RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

EDUARDO H. A. GONZALEZ

Regolarità per il problema della goccia appoggiata

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p. 25-33

http://www.numdam.org/item?id=RSMUP 1977 58 25 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1977, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Regolarità per il problema della goccia appoggiata.

EDUARDO H. A. GONZALEZ (*)

0. - Introduzione.

In un precedente lavoro (vedi [1]) ho considerato il problema di minimizzare il funzionale

$$\mathfrak{F}_{\nu}(E) = \int\limits_{\{x_{n}>0\}} |D\varphi_{E}| + \nu \int\limits_{\{x_{n}=0\}} \varphi_{E} dH_{n-1} + \int\limits_{E} x_{n} dx$$

nella classe ε degli insiemi $E \subset \mathbb{R}^n$ di misura 1 e perimetro finito e contenuti nel semispazio $\{x \in \mathbb{R}^n : x_n > 0 \}$, cioè

$$(0.2) \quad \varepsilon = \left\{ \, E \subset \, \mathbb{R}^n \, \cap \, \{ \, x_n > \, 0 \, \} \, : \int\limits_{\mathbb{R}^n} | \, D \varphi_E | \, < \, + \, \infty \, \, , \, \, H_n(E) \, = \, 1 \, \right\}$$

giungendo a dimostrare il seguente teorema di esistenza:

TEOREMA 0.1.

a) Per - 1 $\,<$ ${\it v}$ \leq 1 $\,$ esiste $E_0 \in \varepsilon$ tale che

$$P_{\nu}(E_0) = \inf_{\varepsilon} P_{\nu}$$

b) $E_0 \cap \{x_n = t\}$ è una sfera (n-1) dimensionale (eventual mente vuota) t-quasi ovunque.

^(*) Indirizzo dell'A.: Istituto Matematico, Università di Trento -Povo (Trento).

c) Inoltre E_0 si può scegliere appartenente alla sottofamiglia $\varepsilon^s \subset \varepsilon$ di tutti gli insiemi che hanno sezioni orizzontali sferiche centrate sull'asse x_n .

In questo lavoro mi propongo di dimostrare

- 1^0) Che se E_0 minimizza (0.1) allora (a meno di traslazioni) E_0 appartiene necessariamente a ε^s .
 - 2^{0}) E_{0} è limitato.
 - 3º) Posto

(0.3)
$$\varrho(t) = \left(\omega_{n-1}^{-1} \int_{y \in \mathbb{R}} \varphi_{E_0}(y, t) \, dy\right)^{\frac{1}{n-1}}$$

esiste m>0 tale che $\varrho(t)>0$ per quasi ogni $t\in(0\;,m)$ e $\varrho(t)=0$ per quasi ogni t>m .

- 40) $\partial E_0 \cap \{0 < \times_n < m \}$ è regolare
- 5°) $(0\;,\ldots,0\;,m)=V$ è un punto regolare di ∂E_0 (regolarità al vertice).

Nota: In un prossimo lavoro (vedi [2]) sarà dimostrata la convessità della soluzione E_0 e quindi la regolarità in $x_n=0$.

1. - Simmetria rispetto all'asse x_n della soluzione.

L'idea seguita è stata usata in [3].

Sia Π il piano ortogonale all'asse x_1 tale che, posto $P==(a\ ,o\ ,...\ ,o)$ la sua intersezione con tale asse, sia

$$(1.1) H_n(E_0 \cap \{x_1 < a\}) = H_n(E_0 \cap \{x_1 > a\}).$$

Vediamo che E_0 è simmetrico rispetto al piano Π . Anzitutto, se

(1.2)
$$M_{1} = \int |D\varphi_{E}| + \nu \int \varphi_{E} dH_{n-1} + \int x_{n} dx$$

$$\{x_{n} > 0\} \cap \{x_{1} > a\} \quad \{x_{n} = 0\} \cap \{x_{1} > a\} \quad E \cap \{x_{1} > a\}$$

