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G-Convergence for ordinary differential equations with
Peano phaenomenon.

LIVIO CLEMENTE PICCININI (*) (1)

SUMMARY : In this paper we give a general theory of G-convergence for
first order ordinary differential equations under very general
assumptions, including the existence of Peano phaenomenon. An
abstract compactness theorem is given from which theorems on G-
convergence follow for wide classes of equations.

0. Introduction.

Usually in order to study the G-convergence of differential opera-
tors strong hypothesis are made about the uniqueness of solutions.

When the object of study are non-linear differential equations
these assumptions are too restrictive, since they cannot take in account
Peano phaenomenon. Here we solve this problem attaching to every
equations not single solutions, but sets, large enough, of solutions ;
the G-convergence will consist of the convergence of these sets, that
we shall call Peano processes.

In sections 1 and 3 Peano processes are treated axiomatically,
while in sections 2 and 4 differential equations are considered. In
this paper we restrict ourselves to the study of first order equations,
but it is possible to extend this theory, with minor complications,
to any finite dimension. We do not give examples and do not afford
homogeneization problems, since they can be found in [1].

(*) Address of the author : Facolth di Statistica Università di Padova
(~) Lavoro eseguito nell’ambito del G.N.A.F.A.

[1] L. C. PICCININI, Homogeneization properties for ordinary differen-
tial equations Rend. Circ. Mat. Pal. (1978).
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Further extensions of the theory can be given in order to include
also equations with transmission problems ; this will be treated in
a following paper.

Throughout the paper we shall use standard notations, but for
this one : for any two sets A and B c R we set

and, if the sets depend on a parameter t, say
then

1. - Abstract formulation of the problem.

In this section we define axiomatically a Peano process ; the

definition of solution of a Cauchy problem follows, and starting from
this an equivalence relation is introduced. The section ends with

the definition of convergence for a sequence of equivalence classes.

Def. 1.1. A Peano process is a family of subsets of lE~ X [a, b] depen-
ding on three indexes x E R, t E [a , b] p E ]0,1] satisfying the mono-
tonicity, consistency, regularity, equation properties listed below.

Such sets will be denoted For reader’s convenience we sug-
gest to read at the same time also section 2, where a Peano process
is actually built starting from a differential equation.

We denote by (to) the section

Since we are dealing with one x-variable it will be simpler to use-
also the following functions
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Peano processes satisfy the following monotonicity properties :

M4. Let to &#x3E; t (resp. to  t), then for any 7: &#x3E; to (resp. z  to),
for any q &#x3E; p &#x3E; 0 it holds

Peano processes satisfy the following regularity property

R1 (Equiabsolute continuity) For each set Kcc R and for any
E &#x3E; 0, there exists 3~ (8) &#x3E; 0 such that for any finite number of

disjoint intervals [ti , with

it holds for any 1

(1) Since we are dealing only with one x-variable this statement is
the same as equiabsolute continuity of ~’+ and S-.
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Peano processes satisfy the following consistence properties :

Cl. For each gcc R there exists a continuous function satisfying

such that if and

then

C2. For each .gcc R there exists a function of class

satisfying the conditions

such that for any p it holds

and there exists a function ~~ (r 3) continuous satisfying the con-
ditions ~x (0, ð) = 0, ~x (r 3)  I 3) for 1 &#x3E; 0 , ~ &#x3E; 0 , y such that

C3. For each Kcc R there exists a continuous function YK (d, 1:),
strictly positive for d &#x3E; 0 , 1 &#x3E; 0 such that if xl , x2 and

- X2B ] then for |t - to I &#x3E; t , p2 &#x3E; PI + d it holds

A Peano process associated with an equation satisf ies the following
equation property :

El. For each .gcc R there exists a function BK (z) of class 01
such that 8K (o ) = 8~ (o ) = 0 . For any x E K, for any t, p it holds
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We come now to treat the solutions of a Peano process.

