RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

L. CARLITZ

Saalschützian transforms

Rendiconti del Seminario Matematico della Università di Padova, tome 50 (1973), p. 95-118

http://www.numdam.org/item?id=RSMUP_1973_50_95_0

© Rendiconti del Seminario Matematico della Università di Padova, 1973, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Saalschützian Transforms.

L. CARLITZ (*)

1. Put

$$(a)_n = a(a+1), \ldots, (a+n-1), \quad (a)_0 = 1.$$

Saalschütz's theorem [1, p. 9], [3, p, 48] reads

(1.1)
$$\sum_{k=0}^{n} \frac{(-n)_{k}(a)_{k}(b)_{k}}{k!(c)_{k}(d)_{k}} = \frac{(c-a)_{n}(c-b)}{(c)_{n}(c-a-b)_{n}},$$

where

$$(1.2) c+d=a+b-n+1.$$

If we replace b by c-b, (1.1) becomes

$$\sum_{k=0}^{n} \frac{(-n)_k (a)_k (c-b)_k}{k! (c)_k (a-b-n+1)_k} = \frac{(c-a)_n (b)_n}{(c)_n (b-a)_n}.$$

Since

$$(a-b-n+1)_k = (-1)^k (b-a+n-k)_k$$
,

$$\frac{(b-a)_n}{(a-b+n-1)_n}=(-1)^k(b-a)_{n-k},$$

we get

(1.3)
$$\frac{1}{(b)_n} \sum_{k=0}^n \binom{n}{k} (a)_k (b-a)_{n-k} \frac{(c-b)_k}{(c)_k} = \frac{(c-a)_n}{(c)_n}.$$

Supported in part by NSG grant GP-17031.

^(*) Indirizzo dell'A.: Dept. of Mathematics, Duke University - Durham. N.C. 27706, U.S.A.

We may think of (1.3) as a linear transformation from the set of rational functions

$$\frac{(c-b)_n}{(c)_n}$$
 $(n=0,1,2,...)$

to the set

$$\frac{(c-a)_n}{(c)_n}$$
 $(n=0,1,2,...)$.

We accordingly define the linear transformation

$$(1.4) T_{a,b} \colon x_n = \frac{1}{(b)_n} \sum_{k=0}^n \binom{n}{k} (a)_k (b-a)_{n-k} y_k (n=0,1,2,\ldots).$$

We shall assume that neither a nor b is equal to zero or a negative integer.

It follows at once from (1.4) that

$$(1.5) T_{a.a} = I,$$

the identity transformation. We shall show that

$$(1.6) T_{a,b}T_{b,a} = I$$

and that

$$(1.7) T_{a,b} T_{c,d} = T_{c,d} T_{a,b}.$$

Moreover a relation of the form

$$T_{a_1,b_1}T_{a_1,b_2}\dots T_{a_n,b_n}=I$$

holds only in a « trivial » way.

In the second part of the paper we show that analogous results are implied by the q-analog of Saalschütz's theorem:

(1.9)
$$\sum_{k=0}^{n} \frac{(q^{-n})_k(a)_k(b)_k}{(q)_k(c)_k(d)_k} q^k = \frac{(c/a)_n(c/b)_n}{(c)_n(c/ab)_n},$$

where now

$$(a)_n = (1-a)(1-qa) \dots (1-q^{n-1}a), \quad (a)_0 = 1$$

and

$$(1.10) cd = q^{1-n}ab.$$

2. Returning to the definition (1.4), we ask when is

$$(2.1) T_{a,b} = T_{c,d}?$$

Clearly this requires

$$\frac{1}{(b)_n}(a)_k(b-a)_{n-k} = \frac{1}{(d)_n}(c)_k(d-c)_{n-k} \qquad (n=0,1,2,...;\ k=0,1,...,n).$$

For k = n this becomes

$$\frac{(a)_n}{(b)_n} = \frac{(c)_n}{(d)_n}$$
 $(n = 0, 1, 2, ...)$.

It follows that

$$\frac{a}{b} = \frac{c}{d}$$
, $\frac{a+1}{b+1} = \frac{c+1}{d+1}$, $\frac{a+2}{b+2} = \frac{c+2}{d+2}$, ...

and therefore

$$(a+x)(d+x) \equiv (b+x)(x+x).$$

For x = -a, this implies b = a or c = a. If b = a we get $T_{c,a} = I$ so that c = d. If c = a it follows that b = d. Hence (2.1) holds if and only if

(i)
$$a=b$$
, $c=d$

 \mathbf{or}

(ii)
$$a=c, b=d$$
.

We show now that

$$(2.2) T_{a,b}T_{b,c} = T_{a,c}.$$

PROOF. Put

$$(2.3) y_k = \frac{1}{(c)_k} \sum_{j=0}^k \binom{k}{j} (b)_j (c-b)_{k-j} z_j (k=0,1,2,...).$$

Then by (1.4) and (2.3)

$$(2.4) x_n = \frac{1}{(b)_n} \sum_{j=0}^n \binom{n}{k} (a)_k (b-a)_{n-k} \cdot \frac{1}{(c)_k} \sum_{j=0}^k \binom{k}{j} (b)_j (c-b)_{k-j} z_j =$$

$$= \frac{1}{(b)_n} \sum_{j=0}^n \binom{n}{j} (b)_j z_j \sum_{k=j}^n \binom{n-j}{k-j} (a)_k (b-a)_{n-k} \frac{(c-b)_{k-j}}{(c)_k}.$$

The inner sum is equal to

$$\sum_{k=0}^{n-j} {n-j \choose k} a_{j+k} (b-a)_{n-j-k} \frac{(c-b)_k}{(c)_{j+k}} =$$

$$= \frac{(a)_j}{(c)_j} \sum_{k=0}^{n-j} {n-j \choose k} \frac{(a+j)_k (c-b)_k}{(c+j)_k} (b-a)_{n-j-k} =$$

$$= \frac{(a)_j (b-a)_{n-j}}{(c)_j} \sum_{k=0}^{n} \frac{(-n+j)_k (a+j)_k (c-b)_k}{k! (c+j)_k (a-b-n+j+1)_k} =$$

$$= \frac{(a)_j (b-a)_{n-j}}{(c)_j} \frac{(c-a)_{n-j} (b+j)_{n-j}}{(c+j)_{n-j} (b-a)_{n-j}} = \frac{(a)_j (c-a)_{n-j} (b+j)_{n-j}}{(c)_n}.$$

Hence (2.4) becomes

$$x_n = \frac{1}{b_n} \sum_{j=0}^n \binom{n}{j} \frac{(a)_j (b)_j (c-a)_{n-j} (b+j)_{n-j}}{(c)_n} z_j = \frac{1}{(c)_n} \sum_{j=0}^n \binom{n}{j} (a)_j (c-a)_{n-j} z_j.$$

This evidently proves (2.2).

