RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GIOVANNI ZACHER

On lattice dual-homomorphisms between finite groups

Rendiconti del Seminario Matematico della Università di Padova, tome 30 (1960), p. 65-75

http://www.numdam.org/item?id=RSMUP 1960 30 65 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1960, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON LATTICE DUAL-HOMOMORPHISMS BETWEEN FINITE GROUPS

Nota (*) di Giovanni Zacher (**) (a Padova)

Given two groups G and G, we say that φ is a dual-homorphism between these two groups if the following conditions are satisfied:

- 1) Every subgroup \overline{H} of \overline{G} is the image by φ of at least one subgroup H of G; $\overline{H} = \varphi(H)$;
 - 2) For any two subgroups H, K of G we have

$$\varphi(H \cup K) = \varphi(H) \cap \varphi(K)$$

$$\varphi(H \cap K) = \varphi(H) \cup \varphi(K).$$

The aim of this paper is to give necessary and sufficient conditions for a (finite) group G to be a dual-homomorphic image of a finite group G. We shall prove that \overline{G} has the following structure: $\overline{G} = \overline{H}_1 \times \overline{H}_2 \dots \times \overline{H}_t$, with $t \ge 1$, where the order of \overline{H}_i is relatively prime to that of H_i for $i \ne j$, and H_i belongs to one of the following types of groups:

- 1) A modular non-Hamiltonian p-group;
- 2) A non-abelian P-group;
- 3) A simple non-abelian group with dual.

It is still an open question if groups of type 3) exist. The group \bar{G} is hence dual-isomorphic to a group \bar{H} , and

^(*) Pervenuta in Redazione il 23 settembre 1959.

Indirizzo dell'A.: Seminario matematico, Università, Padova.

^(**) This paper has been written while the author had an appointment supported by the International Cooperation Administration under a program administered by the National Academy of Sciences at the University of Illinois, Urbana, Ill. U.S.A.

therefore applying known results for lattice-homomorphisms between groups we can also get the structure of G.

Our proofs will rely heavily on results contained in [1] 1), and also our terminology will follow that used in [1].

1. Notation: Capital latin letters like G, H, K, ... stand for groups, meanwhile small latin letters, like a, b, ... for elements of a group.

 $S_{p^2} = \text{Sylow}$ group of order p^2 ; $\{a\} = \text{cyclic}$ group generated by a; $\mathcal{L}(G) = \text{lattice}$ of the subgroups of G; $\Phi(G) = \text{Frattini}$ subgroup of G; F(G) = union of all minimal subgroups of G; $\mathfrak{I}_G(H) = \text{normalizer}$ of H in G; $\mathfrak{I}_G(H) = \text{contralizer}$ of H in G; $H \subseteq G = H$ normal in G; $H \subseteq G = H$ in G; $H \subseteq G$ means that H is a proper subgroup of G. A Hall subgroup of a finite group G is a group which has order relatively prime to its index in G.

2. In this section we shall be concerned with some properties of finite groups with duals.

Prop. I: If N is a characteristic element of $\mathfrak{L}(G)$, and if φ is a dual-isomorphism between G and G, then $N = \varphi(N)$ is a characteristic element in $\mathfrak{L}(\bar{G})$.

COROLLARY: If N is a characteristic element in $\mathfrak{L}(G)$, then N has a dual if G has one.

Prop. II: If N is a characteristic element in $\mathfrak{L}(G)$, and if H/N is such in $\mathfrak{L}(G/N)$, then H is a characteristic element in $\mathfrak{L}(G)$.

Prop. III: If $G = H \times K$, with H a simple non abelian group and if G is dual-isomorphic to G, then $G = H \times \bar{K}$, where $\bar{H} = \varphi(H)$, $K = \varphi(K)$ and H, K, \bar{H} , K are Hall subgroups respectively of G and \bar{G}^2 .

From our assumptions it follows, applying known results

¹⁾ Number in square brackets refer to the bibliography listed at the end of this paper.

²⁾ I am indebt to Prof. M. Suzuki for valuable suggestion in the proof of this theorem.

on direct products 3), that $H \times K = H_1 \times K$ implies $H_1 = H$, and $H \times K = H \times K_1$ implies $K_1 = K$. We have moreover that

$$(1) \bar{G} = \bar{H} \cup \bar{K}, \ \bar{H} \cap \bar{K} = 1$$

To prove that \overline{H} is normal in \overline{G} we have only to show thow that for $\overline{k} \in \overline{K}$, $\overline{H} = \overline{k} \overline{H} \overline{k}^{-1}$. We consider the lattice automorphism ψ of G defined by $\psi = \varphi^{-1} \overline{k} \varphi$ with φ a dual-isomorphism between G and G, and G the inner-automorphism of \overline{G} defined by the element \overline{k} . We have then $\psi(K) = K$ and $\psi(H)$ normal 1 in G. So from $H \times K = \psi(H) \times K$ it follows that $\psi(H) = H$ and therefore $kH\overline{k}^{-1} = H$. With the same argument one proves that also K is normal in G, and so from (1) we get that $\overline{G} = H \times \overline{K}$.