Definition. 1. 2. We call solution of the Cauchy problem of data
x(to) = xo for a Peano process the following intersection

It holds the following locality theorem :

Proof. We prove first that for any interval I, E = U (t) , E E I I
i

is still an interval. Let us suppose E has at least two connected com-
ponents, E2 , .... In correspondence there are disjoint sets 1, , I2 , ...
such that U In = I and.

n

Since I is connected there are at least two

sets, say I2 such that i, n c? 12 # ø. Let ii n a 12 ; using
C3, y for any p &#x3E; 0 , y for a fixed 6 &#x3E; 0 , it exists i c 12 such that

For the monotonicity with respect to p

Hence for any given p, 6 it holds f or t = 7:
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and consequently

Thus we are lead to a contradiction, since El and E2 are not dis-
joint connected components. We remark now that (z) is a closed
set. This comes obviously from (1.16). It will then be enough to
prove that 

-

and the corresponding relation for Since Rit (t1 ) = lim Sit,p ’

monotonically, for any e &#x3E; 0, p  po it holds
, For any fixed 6 &#x3E; 0 , y we set

hence by C3, for ~ I , and

in particular for r y letting ~’ = S:e,p (t1 ), using M4, it holds

Since it holds for all p and 6 it follows

To prove the opposite inclusion we remark that for any p

and for the independence from p

The relation for R- is proved in the same way. Q.E.D.

DEFINITION 1.3 (Equivalence). Two Peano processes are said to

be equivalent if for x E l~, t E [a , b] , p E ] 0 , 1] , it holds for any s &#x3E; 0
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M3 ensures that (1.21) is reflexive. From the arbitrariness of 8 and
p symmetry and transitivity follow.

THEOREM 1.2 Two equivalent Peano processes have the same solu-
tions.

Proof. This property comes trivially from the definitions.
We give now the definition of convergence for a sequence of equi-

valence classes :

DEFINITION 1.4. A sequence e(n) G-converges to the equivalence
class 8 if for any choice of a sequence of Peano processes S(n) E 8(n)

any E &#x3E; 0 , f or any It&#x3E; 0 , f or any x E R, t E [a , b ],
~n E ] 0 , 1] there exists an index no such that for n &#x3E; no it holds

LEMMA 1.3. Let satisfy uniformly R1. Then (1.22) and

~1.23 ) are equivalent to the condition

and this condition is equivalent to the following : if a subsequence 
converges to a set Txt, p that is

In order to prove lemma 1.3 we need the following :

LEMMA 1.4. Suppose a sequence of sets Sn satisfy uniformly.
Then it is possible to find a subsequence converging (in the sense of
~1.2~)~ to a set T , which still satisfies Rl with the same function 6K (8).

Proof. It is enough to prove that there exist a subsequence
such that converges uniformly. This is possible using Ascoli-
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Arzellh theorem. The limiting functions T± are still absolutely con-
tinuous with the same modulus since they are uniform limit of

equiabsolutely continuous functions. Q.E.D.

Proof of lemma 1.3.
We prove first that (1.24) implies (1.26). Let us suppose that

(1.25) holds ; then for any n

by (1.16). (1.25) implies also that for any n

Conversely let x E max lim then there exist a subsequence
n

From this subsequence, by lemma 1.4 we can chose a new
subsequence, converging to a limit Txt,p, that can be chosen in

such a way that it contains x. Hence max lim C 

n 
’

Let now .re Sxt p_~ , x ~ min lim then there is a sub-
’ 

n

sequence x . Passing to a converging subsequence according
to lemma 1.4, and choosing the limit such we

are lead to an absurd, since z .

We prove now that (1.22), (1.23 ) are equivalent to (1.26). (1.22)
and (1.23) imply (1.26) by (1.16). The converse follows supposing (1.22)
or (1.23) are false and using lemma 1.4, what leads to an absurd.

THEOREM 1.4 does not depend on the choice of
the processes S(n) representing the sequence 8(n) for 8.

Proof. Let ~’~n&#x3E; , g’ be other representants of the same equivalence
classes ; for any n &#x3E; 0, it holds by (1.22) and (1.21).

All other relations are proved in the same way. Q. E. D.
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2. - Connection between Peano processes and equations.

We present here a class of equations to which Peano processes
can be associated. We make some assumptions in order to be sure
that solutions are defined on the whole interval [a, b]. Actually
these assumptions can be weakened by a truncation method of which
we give a hint at the end of the section.

