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Stirling Pairs.

L. CARLITZ (*)

1. Introduction.

The Stirling numbers of the first and second kind can be defined by

and

respectively. Since S,(n, n - k) and ~(n, n - k) are polynomials in n
of degree 2k, it follows readily that

and

The coefficients ~’i(l~, j ), ~S’ (k, j ) were introduced by Jordan [8, Ch. 4]
and Ward [12]; the present notation is that of [2]. The numbers are

closely related to the associated Stirling numbers of Riordan [10, Ch. 4].

(*) Indirizzo dell’A.: Department of Mathematic - Duke University -
Durhan, N.C. 27706.
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The Stirling numbers and the associated Stirling numbers are related
in various ways. We have

and

Also

The first half of (1.5) is due to Schläfli [11]; the second was proved
by Gould [7].

The writer [3] has defined another triangular array of numbers
that is closely related to k)) and (S(n, k)). Analogous to (1.3)
and (1.4) we have

and

The coefficients Bl(k, j), .B(k, j) are positive integers and satisfy the
recurrences

and
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respectively. Moreover

The writer [1] proved (1.5) by making use of the representations

where is the N6rlund polynomial [9, Ch. 6] defined by

(The polynomial should not be confused with the Bernoulli poly-
nomial Incidentally it follows from (1.13) that

In a recent paper [6] the writer showed that the above results
can be generalized considerably in the following way. 
denote a sequence of polynomials such that

Put

Then all the above results generalize. The proof makes use of two
arrays (G1(k, j)), (G(k, j)) that generalize (Bl(k, j)), (B(1~, j)), respec-
tively. They are defined by
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and satisfy

Incidentally it follows from (1.17) that

.Fl(x, y), .F’(x, y) are defined for arbitrary x, y such that x - y is

equal to a nonnegative integer.
In order to generalize the orthogonality relations for the Stirling

numbers, an additional condition is assumed, namely that

for some

It is proved, using (1.21) that

In the present paper we generalize the definition (1.17) further.
Let r be a fixed positive integer and define

where 1,(z) is a polynomial in z that satisfies (1.16). For r = 1,
(1.21) reduces to (1.17). We call a pair of polynomials

a Stirling pair of order r, or, briefly, a Stirling pair. Clearly each of
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the polynomials is of degree (r -~-1 ) k in n. Moreover, by (1.21 ), 
and are defined for arbitrary (complex) z. 

’

We shall show that the results previously obtained in the case
r == 1, when properly modified, hold for all We show also that
a condition similar to (1.21) suffices for orthogonality in the general
case.

Finally we consider the possibility of recurrence of the type

and

For r = 1, pr(n) = n, (1.23) reduces to the familiar recurrence for

for r = 1, qr(m) = m, (1.24) reduces to the recurrence for
S(n, m). Recurrences for the numbers defined by the generating func-
tions [5]

are of the form (1.23) and (1.24), respectively, y with r = 2. Indeed
it was the study of such arrays that motivated the generalization (1.21).

We show that (1.23) holds if and only if

where = Similarly (1.24) holds if and only if

Thus

The two conditions (1.27), (1.28) are equivalent.
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Moreover when (1.27) is satisfied we have

and

where

and

2. - We first prove the following generalized version of (1.5).

THEOREM 1. For all integral r &#x3E; I, we have

PROOF. It suffices to prove the identity

For z = rk - n, (2.2) reduces to the first of (2.1 ), for z = n, (2.2)
reduces to the second of (2.1).

Each side of (2.2) is a polynomial in z of degree (r + 1) k. Hence

it is only necessary to show that (2.2) holds for (r -~-1 ) k -~-1 distinct
values of z. For z = t = 0,1, ... , rk -1, the LHS of (2.2) is equal to
zero; since
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it follows that (2.2) holds for these values of z. For z = rk we get

which is evidently correct. Finally, for z = - t, where the

RHS of (2.2) reduces to the single term ( j = t)

so that (2.2) holds for these values of z.
This completes the proof of (2.2) and therefore of Theorem 1.

It is of some interest to ask whether the polynomials in a Stirling
pair can be equal. By (1.21) and (1.22), = if and only if

Since

(2.3) reduces to

so that

Hence we have

(2.4)

where

Note that (jJk-l(Z) is a polynomial of degree k -1.
We may state

THEOREM 2. The polynomials g(" (z), gkr’(z) in the Stirling pair



26

are equal if and onl y if

where (j?k-1(Z) is a polynomial of degree k -1 that satis f ies (2.4).

For r odd, the condition (2.4), or, what is the same,

is a familiar one. An equivalent condition is

where _ ~( 2 + z).
The Bernoulli and Euler polynomials Bn(z), En(z) defined by

and

respectively, are well known examples of polynomials satisfying (2.5).
It therefore follows from Theorem 2 that, for r odd,

and

are instances of Stirling pairs consisting of equal polynomials.

Another example with 1,,(z) _ tr) is/
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For even r, (2.4) becomes

For k = 1, this implies 9Io(z) - 0, so that fi(z) _--_ 0. Hence, for even r,
gi;k(z) and cannot be equal for all 1~. However if we require
only that = (")(z) then the previous discussion (for odd r)
applies.

Clearly, by (1.21), I’i ~(x, y), I’~’’~(x, y) are defined for arbitrary
x, y such that x - y = rk, where k is any nonnegative integer. Indeed

Moreover it follows from (2.13) that

3. - We now consider

where j), j) are independent of n. That such representa-
tions hold follows from (1.21); for the general situation see [4].