Now let's assume that q is a prime divisor of [H:1] and [K:1]. Then also 5) [H:1], $[\overline{K}:1]$ must have a common prime divisor p. Consider in \overline{G} a group \overline{P} of order p such that

(2)
$$\bar{P} \cap \bar{H} = \bar{P} \cap K = 1, 1 \subset \bar{P} \cup \bar{H} \subset G.$$

Applying the inverse lattice isomorphism φ^{-1} to P, \overline{H} , \overline{K} , 1, \overline{G} , (2) gives us

$$(2') P \cup H = P \cup K = G: 1 \subset P \cap H \subset H$$

If we put $H = \{h \mid hk = u \in P\}, K_1 = \{k \mid hk = u \in P\}$, then

$$(3) \quad H \supseteq H_1, \ K \supseteq K_1, \ H_1 \times K_1 \supseteq P, \ P \cap H \triangleleft H_1, \ P \cap K \triangleleft K_1.$$

The group P is maximal in G, therefore by (3) we have either $P = H_1 \times K_1$, or $G = H_1 \times K_1$.

If $P = H_1 \times K_1$, we must have either $H_1 = H$ or $K_1 = K$, which is not possible by (2'). If $G = H_1 \times K_1$, then $H_1 = H$, $K_1 = K$. But then $P \cap H \triangleleft H$, $1 \subseteq P \cap H \subseteq H$ give a contradiction, recalling that H is simple. Hence [H:1] must be relatively prime to [K:1].

³⁾ See Ch. III in [2].

⁴⁾ See th. 14, II in [1].

⁵⁾ See th. 4, I in [1].

COROLLARY: Let G be a group dual-isomorphic to a group \overline{G} . Let N be a minimal non abelian subgroup of G. Then the group N is a characheristic element in $\mathcal{L}(G)$.

Let ψ be an automorphism of $\mathcal{L}(G)$; then $\psi(N)$ is normal in G, is simple and has order equal to that of N^6). Therefore if we consider the minimal characteristic element H of $\mathcal{L}(G)$ which contains N, it is a direct product of simple non abelian groups all of the same order. But H has a dual (Corollary to prop. I), and so by prop. III, H must coincide with N.

We now prove the following

THEOREM I: Let G be a finite group dual-isomorphic to a group \bar{G} . Then G is the direct product of groups with pairwise relatively prime orders where each factor is either a simple non-abelian group with dual, or a P-group, or a modular non-Hamiltonian p-group.

If G is solvable the theorem has been proved by Suzuki⁷). We shall use induction on the order of G. Let N be a minimal normal subgroup of G and assume that N is simple non-abelian. The group G/N is dual-isomorphic to \overline{N} , and therefore by induction, G/N is a direct product of groups \tilde{H}_1 , ..., \tilde{H}_t , belonging to the types mentioned above. The group $\tilde{H}_i = H_i/N$ is a characteristic element of $\mathfrak{L}(G/N)$, N is such in G (Corollary to prop. III), therefore H_i is a characteristic element of $\mathfrak{L}(G)$ (prop. II). It follows that H_i has a dual. We consider the centralizer C(N) of N in H_i ; N is simple and therefore $C(N) \cup N = C(N) \times N$. If $C(N) \times N = H_i$, we have only to apply prop. III to reach the conclusion. Assume $1 \subset C(N) \subset C(N) \times G$. The group $H_i/C(N)$ has a dual and therefore by induction we have $H_i/C(N) = F_i \times N \subset (N)/C(N)$; but this implies $C(N) \times N = H_i$, against our assumption. The only case left to consider is that for which C(N) = 1. If we set $\Phi(H_i/N) = M_i/N$, the group M_i is a characteristic element in $\mathfrak{L}(H_i)$. If $M_i \supset N$, H_i/N is a modular p-group, and applying induction to M_i we conclude with the desired result. Hence let

⁶⁾ See th. 14, II and th. 15, II in [1].

⁷⁾ See th. 5, IV in [1].