We consider the equation

where f is a function defined in [a , b] x R satisfying the following
requirements :

i) For each H there exists continuous with 3£(0) = 0
such that if E is a measurable subset of [a , b] of Lebesgue measure
] E ) , then for x ~ I  H

ii) There exists a continuous strictly increasing, function

1pj¡ (d), with 1pj¡ (0) = 0, 1pj¡’ (d) continuous in ]0 , + oo[ such that
whenever IX11 , ]  H then for any t e [a , b] ]

We shall make the following global assumption, in order to be
sure that all the solutions we require to build a Peano process are
defined in the whole [a , b] :

iii) There exists .M such that for H &#x3E; M

where



74

We prove that under this assumptions the solutions of the equations

esist on the whole [a , b]. Let ] z I  H 12 ; we get then

Suppose now that at a certain t ~ x (t) - I .- H/2, it follows

the last equality holding only if t = b ; we have thus proved that the
first value of t for which the solution can be larger than H is b.

We shall require a lemma concerning some simple continuity pro-
perties of a special equation :

LEMMA 2.1.

Let g (x) = 1pj¡ (x) satisfying the requirements of ii) and (2.5).
For any 6 &#x3E; 0 , r¡ &#x3E; 0 we call x (b , r~ , t) the greatest solution of

the equation.

Then x (~ , ~ , t) is a continuous function in the set of its variables.

Proof. If Peano phaenomenon does not appear, that is if there
exist a unique solution for any given value of ð , 1J, continuity is
a classical result. Now we remark that under our hypothesis Peano
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phaenomenon can appear only for ~ = 0 , ~ - 0 , and is equivalent
to the condition

Let now be ( xo I  H/2 &#x3E; M, so that the solutions of (2.6)
are defined in the whole inteval [0 , b-a] and are less than .H. In

this case, for q, C r~2 we get

Since (2.7) holds, then for any 8 &#x3E; 0 there exists d such that
whenever I ’YJ2 - I  d , then

Hence for any 6 &#x3E; 0 , y provided

The dependence on t is uniformly continuous with respect to
the other variables by (2.6), so that in order to prove global conti-
nuity we only need to prove continuity with respect to 6.

The mapping 6 (3 , q , t) is monotone increasing. If q &#x3E; 0 , y
~x (3 , q , t) ; 0  ~  1 ~ is connected by the usual theorems on con-
tinuous dependence on the parameters. In order to prove the con-
tinuity we thus need only to prove that

is connected. This is immediate since it is enough to consider the
backward problem from time t , using the existence and uniqueness
of the backward solution. Q.E.D.
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We come now to the actual construction of the Peano process.
We shall define rSxoto, po to be the reachable set in [a, b] X R

for the problem 
’

under the condition Ilg (t) ~~~  Po -
Obviously we get that (t) for t &#x3E; to is the greatest solution

of the problem

and for t  to is the greatest solution of the problem

Analogous relations hold for S-.

NoW we must prove that this is actually a Peano process, that is,
it satisfies all the required properties.

Ml is trivial; M2 comes from the elementary theory, and the set
is not empty because of C2, that will be proved later. M3 depends
on the monotonicity of solutions with respect to the parameter p.
M4 holds in a stronger form since we have chosen maximal (resp.
minimal) solutions of (2.8).

We prove now R1. Let Ixol  g ; we have already proved that
by iii) that i  2H . Suppose N disjoint intervals [t2 , ti’ ] are

N

given, such that z I ti’ I  3 . Then we have
%=i
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The function

is monotone increasing, continuous, E (0) = 0 . Its inverse is the
function required in Rl whenever H c [ - H , H].

Let x (3 , d , t) the greatest solution of the problem

By LEMMA 2.1 we get that § is continuous. We must prove (1.12).
We get

where 0  -r* (3 , d) _ i . By the continuity of x and of we

get then (1.12). The function TK (3 , d , i) = 0153 (3 , d , -r) for any
K c [ - H, H] is the one required in Cl (Remark: for S- we go on
exactly in the same way).

We prove now the first part of C2. For IxoB I  H we have
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Let then x (r the greatest solution of the problem

x is continuous by lemma 2.1. The function CK (r 3) = x (1’ , 3) -
- ð I 1’1 I is the function required in (1.15) for .g c [- H , H] .