(1.3)
$$M_{2} = \int |D\varphi_{E}| + \nu \int \varphi_{E} dH_{n-1} + \int x_{n} dx$$
$$\{x_{n}>0\} \cap \{x_{1}<\alpha\} \quad \{x_{n}=0\} \cap \{x_{1}<\alpha\} \quad E \cap \{x_{1}<\alpha\}$$

allora $\mathit{M}_1 = \mathit{M}_2$. Infatti, se fosse ad esempio $\mathit{M}_1 < \mathit{M}_2$, posto $\tilde{\mathit{E}}$ l'insieme definito da

$$(1.4) x \in \tilde{E} \Longleftrightarrow \begin{cases} x_1 \leq a \\ \text{oppure} \\ x_1 > a \quad \text{e} \quad (a - x_1 \,, x_2 \,, \ldots \,, x_n) \in E_0 \end{cases}$$

si avrebbe avviamente $\mathfrak{F}_{\nu}(\tilde{E}) < \mathfrak{F}_{\nu}(E_0)$, il che, insieme alla (1.1) contraddirebbe la scelta di E_0 . Quindi $M_1 = M_2$ da cui $\mathfrak{F}_{\nu}(\tilde{E}) = \mathfrak{F}_{\nu}(E_0)$ e perciò \tilde{E} è un'altro minimo del funzionale \mathfrak{F}_{ν} . Dalla parte b) del teorema 0.1 segue quindi che E_0 deve essere simmetrico rispetto al piano H.

2. - Limitatezza di E_0 .

In [1] si è già dimostrato che esiste R > 0 tale che, posto

$$(2.1) B_R(0) = \{ y \in \mathbb{R}^{n-1} : |y| < R \}$$

si ha $E_0 \subset B_R(0) \times [0, +\infty]$. Dimostriamo ora che esiste L>0 tale che

(2.2)
$$E_0 \subset B_R(0) \times [0, L].$$

Infatti, se così non fosse, esisterebbe una sfera B centrata sull'asse x_n ,

$$(2.3) B = \{(y, t) : y \in \mathbb{R}^{-1}, |y|^2 + |t - c|^2 \le R_1^2\} = \{(y, t) : y \in \mathbb{R}^{-1}, |y| \le r(t) = \sqrt[4]{\mathbb{R}_7^2 - t^2}\}$$

tale che, posto

$$(2.4) B^+ = B \cap \{x_n > 0\},$$

si ha

(2.5)
$$r(0) = \varrho(0)$$

$$H_n \ \{ x \in E_0 : x_n > c + R_1 \ \} = H_n(B^+ - E_0) \ .$$

Siano

$$(2.6) E_1 = B^+ \cup (E_0 \cap \{x_n \le c + R_1 \})$$

$$(2.7) E_2 = (B^+ \cap E_0) \cup \{x \in E_0 : x_n > c + R_1 \}.$$

È chiaro allora che $H_n(E_2) = H_n(B^+)$. Da questo fatto e dal fatto che $r(0) = \varrho(0)$, segue, in virtù della proprietà isoperimetrica della sfera (vedi [4] oppure [5]) che

$$\int\limits_{\{x_n>0\}} |Darphi_{E_2}| \geq \int\limits_{\{x_n>0\}} |Darphi_{B^+}|$$

e cioè

$$(2.8) \int_{\{x_{n}>0\}} |D\varphi_{E_{2}}| = \int_{\{x_{n}>c+R_{1}\}} |D\varphi_{E_{0}}| + \int_{\{x:r(x_{n})>\varrho(x_{n})\}} |D\varphi_{B}| + \int_{\{x:r(x_{n})<\varrho(x_{n})\}} |D\varphi_{B}| \ge \int_{\{0

$$\geq \int_{\{x_{n}>0\}} |D\varphi_{B}|$$$$

per cui

(2.9)
$$\int_{\{x_{n}>c+R_{1}\}} |D\varphi_{E_{0}}| + \int_{\{x:r(x_{n})>\varrho(x_{n})\}} |D\varphi_{E_{0}}| \geq \int_{\{x:r(x_{n})>\varrho(x_{n})\}} |D\varphi_{B^{+}}|.$$

