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FULL RINGS OF CONTINUOUS REAL FUNCTIONS

SALVATORE CIAMPA 

1. Introduction and results.

1.1. The study of rings of continuous real functions on a space
is a main goal of functional topology ; one major achievement toward
the study of relations between the space topology and such rings
has been the Gelfand characterization of the Banach algebras which
are isomorphic to the ring of all real continuous functions on a

suitable space (which turns out to be compact Hausdorff) 2). As is

wellknown, his methods are concerned with the study of the maxi-
mal ideals in the algebra under consideration and the main results
(those which connect the space topology with the algebraic structure
of the ring of all continuous real functions) rest upon the fact that
every maximal ideal in the ring of all continuous real functions on
a compact Hausdorff space is fixed (that is, it consists of all func.

tions which vanish at some point) 3).

1.2. Our concern here is somewhat different; we shall consider
a situation in which the set of the points of the space is kept
fixed 4) and we shall try to determine which rings of bounded real

1) Lavoro eseguito nell’ambito del gruppo n. 9 del Comitato Nazionale per
la Matematica del C. N. R. (anno 1967-68).

Indirizzo dell’Autore : Scuola Normale Superiore - Pisa.
2) See [3] and [6].
3) See [4] and [5], chapt. 4,

4) That is, we study the classes of all bounded continuous or lower semi-

continuous real functions on spaces with a fixed cardinality.
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functions on that set are likely to be the rings of all continuous
bounded real functions in some suitable topology.

Of course, there is no hope of characterizing the topology by
such rings since many different topologies may have the same con-
tinuous bounded real functions ; it is equally true though that

any such ring determines a unique topology among those which are

completely regular (see the proof of 3.6.4.).
To be more precise, we prove that :

(i) For every full semiring 9 of bounded real functions on a
set T (see no. 5.1. (iv)), there exists a unique topology on T such
that F is just the class of all lower semicontinuous bounded real

functions in that topology. Moreover, this unique topology is the

weakest among those which make every function belonging to y
lower semicontinuous (see no. 5.3. and footnote 13)).

(ii) For every full ring F of bounded real functions on a set
T (see no. 5.1. (v)), there exists a unique completely regular topol-
ogy on T such that y is just the class of all continuous bounded

real functions in that topology. Moreover, this unique topology is

the weakest among those which make every function belonging to
y continuous. (see no. 5.4. and footnote 14)).

We notice that (ii) also solves the problem of giving conditions
on a family 7- of bounded real functions on a set T to ensure that
if we take the class of all bounded continuous real functions in the

weakest topology on T which makes every function in 7- continuous,
we find again 97 (analogously, y (i) solves the problem in the case in
which we consider lower semicontinuity instead of continuity).

2. Notations and definitions.

2.1. With jR and ~+ we shall denote respectively the reals’

and the non-negative reals with the usual algebraic, order and

topological properties.
~ 0,1 ~ and N denote the subsets of R consisting respectively of

the numbers zero and one and of the positive integers.
Throughout this paper T denotes a fixed non empty set.
For every denotes the function from T to R whose con-

stant value is the number a.
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For every subset of I~, 93 (T, Y) denotes the set of all bounded
functions from T to 1’. Algebraic and lattice operations among
real functions are meant as pointwise operations; sup ( f~ g) and

g) will be denoted also by f v g and ,f n g, respectively.
When we say that a space is completely regular, we do not

include the Hausdorff property.

2.2. c~ denotes the class of all sets c-ff (7’, .R+) such that

(i) c~ E ~, for every R+ ;
(ii) belong to ~4( whenever j" and g are in cff
(iii) if E is a non empty subset of qe and sup 2 is a bound-

ed real function on T, then sup 2 
(iv) for every a E R+ and f E 9~~ if a .f then ,% - a E 9~.

