RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

L. CARLITZ

Stirling pairs

Rendiconti del Seminario Matematico della Università di Padova, tome 59 (1978), p. 19-44

http://www.numdam.org/item?id=RSMUP 1978 59 19 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1978, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Stirling Pairs.

L. CARLITZ (*)

1. Introduction.

The Stirling numbers of the first and second kind can be defined by

(1.1)
$$x(x+1) \dots (x+n-1) = \sum_{k=0}^{n} S_1(n,k) x^k$$

and

(1.2)
$$x^{n} = \sum_{k=0}^{n} S(n, k) x(x-1) \dots (x-k+1) ,$$

respectively. Since $S_1(n, n-k)$ and S(n, n-k) are polynomials in n of degree 2k, it follows readily that

(1.3)
$$S_1(n, n-k) = \sum_{j=0}^{k-1} S_1'(k, j) \binom{n}{2k-j} \qquad (k>0)$$

and

(1.4)
$$S(n, n-k) = \sum_{j=0}^{k-1} S'(k, j) \binom{n}{2k-j} \qquad (k > 0) .$$

The coefficients $S_1'(k,j)$, S'(k,j) were introduced by Jordan [8, Ch. 4] and Ward [12]; the present notation is that of [2]. The numbers are closely related to the *associated* Stirling numbers of Biordan [10, Ch. 4].

(*) Indirizzo dell'A.: Department of Mathematic - Duke University - Durhan, N.C. 27706.

The Stirling numbers and the associated Stirling numbers are related in various ways. We have

(1.5)
$$\begin{cases} S_1(n, n-k) = \sum_{j=0}^k \binom{k-n}{k+j} \binom{k+n}{k-j} S(j+k, j), \\ S(n, n-k) = \sum_{j=0}^k \binom{k-n}{k+j} \binom{k+n}{k-j} S_1(j+k, j), \end{cases}$$

and

(1.6)
$$\begin{cases} S'(n,k) = \sum_{j=0}^{k} (-1)^{j} {n-j-1 \choose k-j} S'_{1}(n,j), \\ S'_{1}(n,k) = \sum_{j=0}^{k} (-1)^{j} {n-j-1 \choose k-j} S'(n,j). \end{cases}$$

Also

(1.7)
$$\begin{cases} S_1(n, n-k) = \sum_{j=0}^{k-1} (-1)^j \binom{n+k-j-1}{2k-j} S'(k, j), \\ S(n, n-k) = \sum_{j=0}^{k-1} (-1)^j \binom{n+k-j-1}{2k-1} S'_1(k, j), \end{cases} (k > 0).$$

The first half of (1.5) is due to Schläfli [11]; the second was proved by Gould [7].

The writer [3] has defined another triangular array of numbers that is closely related to $(S_1(n, k))$ and (S(n, k)). Analogous to (1.3) and (1.4) we have

(1.8)
$$S_1(n, n-k) = \sum_{j=1}^k B_1(k, j) \binom{n+j-1}{2k} \qquad (k>0),$$

and

(1.9)
$$S(n, n-k) = \sum_{j=1}^{k} B(k, j) \binom{n+j-1}{2k}$$
 $(k > 0)$.

The coefficients $B_1(k,j)$, B(k,j) are positive integers and satisfy the recurrences

$$(1.10) \qquad B_1(k,j) = j B_1(k-1,j) + (2k-j) B_1(k-1,j-1) \ , \ (k>1)$$
 and

$$\begin{array}{ll} (1.11) & B(k,j) = \\ & = (k-j+1)B(k-1,j) + (k+j-1)B(k-1,j+1) \,, \quad (k>1) \,, \end{array}$$

respectively. Moreover

$$(1.12) B_1(k,j) = B(k,k-j+1), (1 \leq j \leq k).$$

The writer [1] proved (1.5) by making use of the representations

(1.13)
$$\begin{cases} S_1(n, n-k) = \binom{k-n}{k} B_k^{(n)}, \\ S(n, n-k) = \binom{n}{k} B_k^{(-n+k)}, \end{cases}$$

where $B_n^{(z)}$ is the Nörlund polynomial [9, Ch. 6] defined by

(1.14)
$$\left(\frac{x}{e^z - 1}\right)^z = \sum_{n=0}^{\infty} B_n^{(z)} \frac{x^n}{n!}.$$

(The polynomial $B_n^{(n)}$ should not be confused with the Bernoulli polynomial $B_n(z)$.) Incidentally it follows from (1.13) that

$$(1.15) S_1(-n+k,-n) = S(n, n-k).$$

In a recent paper [6] the writer showed that the above results can be generalized considerably in the following way. Let $\{f_k(z)\}$ denote a sequence of polynomials such that

(1.16)
$$\deg f_k(z) = k$$
; $f_k(0) = 0$, $(k > 0)$.

Put

$$\begin{cases} F_1(n, n-k) = \binom{k-n}{k} f_k(n), \\ F(n, n-k) = \binom{n}{k} f_k(-n+k). \end{cases}$$

Then all the above results generalize. The proof makes use of two arrays $(G_1(k,j))$, (G(k,j)) that generalize $(B_1(k,j))$, (B(k,j)), respectively. They are defined by

(1.18)
$$\begin{cases} F_1(n, n-k) = \sum_{j=1}^k G_1(k, j) \binom{n+j-1}{2k}, \\ F(n, n-k) = \sum_{j=1}^k G(k, j) \binom{n+j-1}{2k}, \end{cases}$$

and satisfy

$$(1.19) G_1(k,j) = G(k,k-j+1), (1 \leq j \leq k).$$

Incidentally it follows from (1.17) that

$$(1.20) F_1(-n+1,-n) = F(n, n-k);$$

 $F_1(x, y)$, F(x, y) are defined for arbitrary x, y such that x - y is equal to a nonnegative integer.