$$\{x_{n}>c+R_{1}\}, \quad \{x:r(x_{n})>\varrho(x_{n})\}, \quad \{$$

Quindi:

$$(2.10) \quad \int |D\varphi_{E_1}| = \int |D\varphi_{E^+}| + \int |D\varphi_{E_0}| \le \int |D\varphi_{E_0}| \\ \{x: r(x_n) > \varrho(x_n)\} \cap \{x: r(x_n) \leqslant \varrho(x_n)\} \cap \{x_n > 0\} \\ \cap \{0 < x_n \leqslant c + R_1\} \quad \cap \{0 < x_n \leqslant c + R_1\}$$

Da questa, notando che

$$(2.11) \qquad \int\limits_{E_1} x_n \, dx < \int\limits_{E_0} x_n \, dx$$

segue che $\mathfrak{F}_{\mathbf{r}}(E_{\mathbf{1}}) < \mathfrak{F}_{\mathbf{r}}(E_{\mathbf{0}})\,,$ assurdo poichè $H_n(E_{\mathbf{1}}) = H_n(E_{\mathbf{0}})\,$ c.v.d.

3. - Notiamo che

(3.1)
$$\min_{t \to t_0} \lim \omega_{n-1} \varrho^{n-1}(t) = 0 \Rightarrow \varrho(t) = 0$$
 per quasi ogni $t > t_0$.

Infatti, essendo E_0 di perimetro finito (vedi ad esempio [6]), esistono i limiti

(3.2)
$$\lim_{t \to t_0^+} \omega_{n-1} \, \varrho^{n-1}(t) \quad , \quad \lim_{t \to t_0^-} \omega_{n-1} \, \varrho^{n-1}(t)$$

ed il minimo limite (3.1) è uguale al più piccolo dei limiti (3.1). Ma allora uno di questi due limiti deve essere zero e questo vuol dire che si verifica una delle due possibilità seguenti:

Ma allora, posto \tilde{E} l'insieme definito da

$$\begin{split} \tilde{E} \; \cap \; \left(B_R(0) \times [0 \; , \; L]\right) &= E_0 \; \cap \{x_n < t\} \\ E \; - \; \left(B_R(0) \times [0 \; , \; L]\right) &= \left\{x \colon (x_1 - R \; , \; x_2 \; , \; ..., \; x_{n-1} \; , \; x_n + t_0) \in E_0 \cap \{x_n > t_0\}\right\} \end{split}$$

si avrebbe che

$$\mathfrak{F}_{\mathbf{v}}(\tilde{E}) < \mathfrak{F}_{\mathbf{v}}(\tilde{E}_0)$$

il che contraddirebbe la scelta di E_0 . Quindi, vale la (3.1).

Ne segue che esiste $m \in (0, L]$ tale che

(3.4)
$$\min_{t \to t_0} \lim_{\varrho(t) > 0} \quad \forall \ t_0 < m$$

(3.5)
$$H_1 \{ t > m : \varrho(t) > o \} = 0.$$

4. - Regolarità (primo passo).

Consideriamo adesso il punto $(a\ ,0\ ,\dots,0\ ,b)$ con 0< b< m e $a^2=\varrho^2(b)$ appartenente a $\partial E_0\cap \{0< x_n< m\}$ (essendo E_0 simmetrico rispetto all'asse x_n la scelta $x_2=\dots=x_{n-1}=0$ non toglie alcuna generalità al discorso). Allora, fissato $\varepsilon>0$ abbastanza piccolo ($\varepsilon<\min\lim\limits_{t\to b}\varrho(t)$) esiste $\delta>0$ tale che $\varrho(t)>\varepsilon\ orall\ t\in (b-\delta\ ,b+\delta)$.