Inverting each of (3.1) we get
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We shall now show that

It follows from (1.21) and (3.1) that

and

Both (3.4) and (3.5) are polynomial identities in n. Thus in (3.5) we
may replace n by rk - n. This gives 

’

Since

we get

and therefore

Comparison of (3.6) with (3.4) yields (3.3).
We may state

THEOREM 3. The coefficients (~1~’~(k, j ), defined by (3.1)
satis f y the symmetry relation

Theorem 3 can be used to give another proof of Theorem 1. How-
ever we shall not take the space to do so.
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4. - The generalized versions of (1.3) and (1.4) are

and

respectively.
To invert (4.1) multiply both sides by xn-rk and sum over h. Thus

so that

Put

and we get

Expanding the right member and equating coefficient, we get

Similarly we have
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By (4.3) and (3.1 ) we have

By Vandermonde’s theorem the inner sum is equal to
that

Similarly

The inverse formulas are

and

Next, by (3.7) and (4.8), we have

The inner sum is equal to
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so that

The companion formula is

Again, by (4.5) and (4.8),

The inner sum is equal to

and therefore

Similarly

To sum up the results of § 4 we state

THEOREM 4. The coefficients Fr’)(n, n - rk), .F~r~~(n, n - rk) de f ined
by (4.1) and (4.2) satisfy (4.5), (4.6), (4.9), (4.10), (4.11) and (4.12).
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5. - For the results obtained above it sufficed to assume that the
were a sequence of polynomials in z satisfying

In order to obtain orthogonality relations more is needed. We-shall
make use of a sufficient condition that is convenient for applications.

Let .

denote a function that is analytic in the neighborhood of x = 0 and
such that = 1. Put

It is easily verified that the ( f k’(z)~ are polynomials in z that satisfy
(5.1 ). The Nörlund polynomials Bnx’ are given by 
and r =1.

We remark that a sequence of polynomials (f§J~~(z)) satisfies (5.3) if
and only if it satisfies.

It follows from (5.3) that

Since

we get
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THEOREM 5. Let

where are de f ined b y (5.2) and ( 5.3 ) . T hen we have

PROOF. - Put

By (5.6),

By (5.4) and (5.5), for j &#x3E; 0,

Thus
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For j = 0, it is evident from (5.8) that

This proves the first half of (5.7). The second half then follows
as a corollary.

6. - We recall that the Stirling numbers Si(n, k), S(n, k) satisfy
the respective recurrences

Also it is proved that in [5] that

and

where

and

( T1(n, k) ) and ( T (n, k) ) are reciprocal arrays.
Another example from [5] is

where

Thus it is clear that, for r &#x3E; 1, there are apparently numerous
possible recurrences for k) and F(r)(n, k). The instances (6.2),
(6.3) and (6.6) illustrate the case r = 2.
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To begin with, we consider the possibility of recurrences of the
type

where pr(n) is independent of k.
By the first of (5.6), the recurrence (6.8) becomes

We now take k = 1 in (6.9). Since f o(z) = 1, = cr z, where cr is
independent of z, we get

Hence

Thus we have proved that (6.10) is a necessary condition for the

existence of the recurrence (6.8).
Now let

Since, by (6.8) 8nd (6.10),
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it follows from (6.11) that

where alax. Thus we have

For example, for r = 2, ar = 1, (6.13) reduces to

which yields

in agreement with (6.4).
For the general case (6.13), we have

Conversely, given (6.15) we get the recurrence (6.8) with pr(n)
satisfying (6.10). Thus (6.10) is both necessary and sufficiente for

the recurrence (6.8).
Note that substitution of (6.10) in (6.9) gives

By (6.11) and (5.6) we have
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Hence (6.15) becomes

so that

where

Similarly we have

and so

7. - Parallel to (6.8) we consider the possibility of a recurrence
of the type

By the second of (5.6), (7.1) becomes

For k = 1, this reduces to
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Hence

so that

Thus (7.2) is a necessary condition for the existence of the recur-
rence (7.1).

Comparison of (7.2) with (6.10) gives

By (7.1) and (7.2) we have

As above put

Then

Since the double sum on the extreme right is equal to
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we get the partial differential equation

where, as in (6.13),

Let denote the inverse of that vanishes at the origin:

where as above

Let u = = m(u). Since

and = 1, it follows that

Now put

This implies an expansion of the form

Differentiation of (7.11) gives
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Hence, by (7.10),

In (7.6) replace x by - z. Then

Thus H(x, z) and Gr&#x3E;(- x, - z) satisfy the same partial differential

equation.
Next, since by (7.12),

substitution in (7.13) yields the recurrence

As for Fr&#x3E;(n + 1, m), by (7.4) we have

Since is of the form

it follows from (7.11) that
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Also it is clear from (7.15) that

We conclude that

and therefore

Combining the results of 9~ 6, 7 we state the following

THEOREM 6. The function F(r)1 (n, m) satisfies a recurrence of the

form

i f and only if

where T he function satisfies a recurrence o f the
f orm

if and only if

where pr(m) satisfies (7.21).
Moreover (7.20 ) and (7.21) are satisfied if and only it

where
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It then f ollows that

where is the inverse of that vanishes at the origin:

8. - Put

(8.1 )

where

Let g(x) denote the inverse of f (x) :

and put

It is proved in [5] that (Bnk) and (Cnx) are reciprocal arrays:

We now apply this result to

and

It follows at once from
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and

that

We may state

THEOREM 7. Let

or, equivalently,

where

and y~(c~(x) ) = co(~(x) ) = x, = 0. Then k) ), (.I’c~’~(n, k)) sat-
isfy the orthogonality relations (8.6).
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