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Some Remarks

on an Operational Time Dependent Equation.

G. DA PRATO (*)

Introduction.

Let .E be a complex Hilbert space and 
two families of linear operators (generally not bounded) in E.

Consider the Cauchy problem:

where f is a mapping [0, T] and Q c C(E).
Problems of this kind arise in several fields as Optimal Control

theory ( [2], [3], ~7], [8], [9] ) and the Hartree-Fock time dependent prob-
lem in the case of finite Fermi system ( [1] ).

In this paper we generalize the results contained in [3] and we
give some new regularity result for the case where A(t) and B(t) gen-
erates « hyperbolic » semi-groups.

1. The semi-group T -~ etA T etB.

Let E be a complex Hilbert space (norm ) ] , inner product ( , ) ).
We note by C(E) (resp. H(E) ) the complex (resp. real) Banach space
of linear bounded (resp. hermitian) operators E - E and by H+(E)
the cone of positive operators.

(*) Indirizzo dell’A.: Dipartimento di Matematica - Università "di Trento -
38050 Povo (Trento).
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Let A and B be the infinitesimal generators of two semi-groups
etd and etB; we assume that:

We note finally by C8(E) (resp. H8(E)) the set C(E) (resp. H(E))
endowed by the strong topology; ~8(E) is a locally convex space.

Consider the following semi-group in ~$(.E) :

G, is not strongly continuous in t(E), but it is sequentially strongly
continuous in C,(E), that is:

and the mapping:

is continuous

Put:

LEMMA 1.1. If T E D(L) and x E D(B) then Tx E D(A) and it is:

PROOF. Let

(1) A* is the adjoint of A.
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It follows that the mapping:

is continuous, and:

The following proposition is clear:

PROPOSITION 1.2. 1 f T E D(Z) then E D(L) and it is :

PROPOSITION 1.3. L is closed in ~.8(.E) and in E(E).

recalling the dominate convergence theorem we obtain:

it follows T E D(L) and L(T) = S. Therefore L is closed in 

and consequently in E(E). =1=

PROPOSITION 1.4. D(L) is dense in C,(E).

PROOF. Put:
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it is:

moreover

it follows and therefore D(L) is dense in C~). ~

PROPOSITION 1.5. e(L) D IWA + oo[ and 2t 2s (2):

PROOF. Put

For every T E D(Z) it is:

moreover if it is:

it follows

(2) If L is a linear operator, is the resolvent set and L) the
resolvent of L.

(3) C(C(-E7)) is the Banach space of the linear bounded operators £(E) -
- E(E). We note 1/11 the norm in 
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PROPOSITION 1.6. If T n -~ T in C([O, T]; L8(E)) (4) then

PROOF. Let for every e&#x3E;0 there exists 
in C([O, T]) and such that:

it follows:

Choose N such that  N I, then:

Choose n’e such that:

then

2. The linear problem.

Let A = 93 = be two families of linear oper-
ators in E. 

’

Let .F be a Hilbert space (norm inner product (( , ))) con-

tinuously and densely embedded in E.

(4) C([0, T] ; is the set of the mappings [0, T] continuous;
due to the Banach-Steinhaus theorem every T] ; ~8 (~) ) is bounded.
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Let finally Z be an isometric isomorphism in E).
We assume:

If [2.1) is fulfilled it is known ([4], [6]) that there exists an evolution
operator GA(t, s) (resp. GB(t, s)) for the problem:

Moreover GA (resp. GB) : A={(t,s)E[0,T]2;t&#x3E;s}-+L(E) is strongly
continuous and G(r, s) E 

Finally it is:

(5) A is wA-measurable in E if -+- oo[ and R(X, A(-)) is

strongly measurable VII &#x3E; W A .
A is (MA, wA)-stable in E if -i-- oo[ and it is:

(6) With the topology of £(F, E).
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where G Ã,n (resp. is the evolution operator associated to the

problem:

Consider now the problem:

We define L(t) as in (1.4), (1.5) and write (2.3) in the following form:

We consider also the approximate problem:

where An(t) T + 
We say that T is a strong solution of (2.4) if there exists :

such that:

If T E D(L(t)) m T] ; Cs(E)) and (2.4) is fulfilled we say that T
is a classical solution of (2.4).

THEOREM 2.1. Let.ae and 93 be two family o f linear operators in E

veri f ying (2.1 ). Then for every To E t(E) and F E 0([0, T]; C,(E)) the

(7) 01([0, T]; C,(E») is the set of the mappings [0, T] - C8(E) strongly
continuously differentiable.
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problem (2.4) has a unique strong solution given by:

then the solution T is classical.

PROOF. Let first and F E 0([0, T]; L8(F)); in this case
we can easily verify that T is a classical solution.

In the general case by approximating To and F we can show that
T(t), given by (2.7) is a strong solution.

Assume finally that T is a strong solution of (2.4) and take 
as in (2.6). Put Fk = it is: 

by integration in [0, t] it follows:

and, taking the limit for k - oo, the conclusion follows.