In order to generalize the orthogonality relations for the Stirling numbers, an additional condition on $\{f_k(z)\}$ is assumed, namely that

$$(1.21) \qquad (\varphi(\chi))^z = \sum_{k=0}^{\infty} f_k(z) x^k / k!$$

for some

$$\varphi(x) = 1 + \sum_{n=1}^{\infty} c_n x^n / n!.$$

It is proved, using (1.21) that

$$(1.22) \qquad \sum_{k=j}^{n} (-1)^{n-k} F_1(n,k) F(k,j) = \sum_{k=j}^{n} (-1)^{k-j} F(n,k) F_1(k,j) = \delta_{nj}.$$

In the present paper we generalize the definition (1.17) further. Let r be a fixed positive integer and define

$$\begin{cases} F_1^{(r)}(n, n-rk) = \binom{rk-n}{rk} f_k(n) , \\ F^{(r)}(n, n-rk) = \binom{n}{rk} f_k(rk-n) , \end{cases}$$

where $f_k(z)$ is a polynomial in z that satisfies (1.16). For r=1, (1.21) reduces to (1.17). We call a pair of polynomials

$$(1.22) g_{1k}^{(r)}(n) = F_1^{(r)}(n, n-rk), g_k^{(r)}(n) = F^{(r)}(n, n-rk)$$

a Stirling pair of order r, or, briefly, a Stirling pair. Clearly each of

the polynomials is of degree (r+1)k in n. Moreover, by (1.21), $g_{1,k}^{(h)}(z)$ and $g_k^{(r)}(z)$ are defined for arbitrary (complex) z.

We shall show that the results previously obtained in the case r=1, when properly modified, hold for all $r \ge 1$. We show also that a condition similar to (1.21) suffices for orthogonality in the general case.

Finally we consider the possibility of recurrence of the type

$$(1.23) F_1^{(r)}(n+1,m) = F_1^{(r)}(n,m-1) + p_r(n)F_1^{(r)}(n-r+1,m)$$

and

$$(1.24) F^{(r)}(n+1,m) = F^{(r)}(n,m-1) + g_r(m)F^{(r)}(n,m+r-1).$$

For r = 1, $p_{\tau}(n) = n$, (1.23) reduces to the familiar recurrence for $S_1(n, m)$; for r = 1, $q_{\tau}(m) = m$, (1.24) reduces to the recurrence for S(n, m). Recurrences for the numbers defined by the generating functions [5]

(1.25)
$$1 + \sum_{n=1}^{\infty} \sum_{m=1}^{n} T_1(n, m) \frac{x^n}{n!} z^m = \left(\frac{1+x}{1-x}\right)^{z/2},$$

(1.26)
$$1 + \sum_{n=1}^{\infty} \sum_{m=1}^{n} T(n, m) \frac{x^{n}}{n!} z^{m} = \exp(z \tanh x),$$

are of the form (1.23) and (1.24), respectively, with r = 2. Indeed it was the study of such arrays that motivated the generalization (1.21).

We show that (1.23) holds if and only if

(1.27)
$$p_r(n) = (-1)^r (r+1) c_r \binom{n}{r},$$

where $f_1^{(r)}(z) = c_r z$. Similarly (1.24) holds if and only if

(1.28)
$$q_r(m) = -(r+1) c_r \binom{m+r-1}{r}.$$

Thus

$$q_r(n) = (-1)^{r-1} p_r(n+r-1)$$
.

The two conditions (1.27), (1.28) are equivalent.

Moreover when (1.27) is satisfied we have

$$1 + \sum_{n=1}^{\infty} \sum_{m=1}^{n} F_1^{(r)}(n, m) \frac{x^n}{n!} z^m = \exp\{z\psi(x)\}$$

and

$$1 + \sum_{n=1}^{\infty} \sum_{m=1}^{n} F^{(r)}(n,m) \frac{x^{n}}{n!} z^{m} = \exp \left\{-z\omega(-x)\right\},\,$$

where

$$\psi(x) = \sum_{m=0}^{\infty} \frac{a_r^m x^{rm+1}}{rm+1}, \qquad a_r = (-1)^r \frac{(r+1) c_r}{r!}$$

and

$$\psi(\omega(x)) = \omega(\psi(x)) = x$$
, $\omega(0) = 0$.

2. - We first prove the following generalized version of (1.5).

THEOREM 1. For all integral $r \ge 1$, we have

$$(2.1) \qquad \begin{cases} F_{1}^{(r)}(n, n-k) = \sum_{j=0}^{rk} \binom{rk-n}{rk+j} \binom{rk+n}{rk-j} F^{(r)}(j+rk, j) , \\ F^{(r)}(n, r-k) = \sum_{j=0}^{rk} \binom{rk-n}{rk+j} \binom{rk+n}{rk-j} F_{1}^{(r)}(j+rk, j) . \end{cases}$$

PROOF. It suffices to prove the identity

$$(2.2) \qquad {z \choose rk} f_k(rk-z) = \sum_{j=0}^{rk} {rk-z \choose rk+j} {rk+z \choose rk-j} {-j \choose rk} f_k(j+rk) .$$

For z = rk - n, (2.2) reduces to the first of (2.1), for z = n, (2.2) reduces to the second of (2.1).

Each side of (2.2) is a polynomial in z of degree (r+1)k. Hence it is only necessary to show that (2.2) holds for (r+1)k+1 distinct values of z. For z=t=0,1,...,rk-1, the LHS of (2.2) is equal to zero; since

$$\binom{rk-t}{rk+j} \binom{-j}{rk} = 0 \qquad (0 \leqslant t \leqslant k; \ 0 \leqslant j \leqslant k),$$

it follows that (2.2) holds for these values of z. For z = rk we get

$$f_k(0) = \sum_{j=0}^{rk} {0 \choose rk} {(r+1)k \choose rk-j} {-j \choose rk} f_k(j+rk) ,$$

which is evidently correct. Finally, for z = -t, where $1 \le t \le k$, the RHS of (2.2) reduces to the single term (j = t)

$$\binom{rk+t}{rk+t}\binom{rk-t}{rk-t}\binom{-t}{rk}f_k(t+rk) = \binom{-t}{rk}f_k(r+rk),$$

so that (2.2) holds for these values of z.

This completes the proof of (2.2) and therefore of Theorem 1. It is of some interest to ask whether the polynomials in a Stirling pair can be equal. By (1.21) and (1.22), $g_{1.k}^{(r)}(z) = g_k^{(r)}(z)$ if and only if

(2.3)
$${rk-z \choose rk} f_k(z) = {z \choose rk} f_k(rk-z) .$$

Since

$$egin{pmatrix} rk-z \\ rk \end{pmatrix} = (-1)^{rk} inom{z-1}{rk},$$

(2.3) reduces to

$$(-1)^{rk}(z-rk)f_k(z) = zf_k(rk-z)$$

so that

$$(-1)^{rk}(z-1)f_k(rkz) = zf_k(rk(1-z)).$$

Hence we have

$$\varphi_{k-1}(1-z)=(-1)^{rk-1}\varphi_{k-1}(z),$$

where

$$f_k(rkz) = rkz\varphi_{k-1}(z)$$
, $(k \geqslant 1)$.