2.3. e denotes the class of all sets (T, I~+) such that
(i) a E C)(, for every E R+ ;

(ii) j + g, fg, ‘f v g, fA g belong to CK whenever f and g are in 9(;
(iii) for every ~C there exists a positive real number k

such 

(iv) for every E R+ and j E ~ f; E 9( ;
(v) if 2 and are two non empty subsets of 9C such that

sup j2 == inf then sup Z belongs to cK.

2.4. denotes the class of all non empty sets @ c 93 (T, R+)
such that, if e is a non empty subset of q and sup .6 is a bounded
real function on T, then sup 2 belongs to 9.

2.5. It is easy to see that J, C, ~ are set families closed

under intersection; each of them, therefore, gives raise to a closure
operator in 93 (Z’, R+). Precisely, we define, for every family of func-
tions F c B(T, R+), 

By symbols such as we denote the V-closure of the

6-closure of the family 9~ and analogously in all other cases.
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2.6 For every we define

(i) £F° = ( f E J : ~i (T) C (0, 1) ) ;
(ii) there exists a positive real number 1~ such

91 ;
(iii) 2, (7) as the weakest topology on T which makes all

functions f E 7 lower semicontinuous ;
(iv) 2, (~) as the weakest topology on T which makes every

function Lf E 7 continuous ;

2.7. Let A denote the set of all topologies on the set I’; then,
for every A E l1. we define cS (A) as the class of all real bounded func-
tions on T which, in the topology A, are lower semicontinuous (if
we restrict ourselves to bounded non negative real functions, we
write c5+ (~.~) ; analogously, e (~.) denotes the class of all functions
f E CJ3 (T, .R) which are continuous in the topology Â. (as before, ~~ (~,)
is the class of all functions which are continuous in

the topology 1).

3. Preliminary lemma.

3.1. Let F c B(T, R+) satisfy conditions (i), (ii), (iv)
of no. 2.3.. for each fixed E ~, the following propo .
sitions are equivalent

(i) f’ E 9*;
(ii) i

(iii) for every number h E 1~+ ,

PROOF. (i) ===&#x3E; (ii) There exists, by definition of 9 *, a positive
real number k such that 1 - k f E 9~ which implies that

but th en, being
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it follows that

(ii) &#x3E; (iii) It follows from the equality

(iii) &#x3E; (i) Obvious, because of the definiti on of’ 9*.

3.2. For every family 9E cS we have

(iii) 9* is the largest part of 9 belongs to e.

PROOF. (i) Since 90 c 7-, it is true c to show the

converse inclusion, we note that if for every function f’ E 7 and
every number a E R+ we set

the so defined functions far are in the family 7 and, for every

point x E T,

This shows also that ja E To complete the proof it is suf-

ficient to notice that, for every number a E R+ , the function af,,,
is in (90)il and that

thereby showing that f E (iF°)8 .
(ii) We verify the five properties of no. 2.3.. The constant

functions are in F’~ , obviously. If f and g are in 7* (and let 
be positive real numbers such E y and 1 - kg E ~ ), then
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f -~- g E 7* since f’ and, if 2p = min (h, 1~),

jg E 9~* since fg E and

since f v g E 7- and, if p = min Ie), then

since E iF and, if p ~ min k), then

Suppose now E 9~* , then (by no. 3.1.) sttp f’ - J’E C;¡, and, if

~ sup f = 1~ we have

from which we conclude that (recall no. 3.1.).
Suppose now that E are such that ~=p0~

1 - E y, then E ‘~;~~ since j - a E 7 and

Finally, y let f and em be non empty subsets of 5* such that

there exists a function 6 7 which equals sup f and inf 9X. Then,
if’ g = 0, it is obvious if, on the contrary, g =}= 0, take
any function q E 9X and set

We have then that inf 95 = inf Q = ~ and, for every
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Now, if a number lc E R+ is chosen in such a way that

we get

since (by no. 3.1.) the function 1 - kf is in J for every f E Q
(let us notice that Q c 7* since it has been already shown in this
proof that from q, m E 9* it follows q n m E 9~).