As an immediate corollary of (2.2) we have

$$(2.5) T_{a,b}T_{b,a} = I.$$

We show next that

$$(2.6) T_{b,c}T_{a,b} = T_{a,c}.$$

PROOF. Put

$$x_{n} = \frac{1}{(c)_{n}} \sum_{k=0}^{n} \binom{n}{k} (b)_{k} (c - b)_{n-k} y_{k} ,$$

$$y_{k} = \frac{1}{(b)_{k}} \sum_{k=0}^{k} \binom{k}{i} (a)_{j} (b - a)_{k-j} z_{j} .$$

Then

$$\begin{split} x_n &= \frac{1}{(c)_n} \sum_{k=0}^n \binom{n}{k} (b)_k (c-b)_{n-k} \cdot \frac{1}{(b)_k} \sum_{j=0}^k \binom{k}{j} (a)_j (b-a)_{k-j} z_j = \\ &= \frac{1}{(c)_n} \sum_{j=0}^n \binom{n}{j} (a)_j z_j \sum_{k=j}^n \binom{n-j}{k-j} (c-b)_{n-k} (b-a)_{k-j} \,. \end{split}$$

The inner sum is equal to

$$\sum_{k=0}^{n-j} {n-j \choose k} (c-b)_{n-j-k} (b-a)_k = (c-b)_{n-j} \sum_{k=0}^{n-j} \frac{(-n+j)_k (b-a)_k}{k! (b-c-n+j+1)_k} =$$

$$= (c-b)_{n-j} \frac{(a-c-n+j+1)_{n-j}}{(b-c-n+j+1)_{n-j}} = (c-b)_{n-j} \frac{(c-a)_{n-j}}{(c-b)_{n-j}} = (c-a)_{n-j}$$

by Vandermonde's theorem. Thus

$$x_n = \frac{1}{(c)_n} \sum_{j=0}^n \binom{n}{j} (a)_j (c-a)_{n-j} z_j ,$$

which proves (2.6).

It is now easy to prove that

$$(2.7) T_{a,b}T_{c,d} = T_{c,d}T_{a,b}.$$

Indeed, by (2.2) and (2.7),

$$egin{aligned} T_{a.b} T_{c.d} &= T_{c.b} T_{a.c} T_{c.d} \ &= T_{c.b} T_{a.d} \ &= T_{c.b} T_{b.d} T_{a.b} \ &= T_{c.d} T_{a.b} \,. \end{aligned}$$

We shall however give a second proof of (2.7) that makes use of an explicit formula for the transformation $T_{a,b}T_{c,d}$. Put

$$x_n = \frac{1}{(b)_n} \sum_{k=0}^n \binom{n}{k} (a)_k (b-a)_{n-k} y_k$$
,

$$y_k = \frac{1}{(d)_k} \sum_{j=0}^k {k \choose j} (c)_j (d-c)_{k-j} z_j.$$

Then

$$(2.8) x_{n} = \frac{1}{(b)_{n}} \sum_{k=0}^{n} {n \choose k} \frac{(a)_{k}(b-a)_{n-k}}{(d)_{k}} \sum_{j=0}^{k} {k \choose j} (c)_{j}(d-c)_{k-j} z_{j} =$$

$$= \frac{1}{(b)_{n}} \sum_{j=0}^{n} {n \choose j} (c)_{j} z_{j} \sum_{k=j}^{n} {n-j \choose k-j} (a)_{k}(b-a)_{n-k} \frac{(d-c)_{k-j}}{(d)_{k}} =$$

$$= \frac{1}{(b)_{n}} \sum_{j=0}^{n} {n \choose j} (c)_{j} z_{j} \sum_{k=0}^{n-j} {n-j \choose k} (a)_{j+k}(b-a)_{n-j-k} \frac{(d-c)_{k}}{(d)_{j+k}} =$$

$$= \frac{1}{(b)_{n}} \sum_{j=0}^{n} {n \choose j} \frac{(a)_{j}(c)_{j}}{(d)_{j}} z_{j} \sum_{k=0}^{n-j} {n-j \choose k} (a+j)_{k}(b-a)_{n-j-k} \frac{(d-c)_{k}}{(d+j)_{k}}.$$

By Vandermode's theorem

$$\frac{(d-c)_k}{(d+j)_k} = \sum_{s=0}^k \frac{(-k)_s (c+j)_s}{s! (d+j)_s} = \sum_{s=0}^k (-1)^s \binom{k}{c} \frac{(c+j)_s}{(d+j)_s}.$$

Thus

$$\sum_{k=0}^{n-j} {n-j \choose k} (a+j)_k (b-a)_{n-j-k} \frac{(d-c)_k}{(d+j)_k} =$$

$$= \sum_{k=0}^{n-j} {n-j \choose k} (a+j)_k (b-a)_{n-j-k} \sum_{s=0}^{k} (-1)^s {k \choose c} \frac{(c+j)_s}{(d+j)_s} =$$

$$= \sum_{s=0}^{n-j} (-1)^s {n-j \choose s} \frac{(c+j)_s}{(d+j)_s} \sum_{k=s}^{n-j} {n-j-s \choose k-s} (a+j)_k (b-a)_{n-j-k} =$$

$$= \sum_{s=0}^{n-j} (-1)^s {n-j \choose s} \frac{(c+j)_s}{(d+j)_s} \sum_{k=0}^{n-j-s} {n-j-s \choose k} (a+j)_{s+k} (b-a)_{n-j-s-k} =$$

$$= \sum_{s=0}^{n-j} (-1)^s {n-j \choose s} \frac{(a+j)_s (c+j)_s}{(d+j)_s} (b-a)_{n-j-s} .$$

$$\cdot \sum_{k=0}^{n-j-s} \frac{(-n+j+s)_k (a+j+s)_k}{k! (a-b-n+j+s+1)_k} = \sum_{s=0}^{n-j} (-1)^s {n-j \choose s} .$$

$$\cdot \frac{(a-j)_s (c+j)_s}{(d+j)_n} (b-a)_{n-j-s} \frac{(-b-n+1)_{n-j-s}}{(a-b-n+j+s+1)_{n-j-s}} =$$

$$= \sum_{s=0}^{n-j} (-1)^s {n-j \choose s} \frac{(a+j)_s (c+j)_s}{(d+j)_s} (b-a)_{n-j-s} \frac{(b+j+s)_n}{(b-a)_{n-s}} =$$

$$= \sum_{s=0}^{n-j} (-1)^s {n-j \choose s} \frac{(a+j)_s (c+j)_s}{(b+j)_s} (b-a)_{n-j-s} \frac{(a+j)_s (c+j)_s}{(b-a)_{n-s}} .$$

Therefore (2.8) becomes

$$(2.9) x_n = \sum_{j=0}^n \binom{n}{j} \frac{(a)_j (c)_j}{(b)_j (d)_j} z_j \sum_{s=0}^{n-j} (-1)^s \binom{n-j}{s} \frac{(a+j)_s (c+j)_s}{(b+j)_s (d+j)_s}$$

or, if we prefer,

$$(2.10) x_n = \sum_{k=0}^n \binom{n}{k} \frac{(a)_k(c)_k}{(b)_k(d)_k} \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} z_j.$$

Clearly (2.9) represents both $T_{a,b}T_{c,d}$ and $T_{c,d}T_{a,b}$. For that matter it also represents both $T_{a,d}T_{b,c}$ and $T_{b,c}T_{a,d}$. In particular, (2.10) implies (2.7).