Sia $\delta_0 < \min \{\delta, \varepsilon, b\}$. Si vede subito che, posto

$$B_{\delta_0}(0\;,b)=\{(x_2\;,\ldots\;,x_n):x_2^2+\ldots\;+\;x_{n-1}^2+(x_n\;-\;b)^2<\delta_0^2\}$$
 esiste una funzione $f:B_{\delta_0}(0\;,b)\to(\varepsilon\;,R)\;,\;f\in B\vee(B_{\delta_0})$ tale che

$$\begin{array}{ll} (4.1) & \partial E_0 \cap (B_{\delta_0} \times [0 , +\infty]) = \\ & = \{(x_1, \dots, x_n) : (x_2, \dots, x_n) \in B_{\delta_0} \in x_1 = f(x_2, \dots, x_n)\}. \end{array}$$

I discorsi fatti finora ci permettono di dire che in particolare f minimizza il funzionale

(4.2)
$$\mathfrak{L}_{r}(g) = \int_{B\delta_{0}} \sqrt{|+|Dg|^{2}} \ dx_{2} \dots dx_{n} + \int_{\partial B_{\delta_{0}}} |g - f| dH_{n-2} + \int_{B_{\delta_{0}}} \int_{0}^{g} x_{n} \ dx_{1} \ dx_{2} \dots dx_{n}$$

nella classe

$$(4.3) \hspace{1cm} \mathfrak{C} = \left\{ \hspace{.1cm} g \in BV \hspace{.1cm} (B_{\delta_0}) : \int\limits_{B_{\delta_0}} g \hspace{.1cm} dx_2 \ldots \hspace{.1cm} dx_n = \text{costante} \hspace{.1cm} \right\}$$

Allora è noto che esiste $\lambda \in \mathbb{R}$ (moltiplicatore di Lagrange) tale che il problema di minimizzare il funzionale (4.2) nella classe (4.3) sia equivalente a minimizzare il funzionale

$$\begin{array}{ll} (4.4) & \mathfrak{L}_{r}^{(\lambda)}\left(g\right) = \int\limits_{B_{\delta_{0}}} \sqrt{1+|Dg|^{2}}\,dx_{2}\,\ldots\,dx_{n} + \int\limits_{\partial B_{\delta_{0}}} \left|\,g-f\,\right|\,dH_{n-2} \\ & \int\limits_{B_{\delta_{0}}} \int\limits_{0} \left(x_{n}+\lambda\right)\,dx_{1}\,dx_{2}\,\ldots\,dx_{n} \ \ \text{in} \ \ BV\left(B_{\delta_{0}}\right) \ . \end{array}$$

Ricordo ora il seguente teorema di [7], p. 7:

TEOREMA: Sia $\Omega \subset \mathbb{R}^{n-1}$ aperto, sia f un minimo in $BV(\Omega)$ del funzionale

$$L(g) = \int\limits_{\Omega} \sqrt{|+|Dg|^2} \ dx + \int\limits_{\Omega} \int\limits_{0}^{g} H(x,t) \ dt \ dx + \int\limits_{\partial\Omega} |f-g| \ dH_{n-2} \ .$$

Supponiamo inoltre che $H\in C^{0,1}$ $(\mathbb{R}^{n-1}\times\mathbb{R})$ sia strettamente crescente in t. Allora f è localmente lipschitriana (e quindi analitica) in Ω .

Applicando questo teorema al funzionale $L_{\nu}^{(\lambda)}$ (con $H(x,t)=t+\lambda$ e tenendo conto che E_0 è simmetrico rispetto all'asse x_n si ottiene subito il seguente risultato di regolarità:

TEOREMA 4.1.

 $\partial E_0 \cap \{0 < x_n < m\}$ è una varietà analitica (n-1) dimensionale.

5. - Regolarità al vertice.

Dimostreremo adesso che se $a_0 > 0$ è un punto di minimo relativo stretto per ϱ , allora $\varrho(t) = 0$ per quasi ogni $t > a_0$. Dal teorema 4.1 sappiamo che la funzione $\varrho: (0, m) \to \mathbb{R}$ è regolare.