(iii) It follows from 3.3. (i) and the preceding proposition (ii)
noticing that from s4 c:: CJ3 it follows stl* e 93*, for any two families

stl, C)3 of functions from B (T, R+).

3.3. For every of’ 2ue have

PROOF. (i) It follows directly from the definition 
(ii) To prove the validity of all properties of definition 2.2. it

is sufficient to consider that for every function f E ’Yv , there exists

a set E c 9 such that / === sup ~6.

(iii) From the preceding proposition (ii) and from the defini-

tion of J8 , since F c c:Jv , we have that J8 c gv ; the converse

inclusion follows from cS c flfl.

(iv) Since the functions j and g are in 9, also

and, being jh g, we have

which allows us to conclude that

(v) From propos. 3.2. (iii) we have the inclusion c 

to show the converse inclusion, let E (9~8)*; then (because of
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the preceding equality (iii)) there exist two sets e, Cf7L in the family
y and a positive real number k in such a way that

we have then

and, for the property 2.3. (v), we conclude that g E CJ, since the pre-
ceding proposition (iv) says that, for every function ’In E being
~~~n,~-~~~E Y.

3.4. For every topology A on the set T we have

PROOF. (i) and (ii) Easy check of the properties in the definitions.
(iii) Since e+ (Â) C cS+ (Â) and C+ (A) E e, from 3.2. (iii) we have

that ~+ (~,) e (cS+ (~,))~ ~ let now then (because of

3.1.) so that the functions f and -- f are both
lower semicontinuous in the topology A and this implies that

f E C+ (A).

3.5. we have

(i) n topology on T (that is, n E ~1),

PROOF. (i) For any non empty set of indices I and if every
function f~ is in ( ~s)°, the equalities

hold true and these, together with the properties of the family J8 , I
allow the conclusion that n (7) is a topology on the set T.
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(ii) We show first that ( ~s )o = (cS+ (~c (9=’)))°.
Let f be a function belonging to (c5+ (n (7)))~ ? then there

exists a set such that Y = (1), that is, there exists a
function such that yw (1 ) = Y = yl (1 ) (because of the

definition 2.6. (v)) ; this implies equality between f and g, hence

jE ( ~ s)°.
Let now be f’ E (9=’8)°, for every number a E R+ the set f-1 (ac, + oo)

is either empty or coincides with the set j-1 ( 1 ) : in any case it

belongs to the set family (J) and so does, of course, the set

(R+) too : then we may conclude that the function f is lower
semicontinuous in the topology yi (7). So (~ ( ~ )))° . The

equality to be proved, 97s = cS+ (n (7))~ follows now from what has
been proved in 3.4. (i) and 3.2. (i).

3.6.1. We recall now some essentially known facts on topologies
determined by families of mappings.

We give first a definition: let 11 and Y be two topological
spaces, let y be a family of continuous mappings from T to Y with
the property that for every point x E 11 and for every neighborhood
.g of x there exists a mapping f’ E F such does not belong
to the closure of the set /(T2013J?). We shall l say then that F is
a separating family of continuous mappings 5).

3.6.2. Let T and Y be two spaces; iy’ sepa-

rating family of’ continuous mappings from T to Y, then the topology
~, of’ the space T is the weakest among those which make every map-

ping f E continuous.

PROOF. Let us denote by a the weakest topology in which
every mapping j’ E 7 is continuous ; then, obviously, IA c A. But, if

A E ~ and x E A, there exists in 9 a mapping f such that, if Kx
denotes the closure of We have

then

5) Separating families of continuous functions into the reals have been

considered in [5] no. 3H page 49 and are called completely regular familie8.
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and we may write therefore

thereby showing that A E It, since every set ~x is closed in Y.