3. The quasi-linear problem.

Let Q a closed convex set in £(E) and f a strongly continuous
mapping

Consider the problems:
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We say that IJ is a strong solution of (3.1) if there exists c

c D(L(t)) r1 0-([0, T]; Cs(E)) such that:

If U belongs to D(L(t)) f1 C1( [o, T] ; Cs(E)) and fulfils (3.1) we say
that U is a classical solution of (3.1).

The following proposition is an immediate consequence of the
Theorem 2.1.

PROPOSITION 3.1. U is a strong solution o f (3.1 ) i f and only if it Zs :

We remark now that C([0, T] ; is not a metric space, but
we can define in it the following norm:

by virtue of the Banach-Steinhaus theorem.
0([0, T]; L,(E)) endowed by the norm (3.4) is a Banach space

which we note by B( [o, T]; 
LEMMA 3.2. Let K be a closed subset of B([O, T]; C.,(E)) and y

mappings K -K. Assume that:

Then there and U unic in K such that:

PROOF. By virtue of the contractions principle there exists U It
and U such that (3.7) is fulfilled,
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To prove (3.8) fix Z in JBT; it is:

and

therefore there exists M &#x3E; 0 such that:

It is easy to show that:

if x E E and T] it follows:

due to (3.9) it follows:

and the conclusion follows from (3.10). =1=

We prove now the existence of the maximal solution for the

problem (3.1).
We assume:

We remark that c) is trivial if Q = ~8(E) or .H(E).

(8) ~$ is endowed by the topology of ~(~7).
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LEMMA 3.3. Assume that :

Tccke a, ~3 such that:

Then there exists z &#x3E; 0 such that the problem (3.1 ) has a unique strong
solution in [0, 7:].

PROOF. Put :

then cp maps [0, 2a)) in Q (9) and it is:

Problem (3.1) is equivalent to:

put then it is:

which is equivalent to the equation:
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It is:

and

Therefore there exists T &#x3E; 0 such that y is a contraction in

The following theorem is an immediate consequence of Lemma 3.3,
Proposition 1.6, Lemma 3.2 and standard arguments.

THEOREM 3.4. Assume that A, 93, f veri f y the hypotheses of Lem-
ma 3.3. Then there exists the maximal solution U of the problem (3.1).
If I is the interval where U is defined it is :

Un being the solution of (3.2 ). Finally if II U ~~ is bounded it is

I = [0, T].

PROPOSITION 3.5..Assume that the hypotheses of Theorem 3.4 are
fulfilled. Assume moreover:

T hen the maximal solution of (3.1 ) veri f ies the following inequality:
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PROOF. We remember (Kato [5]) that (3.18)-ii) is equivalent to:

being the sub-differential of the norm in 
Due to (3.18) for every there exists I such that

Suppose first that U is a classical solution of (3.1); then

if we take 1~ such that

it is

which implies (3.19). If U is a strong solution the conclusion follows
by approximation. =1=

4. Regularity.

If for every V E it is f(t, V) E we put

THEOREM 4.1. Assume that the hypotheses of Theorem 3.4 are ful-
filled. Moreover assume that f maps [0, T] X C(F) in E(F) and that f,
veri f ies (3.11 ) ; then if Uo E E(E) n C(F) the maximal solution of (3.1)
is classical and U(t) E ~(.F)~ [0, T].
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PROOF. Consider the problems:

where

By virtue of Theorem 3.4 the problems (4.1) and (4.2) have maximal
solutions in [0, 1[, 1 being the maximal time for tT; moreover

It is easy to see that Vn = therefore

it follows U E C(F), V = z UZ-1. =A

REMARK. If A and B are independent of t we have the following
result (cf. [3]).

THEOREM 4.2. Assume that the hypotheses of Theorem 3.4 are ful-
filled. Suppose moreover that f E C1( [o, T], C,(E)) and Uo E D(L).

Then the maximal solution o f (3.1 ) is classical.

5. Exemples.

1 ) Let f E C2(R), put:

.E~ being the spectral projector attached to T,
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If we choose Q = H(E), B = A then f fulfils (3.11) (cf. Tartar [8])
and (3.1) has a unique maximal solution.

Assume now

LEMMA 5.1. I f f (a) ~ 0 and f (b) ~ 0 then Vr &#x3E; 0 y ~~,. &#x3E; 0 such that:

PROOF. If f (a)  0 the thesis is evident. Assume f (a) = 0; then
it is and if it is

for suitable p. 0

The following proposition is now evident

PROPOSITION 5.2. Assume that (2.1 ) is fulfilled with B = A. Assume
moreover that f E C2(l~), f (a) c 0, f (b) ~ 0. Then i f a c Uo c b there exists
a unique global solution U such that a  U(t)  b.

2) Riccati equation.

Assume Q = H+(E), B = A, le IA ~ 1 and (2.1 ) fulfilled; assume
f (T ) = TPT - F(t) where P ~ 0, .1~(t) ~ 0 ; then it is easy to see that
f verifies (3.11 ) ; therefore (3.1 ) has a maximal solution in Q. More-
over it is

because

therefore if (3.1 ) has a global solution. 
_

Finally assume P E t(F), put P = ZPZ-1 then f,(V) = YPY and
the hypotheses of the Theorem 4.1 are fulfilled and the solution is
classical.
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