Note that $\varphi_{k-1}(z)$ is a polynomial of degree k-1.

We may state

THEOREM 2. The polynomials $g_{1,k}^{(r)}(z)$, $g_k^{(r)}(z)$ in the Stirling pair

$$g_{\mathbf{1},\mathbf{k}}^{(r)} = {rk-z \choose rk} f_k(z) , \qquad g_k^{(r)}(z) = {z \choose rk} f_k(rk-z)$$

are equal if and only if

$$f_k(rkz) = rkz\varphi_{k-1}(z), \qquad (k \geqslant 1),$$

where $\varphi_{k-1}(z)$ is a polynomial of degree k-1 that satisfies (2.4).

For r odd, the condition (2.4), or, what is the same,

$$\varphi_k(1-z) = (-1)^k \varphi_k(z)$$

is a familiar one. An equivalent condition is

$$\tilde{\varphi}_k(-z) = (-1)^k \tilde{\varphi}_k(z) ,$$

where $\tilde{\varphi}_k(z) = \varphi(\frac{1}{2} + z)$.

The Bernoulli and Euler polynomials $B_n(z)$, $E_n(z)$ defined by

(2.7)
$$\frac{xe^{xz}}{e^x - 1} = \sum_{n=0}^{\infty} B_n(z) \frac{x^n}{n!}$$

and

(2.8)
$$\frac{2e^{xz}}{e^x+1} = \sum_{n=0}^{\infty} E_n(z) \frac{x^n}{n!},$$

respectively, are well known examples of polynomials satisfying (2.5). It therefore follows from Theorem 2 that, for r odd,

$$(2.9) g_{1,k}^{(r)}(z) = g_k^{(r)}(z) = \binom{rk-z}{rk} \frac{z}{rk} B_{k-1} \left(\frac{z}{rk}\right) = \binom{z}{rk} \frac{rk-z}{rk} B_{k-1} \left(\frac{rk-z}{rk}\right)$$

and

$$(2.10) g_{1,k}^{(r)}(z) = g_k^{(r)}(z) = {rk-z \choose rk} \frac{z}{rk} E_{k-1} \left(\frac{z}{rk}\right) =$$

$$= {z \choose rk} \frac{rk-z}{rk} E_{k-1} \left(\frac{rk-z}{rk}\right)$$

are instances of Stirling pairs consisting of equal polynomials.

Another example with $f_k(z) = {z/r \choose k}$ is

$$(2.11) \qquad g_{1,k}^{(r)}(z)=g_k^{(r)}(z)=\binom{rk-z}{rk}\binom{z/r}{k}=\binom{z}{rk}\binom{(rk-z)/r}{k}.$$

For even r, (2.4) becomes

$$\varphi_{k-1}(1-z) = -\varphi_{k-1}(z) .$$

For k=1, this implies $\varphi_0(z)\equiv 0$, so that $f_1(z)\equiv 0$. Hence, for even r, $g_{1,k}^{(r)}(z)$ and $g_k^{(r)}(z)$ cannot be equal for all k. However if we require only that $g_{1,2k}^{(r)}(z)=g_{2k}^{(4)}(z)$ then the previous discussion (for odd r) applies.

Clearly, by (1.21), $F_1^{(r)}(x, y)$, $F^{(r)}(x, y)$ are defined for arbitrary x, y such that x - y = rk, where k is any nonnegative integer. Indeed

$$\left\{ \begin{array}{l} F_1^{(r)}(x,y) = {y \choose rk} f_k(x) , \\ \\ F_1^{(r)}(x,y) = {x \choose rk} f_k(-y) . \end{array} \right.$$

Moreover it follows from (2.13) that

(2.14)
$$F^{(r)}(x, y) = F_1^{(r)}(-y, -x), \qquad (x-y=rk).$$

3. - We now consider

(3.1)
$$\begin{cases} F_1^{(r)}(n, n-rk) = \sum_{j=1}^k G_1^{(r)}(k, j) \binom{n+j-1}{(r+1)k}, \\ F^{(r)}(n, n-rk) = \sum_{j=1}^k G^{(r)}(k, j) \binom{n+j-1}{(r+1)k}, \end{cases}$$

where $G_1^{(r)}(k,j)$, $G^{(r)}(k,j)$ are independent of n. That such representations hold follows from (1.21); for the general situation see [4].

Inverting each of (3.1) we get

$$(3.2) \begin{cases} G_1^{(r)}(k, k-j+1) = \\ = \sum_{t=0}^{j} (-1)^t \binom{(r+1)k+1}{t} F_1^{(r)}(rk+j-t, j-t), \\ G^{(r)}(k, k-j+1) = \\ = \sum_{t=0}^{j} (-1)^t \binom{(r+1)k+1}{t} F^{(r)}(rk+j-t, j-t). \end{cases}$$

We shall now show that

$$(3.3) \qquad (-1)^{(r+1)k}G_1^{(r)}(k,j) = G_1^{(r)}(k,k-j+1), \qquad (1 \le j \le k).$$

It follows from (1.21) and (3.1) that

(3.4)
$$\binom{n}{rk} f_k(rk-n) = \sum_{j=1}^k G^{(r)}(k,j) \binom{n+j-1}{(r+1)k}$$

and

(3.5)
$${rk-n \choose rk} f_k(n) = \sum_{j=1}^k G_1^{(r)}(k,j) {n+j-1 \choose (r+1)k}.$$

Both (3.4) and (3.5) are polynomial identities in n. Thus in (3.5) we may replace n by rk-n. This gives

$$\binom{n}{rk}f_k(rk-n) = \sum_{j=1}^k G_1^{(r)}(k,j)\binom{rk-n+j-1}{(r+1)k}.$$

Since

$$\binom{rk-n+j-1}{(r+1)k} = (-1)^{(r+1)k} \binom{n+k-j}{(r+1)k},$$

we get

$$\binom{n}{rk}f_k(rk-n) = (-1)^{(r+1)k} \sum_{j=1}^k G_1^{(r)}(k,j) \binom{n+k-j}{(r+1)k}$$

and therefore

(3.6)
$$\binom{n}{rk} f_k(rk-n) = (-1)^{\binom{r+1}{k}} \sum_{j=1}^{k-j+1} G_1^{(r)}(k,j) \binom{n+j-1}{(r+1)k}.$$

Comparison of (3.6) with (3.4) yields (3.3). We may state

THEOREM 3. The coefficients $G_1^{(r)}(k,j)$, $G^{(r)}(k,j)$ defined by (3.1) satisfy the symmetry relation

$$(3.7) \qquad (-1)^{(r+1)k}G_1^{(r)}(k,j) = G^{(r)}(k,k-j+1)\;, \qquad (1 \! < \! j \! < \! k)\;.$$

Theorem 3 can be used to give another proof of Theorem 1. However we shall not take the space to do so. 4. - The generalized versions of (1.3) and (1.4) are

(4.1)
$$F_{1}^{(r)}(n, n-rk) = \sum_{j=0}^{k-1} F_{1}^{(r)'}(k, j) \binom{n}{(r+1)k-j}$$

and

(4.2)
$$F^{(r)}(n, n-rk) = = \sum_{j=0}^{k-1} F^{(r)'}(k, j) \binom{n}{(r+1)k-j},$$

respectively.