3. It is natural to ask whether

$$(3.1) T_{a,b} T_{c,d} = T_{e,f},$$

for properly chosen e, f. By (2.8) this is equivalent to

$$(3.2) \qquad \frac{(a)_{j}(c)_{j}}{(b)_{n}(d)_{j}} \sum_{k=0}^{n-j} {n-j \choose k} (a+j)_{k} (b-a)_{n-j-k} \frac{(d-c)_{k}}{(d+j)_{k}} = \frac{1}{(f)_{n}} (e)_{j}(f)_{n-j}.$$

For i = n, (3.2) reduces to

(3.3)
$$\frac{(a)_n(c)_n}{(b)_n(d)_i} = \frac{(e)_n}{(f)_n}.$$

This implies

$$\frac{ac}{bd} = \frac{e}{t}, \qquad \frac{(a+1)(c+1)}{(b+1)(d+1)} = \frac{e+1}{t+1}, \qquad \frac{(a+2)(c+2)}{(b+2)(d+2)} = \frac{e+2}{t+2}, \dots$$

and therefore

(3.4)
$$(a+x)(c+x)(f+x) \equiv (b+x)(d+x)(e+x) .$$

For x = -0, (3.4) becomes

$$(b-a)(d-a)(e-a)=0.$$

(i) If
$$b=a$$
, (3.1) reduces to $T_{\mathfrak{e}.d}=T_{\mathfrak{e}.f}$, so that $c=d$, $e=f$ or $c=e$, $d=f$;

(ii) if
$$d=a$$
, (3.1) becomes $T_{e,b}=T_{e,f}$, so that $c=b$, $e=f$ or $c=e$, $b=f$;

(iii) if
$$e=a$$
, (3.1) reduces to $T_{c,d}=T_{b,f}$, so that $c=d$, $b=f$ or $c=b$, $d=f$.

Thus in every case, (3.1) holds only in a «trivial» way, that is, as a consequence of (2.2) or (2.6).

Consider next the equation

$$(3.5) T_{a,b} T_{c,d} = T_{e,f} T_{g,h}.$$

By (2.10), (3.5) is equivalent to

(3.6)
$$\frac{(a)_k(c)_k}{(b)_k(d)_k} = \frac{(e)_k(g)_k}{(f)_k(h)_k}.$$

Exactly as above, (3.6) implies

(3.7)
$$(a+x)(c+x)(f+x)(h+x)$$
 $(b+x)(d+x)(e+x)(g+x)$.

Taking x = -a, it follows that a = b, d, e or g. If a = b, (3.5) reduces to

$$T_{c,d} = T_{c,t} T_{a,h}$$
;

if a = d, it reduces to

$$T_{ab} = T_{ab} T_{ab}$$
;

if a = e, we get

$$T_{c,d} = T_{b,t} T_{a,b}$$
;

if a = g, we get

$$T_{ed} = T_{ed} T_{hh}$$
.

Thus in every case, (3.5) reduces to (3.1).

The most general relation can be reduced to the form

$$(3.8) T_{a_1,b_1}T_{\iota_2,b_2}\dots T_{a_n,b_n}=I.$$

As above, (3.8) implies

$$(3.9) (a_1+x) \dots (a_n+x) \equiv (b_1+x) \dots (b_n+x).$$

It follows from (3.10) that $a_n = b_i$ for some i. If i = n, (3.8) reduces to

$$T_{a_1,b_1} \dots T_{a_{n-1},b_{n-1}} = I$$
.

If $i \neq n$, we may assume i = n - 1, in which case (3.8) becomes

$$T_{a_1,b_1}...T_{a_{n-1},b_{n-1}}T_{a_{n-1},b_n}=I$$
.

Again the number of factors on the left has been reduced. We conclude that (3.8) holds only in a «trivial» way.

4. We may write (1.3) in the following form.

$$(4.1) (x-a)_n = \frac{1}{(b)_n} \sum_{k=0}^n \binom{n}{k} (a)_k (b-a)_{n-k} (x-b)_k (x+k)_{n-k}.$$

This suggests the following interpolation problem. Let f(x) be a polynomial of degree $\leq n$. We consider the representation of f(x) in the form

(4.2)
$$f(x) = \sum_{k=0}^{n} A_{n,k}(x-a)_{k}(x+k)_{n-k},$$

where a is an arbitrary constant and $A_{n,k} = A_{n,k}(a)$ is independent of x. To determine the coefficients $A_{n,k}$ we first take x = a. This gives

$$(4.3) (a)_n A_{n.0} = f(a).$$

Next, for x = a - 1, (4.2) reduces to

$$f(a-1) = (a-1)_n A_{n.0} - (a)_{n-1} A_{n.1},$$

so that

$$(4.4) (a)_n A_{n.1} = (a-1) f(a) - (a+n-1) f(a-1).$$

For x = a - 2, (4.2) becomes

$$f(a-2) = (a-2)_n A_{n.0} - 2(a-1)_n A_{n.1} + 2(a)_{n-2} A_{n.2}.$$

This yields

$$(4.5) 2(a)_{n,2} = a(a-1)f(a) - 2(a-1)(a+n-1)f(a-1) + + (a+n-1)(a+n-2)f(a-2).$$

At the next step we get

$$(4.6) \quad 6(a)_n A_{n,3} = a(a-1)(a+1)f(a) - 3a(a-1)a(a+n-1)f(a-1) + + 3(a-1)(a+n-1)(a+n-2)f(a-2) - - (a+n-1)(a+n-2)(a+n-3)f(a-3).$$

This suggests the general result

$$(4.7) k!(a)_n A_{n,k} = \sum_{j=0}^k (-1)^j \binom{k}{j} (a-1)_{k-j} (a+n-j)_j f(a-j).$$

To prove (4.7) we note first that

$$(4.8) 1 = \frac{1}{(a)_k} \sum_{i=0}^k (-1)^k \binom{k}{i} (x-a)_i (x+j)_{k-i}.$$

Indeed

$$\frac{1}{(x)_{k}} \sum_{j=0}^{k} (-1) {k \choose j} (x-a)_{j} (x+j)_{k-j} =
= \sum_{j=0}^{k} (-1)^{j} {k \choose j} \frac{(x-a)_{j}}{(x)_{j}} = \sum_{j=0}^{k} \frac{(-k)_{j} (x-a)_{j}}{j! (a)_{j}} = \frac{(a)_{k}}{(x)_{k}},$$

by Vandermonde's theorem. This evidently proves (4.8).