3.6.3. Let ~. and be two topologies on the set T, then

PROOF. If S+ (A) = c5+ Cu), the topologies À. and It have the

same lower semicontinuous f’unctions into the closed interval [0, 1].
Then propos. 5.2.1. (b) of ~2 J says that ~~ = fl.

The converse implication is obvious.

3.6.4. Let A and It be two completely regular topologies on the
set T, then

PROOF. e+ {~.) and C+ are separating families of real contin-
nous functions for the topologies 2 and It respectively, y since the

topologies under consideration are completely regular. Then, because
of 3.6.2., ~~ = p since they both are the weakest topology on 17

which makes continuous every function / 6 e+(~)==G+(~).
The converse inclusion is obvious.

4. Main results.

4.1. For have

PROOF. (i) The last equality follows from propos. 3.4. (ii) and
3.3. (iii); the middle inclusion is obvious since upper bounds of
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families of continuous functions are lower semicontinuous. To prove
the first equality we observe that, because of propos. 3.2. (i) and
3.4. (i), we only need to prove that = (c5+ 

from 3.4. (i) we have

To show the converse inclusion, since all constant functions belong-
ing to (c~~ (~,s ( ~ )))° belong also to ( ~s)°, let f be a non constant
function in the family (cS~ (~,s ( ~)))° ~ there exist then a non empty
set J and, for every j E J, a finite non empty set Z~ such that

with all functions fi in y and all numbers ai in R+.
If we define now the function

we find that u is a function from the set T to the closed interval

[0, 1], moreover, the function u belongs to the family Fs and it is

such that

To conclude the proof, it is sufficient now to notice that

this equality implying that ,~’ E ( ~s)o.
(ii) The proof follows from the preceding (i) and from propos.

3.4. (iii).

4.2. For every family 9 c Cf3 (T, R+) we have
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PROOF. (i) because of 3.4. (ii) and every
continuous function being also lower semicontinuous, we have

We prove now the converse inclusion. Let X be the class of all
sets (a, + oo), [0, b) for all positive real numbers a and b. If f is
any function in Cf3 (1’, R+) and H E ~, let us define

We notice that X is a subbase for the topology of R+ and, for

every E T,

Now, let f be a function in J+ (;,, (-7-)), then, for every number

k E R~ , there exist a non empty set J and, for every j E J, a finite
non empty set ~~ in such a way that, for some functions E 7 and
some sets we have

Let us define now

and observe that since every function w Hi) is in JC, the func-
tions fk are moreover, for every x E T and every number

If we notice now that

( ~) If k - sup f, instead of J = ~ , as would be natural, we take ~I = ~ 1 ~ , 1
L~ = ~ 1, 2 1, f, =f , = any function in ; H1 = [0,1), (2, + oo). Alternatively,
we could have considered only the numbers k in the set [0, supf).
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where

we may conclude that f E being also for every 7c E R+.

(ii) From the preceding (i) and propos. 3.4. (iii) we have

the equality to be proved follows from 7f -1 = (see no. 3.3. (v)).

4.3.1. For every fa1níly (T, R+) the propositioits

(v) the topology 28 ( J ) is regular;

are such that

PROOF. (!)===&#x3E; (ii) Obvious, since 
(ii) &#x3E; (iii) That C is obvious, since 5~ ; for the

converse inclusion, being 9 c (7s)*, we c (see no.

3.2. (ii)) hence (( ~a~~)~ ~ ~ s because (1F8)* c 7,S.
(iii) =&#x3E; (iv) It follows from propos. 4.1. (i), 4.2. (i ), 3.6.3..

(iv) -&#x3E; (v) Obvious, since the topology is completely
regular (see [51 no. 3.7.).

(v) &#x3E; ( vi ) We have only to prove since
the converse inclusion is obvious being (£F8)* c: 17-s. Let 
then (because of 4.1. (i)) f is lower semicontinuous in the topology