To invert (4.1) multiply both sides by x^{n-rk} and sum over h. Thus

$$\sum_{n=0}^{\infty} F_{1}^{(r)}(n+rk,n)x^{n} = \sum_{j=0}^{k-1} F_{1}^{(r)'}(k,j)x^{k-j} \sum_{n=(r+1)k-j}^{\infty} \cdot \left(\binom{n}{(r+1)k-j} x^{n-(r+1)k+j} = \sum_{j=0}^{k-1} F_{1}^{(r)'}(k,j)x^{k-j}(1-x)^{-(r+1)k+j-1} = \sum_{j=0}^{k} F_{1}^{(r)'}(k,k-j)x^{j}(1-x)^{-rk-j-1}$$

so that

$$\sum_{j=1}^k F_1^{(r)'}(k, k-j) x^j (1-x)^{-j} = (1-x)^{rk+1} \sum_{n=0}^\infty F_1^{(r)}(n+rk, n) x^n.$$

Put

$$z = \frac{x}{1-x}$$
, $x = \frac{z}{1+z}$, $1-x = \frac{1}{1+z}$

and we get

$$\sum_{j=1}^k F_1^{(r)'}(k, k-j) z^j = \sum_{n=0}^\infty F_1^{(r)}(n+rk, n) z^n (1+z)^{-n-rk-1}.$$

Expanding the right member and equating coefficients, we get

(4.3)
$$F_1^{(r)'}(k, k-j) = \sum_{t=0}^{j} (-1)^{j-t} {j+rk \choose j-t} F_1^{(r)}(t+rk, t).$$

Similarly we have

(4.4)
$$F^{(r)'}(k, k-j) = \sum_{t=0}^{j} (-1)^{j-t} \binom{j+rk}{j-t} F^{(r)}(t+rk, t).$$

By (4.3) and (3.1) we have

$$\begin{split} F_1^{(r)'}(k,k-j) &= \sum_{t=0}^j (-1)^{j-t} \binom{j+rk}{j-t} \sum_{s=1}^k G_1^{(r)}(k,s) \binom{t+rk+s-1}{(r+1)k} = \\ &= \sum_{s=1}^k G_1^{(r)}(k,s) \sum_{t=0}^j (-1)^{j-t} \binom{j+rk}{j-t} \binom{t+rk+s-1}{(r+1)k}. \end{split}$$

By Vandermonde's theorem the inner sum is equal to $\binom{s-1}{k-j}$, so

(4.5)
$$F_{1}^{(r)'}(k,j) = \sum_{s=j+1}^{k} {s-1 \choose j} G_{1}^{(r)}(k,s).$$

Similarly

(4.6)
$$F^{(r)'}(k,j) = \sum_{s=j+1}^{k} {s-1 \choose j} G^{(r)}(k,s).$$

The inverse formulas are

(4.7)
$$G_1^{(r)}(k,t) = \sum_{s=t-1}^{k-1} (-1)^{s-t+1} {s \choose t-1} F_1^{(r)'}(k,s)$$

and

(4.8)
$$G^{(r)}(k,t) = \sum_{s=t-1}^{k-1} (-1)^{s-t+1} \binom{s}{t-1} F^{(r)'}(k,s).$$

Next, by (3.7) and (4.8), we have

$$\begin{split} F_1^{(r)}(n,n-rk) &= \sum_{t=1}^k G_1^{(r)}(k,t) \binom{n+t-1}{(r+1)k} = \\ &= \sum_{t=1}^k G_1^{(r)}(k,k-t+1) \binom{n+k-t}{(r+1)k} = (-1)^{(r+1)k} \sum_{t=1}^k G^{(r)}(k,t) \binom{n+k-t}{(r+1)k} = \\ &= (-1)^{(r+1)k} \sum_{t=1}^k \binom{n+k-t}{(r+1)k} \sum_{s=t-1}^{k-1} (-1)^{s-t+1} \binom{s}{t-1} F^{(r)'}(k,s) = \\ &= (-1)^{(r+1)k} \sum_{s=0}^{k-1} F^{(r)'}(k,s) \sum_{t=1}^{s+1} (-1)^{s-t+1} \binom{s}{t-1} \binom{n+k-t}{(r+1)k}. \end{split}$$

The inner sum is equal to

$$(-1)^s \binom{n+k-s-1}{(r+1)k-s}$$
,

so that

$$(4.9) F_1^{(r)}(n, n-rk) = \sum_{j=1}^k (-1)^{rk-j} \binom{n+j-1}{rk+j} F^{(r)'}(k, k-j).$$

The companion formula is

$$(4.10) F^{(r)}(n, n-rk) = \sum_{j=1}^{k} (-1)^{rk-j} \binom{n+j-1}{rk+j} F_{1}^{(r)'}(k, k-j).$$

Again, by (4.5) and (4.8),

$$\begin{split} F_1^{(r)'}(n,k) &= \sum_{s=k+1}^n \binom{s-1}{k} G^{(r)}(n,s) = \\ &= (-1)^{(r+1)n} \sum_{s=k+1}^n \binom{s-1}{k} G^{(r)}(n,n-s+1) = \\ &= (-1)^{(r+1)n} \sum_{s=1}^{n-k} \binom{n-s}{k} G^{(r)}(n,s) = \\ &= (-1)^{(r+1)n} \sum_{s=1}^{n-k} \binom{n-s}{k} \sum_{t=s-1}^{n-1} (-1)^{t-s+1} \binom{t}{s-1} F^{(r)'}(n,t) = \\ &= (-1)^{(r+1)n} \sum_{t=0}^{n-1} F^{(r)'}(n,t) \sum_{s=1}^{t-1} (-1)^{t-s+1} \binom{t}{s-1} \binom{n-s}{k}. \end{split}$$