Now replace x by x+m in (4.8) and then multiply both sides by $(x-a)_m$. We get

$$(x-a)_{m} = \frac{1}{(a)_{k}} \sum_{j=0}^{k} (-1)^{j} {k \choose j} (x-a)_{m+j} (x+m+j)_{k-j} =$$

$$= \frac{1}{(a)_{k}} \sum_{j=m}^{k+m} (-1)^{j-m} {k \choose j-m} (x-a)_{j} (x+j)_{k+m-j}.$$

Replacing k by n-m, this becomes

$$(4.9) (x-a)_m = \frac{1}{(a)_{n-m}} \sum_{j=m}^m (-1)^{j-m} \binom{n-m}{j-m} (x-a)_j (x+j)_{n-j}.$$

In the next place if f(x) is a polynomial of degree $\leq n$, we may put

(4.10)
$$f(x) = \sum_{m=0}^{n} C_m (x-a)_m$$

where

$$(4.11) C_m = \frac{1}{m!} \delta^m f(a)$$

and

$$\begin{aligned} \delta f(x) &= f(x) - f(x - 1) , \\ \delta^k f(x) &= \delta \cdot \delta^{k-1} f(x) = \sum_{j=0}^k (-1)^j \binom{k}{j} f(x - j) . \end{aligned}$$

By (4.9) and (4.10)

$$f(x) = \sum_{m=0}^{n} \frac{1}{(a)_{n-m}} C_m \sum_{j=m}^{n} (-1)^{j-m} \binom{n-m}{j-n} (x-a)_j (x+j)_{n-j} =$$

$$= \sum_{j=0}^{n} (x-a)_j (x+j)_{n-j} \sum_{m=0}^{j} (-1)^{j-m} \binom{n-m}{j-m} \frac{C_m}{(a)_{n-m}}.$$

By (4.11),

$$\begin{split} \sum_{m=0}^{j} (-1)^{j-m} \binom{n-m}{j-m} \frac{C_m}{(a)_{n-m}} &= \\ &= \sum_{m=0}^{j} (-1)^{j-m} \binom{n-m}{j-m} \frac{1}{m!(a)_{n-m}} \sum_{k=0}^{m} (-1)^k \binom{m}{k} f(a-k) = \\ &= (-1)^j \sum_{k=0}^{j} f(a-k) \sum_{m=k}^{j} (-1)^{m-k} \binom{n-m}{j-m} \binom{m}{k} \frac{1}{m!(a)_{n-m}}. \end{split}$$

Since

$$\begin{split} \sum_{m=k}^{j} (-1)^{m-k} \binom{n-m}{j-m} \binom{m}{k} \frac{1}{m!(a)_{n-m}} &= \\ &= \sum_{m=0}^{j-k} (-1)^m \binom{n-k-m}{j-k-m} \binom{k+m}{k} \frac{1}{(k+m)!(a)_{n-k-m}} = \\ &= \sum_{m=0}^{j-k} (-1)^m \frac{(n-k-m)!}{(n-j)!(j-k-m)k!m!(a)_{n-k-m}} = \\ &= \frac{(n-k)!}{k!(n-j)!(j-k)!(a)_{n-k}} \sum_{m=0}^{j-k} \frac{(-j+k)_m(-a-n+k+1)_m}{m!(-n+k)_m} = \\ &= \frac{(n-k)!}{k!(n-j)!(j-k)!(a)_{n-k}} \frac{(a-1)_{j-k}}{(-n+k)_{j-k}} = (-1)^{j-k} \frac{(a-1)_{j-k}}{k!(j-k)!(a)_{n-k}}, \end{split}$$

we have

$$\sum_{m=0}^{j} (-1)^{j-m} \binom{n-m}{j-m} \frac{C_m}{(a)_{n-m}} = \sum_{k=0}^{j} (-1)^k \frac{(a-1)_{j-k}}{k!(j-k)!(a)_{n-k}} f(a-k) .$$

Hence (4.12) becomes

$$f(x) = \sum_{j=0}^{n} (x-a)_{j}(x+j)_{n-j} \cdot \frac{1}{j!(a)_{n}} \sum_{k=0}^{j} (-1)^{k} {j \choose k} (a-1)_{j-k}(a+n-k)_{k} f(a-k) ,$$

in agreement with (4.7).

It remains to show that the representation (4.2) is unique. We shall assume that the parameter a is not equal to zero or a negative integer. If the representation (4.2) is not unique, then for some n, there exist numbers

$$B_k = B_k(a) \qquad (0 \leqslant k \leqslant n) ,$$

not all zero, such that.

(4.13)
$$\sum_{k=0}^{n} B_k(x-a)_k(x+k)_{n-k} = 0.$$

For x = a, (4.13) reduces to

$$(a)_n B_0 = 0$$
,

so that $B_0 = 0$. Let

$$B_0 = ... = B_{m-1} = 0$$
, $B_m \neq 0$

and take x = a - m. Then (4.13) reduces to

$$\sum_{k=m}^{n} B_{k}(-m)_{k}(a-m+k)_{n-k} = 0,$$

so that

$$(-1)^m m! (a)_{n-m} B_m = 0$$
, $B_m = 0$.

We have therefore proved the following

THEOREM A. Let f(x) be a polynomial of degree $\leq n$. Assume that a is not equal to zero or a negative integer. Then f(x) is uniquely repre-

sentable in the form

(4.14)
$$f(x) = \sum_{k=0}^{n} A_{n,k}(x-a)_{k}(x+k)_{n-k},$$

where the coefficients A_{n-k} are determined by (4.7).

If a is equal to zero or a negative integer, the representation (4.14) is in general not possible. For example, for a = 0, (4.14) reduces to

$$f(x) = \sum_{k=0}^{n} A_{n,k}(x)_{n},$$

so that f(x) is a constant multiple of $(x)_n$. If x = -m, $m \ge 0$, (4.14) becomes

$$f(x) = \sum_{k=0}^{n} A_{n,k}(x+m)_{k}(x+k)_{n-k},$$

so that

$$(x)_m f(x) = \sum_{k=0}^n A_{n,k}(x)_{m+k} (x+k)_{n-k} = (x)_n \sum_{k=0}^n A_{n,k} (x+k)_m.$$

Hence, for $m \ge 0$, f(x) is divisible by $(x + m)_{n-m}$.

5. We turn now to the q-analog of Saalschütz's theorem [1, p. 68], [3, p. 97]

(5.1)
$$\sum_{k=0}^{n} \frac{(q^{-n})_{k}(a)_{k}(b)_{k}}{(q)_{k}(c)_{k}(d)_{k}} q^{k} = \frac{(c/a)_{n}(c/b)_{n}}{(c)(c/ab)_{n}}$$

where now

$$(5.2) (a)_n = (1-a)(1-qa) \dots (1-q^{n-1}a), (a)_0 = 1$$

and

$$(5.3) cd = q^{1-n}ab.$$

The following corollaries of (5.1) will be used. First, taking b=d=0, we get

(5.4)
$$\sum_{k=0}^{n} \frac{(q^{-n})_k(a)_k}{(q)_k(c)_k} q^k = \frac{(c/a)_n}{(c)_n} a^n.$$

This may be called the q-analog of Vandermonde's theorem.