hence (see [ 1 ~, § 1 prop. 5) there exists a family of functions
such that f --- sup L-); it easy to see now that the

’ 

1) In general, we have only 
8) This condition is equivalent to the requirement that the inclusion in

4.1. (i) is actually an equality.
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function f is in ((£F8)*)8 since

and every function g v 0 is in e+ (A, (7)) -- (:18)* because of 4.1. (ii).
(vi)==&#x3E; (v) The hypothesis implies that6+ (~,s ( ~ )) = (e+ (~,s ( ~ )))v

(recall propos. 3.3. (iii), 4.1. (i) and (ii)): because of prop. 5, § 1 of

[1] the topology ~(7) } is completely regular 9).
Obvious, because of propos. 4.1. (ii) and 4.2. (ii).

4.3.2. The implication (iv) &#x3E; (v) in the preceding proposition
cannot be reversed, as the following counterexample shows.

Let T be the real line and let It be the euclidean topology on
T. and J --- c5+ (It), g8 and, because of
3.3. (v), (CJ8)* = y = (78)*, hence 78 = 7= ((7s)*)’ and prop-
osition 4.3.1. (vi) holds true. But, being @ properly contained in 9~
proposition 4.3.1. (ii) is false, that is ’Y 

4.3.3. the fami ly of belongs to the class e, all

six propositions of 4.3.1. hold true.

PROOF. Since, obviously, F c 7-s, being F E C, propos. 3.2. (iii)
says that yc (~,~~)~.

4.4.1. We recall that in 2.6. (v) we have defined, for every
family CJ c Cf3 (T, R+), 11. (~7) as a class of subsets of T and in 3.5. (i)
we have proved actually is a topology on the set T.

We may therefore speak of the mapping 
family of all subsets of ~5 (T, R+), into the class 11 of all topologies
on Z’. We prove now some properties of this mapping.

4.4.2. For 

PROOF. Propositions 3.5. (ii) and 4.1. (i) affirm that the two

topologies R(F) and admit the same non negative bounded

9) Actually, the Bourbakils proposition deals ivith functions from a space
to the extended reals however, the proof is valid also in onr case, as is easily
seen.
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lower semi-continuous real functions. They coincide, then, because
of prop. 3.6.3..

4.4.3. (i) If ~, is a topology on T, then

(ii) the restriction of the mapping n to the class c5 is a bijec-
tion onto the class A of all topologies on T.

PROOF. (i) From 4.4.2. we draw the equa.lity

and from 4.1. (i), 3.4. (i) we deduce that the two topologies 2 and
1l (d+ (2)) have the same non negative bounded lower semicontinuous
real functions. Proposition 3.6.3. concludes the proof.

(ii) If 7 and G are families in the class S and n (7) = n (G),
then, being also because of 4.4.2., from proposition
4.1. (i ) we have Fs = Gs, that is hence the mapping n
restricted to the class S is injective. Its surjectivity follows directly
from the preceding proposition (i).

4.4.4. (i) If 2 is a completely ¡regular topology on T, then

(ii) The restriction of the mapping n to the class e is a bijec-
tion onto the A of all completely ’regular topologies on the
set T.

PROOF. (i) Let us notice first that, 1 being completely regular,
e+ (1) is a separating family of continuous real functions, so (be-
cause of propos. 3.6.2.) ~, = ~,~ (e+ (~.)). On the other hand, by prop-
osition 4.4.2., we haven (e+ (2)) === 18 ( C+ (2)) and, being e+ (1) E ~,
from propos. 4.3.3. we have )¡,s (e+ (~.)) - = 2, (e+ (2)) and we conclude

that 2 = ~z (~’+ (2)).
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(ii) if 7 E e, ~c ( ~ ), being equal to because of 4.4.2., is

also equal to ia ( ~) because of 4.3.3. : this means that ~c is a

completely regular topology on the set T (see [5] no. 3.7.). The
surjectivity of the mapping R : C - E has been shown in the pre-

ceding proposition (i). To prove the injectivity, let i$, g be two fa-

milies in e such for what has been said above,
this implies that Ac (9) = la (G), hence e+ ( 7)) = C+ (la ((,?j )), and