The inner sum is equal to

$$\sum_{s=0}^{t} (-1)^{t-s} \binom{t}{s} \binom{n-s-1}{k} = (-1)^t \binom{n-t-1}{k-t}$$

and therefore

$$(4.11) F_1^{(r)'}(n,k) = (-1)^{(r+1)n} \sum_{t=0}^{n-1} (-1)^t \binom{n-t-1}{k-t} F^{(r)'}(n,t) .$$

Similarly

$$(4.12) F^{(r)'}(n,k) = (-1)^{(r+1)n} \sum_{t=0}^{n-1} (-1)^t \binom{n-t-1}{k-t} F_1^{(r)'}(n,t) .$$

To sum up the results of § 4 we state

THEOREM 4. The coefficients $F_1^{(r')}(n, n-rk)$, $F^{(r)'}(n, n-rk)$ defined by (4.1) and (4.2) satisfy (4.5), (4.6), (4.9), (4.10), (4.11) and (4.12).

5. – For the results obtained above it sufficed to assume that the $\{f_k(z)\}$ were a sequence of polynomials in z satisfying

(5.1)
$$\deg f_k(z) = k$$
; $f_k(0) = 0$, $(k \geqslant 1)$.

In order to obtain orthogonality relations more is needed. We-shall make use of a sufficient condition that is convenient for applications.

Let

(5.2)
$$\varphi^{(r)}(x) = 1 + \sum_{n=1}^{\infty} c_n x^{rn} / (rn)!$$

denote a function that is analytic in the neighborhood of x = 0 and such that $\varphi(0) = 1$. Put

(5.3)
$$(\varphi(x))^{z} = \sum_{k=0}^{\infty} f_{k}^{(r)}(z) x^{rk} / (rk)!$$

It is easily verified that the $(f_k^{(r)}(z))$ are polynomials in z that satisfy (5.1). The Nörlund polynomials $B_n^{(z)}$ are given by $\varphi(x) = x/(e^x-1)$ and r=1.

We remark that a sequence of polynomials $\{f_k^{(r)}(z)\}$ satisfies (5.3) if and only if it satisfies.

(5.4)
$$\sum_{j=0}^{k} {rk \choose rj} f_{j}^{(r)}(y) f_{k-j}^{(r)}(z) = f_{k}^{(r)}(y+z) \qquad (k=0,1,2,...) .$$

It follows from (5.3) that

$$z\varphi^{z-1}(x)\varphi'(x) = \sum_{k=0}^{\infty} f_k^{(r)}(z)x^{rk-1}/(rk-1)!,$$

$$(y+z)\varphi^{y+z-1}(x)\varphi'(x) = \sum_{k=0}^{\infty} f_k^{(r)}(y+z)x^{rk-1}/(rk-1)!$$

Since

$$(y+z)\varphi^{y+z-1}(x)\varphi'(x)=rac{y+z}{z}\varphi^{y}(x)\cdot z\varphi^{z-1}(x)\varphi'(x)$$
 ,

we get

(5.5)
$$f_k^{(r)}(y+z) = \frac{z}{y+z} \sum_{j=1}^k \binom{rk-1}{rj-1} f_{k-j}^{(r)}(y) f_j^{(r)}(z).$$

THEOREM 5. Let

(5.6)
$$\begin{cases} F_1^{(r)}(n, n-rk) = \binom{rk-n}{rk} f_k^{(r)}(n), \\ F_1^{(r)}(n, n-rk) = \binom{n}{rk} f_k^{(r)}(rk-n), \end{cases}$$

where the $\{f_{\nu}^{(r)}(z)\}\$ are defined by (5.2) and (5.3). Then we have

(5.7)
$$\sum_{k=0}^{j} (-1)^{rk} F_1^{(r)}(n, n-rk) F^{(r)}(n-rk, n-rj) =$$

$$= \sum_{k=0}^{j} (-1)^{r(j-k)} F^{(r)}(n, n-rk) F_1^{(r)}(n-rk, n-rj) = \delta_{j,0}.$$

PROOF. - Put

(5.8)
$$H(n,j) = \sum_{k=0}^{j} (-1)^{rk} F_1^{(r)}(n, n-rk) F^{(r)}(n-rk, n-rj).$$

By (5.6),

(5.9)
$$H(n,j) = \sum_{k=0}^{j} (-1)^{rk} \binom{rk-n}{rk} f_k^{(r)}(n) \cdot \binom{n-rk}{r(j-k)} f_{j-k}^{(r)}(rj-n) =$$

$$= \sum_{k=0}^{j} \binom{n-1}{rk} \binom{n-rk}{r(j-k)} f_k^{(r)}(n) f_{j-k}^{(r)}(rj-n) =$$

$$= \frac{1}{n} \binom{n}{rj} \sum_{k=0}^{j} (n-rk) \binom{rj}{rk} f_k^{(r)}(n) f_{j-k}^{(r)}(rj-n) .$$

By (5.4) and (5.5), for j > 0,

$$\begin{split} \sum_{k=0}^{j} (n-rk) \binom{rj}{rk} f_{k}^{(r)}(n) f_{j-k}^{(r)}(rj-n) &= = n \sum_{k=0}^{j} \binom{rj}{rk} f_{k}^{(r)}(n) f_{j-k}^{(r)}(rj-n) - \\ &- rj \sum_{k=1}^{j} \binom{rj-1}{rk-1} f_{k}^{(r)}(n) f_{j-k}^{(r)}(rj-n) = n f_{j}^{(r)}(rj) - rj \cdot \frac{n}{rj} f_{j}^{(r)}(rj) = 0 \;. \end{split}$$

Thus

(5.10)
$$H(n,j) = 0$$
, $(j > 0)$.

For j = 0, it is evident from (5.8) that

$$(5.11) H(n,0) = 1.$$

This proves the first half of (5.7). The second half then follows as a corollary.