Next, if we let $n \to \infty$, (5.1) reduces to

(5.5)
$$\sum_{k=0}^{\infty} \frac{(a)_k(b)_k}{(q)_k(c)_k} \left(\frac{c}{ab}\right)^k = \prod_{k=0}^{\infty} \frac{(1-q^k c/a)(1-q^k c/b)}{(1-q^k c)(1-q^k c/ab)}.$$

This is the q-analog of Gauss's theorem. Note that for $b=q^{-n}$, (5.5) becomes

(5.6)
$$\sum_{k=0}^{n} \frac{(q^{-n})_k(a)_k}{(q)_k(c)_k} \left(\frac{c}{ab}\right)^k = \frac{(c/a)_n}{(c)_n}.$$

Replacing k by n-k, (5.6) becomes

$$\sum_{k=0}^n \frac{(q^{-n})_k (q^{1-n}/c)_k}{(q)_k (q^{1-n}/a)_k} = (-1)^n q^{-\frac{1}{2}n(n-1)} \frac{(c-a)_n}{(c)_n} .$$

If we now replace q^{1-n}/c and q^{1-n}/a by a and c, respectively, we get (5.4). In (5.1) replace b by c/b. Then (5.1) becomes

$$\sum_{k=0}^{n} \frac{(q^{-n})_k(a)_k(c/b)_k}{(q)_k(c)_k(q^{1-n}a/b)_k} q^k = \frac{(c/a)_n(b)_n}{(c)_n(b/a)_n}.$$

Since

$$\begin{split} (q^{-n})_k &= (-1)^k q^{-nk+\frac{1}{8}k(k-1)}(q)_n/(q)_{n-k} \;, \\ (q^{1-n}a/b)_k &= (-1)_k q^{-nk+\frac{1}{8}k(k+1)}(q^{n-k}b/a)_k(a/b)^k \;, \\ \frac{(b/a)_n}{(q^{1-n}a/b)_k} &= (-1)^k q^{nk-\frac{1}{8}k(k+1)}(b/a)_{n-k}(b/a)^k \;, \end{split}$$

we get

(5.7)
$$\frac{1}{(b)_n} \sum_{k=0}^n {n \brack k} (a)_k (b/a)_{n-k} \frac{(c/b)_k}{(c)_k} \left(\frac{b}{a}\right)^k = \frac{(c/a)_n}{(c)_n},$$

where

$$[n] = \frac{(q)_n}{(q)_k(q)_{n-k}}.$$

We may think of (5.7) as a linear transformation from the set of rational functions

$$\frac{(x/b)_n}{(x)_n}$$
 $(n = 0, 1, 2, ...)$

to the set

$$\frac{(x/a)_n}{(x)_n}$$
 $(n=0,1,2,...)$.

We define the linear transformation

(5.9)
$$T_{a,b}$$
: $x_n = \frac{1}{(b)_n} \sum_{k=0}^n {n \brack k} (a)_k (b/a)_{n-k} (b/a)^k y^k \qquad (n=0,1,2,...)$.

We assume that the parameters a, b, c, ... are not equal to

$$(5.10) q^{-t} (t = 0, 1, 2, ...).$$

It follows from (5.9) that

(5.11)
$$T_{a,a} = I$$
 (identity).

Also, as in the ordinary case, it is easy to show that $T_{a,b} = T_{c,d}$ if and only if

(i)
$$a=b$$
, $c=d$

 \mathbf{or}

(ii)
$$a=c$$
, $b=d$.

Indeed, by (5.9), $T_{a,b} = T_{c,d}$ if and only if

$$\frac{1}{(b)_n}(a)_k(b/a)_{n-k}(b/a)^k = \frac{1}{(d)_n}(c)_k(d_kc)_{n-k}(d/c)^k \qquad (0 \leqslant k \leqslant n) \ .$$

For k = n, this reduces to

$$\frac{(a)_n}{(b)_n}\left(\frac{b}{a}\right)^n = \frac{(c)_n}{(d)_n}\left(\frac{c}{d}\right)^n \qquad (n=1,2,3,\ldots).$$

Hence

$$\frac{1-q^n a}{1-q^n b} \frac{a}{b} = \frac{1-q^n c}{1-q^n d} \frac{d}{c} \qquad (n=1,2,3,...) ,$$

so that

$$\frac{1-ax}{1-bx}\frac{b}{a} \equiv \frac{1-cx}{1-dx}\frac{d}{c}.$$

We shall now show that

$$(5.12) T_{a.b}T_{b.c} = T_{a.c}.$$

PROOF. Put

$$y_k = \frac{1}{(c)_k} \sum_{i=0}^k {k \brack i} (b)_i (c/b)_{k-i} (c/b)^j z_i \qquad (k=0,1,2,...)$$

Then, by (5.9) and (5.12),

$$x_{n} = \frac{1}{(b)_{n}} \sum_{k=0}^{n} {n \brack k} (a)_{k} (b/a)_{n-k} (b/a)^{k} \cdot \frac{1}{(c)_{k}} \sum_{j=0}^{k} (b)_{j} (c/b)_{k-j} (c/b)^{j} z_{j} =$$

$$= \frac{1}{(b)_{n}} \sum_{j=0}^{n} {n \brack j} (b)_{j} (c/b)^{j} z_{j} \sum_{k=j}^{n} {n-j \brack k-j} (a)_{k} (b/a)_{n-k} (b/a)^{k} \frac{(c/b)_{k-j}}{(c)_{k}} =$$

$$= \frac{1}{(b)_{n}} \sum_{j=0}^{n} {n \brack j} (b)_{j} (c/b)^{j} z_{j} \sum_{k=0}^{n-j} {n-j \brack k} (a)_{j+k} (b/a)_{n-j-k} (b/a)^{j+k} \frac{(c/b)_{k}}{(c)_{j+k}} =$$

$$= \frac{1}{(b)_{n}} \sum_{j=0}^{n} \frac{(a)_{j} (b)_{j}}{(c)_{j}} (c/a)^{j} z_{j} \sum_{k=0}^{n-j} {n-j \brack k} (q^{j} a)_{k} (b/a)_{n-j-k} (b/a)^{k} \frac{(c/b)_{k}}{(q^{j} c)_{k}}.$$

By (5.7),

$$\sum_{k=0}^{n-j} {n-j \brack k} (q^j a)_k (b/a)_{n-j-k} (b/a)^k \frac{(c/b)_k}{(q^j c)_k} = \frac{(c/a)_{n-j} (q^a b)_{n-j}}{(q^j c)_{n-j}}$$

so that

$$x_{n} = \frac{1}{(b)_{n}} \sum_{j=0}^{n} {n \brack j} \frac{(a)_{j}(b)_{j}}{(c)_{j}} (c/a)^{j} \frac{(c/a)_{n-j}(q^{j}b)_{n-j}}{(q^{j}c)_{n-j}} z_{j} =$$

$$= \frac{1}{(c)_{n}} \sum_{j=0}^{n} {n \brack j} (a)_{j} (c/a)_{n-j} (c/a)^{j} z_{j}.$$

This proves (5.12).