 $M_i = N$, so that H_i/N is or simple non-abelian or a P-group §). The group $\overline{H}_i = \varphi(H_i)$ has the following structure: $\varphi(N) = \overline{N} \triangleleft \overline{H}_i$, $\overline{H}_i/\overline{N}$ is simple non abelian, and N is or simple non abelian, or a P-group.

If $C(\overline{N}) \subseteq \overline{N}$, then it is easy to see that we can find two groups \overline{Q} , \overline{Q} , of H_i such that we have

$$(4) \bar{H}_i \supset \bar{U} = \bar{Q}\bar{N} = \bar{Q}_1\bar{N} \supset \bar{N}; \; \bar{Q} \cap \bar{Q}_1 = \bar{T} \subseteq \bar{N}.$$

If ψ is a dual-isomorphism between \overline{H}_i and H_i , then applying ψ to (4), we get

$$(4') \quad 1 \subset U = Q \cap N = Q_1 \cap N \subset N : Q \cup Q_1 = T \supseteq N \supset U.$$

Now N is normal in H_i , so U is normal in N, which is impossible because N is simple. Hence $C(N) \cup N = \overline{H_i}$. If \overline{N} is not an abelian P-group, then $C(\overline{N}) \cup \overline{N} = C(N) \times \overline{N}$, and we may apply prop. III to reach the conclusion. If N is an elementary abielan group, then $H_i = C(\overline{N}) \cup N = C(N)$ and N is the center of $\overline{H_i}$. We show that \overline{N} can't be a proper subgroup of a Sylow group \overline{S} of $\overline{H_i}$. S can't be cyclic, because by a th.of Zassenhaus P M_i/\overline{N} would not be simple. But then M a group $\overline{U} \subseteq S$ which covers N and two groups \overline{Q} , \overline{Q}_1 such that the following relations are satisfied

$$\bar{H}_{\mathbf{i}} \supset \bar{U} = \bar{Q} \cup \bar{N} = \bar{Q}_{\mathbf{i}} \cup \bar{N} \supset \bar{N}; \; \bar{Q} \cap \bar{Q}_{\mathbf{i}} = \bar{T} \subseteq \bar{N} \subset \bar{U}.$$

and we reach the same contradiction as previously for (4). To complete our proof there is left to consider the case that G does not contain a simple non abelian normal subgroup. With N we indicate the union of all normal subgroups of G. Then N must coincide with G. Otherwise G/N would be a direct product of simple non abelian groups \tilde{H}_1 , ..., \tilde{H}_t . If $H_i/N = \tilde{H}_i$, then as we saw before, H_i would have a dual H_i and N would be a simple non abelian normal subgroup of H_i . But then $H_i = N \times T$ where N and N have order

⁸⁾ See for definition pag. 11 in [1].

b) See [3].

relatively prime, and H_i and therefore G would contain a normal simple non abelian subgroup, which is against our assumptions. Thus the theorem is proved.

3. - We pass now to the study of the groups which are dual-homomorphic images of finite groups.

Let G be a group and φ a fixed dual-homomorphism between the finite groups G and G. With G_0 we indicate the intersection of all subgroups H of G such that $\varphi(H) = 1$, and with E the union of all subgroups K of G such that $\varphi(K) = G$.

In order to determine the structure of the group \bar{G} , we prove the following propositions:

Prop. IV: Let φ be a dual-homomorphim between G and G. If E=1, then φ induces a one to one correspondence between minimal and maximal subgroups respectively of G and G; it follows $\varphi(F(G)) = \Phi(G)$. If $G = G_0$, then φ induces a one to one correspondence between the maximal and minimal subgroups respectively of G and G; it follows $\varphi(\Phi(G)) = F(G)$.

The proof is obvious.

Prop. V: Let ψ be a lattice homomorphism of G on a lattice L, and assume that the lower kernel E of ψ is 1. Then the restriction ψ , of ψ on F(G) is a lattice isomorphism.

Obviously the lower kernel of F(G) is 1, and F(F(G)) = F(G). Now suppose that ψ_1 is a proper lattice homorphism. Then there \exists at least one Sylow subgroup S of F(G) of order p^x with $\alpha > 1$ on which ψ_1 induces a proper lattice homomorphism; therefore we have 10) $F(G) = S \cup N$ where N is a normal complement of S, and S is a cyclic or a generalized quaternion group. In the latter case, $S \cup N = S \times N$; but then $F(F(G)) \subset F(G)$, which is impossible. Hence S must be cyclic. Now consider two minimal subgroups P and Q of F(G) with $P \subset S$. The group $P \cup N$ is a proper normal subgroup of F(G). If Q has order a divisor of [N:1], then $Q \subseteq N \subset PN$. Otherwise $Q \subset S'$, where S' is a conjugate to P in PN and

¹⁰⁾ See pp. 70-71 in [1].

therefore $Q \subset PN \subset F(G)$. But then $F(F(G)) \subseteq PN \subset F(G)$ which is impossible. Hence ψ_1 is a lattice isomorphism.

