by lemma 1, H_t is isotype in G_t .

Let $i \in \mathbb{N}$, write $\beta = \alpha_i$ and $p = p_i$. If $p^{\beta}G$ is torsion then

$$p^{\gamma}H = p^{\gamma}H_t = H_t \cap p^{\gamma}G_t = H \cap p^{\gamma}G_t = H \cap p^{\gamma}G$$

for every $\gamma \geqslant \beta$. Suppose that $G_p = D \oplus B$, where D is divisible and $p^{\gamma}B = 0$ for some ordinal $\gamma < \beta$. Hence $p^{\gamma}G_p$ and $p^{\gamma}H_p$ are divisible. Write $p^{\gamma}H = p^{\gamma}H_p \oplus Y$. Since $p^{\gamma}G_p \cap Y = 0$, $p^{\gamma}G = p^{\gamma}G_p \oplus X$, where $Y \in X$. We show that $p^{\varepsilon}Y = Y \cap p^{\varepsilon}X$ for each ordinal ε . It is sufficient to show that if this equality holds for ε then it holds also for $\varepsilon + 1$. Let $y \in Y \cap p^{\varepsilon+1}X$; there is $x \in p^{\varepsilon}X$ such that y = px. Now, $y \in p^{\gamma+1}G \cap H = p^{\gamma+1}H$, there is $h \in p^{\gamma}H$ such that y = ph. Write h = h' + y', where $h' \in p^{\gamma}H_p$ and $y' \in Y$. Since y = ph' + py', $ph' \in \varepsilon Y \cap p^{\gamma}H_p = 0$. Hence y = py', $x - y' \in X_p = 0$, $x \in Y \cap p^{\varepsilon}X = p^{\varepsilon}Y$ and therefore $y \in p^{\varepsilon+1}Y$. Finally,

$$p^{arepsilon}(p^{\gamma}H)=p^{\gamma}H_{r}\oplus p^{arepsilon}Y=p^{\gamma}H_{r}\oplus (Y\cap p^{arepsilon}X)= \ p^{\gamma}H\cap (p^{\gamma}G_{r}\oplus p^{arepsilon}X)=p^{\gamma}H\cap p^{arepsilon}(p^{\gamma}G)=H\cap p^{arepsilon}(p^{\gamma}G)$$

for each ordinal ε .

THEOREM 6. Let G be a nonzero group and $\Gamma = (\alpha_1, \alpha_2, ...) \in \mathcal{K}$. The following are equivalent:

- (i) Every Γ -isotype subgroup of G is an absorbing subgroup of G.
- (ii) Either G is torsion-free and $\alpha_i > 0$ for each $i \in \mathbb{N}$ or G is cocyclic and if $\alpha_i = 0$ for some $i \in \mathbb{N}$ then either $G_{p_i} = 0$ or $G = Z(p_i)$.

PROOF. Every Γ -isotype subgroup of G is absorbing in G iff every Γ -isotype subgroup of G is isotype in G and every isotype subgroup of G is absorbing in G. Now, theorem 5 and theorem 6 [1] imply the desired result.

REFERENCES

- J. Bečvář, Abelian groups in which every pure subgroup is an isotype subgroup, Rend. Sem. Math. Univ. Padova, 62 (1980), pp. 129-136.
- [2] S. N. ČERNIKOV, Gruppy s sistemami dopolnjaemych podgrupp, Mat. Sb., 35 (1954), pp. 93-128.
- [3] L. Fuchs, Infinite abelian groups I, II, Academic Press, 1970, 1973.
- [4] L. Fuchs A. Kertész T. Szele, Abelian groups in which every serving subgroup is a direct summand, Publ. Math. Debrecen, 3 (1953), pp. 95-105. Errata ibidem.
- [5] J. M. IRWIN E. A. WALKER, On isotype subgroups of abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460.
- [6] K. Katô, On abelian groups every subgroup of which is a neat subgroup, Comment. Math. Univ. St. Pauli, 15 (1967), pp. 117-118.
- [7] A. Kertész, On groups every subgroup of which is a direct summand, Publ. Math. Debrecen, 2 (1951), pp. 74-75.
- [8] R. C. Linton, Abelian groups in which every neat subgroup is a direct summand, Publ. Math. Debrecen, 20 (1973), pp. 157-160.
- [9] C. MEGIBBEN, Kernels of purity in abelian groups, Publ. Math. Debrecen, 11 (1964), pp. 160-164.
- [10] K. M. RANGASWAMY, Full subgroups of abelian groups, Indian J. Math., 6 (1964), pp. 21-27.
- [11] K. M. RANGASWAMY, Groups with special properties, Proc. Nat. Inst. Sci. India, A 31 (1965), pp. 513-526.
- [12] V. S. ROCHLINA, Ob ε-čistote v abelevych gruppach, Sib. Mat. Ž., 11 (1970), pp. 161-167.
- [13] K. Simauti, On abelian groups in which every neat subgroup is a pure subgroup, Comment. Math. Univ. St. Pauli, 17 (1969), pp. 105-110.

Manoscritto pervenuto in redazione il 6 luglio 1979.