We show next that

$$(5.13) T_{b.c}T_{a.b} = T_{a.c}.$$

PROOF. Put

$$x_n = rac{1}{(c)_n} \sum_{k=0}^n iggl[n \ j iggr] (b)_k (c/b)_{n-k} (c/b)^k y_k \,,$$
 $y_k = rac{1}{(b)_k} \sum_{i=0}^k iggl[k \ j iggr] (a)_i (b/a)_{k-i} (b/a)^i z_i \,.$

Then

$$x_{n} = \frac{1}{(c)_{n}} \sum_{k=0}^{n} {n \brack k} (c/b)_{n-k} (c/b)^{k} \cdot \sum_{j=0}^{k} {k \brack j} (a)_{j} (b/a)_{k-j} (b/a)^{j} z_{j} =$$

$$= \frac{1}{(c)_{n}} \sum_{n-j}^{n} {n \brack j} (a)_{j} (b/a) z_{j} \sum_{k=0}^{j=0} {n-j \brack k} (c/b)_{n-j-k} (b/a)_{k} (c/b)^{k}.$$

It will therefore suffice to show that

(5.14)
$$\sum_{k=0}^{n} {n \choose j} (c/b)_{n-k} (b/a)^{k} (c/b)^{k} = (c/a)_{n}.$$

To prove (5.14), we make use of the identity

(5.15)
$$\sum_{n=0}^{\infty} \frac{(a)_n}{(q)_n} x^n = \prod_{n=0}^{\infty} \frac{1 - q^n ax}{1 - q^n x}.$$

Then

$$\begin{split} \sum_{n=0}^{\infty} \frac{x^n}{(q)_n} \sum_{k=0}^{n} \begin{bmatrix} n \\ j \end{bmatrix} (c/b)_{n-k} (b/a)_k (c/b)^k &= \sum_{k=0}^{\infty} \frac{(b/a)_k}{(q)_k} (c/b)^k x^k \sum_{n=0}^{\infty} \frac{(c_k b)_n}{(q)_n} x^n = \\ &= \prod_{k=0}^{\infty} \frac{1 - q^n cx/a}{1 - q^n cx/b} \cdot \prod_{n=0}^{\infty} \frac{1 - q^n cx/b}{1 - q^n x} = \prod_{n=0}^{\infty} \frac{1 - q^n cx/a}{1 - q^n x} = \sum_{n=0}^{\infty} \frac{(c/a)_n}{(q)_n} x^n \end{split}$$

and (5.14) follows at once.

6. It is evident from (5.12) and (5.13) that

$$(6.1) T_{ab}T_{bc} = T_{bc}T_{ab}.$$

We shall now prove that

$$(6.2) T_{a,b}T_{c,d} = T_{c,d}T_{a,b}.$$

PROOF. By (5.12) and (5.13),

$$egin{aligned} T_{a,b} \, T_{c,d} &= T_{c,b} T_{a,c} T_{c,d} \ &= T_{c,b} T_{a,d} \ &= T_{c,b} T_{b,d} T_{a,b} \ &= T_{c,d} T_{a,b} \, . \end{aligned}$$

We shall now give another proof of (6.2) that makes use of an explicit formula for the transformation $T_{a,b}T_{c,d}$. Put

$$x_n = rac{1}{(b)_n} \sum_{k=0}^n iggl[rac{n}{j} iggr] (a)_k (b/a)_{n-k} (b/a)^k y_k \; ,$$
 $y_k = rac{1}{(d)_k} \sum_{i=0}^k iggl[rac{k}{j} iggr] (c)_i (d/c)_{k-j} (d/c)^j z_j \; .$

Then

$$(6.3) x_{n} = \frac{1}{(b)_{n}} \sum_{k=0}^{n} {n \brack j} (a)_{k} (b/a)_{n-k} (b/a)^{k} \frac{1}{(d)_{k}} \sum_{j=0}^{k} {k \brack j} (c)_{j} (d/c)_{k-j} (d/c)^{j} z_{j} =$$

$$= \frac{1}{(b)_{n}} \sum_{j=0}^{n} {n \brack j} (c)_{j} (d/c)^{j} z_{j} \sum_{k=j}^{n} {n-j \brack k-j} (a)_{k} (b/a)_{n-k} \cdot (d/c)_{k-j} (b/a)^{k} / (d)_{k} =$$

$$= \frac{1}{(b)_{n}} \sum_{j=0}^{n} {n \brack j} \frac{(a)_{j} (c)_{j}}{(d)_{j}} \left(\frac{bd}{ac}\right)^{j} z_{j} \sum_{k=0}^{n-j} {n-j \brack k-j} (q^{j}a)_{k} (b/a)_{n-j-k} \frac{(d_{k}c)_{k}}{(q^{j}d)_{k}} (b/a)^{k}.$$

Let

(6.4)
$$S_n = \sum_{k=0}^n {n \brack k} (a)_k (b/a)_{n-k} \frac{(d/c)_k}{(d)_k} (b/a)^k,$$

(6.5)
$$R_n = (b)_n \sum_{s=0}^n (-1)^s \begin{bmatrix} n \\ s \end{bmatrix} \frac{(a)_s(c)_s}{(b)_s(d)_s} q^{\frac{1}{3}s(s-1)} \left(\frac{bd}{ac} \right)^s.$$

We shall show that

$$(6.6) R_n = S_n.$$

PROOF. Clearly (6.6) is equivalent to

(6.7)
$$\sum_{n=0}^{\infty} R_n \frac{x^n}{(q)_n} = \sum_{n=0}^{\infty} S_n \frac{x^n}{(q)_n}.$$

We rewrite (5.15) in the form

$$(6.8) \qquad \qquad \sum_{n=0}^{\infty} \frac{(a)_n}{(a)_n} x^n = \frac{c(a)}{e(ax)},$$

where

(6.9)
$$e(x) = \sum_{n=0}^{\infty} \frac{x^n}{(q)_n} = \prod_{n=0}^{\infty} (1 - q^n x)^{-1}.$$

Then

$$\begin{split} \sum_{n=0}^{\infty} S_n \frac{x^n}{(q)_n} &= \sum_{k=0}^{\infty} \frac{(a)_k (d/c)_k}{(q)_k (d)_k} (bx/a)^k \sum_{n=0}^{\infty} \frac{(b/a)_n}{(q)_n} x^n = \\ &= \sum_{k=0}^{\infty} \frac{(a)_k (d/c)_k}{(q)_k (d)_k} (bx/a)^k \frac{e(x)}{e(bx/a)} \,, \end{split}$$

$$\sum_{n=0}^{\infty} R_n \frac{x^n}{(q)_n} = \sum_{s=0}^{\infty} (-1)^{s} \frac{(a)_s(c)_s}{(d)_s} q^{\frac{1}{2}s(s-1)} \left(\frac{bdx}{ac}\right)^s \sum_{n=0}^{\infty} \frac{(q^sb)_n}{(q)_n} x^n = \\ = \sum_{s=0}^{\infty} (-1)^s \frac{(a)_s(c)_s}{(q)_s(d)_s} q^{\frac{1}{2}s(s-1)} \left(\frac{bdx}{ac}\right)^s \frac{e(x)}{e(q^sbx)}.$$