In order to prove (1.16) we are lead from (2.12) to the inequality
t

the solution of the problem

this solution is strictly positive for 7: &#x3E; 0 . Continuity in this case is
obvious since there is always a unique solution. The required fun-,
ction is ~x(i,~) -~t -x(z,~) for i&#x3E; 0 , ð &#x3E; 0.

We prove C3. Let I X21 [  H , let x, C x2 (otherwise there is
nothing to prove). We get, passing through the integral equation

hence

Let x be the solution of the equation
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be such that

so that x &#x3E; 0 for z = T 0 *
The function yx (d , io) is given by the bound on x (0) that ap-

pears in (2.13). It satisfies the required conditions for t - to I &#x3E; To
in virtue of M4. For W the proof is similar.

We prove now .E1 . We have

Let x be the greatest solution of

We get x’ (0 , p) - 2p . Let us consider the function y (t) -
x(t,1) -2t.

For this function we have y (0) = y’ (0) = 0 ; we remark also
that it since 1Jl:H is increasing. Hence

p1

8K (t) - y (t) is the function required in El .

Now that we have shown how to build a Peano process starting-
from an equation, we deal with the reverse problem, namely to

reconstruct the coefficients of an equation from a Peano process and
check that its solutions are actually the reachable sets for the solu-
tions of that differential equation.
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In order to reconstruct the coefficients we put

under the condition that ~xiti,pi (to) - xo . Since the function S± are
absolutely continuous the coefficients are thus constructed almost
everywhere. The definition does not depend on the particular ele-
ment of the Peano process passing through the point to , xo , in virtue
of M4, does not depend on the particular p in virtue of C2 and does
not depend on the choice of S+ or W because of El. Furthermore

from 01 it follows

this last function ~x (d) is continuous by (1.12) and - 0 .

That is, letting V*H(d) - (PK(d) for .g = ] - ~L , II [ , (2.2) is
satisfied.

Now let (xol (  .g ; we get

from this relation and from Rl we get the uniform summability stat-
ed in (2.1 ).

By M4, El, C2 it holds that the solutions of the Peano process
are just solutions (as reachable sets) for the equation we have derived
from the Peano process. We must still prove that the elements of
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the Peano process are exactly the maximum reachable set from any
given initial data. Suppose that a solution x of the equation is at
some value greater than * Since these last function is deri-
vable almost everywhere with derivative f (x , t) + p , for any p &#x3E; 0

s+,p (r) for 7: &#x3E; t is greater than x . Hence Rxt (~) ~ x (7:), thus

contraddicting the assumption. The same argument holds for S-
and for 7: ’ t.

3. - Abstract compactness theorem.

THEOREM 3.1 Zet be a sequence of equivalense classes of
Peano processes. Let be equibounded, that is Cl, C2, C3 , El hold
with the same functions for any k. Then it is possible to find a conver-
gent subsequènce. The limiting equivalence class 0 satisfes R1 , Cl ,
C2 , C3 , El with the same functions.

Proof. We fix arbitrarily a sequence of Peano processe 05(k) E 
We fix three countable sets : Itil dense in [a , b] , dense in R, PI
dense in ]0 , 1]. We order the indexes in a sequence = (t, , xi, pi).
We shall call §~ the element associated to the s-th index.

Consider first the sequence ~51~&#x3E; . In virtue of lemma 1.4 it is

possible, to find a converging subsequence, let S1 be its limit. By the
diagonal procedure we can thus find a subsequence converging for
any index g to a limiting element For sake of simplicity we still
call ~k the subsequence. If x , t , p does not belong to the system 91
we choose arbitrarily a converging subsequence and we let 
be its limit. So we have defined a family of sets §. We have to prove
that this is actually a Peano process, and we must prove that ~k
G-converges to ~ . We prove first the last statement. We use. condi-
tion (1.26). Let Txt,p be the limit of a subsequence S(8h) and
Txt,P+8 be the limit of another subsequence It is enough
to prove that

We shall actually prove that
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Let x be such that (i) C K. For any fixed To let t , x , p
be a point of the convergence system such that p + 8/2  p  p ,

. We get

by Rl, C3, M4 that for p + 8/2  p *  p , with p * belonging to
the system, it holds for 7: &#x3E; t + 7:0

Since converge to the same limit it follows for

z &#x3E; t -E- t~ 
"’ ~ "’

For the arbitrariness of 7: we have thus proved (3.1) for 7: 

The other parts of the proof are the same.
Now we prove that the limiting family satisfies all the proper-

ties required by a Peano process. Properties M1, M2, Rl, El are
concerned with single sets and are preserved by the uniform conver-
gence. For the other properties we prove first that they still hold
when we restrict ourselves to the family of sets 8s; this is quite
obvious, for properties M3, Cl, C2 and C3 are preserved by the uni-
form convergence (that is the case when dealing with 8/s).