Se $\varrho(a_0)=0$, non c'è niente da dimostrare (vedi 3.1). Supponiamo quindi $\varrho(a_0)>0$. Ma allora dovrà esistere almeno un punto $a_1\in(a_0\,,\,m]$ di massimo relativo per ϱ con $\varrho(a_1)>\varrho(a_0)$. Allora un piccolo argomento di continuità mostra l'esistenza di $a_2\,,\,a_3\,,\,a_4\,,\,r$ tali che

$$a_2 < a_0 < a_3 < a_1 < a_4$$

$$(5.1)$$

$$\varrho(a_0) < r = \varrho(a_2) = \varrho(a_3) = \varrho(a_4) < \varrho(a_1).$$

Quindi, posto

(5.2)
$$\hat{\varrho}(t) = \begin{cases} \varrho(t) \text{ per } 0 \le t \le a_2, & a_4 \le t < +\infty \\ \varrho(t - a_4 + a_3) & \text{per } a_2 + a_4 - a_3 \le t \le a_4 \\ \varrho(t + a_3 - a_2) & \text{per } a_2 \le t \le a_2 + a_4 - a_3 \end{cases}$$

$$\hat{E}_0 = \{(y, t) \in \mathbb{R}^n : |y|^2 \le \hat{\varrho}^2(t)\}$$

si ha che

(5.3)
$$\int |D\varphi_{E_0}| = \int |D\varphi_{\hat{E}_0}| , \int \varphi_{E_0} dH_{n-1} = \int \varphi_{\hat{E}_0} dH_{n-1}$$

$$\{x_n > 0\} \qquad \{x_n = 0\} \qquad \{x_n = 0\}$$

$$\int x_n dx < \int n_n dx$$

e ovviamente $H_n(\hat{E}_0) = H_n(E_0)$, il che contraddirebbe la scelta di E_0 .

Da questo discorso segue che esiste $a \in [0, m)$ con $\varrho(a) > 0$ tale che $\varrho(t)$ è non crescente per t > a e quindi, posto

(5.4)
$$G = \{ y \in \mathbb{R}^{n-1} : |y|^2 < \varrho^2(a) \}$$

si ha che $\partial E_0 \cap \{t > a\}$ si può rappresentare come il grafico di una funzione $f \in BV(G)$. La regolarità di tale f discende da un discorso del tutto analogo a quello fatto nel paragrafo 4.

BIBLIOGRAFIA

- [1] GONZALEZ E., Sul problema della goccia appoggiata, Rendiconti del Seminario Matematico dell'Università di Padova, Vol. 55 (1976).
- [2] GONZALEZ E., TAMANINI I., Convessità della goccia appoggiata, Rend. Sem. Mat. Univ. Padova, Vol. 58 (1977).
- [3] SERAPIONI R., Proprietà di minimo della catenoide nella classe degli insiemi di perimetro finito (in corso di stampa).
- [4] DE Giorgi E., Sulla proprietà isoperimetrica dell'ipersfera nella classo degli insiemi aventi frontiera orientata di misura finita, Memorie Accad. Naz. Lincei, Ser. 8 Vol. 5 (1958).
- [5] GONZALEZ E., GRECO G., Una nuova dimostrazione della proprietà isoperimetrica dell'ipersfera. Ann. Univ. Ferrara. Sez. VII, Sc. Mat. Vol. XXIII, 251-256 (1977).
- [6] MIRANDA M., Comportamento delle successioni Convergenti di frontiere minimali, Rend. Sem. Mat. di Padova, Vol. 38 (1967).

- [7] GERHARDT C., Existence and Regularity of Capillary Surfaces. Boll. U.M.I. (4) 10 (1974).
- [8] Massari U., Esistenza e Regolarità delle Ipersuperfici di Curvatura Media Assegnata in \mathbb{R}^n , Arch. Rat. Mech. and Analysis, vol. 55, 4 (1974).

Manoscritto pervenuto in redazione il 9 maggio 1977.