Thus (6.7) is equivalent to

(6.10)
$$\sum_{k=0}^{\infty} \frac{(a)_k (d/c)_k}{(q)_k (d)_k} (bx/a)^k = \sum_{s=0}^{\infty} (-1)^s \frac{(a)_s (c)_s}{(q)_s (d)_s} q^{\frac{1}{2}s(s-1)} \left(\frac{bdx}{ac}\right)^s \frac{e(bx/a)}{e(q^s bx)}.$$

The right hand side of (6.10) is equal to

$$\begin{split} \sum_{s=0}^{\infty} (-1)^{s} \frac{(a)_{s}(c)_{s}}{(q)_{s}(d)_{s}} q^{\frac{1}{2}s(s-1)} {bdx \choose ac}^{s} \sum_{j=0}^{\infty} \frac{(q^{s}a)_{j}}{(q)_{j}} (bx/a)^{j} = \\ &= \sum_{n=0}^{\infty} \frac{(a)_{n}}{(q)_{n}} {bx \choose a}^{n} \sum_{s=0}^{n} (-1)^{s} {n \brack s} \frac{(c)_{s}}{(d)_{s}} q^{\frac{1}{2}s(s-1)} {d \choose c}^{s} = \\ &= \sum_{n=0}^{\infty} \frac{(a)_{n}}{(q)_{n}} {bx \choose a}^{n} \sum_{s=0}^{n} \frac{(q^{-n})_{s}(c)_{s}}{(q)_{s}(d)_{s}} {q^{\frac{1}{2}s(s-1)}} {d \choose c}^{s} = \sum_{n=0}^{\infty} \frac{(a)_{n}}{(q)_{n}} {bx \choose d}^{n} \frac{(d/c)_{n}}{(d)_{n}}, \end{split}$$

by (5.6). This evidently proves (6.10) and therefore proves (6.6). For an identity containing (6.10) see [2].

Returning to (6.3), we have

$$\begin{split} x_n &= \frac{1}{(b)_n} \sum_{j=0}^n \left[\frac{n}{j} \right] \frac{(a)_j (c)_j}{(d)_j} \left(\frac{bd}{ac} \right)^s z_j \cdot \\ & \cdot (q^{j}b)_{n-j} \sum_{s=0}^{n-j} (-1)^s \left[\frac{n-j}{s} \right] \frac{(q^{j}a)_s (q^{j}c)_s}{(q^{j}b)_s (q^{j}d)_s} q^{\frac{1}{2}s(s-1)} \left(\frac{bd}{ac} \right)^s. \end{split}$$

Rearranging and simplifying, we get

(6.11)
$$x_n = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} \frac{(a_k)(c)_k}{(b)_k(d)_k} \left(\frac{bd}{ac}\right)^k \sum_{s=0}^k (-1)^s \begin{bmatrix} k \\ s \end{bmatrix} q^{\frac{1}{2}s(s-1)} z_{k-s} .$$

Thus we have an explicit formula for the transformation $T_{a,b}T_{c,d}$. Clearly (6.11) implies (6.1).

7. We may rewrite (5.7) in the following form.

$$(7.1) (x/a)_n = \frac{1}{(b)_n} \sum_{k=0}^n {n \brack k} (a)_k (b/a)_{n-k} (b/a)^k (x/b)_k (q^k x)_{n-k}.$$

This suggests the following problem. Let f(x) be a polynomial of degree $\leq n$. Assume that f(x) can be written in the form

(7.2)
$$f(x) = \sum_{k=0}^{n} A_{n,k}(x/a)_k (q^k x)_{n-k},$$

where a is an arbitrary constant and

$$A_{n.k} = A_{n.k}(a, q)$$

is independent of x. We shall show how to evaluate the coefficients $A_{n,k}$. Taking x = a in (7.2), we get

$$(7.3) (a)_n A_{n,0} = f(a).$$

Next, for $x = q^{-1}a$, (7.2) reduces to

$$f(q^{-1}a) = (q^{-1}a)_n A_{n,0} - q^{-1}(1-q)(a)_{n-1} A_{n,1},$$

so that

$$(7.4) \qquad (1-q)(a)_n A_{n,1} = q(1-q^{-1}a)f(a) - q(1-q^{n-1}a)f(q^{-1}a).$$

For $x = q^{-2}a$, (7.2) becomes

$$f(q^{-2}a) = (q^{-2}a)_n A_{n.0} - q^{-2}(1-q^2)(q^{-1}a)_{n-1}A_{n.1} + q^{-}(1-q^2)(a)_{n-2}A_{n.2}.$$

This yields

$$\begin{split} &(7.5) \quad (q)_2(a)_n A_{n.2} = q^2(1-q^{-1}a)(1-a)f(a) - \\ &- q^2(1+q)(1-q^{-1}a)(1-q^{n-1}a)f(q^{-1}a) + q(1-q^{n-1}a)(1-q^{n-2}a)f(q^{-2}a) \; . \end{split}$$

For $x = q^{-3}a$, we get

$$(7.6) \quad (q)_3(a)_n A_{n,3} = q^3(q^{-1}a)_3 f(a) - q^3(1 + q + q^2)(q^{-1}a)_2(q^{n-1}a) f(q^{-1}a) + q^4(1 + q + q^2)(q^{-1}a)_1(q^{n-2}a)_2 f(q^{-1}a) - q^6(q^{n-3}a)_3 f(q^{-3}a).$$

This suggests the general formula

$$(7.7) (q)_k(a)_k A_{n,k} = q^k \sum_{j=0}^k (-1)^j \begin{bmatrix} k \\ j \end{bmatrix} (q^{n-j}a)_j q^{\frac{1}{2}j(j-1)} f(q^{-j}a) .$$

PROOF OF (7.7). To begin with, we have

(7.8)
$$(a)_n = \sum_{k=0}^n (-1)^k \begin{bmatrix} n \\ k \end{bmatrix} q^{\frac{1}{2}k(k-1)} (x/a)_k (q^k x)_{n-k} a^k .$$

Indeed, since

$$(1-q^n) \dots (1-q^{n-k+1}) = (-1)^k q^{nk-\frac{1}{2}k(k-1)} (q^{-n})_k$$

it follows from (5.6) that

$$\begin{split} \sum_{k=0}^{n} (-1)^{k} {n \brack k} q^{\frac{1}{2}k(k-1)} (x/a)_{k} (q^{k}x)_{n-k} a^{k} &= \\ &= (x)_{n} \sum_{k=0}^{n} \frac{(q^{-n})_{k} (x/a)_{k}}{(q)_{k} (x)_{k}} (q^{n}a)^{k} &= (x)_{n} \frac{(a)_{n}}{(x)_{n}} &= (a)_{n} . \end{split}$$

This proves (7.8). Now replace x by $q^m x$ in (7.8) and multiply by $(x/a)_m$. Then

$$(a)_n(x/a)_m = \sum_{k=0}^n (-1)^k \begin{bmatrix} n \\ k \end{bmatrix} q^{\frac{1}{2}k(k-1)} (x/a)_{k+m} (q^{k+m}x)_{n-k} a^k a^k.$$