6. – We recall that the Stirling numbers $S_1(n, k)$, S(n, k) satisfy the respective recurrences

(6.1)
$$\begin{cases} S_1(n+1,k) = S_1(n,k-1) + nS_1(n,k), \\ S(n+1,k) = S(n,k-1) + ks(n,k). \end{cases}$$

Also it is proved that in [5] that

(6.2)
$$T_1(n+1, k) = T_1(n, k-1) + n(n-1)T_1(n-1, k)$$

and

(6.3)
$$T(n+1,k) = T(n,k-1) - k(k+1)T(n,k+1)$$
,

where

(6.4)
$$1 + \sum_{n=1}^{\infty} \sum_{k=1}^{n} T_1(n, k) \frac{x^n}{n!} z^k = \left(\frac{1+x}{1-x}\right)^{z/2}$$

and

(6.5)
$$1 + \sum_{n=1}^{\infty} \sum_{k=1}^{n} T(n, k) \frac{x^{n}}{n!} z^{k} = \exp(z \operatorname{Tanh} x);$$

 $(T_1(n, k))$ and (T(n, k)) are reciprocal arrays. Another example from [5] is

(6.6)
$$U(n+2,k) = U(n,k-2) + k^2 U(n,k),$$

where

(6.7)
$$1 + \sum_{n=1}^{\infty} \sum_{k=1}^{n} U(n, k) \frac{x^{n}}{n!} z^{k} = \exp(z \sinh x).$$

Thus it is clear that, for r > 1, there are apparently numerous possible recurrences for $F_1^{(r)}(n, k)$ and $F^{(r)}(n, k)$. The instances (6.2), (6.3) and (6.6) illustrate the case r = 2.

To begin with, we consider the possibility of recurrences of the type

(6.8)
$$F_1^{(r)}(n+1, n-rk+1) =$$

= $F_1^{(r)}(n, n-rk) + p_r(n)F_1^{(r)}(n-r+1, n-rk+1)$,

where $p_r(n)$ is independent of k.

By the first of (5.6), the recurrence (6.8) becomes

(6.9)
$$\binom{rk-n-1}{rk} f_k^{(r)}(n+1) =$$

$$= \binom{rk-n}{rk} f_k(n) + p_r(n) \binom{rk-n-1}{r(k-1)} f_{k-1}(n-r+1) .$$

We now take k=1 in (6.9). Since $f_0(z)=1$, $f_1(z)=c_r z$, where c_r is independent of z, we get

$$(-1)^r p_r(n) = c_r(n+1) \binom{n}{r} - c_r n \binom{n-1}{r} = \\ = (r+1) c_r \left\{ \binom{n+1}{r+1} - \binom{n}{r+1} \right\}.$$

Hence

(6.10)
$$p_r(n) = (-1)^r (r+1) c_r \binom{n}{r}.$$

Thus we have proved that (6.10) is a *necessary* condition for the existence of the recurrence (6.8).

Now let

(6.11)
$$G_1^{(r)} \equiv G_1^{(r)}(x,z) = 1 + \sum_{n=1}^{\infty} \sum_{m=1}^{n} F_1^{(r)}(n,m) \frac{x^n}{n!} z^m.$$

Since, by (6.8) and (6.10),

(6.12)
$$F_1^{(r)}(n+1,m) = F_1^{(r)}(n,m-1) + (-1)^r(r+1) c_r \binom{n}{r} F_1^{(r)}(n-r+1,m) ,$$

it follows from (6.11) that

$$egin{split} D_x G_1^{(r)} &= z G_1^{(r)} + (-1)^r rac{(r+1)\, c_r}{r\,!} \sum_{n,m} F_1^{(r)} (n-r+1,\, m) \, rac{x^n \, z^m}{(n-r)\,!} = \ &= z G_1^{(r)} + (-1)^r rac{(r+1)\, c_r}{r\,!} \, x^r D_x G_1^{(r)} \, , \end{split}$$

where $D_x \equiv \partial/\partial x$. Thus we have

(6.13)
$$D_x G_1^{(r)} = \frac{z}{1 - a_r x^r}, \qquad a_r = (-1)^r \frac{(r+1) c_r}{r!}.$$

For example, for r=2, $a_r=1$, (6.13) reduces to

$$D_x G_1^{(2)} = \frac{z}{1-x^2},$$

which yields

(6.14)
$$G_1^{(2)}(x,z) = \left(\frac{1+x}{1-x}\right)^{z/2}$$

in agreement with (6.4).

For the general case (6.13), we have

(6.15)
$$G_1^{(r)}(x,z) = \exp\left\{z\sum_{m=0}^{\infty} \frac{a_r^m x^{mr+1}}{mr+1}\right\}.$$

Conversely, given (6.15) we get the recurrence (6.8) with $p_r(n)$ satisfying (6.10). Thus (6.10) is both necessary and sufficient for the recurrence (6.8).

Note that substitution of (6.10) in (6.9) gives

(6.16)
$$f_k^{(r)}(n+1) = \frac{n-rk}{n} f_k^{(r)}(n) c_r \binom{rk}{r} f_{k-1}^{(r)}(n-r+1) \qquad (n>0) .$$

By (6.11) and (5.6) we have

$$egin{aligned} D_x G_1^{(r)}(x,z) &= \sum_{n=0}^\infty \sum_{m=1}^{n+1} F_1^{(r)}(n+1,m) rac{x^n}{n!} z^m = \ &= \sum_{m,k=0}^\infty (-1)^{rk} f_k^{(r)}(m+rk+1) rac{x^{m+rk} z^m}{m!(rk)!}. \end{aligned}$$

Hence (6.15) becomes

$$\sum_{m,k=0}^{\infty} (-1)^{rk} f_k^{(r)}(m+rk+1) \frac{x^{m+rk} z^m}{m! (rk)!} = D_x \{ \exp(z\psi(x)) \},$$

so that

$$(6.17) 1 + \sum_{m=1}^{\infty} \frac{x^m z^m}{m!} \sum_{k=0}^{\infty} (-1)^{rk} \frac{f_k^{(r)}(m+rk+1)}{m+rk+1} \frac{x^{rk}}{(rk)!} = \exp(z\psi(x)).$$

where

(6.18)
$$\psi(x) = \sum_{k=0}^{\infty} \frac{a_r^k x^{rk+1}}{rk+1}.$$

Similarly we have

$$G^{(r)}(x,z) = 1 + \sum_{n=1}^{\infty} \sum_{m=1}^{n} F^{(r)}(n,m) \frac{x^{n}}{n!} z^{m} = \sum_{m,k=0}^{\infty} {m+rk \choose rk} f_{k}(-m) \frac{x^{m+rk}z^{m}}{m!(rk)!}$$

and so

(6.19)
$$G^{(r)}(x,z) = \sum_{m=0}^{\infty} \frac{x^m z^m}{m!} \sum_{k=0}^{\infty} f_k(-m) \frac{x^{rk}}{(rk)!}.$$

7. - Parallel to (6.8) we consider the possibility of a recurrence of the type

$$(7.1) F^{(r)}(n+1, n-rk+1) =$$

$$= F^{(r)}(n, n-rk) + q_r(n-rk+1)F^{(r)}(n, n-r(k-1)).$$

By the second of (5.6), (7.1) becomes

$$egin{split} inom{n+1}{rk}f_k^{(r)}(rk-n-1) &= \\ &= inom{n}{kr}f_k^{(r)}(rk-n) + q_r(n-rk+1)inom{n}{r(k-1)}f_{k-1}(r(k-1)-n) \;. \end{split}$$

For k = 1, this reduces to

$$\binom{n+1}{r}f_1^{(r)}(-n) = \binom{n}{r}f_1^{(r)}(r-n) + q_r(n-r+1)$$
.