recalling propos. 4.2. (ii), ~ = C

5. Full rings of continuous functions.

5.1. We start with some definitions.

Let 7 be a subset of R), then :
(i) y is full if, and only if, for every a E R and every 

.
(ii) the full closure of 7- is the family of functions

(iii) the positive part of 7 is the family of functions

(iv) 7 is a full semiring (of bounded real functions on T) if,
and only if, it is full and its positive part 7+ belongs to the

class c5 11) ;
(v) I is a fitll ring (of bounded real functions on T) if, and

only i f, it is full and its positive part ?+ belongs to the class e,2).

to) The notation F+ for the positive part of a is in

accordance with the definitions of c5+ (Â) and e+ (i) in 2.7..

11) If we call, as it is mnal, senziring a set with two (binary) associative

operations, say addition and multiplication, such that the addition is commuta-

tive, has an identity and is cancellative, the multiplication is distributive over

the addition, then a full semiring is not a semiring; only its positive part is

such.

12) A full ring is a lattice ordered commutative ring of real functions, as
is easily seen if we bear in mind propos. 5.4..
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~.2.1. For every CJ3 (1’, R+) hacve

PROOF. (i) From 4.1. (i) we have c5+ (2, (~)) = so that, o~u-

viously, ( ~ ~)~’ c cS (Â, (£F )) ; on the other hand, if f E cS ( ~ ))~ then
j’ + I inffl E cS+ (A. (iF)) = hence f E (J81’~’ .

(ii) Same argument as in case (i).

5.2.2. If 97 is a full farnily contained in C)3 (T, R), then

PROOF. Since 9+ c 7 and being 7 full, we have ( ~ +)’v c 7.
Conversely, let f be a function in the family 9, then

and

5.3. THEOREM. If 7 is a full semiring of bounded real functions
on the set T, then (:7+) is the unique topology on T such that

hence A may be characterized as the topology on T which

makes every 7 ,geJnioon1iN+oous 13).

PROOF. From definition 5.1. (iv) and from propos. 4.4.2., 5.2.1. (i)
and 5.2.2. we have c3 (A) = (7+)- === 7,. To prove uniqueness, let /~

be any topology on 11 such that c5 (It) == 7; then the topologies A

(13) Conversely, as is easily seen from 3.4. (i), for every topology on 1~,
the class of all lower semicontinuous bounded real functions is a full semiring.
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and fl have the same lower semicontinuous functions into the

closed interval [0, 1], they coincide because of propos. 5.2.1. (b) of

[2]. The last statement, that is A = follows easily from the
uniqueness property of 2, since any topology on T whose class of

all lower semicontinuous bounded real function contains F is

larger than A.

5.4. THEOREM. is a full ring of bounded real functions on
the set T, then A = n ( ~ +) is the unique completely regular topology
on T such that

moreover, ~ is the weakest topology on T which makes every function
f E y contin2cous 14).

PROOF. Because of propos. 4.4.2. and 4.3.3. we have =

== _ ~,~ (:}+). Then, from definition 5.1. (v) and from propos.
~.2.1. (ii), 5.2.2. we draw the equalities = (iF+)" --- 97. The

topology A is completely regular because of propos. 4.3.3.. To prove

uniqueness, let It be a completely regular topology on T such that
C == then, e+ (fl) = e+ (A), the two topologies A, 03BC
coincide because of propos. 3.6.4.. To prove the equality A (fF)
it is sufficient to observe that the family 97 of all bounded real

continuous functions in the topology A is separating (because A
is completely regular); then, because of propos. 3.6.2., Â is the

weakest topology which makes every function iF continuous.

Manoscritto pervenuto in redazione il 29-1-68.

(1.4) Conversely, as is easily seen from 3.4. (ii), for every topology on T, the
class of all continuous bounded real functions is a full ring.
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