M4 is not required for the present and will be proved later.
We shall use the following

LEMMA 3. 2. Let Sk be a sequence of Peano processes converging on.
a dense system of indexes ; then for any fixed xo to po7 for any 7: &#x3E; 0 , 7
d &#x3E; 0 , there exist the convergence system with po  Ps 

-f- d , such that for It - to I &#x3E; 7: it holds
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and there exist xs ts p, such that po - d  p,  Po and for t - to ~ &#x3E; T
it holds

Proof. We prove only (3.3), the other relations being similar.

choose ts so that

and, calling ys , yo the two values of the ~S+ at t* , we get by 03

By M4 then it follows

Now we prove that 1VI3, 01, C2, C3 hold in general.
M3. We must prove that if pi = p2 + d , d &#x3E; 0 it follows
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We use lemma 3.2 choosing in such a way that it holds toge-
ther for It-tol [ &#x3E; ~’

Hence taking the limit we get

For the arbitrariness of T it follows (3.5)
Cl. It is enough to prove that when

Furthermore

and since both sequences converge (3.7) holds also for the limits,
so that

By the inclusion relations (3.6) it follows then for
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In virtue of the continuity of 99K and the independence from T 8
it follows Cl with the same function.

In order to prove C2 we still use lemma 3.2 with z &#x3E; 0 d = E &#x3E; 0

and we go on in the same way using the continuity of ~x (7: , d) and
of ~x (7: , d) . In order to prove C3 we use an argument similar to
that used to prove Cl.

We are now lead to prove M4. First we remark that by C3 and M2
for any 7: &#x3E; to &#x3E; t (resp. T  to  t) the set

is connected, that is, is an interval. Then it is enough to prove that
for 7: &#x3E; to (resp. 7:  to) it is

Let be a subsequence converging to For any fixed 11 &#x3E; 0

let 8 = 1 yK( E, Tl) . Then there esists such that for rk &#x3E; 
2 B 3 /

Taking the limit we get

hence by the definition of G-convergence

and still by monotonicity
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Since this last relation does not depend on Tl we have proved the
first of (3.9) the other required inequalities are proved in the same way.

4. - Compactness theorem for differential equations.

In section 2 we have proved that a Peano process (or better its
equivalence class) can represent and can be represented by a dif-
ferential equation. So it is meaningful to give the following defi-
nitions :

DEFINITION 4.1 We call Peano equation a differential equation that
represents a Peano process.

Remark that in section 2 we have introduced a vary large class of
Peano eq,uantions.

DEFINITION 4.2. (G-convergence). A sequence of Peano differen-
tial equations G-converges to a Peano equation if and only if the asso-
ciated equivalence classes of Peano processes converge to the associate

equivalence class for the limiting equation.
THEOREM 4.1. Let fk (t , x) be a sequence of functions satisfying

uniformly (2.1), (2.2), (2.3), (2.4). Then it is possible to find a subse-
quence such that the equations

G-converge to an equation

and this last equation still a Peano equation, f urthermore is the
same as for the approwximating functions.

There is nothing to prove since this theorem is a consequence of
the results of sections 2 and 3. In particular the last statement follows
from (2.11) for 6 = 0 and from (2.13). This last fact is important
because it allows to consider special stable subclasses of Peano equa-
tions, among which very important is the class of equilipschitzian
equations. If (2.3) and 2.4) do not hold our definitions can be easily
generalized, taking for each H a function fH (t , y x) equal to f (t , x)
for x ~ I C H , and satisfying (2.3) and (2.4) for K &#x3E; 2H. Then G-

convergence is given on each of the approximating function.

Manoscritto pervenuto in Redazione il 1 ~ giugno 1977.