Hence

$$q_r(n-r+1) = -c_r n \binom{n+1}{r} + c_r(n-r) \binom{n}{r},$$

so that

(7.2)
$$q_r(n-r+1) = -(r+1) c_r \binom{n}{r}.$$

Thus (7.2) is a necessary condition for the existence of the recurrence (7.1).

Comparison of (7.2) with (6.10) gives

(7.3)
$$q_r(n-r+1) = (-1)^{r-1}p_r(n).$$

By (7.1) and (7.2) we have

$$\begin{aligned} (7.4) \qquad F^{(r)}(n+1,m) &= \\ &= F^{(r)}(n,m-1) - (r+1) \, c_r \binom{m+r-1}{r} F^{(r)}(n,m+r-1) \, . \end{aligned}$$

As above put

(7.5)
$$G^{(r)}(x,z) = 1 + \sum_{n=1}^{\infty} \sum_{m=1}^{n} F^{(r)}(n,m) \frac{x^n}{n!} z^m.$$

Then

$$\begin{split} D_x G^{(r)}(x,z) &= \sum_{n=0}^{\infty} \sum_{m=1}^{n+1} F^{(r)}(n+1,m) \frac{x^n}{n!} z^m = \\ &= \sum_{n=0}^{\infty} \sum_{m=1}^{n+1} \left\{ F^{(r)}(n,m-1) - (r+1) \, c_r \binom{m+r-1}{r} F^{(r)}(n,m+r-1) \right\} \cdot \\ &\cdot \frac{x^n}{n!} z^m = z G^{(r)}(x,z) - (r+1) \, c_r z \sum_{n=1}^{\infty} \sum_{m=1}^{n-r+1} \binom{m+r-1}{r} \cdot \\ &\cdot F^{(r)}(n,m+r-1) \frac{x^n}{m!} z^{m-1} \, . \end{split}$$

Since the double sum on the extreme right is equal to

$$\sum_{n=r}^{\infty} \sum_{m=r}^{n} \binom{m}{r} F^{(r)}(n, m) \frac{x^n}{n!} z^{m-r} = \frac{1}{r\,!} \, D_z^r G^{(r)}(x, z) \; ,$$

we get the partial differential equation

$$(7.6) D_x G^{(r)}(x,z) = z G^{(r)}(x,z) + (-1)^{r-1} a_r z D_r^r G^{(r)}(x,z).$$

where, as in (6.13),

(7.7)
$$a_r = (-1)^r \frac{(r+1) c_r}{r!}.$$

Let $\omega(x)$ denote the inverse of $\psi(x)$ that vanishes at the origin:

(7.8)
$$\psi(\omega(x)) = x = \omega(\psi(x)),$$

where as above

(7.9)
$$\psi(x) = \sum_{m=0}^{\infty} \frac{a_r^m x^{rm+1}}{rm+1}.$$

Let $u = \psi(x)$, $x = \omega(u)$. Since

$$\psi'(x) = \frac{1}{1 - a_r x^r}$$

and $\psi'(x)\omega'(u)=1$, it follows that

$$(7.10) \qquad \qquad \omega'(u) = 1 - a_r \omega^r(u) .$$

Now put

$$(7.11) H(x,z) = \exp\left\{z\omega(x)\right\}.$$

This implies an expansion of the form

(7.12)
$$H(x,z) = 1 + \sum_{n=1}^{\infty} \sum_{m=1}^{n} c(n,m) \frac{x^{n}}{n!} z^{m}.$$

Differentiation of (7.11) gives

$$D_x H(x, z) = z \omega'(x) H(x, z) ,$$

$$D_z^r H(x,z) = \omega^r(x) H(x,z)$$
,

Hence, by (7.10),

$$(7.13) D_x H(x, z) = z H(x, z) - a_r z D_z^r H(x, z).$$

In (7.6) replace x by -x, z by -z. Then

$$(7.14) D_x G^{(r)}(-x,-z) = zG^{(r)}(-z,-z) - a_r z D_z^r H(x,z).$$

Thus H(x,z) and $G^{(r)}(-x,-z)$ satisfy the same partial differential equation.

Next, since by (7.12),

$$\begin{split} D_x H(x,z) &= \sum_{n=0}^{\infty} \sum_{m=1}^{n+1} c(n+1,m) \frac{x^n}{n!} z^m \,, \\ D_z^r H(x,z) &= r! \sum_{n=r}^{\infty} \sum_{m=r}^{n} \binom{m}{r} c(n,m) \frac{x^n}{n!} z^{m-r} \,, \\ z D_z^r H(x,z) &= r! \sum_{n=r}^{\infty} \binom{m+r-1}{r} c(n,m+r-1) \frac{x^n}{n!} z^m \,. \end{split}$$

substitution in (7.13) yields the recurrence

(7.15)
$$c(n+1,m) =$$

$$= c(n,m-1) + (-1)^{r-1}(r+1)c_r\binom{m+r-1}{r}c(n,m+r-1).$$

As for $F^{(r)}(n+1, m)$, by (7.4) we have

$$(7.16) \qquad (-1)^{n-m+1}F^{(r)}(n+1,m) = (-1)^{n-m+1}F^{(r)}(n,m-1) + \\ + (-1)^{r-1}(r+1) c_r \cdot (-1)^{n-m-r+1}F^{(r)}(n,m+r-1).$$