Changing the notation slightly, this becomes

$$(7.9) (x/a)_m = \frac{(a)_{n-m}}{1} \sum_{k=m}^n (-1)^{k-m} \begin{bmatrix} n-m \\ k-m \end{bmatrix} q^{\frac{1}{2}(k-m)(k-m-1)} \cdot (x/a)_k (q^k x)_{n-k} a^{k-m}.$$

Next, if f(x) is an arbitrary polynomial of degree $\leq n$, we may put

(7.10)
$$f(x) = \sum_{m=0}^{n} C_m(x/a)_m,$$

where $C_m = C_m(a, q)$ is independent of x. It is easily verified that

$$(7.11) (q)_k C_k = (qa)^k \delta^k f(a) ,$$

where

(7.12)
$$\begin{cases} \delta f(x) = \frac{f(x) - f(q^{-1}x)}{x}, \\ \delta^{k} f(x) = \delta \cdot \delta^{k-1} f(x) = x^{-k} \sum_{j=0}^{k} (-1)^{j} {k \brack j} q^{\frac{1}{2} i(j-1)} f(q^{-j}x). \end{cases}$$

It follows from (7.9) and (7.10) that

$$\begin{split} f(x) &= \sum_{m=0}^{n} \frac{C_m}{(a)_{n-m}} \sum_{k=m}^{n} (-1)^{k-m} \begin{bmatrix} n-m \\ k-m \end{bmatrix} q^{\frac{1}{2}(k-m)(k-m-1)} (x/a)_k (q^k x)_{n-k} a^{k-m} = \\ &= \sum_{k=0}^{n} (x/a)_k (q^k x)_{n-k} \sum_{m=0}^{k} (-1)^{k-m} \begin{bmatrix} n-m \\ k-m \end{bmatrix} q^{\frac{1}{2}(k-m)(k-m-1)} a^{k-m} \frac{C_m}{(a)_{n-m}}. \end{split}$$

By (7.11) and (7.12),

$$(q)_m C_m = q^m \sum_{j=0}^m (-1)^j {m \brack j} q^{\frac{1}{2}j(j-1)} f(q^{-j}a),$$

so that

$$\begin{split} \sum_{m=0}^k {(-1)^{k-m}} & \left[{n - m \atop k - m} \right] q^{\frac{1}{2}(k-m)(k-m-1)} a^{k-m} \, {C_m \atop (a)_{n-m}} = \sum_{m=0}^k {(-1)^{k-m}} {n - m \brack k - m} \cdot \\ & \cdot q^{\frac{1}{2}(k-m)(k-m-1)} a^{k-m} \cdot {q^m \atop (q)_m(a)_{n-m}} \sum_{j=0}^m {(-1)^j} {m \brack j} \, q^{\frac{1}{2}j(j-1)} f(q^{-j}a) = \\ & = \sum_{j=0}^k {(-1)^j} q^{\frac{1}{2}j(j-1)} f(q^{-j}a) \sum_{m=j}^k {(-1)^{k-m}} \, q^{\frac{1}{2}(k-m)(k-m-1)+m} \, a^{k-m} \cdot \\ & \cdot {q \choose m} \frac{(a)_{n-m}}{1} {m \brack j} {n - m \brack k - m} = \sum_{k-j}^k {(-1)^j} \, q^{\frac{1}{2}j(j-1)} f(q^{-j}a) \cdot \\ & \cdot \sum_{m=0}^{j=0} {(-1)^m} \, q^{\frac{1}{2}m(m-1)+k-m} \, a^m \cdot \frac{1}{(q)_{k-m}(a)_{n-k+m}} {k - m \brack j} {n - k + m \brack m} \, . \end{split}$$

The inner sum is equal to

$$\begin{split} \sum_{m=0}^{k-j} (-1)^m q^{\frac{1}{2}m(m-1)+k-m} a^m \frac{(q)_{n-k+m}}{(q)_j(q)_{k-j-m}(q)_m(a)_{n-k+m}} &= \\ &= \frac{q^k}{(q)_j(q)_{k-j}(a)_{n-k}} \sum_{m=0}^{k-j} \frac{(a^{-k+j})_m (q^{n-k+1})_m}{(q)_m (q^{n-k}a)_m} q^{(k-j-1)m} a^m &= \\ &= \frac{q^k}{(q)_j(q)_{k-j}(a)_{n-k}} \frac{(q^{-1}a)_{k-j}}{(q^{n-k}a)_{k-j}} &= \frac{q^k (q^{-1}a)_{k-j}}{(q)_j(q)_{k-j}(a)_{n-j}}. \end{split}$$

We have therefore

$$(7.13) f(x) = \sum_{k=0}^{\infty} (x/a)_k (q^k x)_{n-k} \sum_{j=0}^{k} (-1)^s q^{\frac{1}{2}s(s-1)} f(q^{-j}a) \cdot \frac{q^k (q^{-1}a)_{k-j}}{(q_j)(q)_{k-j}(a)_{n-j}} = \sum_{k=0}^{n} (x_k a)_k (q^k x)_{n-k} \frac{q^k}{(q)_k (a)_n} \cdot \frac{\sum_{j=0}^{k} (-1)^j \binom{k}{j} (q^{-1}a)_{k-j} (q^{n-j}a)_j q^{\frac{1}{2}j(j-1)} f(q^{-j}a)}{(q^{-j}a)_k (q^{n-j}a)_j q^{\frac{1}{2}j(j-1)} f(q^{-j}a)_k}$$

It remains to show that the coefficients $A_{n,k}$ in (7.2) are uniquely determined. Otherwise we should have

(7.14)
$$\sum_{k=0}^{n} B_k(x/a)_k (q^k x)_{n-k} = 0 ,$$

where not all the B_k equal zero. For x = a, (7.14) implies $B_0 = 0$. Assume that

$$B_0 = \dots = B_{m-1} = 0$$
, $B_m \neq 0$.

For $x = q^{-m}a$, (7.14) reduces to

$$(q^{-m})_m(a)_{n-m}B_m=0$$
.

Since a is not equal to q^{-k} , k = 0, 1, 2, ..., we get $B_m = 0$. We have therefore proved the following.

THEOREM B. Assume $a \neq q^{-k}$, where k is a nonnegative integer. Let f(x) be a polynomial of degree $\leqslant n$. Then the coefficients in

$$f(x) = \sum_{k=0}^{n} A_{n,k}(x/a)_{k}(q^{k}a)_{n-k}$$

are uniquely determined by

$$(q)_k(a)_k A_{n,k} = q^k \sum_{j=0}^k (-1)^j {k \brack j} (q^{-1}a)_{k-j} (q^{n-j}a)_j q^{\frac{1}{2}j(j-1)} f(q^{-j}a) .$$

REFERENCES

- [1] W. N. Bailey, Generalized Hypergeometric Series, Cambridge, 1935.
- [2] N. A. Hall, An algebraic identity, Journal of the London Mathematical Society, 11 (1936), 276.
- [3] L. J. Slater. Generalized Hypergeometric Functions, Cambridge, 1966.

Manoscritto pervenuto in redazione il 1 settembre 1972.