Since $\omega(x)$ is of the form

$$\omega(x) = \sum_{m=0}^{\infty} \frac{b_m x^{mr+1}}{mr+1}, \qquad b_0 = 1,$$

it follows from (7.11) that

$$(7.17) c(n, m) = 0, (n \not\equiv m \pmod{r}).$$

Also it is clear from (7.15) that

$$(7.18) c(n, n) = 0, (n = 0, 1, 2, ...).$$

We conclude that

$$c(n, m) = (-1)^{n-m} F^{(r)}(n, m)$$

and therefore

(7.19)
$$G^{(r)}(-x,-z) = \exp\{z(\omega(x))\}.$$

Combining the results of §§ 6, 7 we state the following

THEOREM 6. The function $F_1^{(r)}(n,m)$ satisfies a recurrence of the form

$$(7.20) \quad F_1^{(r)}(n+1, m) = F_1^{(r)}(n, m-1) + p_r(n)F_1^{(r)}(n-r+1, m)$$

if and only if

(7.21)
$$p_r(n) = (-1)^r (r+1) c_r \binom{n}{r},$$

where $f_1^{(r)}(z) = c_r z$. The function $F^{(r)}(n, m)$ satisfies a recurrence of the form

$$F^{(r)}(n+1,m) = F^{(r)}(n,m-1) + q_r(m)F^{(r)}(n,m+r-1)$$

if and only if

$$(7.22) q_r(m) = (-1)^{r-1} p_r(m+r-1),$$

where $p_{r}(m)$ satisfies (7.21).

Moreover (7.20) and (7.21) are satisfied if and only if

$$G_1^{(r)}(x,z) \equiv 1 + \sum_{n=1}^{\infty} \sum_{m=1}^{n} F_1^{(r)}(n,m) \frac{x^r}{n!} z^m = \exp\{z\psi(x)\},$$

where

$$\psi(x) = \sum_{m=0}^{\infty} \frac{a_r^m x^{rm+1}}{rm+1}, \qquad a_r = (-1)^r \frac{(r+1) c_r}{r!}.$$

It then follows that

$$G^{(r)}(x,z) = 1 + \sum_{n=1}^{\infty} \sum_{m=1}^{n} F^{(r)}(n,m) \frac{x^{r}}{n!} z^{m} = \exp \left\{-z\omega(-x)\right\},$$

where $\omega(x)$ is the inverse of $\psi(x)$ that vanishes at the origin:

$$\psi(\omega(x)) = \omega(\psi(x)) = x$$
.

8. - Put

(8.1)
$$\exp\{zf(x)\} = 1 + \sum_{n=1}^{\infty} \sum_{k=1}^{n} B_{nk} \frac{x^{n}}{n!} z^{k},$$

where

(8.2)
$$f(x) = \sum_{n=1}^{\infty} b_n \frac{x^n}{n!}, \qquad b_1 = 1.$$

Let g(x) denote the inverse of f(x):

(8.3)
$$g(x) = \sum_{n=1}^{\infty} c_n \frac{x^n}{n!}, \qquad c_1 = 1$$

and put

(8.4)
$$\exp \{zf(x)\} = 1 + \sum_{n=1}^{\infty} C_{nk} \frac{x^n}{n!} z^k.$$

It is proved in [5] that (B_{nk}) and (C_{nk}) are reciprocal arrays:

(8.5)
$$\sum_{k=i}^{n} B_{nk} C_{kj} = \sum_{k=i}^{n} C_{nk} B_{kj} = \delta_{nj}.$$

We now apply this result to

$$G_1^{(r)}(x,z)=\exp\left\{z\psi(x)\right\},\,$$

and

$$G^{(r)}(x,z)=\exp\left\{-z\omega(-x)\right\}.$$

It follows at once from

$$G_1^{(r)}(x,z) = 1 + \sum_{n=1}^{\infty} \sum_{k=1}^{n} F_1^{(r)}(n,k) \frac{x^n}{n!} z^k$$

and

$$G^{(r)}(x,z) = 1 + \sum_{n=1}^{\infty} \sum_{k=1}^{n} F^{(r)}(n,k) \frac{x^{n}}{n!} z^{k}$$

that

$$(8.6) \quad \sum_{k=1}^{n} (-1)^{n-k} F_1^{(r)}(n,k) F^{(r)}(k,j) = \sum_{k=\ell}^{n} (-1)^{k-j} F^{(r)}(n,k) F_1^{(r)}(k,j) = \delta_{nj}.$$

We may state

THEOREM 7. Let

$$G_1^{(r)}(x,z) = \exp\{z\psi(x)\}$$

or, equivalently,

$$G^{(r)}(x,z) = \exp\{-z\omega(-x)\},$$

where

$$\psi(x) = \sum_{m=0}^{\infty} \frac{a_r^m x^{rm+1}}{rm+1}, \qquad a_r = (-1)^r \frac{(r+1)c_r}{r!}$$

and $\psi(\omega(x)) = \omega(\psi(x)) = x$, $\omega(0) = 0$. Then $(F_1^{(r)}(n,k))$, $(F^{(r)}(n,k))$ satisfy the orthogonality relations (8.6).

REFERENCES

- [1] L. CARLITZ, Note on the Nörlund polynomial $B_n^{(z)}$, Proceedings of the American Mathematical Society, 11 (1960), pp. 452-455.
- [2] L. CARLITZ, Note on the numbers of Jordan and Ward, Duke Mathematical Journal, 38 (1971), pp. 783-790.
- [3] L. Carlitz, Some numbers related to the Stirling numbers of the first and second kind, Publications de la Faculté d'Electrotechnique de l'Université à Belgrade, Ser. Math. Phys. (1977), pp. 49-55.
- [4] L. CARLITZ, Polynomial representations and compositions, Houston Journal of Mathematics, 2 (1976), pp. 23-48.
- [5] L. CARLITZ, A special class of triangular arrays, Collectanea Mathematica, 27 (1976), pp. 23-58.
- [6] L. Carlitz, Generalized Stirling and related numbers, Rivista di Matematica della Università di Parma, to appear.

44

- [7] H. W. GOULD, Stirling number representation problems, Proceedings of the American Mathematical Society, 11 (1960), pp. 447-451.
- [8] C. JORDAN, Calculus of Finite Differences, Chelsea, New York, 1947.
- [9] N. E. NÖRLUND, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
- [10] J. RIORDAN, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
- [11] L. Schläfli, Ergänzung der Abhandlung über die Entwickelung des Produkts ..., J. Reine Angew Math., 44 (1952), pp. 344-355.
- [12] W. Morgan, The representation of Stirling's numbers and Stirling's polynomials as a sum of factorials, American Journal of Mathematics, 56 (1934), pp. 87-95.

Manoscritto pervenuto in redazione il 20 marzo 1978.