If ψ is a homomorphism of the lattice L onto the lattice \overline{L} , if a is an element of L, then with $\psi^{-1}(a)$ we indicate the union of all those elements of L for which $\psi(a) = \overline{a}$. We assume that ψ is a complete homomorphism of the lattice $\mathcal{L}(G)$ of a group, finite or infinite, onto a lattice L, cardinal product of sublattices L_1 , \overline{L}_2 ,, L_n . \overline{L} has a maximal and a minimal element, and therefore also $L_i(i=1, 2, ..., n)$. If we set $G_i = \psi^{-1}(0_1 ... I_i ... 0_n)$ then we have the following.

PROP. VI: G is a torsion group, $G = G_1 \cup G_2 ... \cup G_n$, $G_1 \cap ... \cap G_{n-1} \cap G_n = E$, $G/E = G_1/E \times G_2/E \times ... \times G_n/E$ and each element of G_i/E has order relatively prime to every element of G_i/E for $i \neq j$.

We give the proof in the case n=2. The extension to the general case is obvious.

We have $\psi(G_1 \cap G_2) = \psi(G_1) \cap \psi(G_2) = (I_1, 0_2) \cap (0_1, I_2) = 0$. therefore $E = \psi^{-1}(0) \supseteq G_1 \cap G_2$. On the other hand, $0 < (I_1, 0_2)$, $0 < (0_1, I_2)$ and therefore $\psi^{-1}(0) \subseteq \psi^{-1}(I_1, 0_2), \psi^{-1}(0) \subseteq \varphi(0_1, I_2)$ and so $E = \psi^{-1}(0) \subseteq G_1 \cap G_2$; but then $E = G_1 \cap G_2$ and $G_1 \cap G_2$ is a normal subgroup of G We want to prove now that G_1 is normal in G. Let be $g_1 \notin E$, $g_1 \in G_1$, $g_2 \notin E$, $g_2 \in G_2$. We consider the group $H = g_2(g_1)g_2^{-1}$ and we shall see that $H \subset G_1$ Let $\varphi(H) = [l_1, l_2]$. All what we have to show is that $l_2 = 0_2$. From $l_2 > 0_2$ follows $(l_1, l_2) \ge (0_1, l_2) > 0$ and $g_2(g_1)g_2^{-1}$ contains a subgroup $\{t\}$ such that $\varphi(\{t\}) = [0, t_2] > 0$, so $t \notin E$. t is then given by $t = g_2 g_1^m g_2^{-1}$ with m integer greater then 0, and $\varphi(\lbrace t, g_2 \rbrace) = \varphi(\lbrace t \rbrace) \cup \varphi(\lbrace g_2 \rbrace) \in L_2$, so that $\varphi(\lbrace g_1^m \rbrace) \in L_2$. In other words $g_1^m \in G_1 \cap G_2$; but $G_1 \cap G_2$ is normal in G_1 so t is also in E and therefore $\varphi(\{t\}) = 0$, against our assumption. We conclude that $l_2 = 0_2$, and so $g_2\{g_1\}g_2^{-1} \in G_1$. G_1 is therefore normal in $G_1 \cup G_2$; similarly one shows that also G_2 is normal in $G_1 \cup G_2$. Now we prove that all the elements of G have finite order. Assume that g is not periodic. Then $E = 1^{11}$).

¹¹⁾ See th. 5, III in [1].

Now $\varphi(\lbrace g \rbrace \cap (G_1 \cup G_2)) = \varphi(\lbrace g \rbrace) \cap I = \varphi(\lbrace g \rbrace) \neq 0$, therefore $\exists m>0 \text{ such that } 1\subset \{g^m\}\in G_1\cup G_2. \text{ We put } g^m=t, \text{ and }$ t has infinite order too. We may assume that g^m does not belong either to G_1 or G_2 , otherwise if for example $g^m \in G_1$, if $g_2 \neq 1$ is an element of G_2 , then $g^m g_2 \notin G_1$, $g^m g_2 \notin G_2$ and $g^m g_2$ is aperiodic being $G_1 \cup G_2 = G_1 \times G_2$. Hence $\varphi(\{t\}) = [l_1, l_2]$ with $l_i > 0$ (i = 1, 2). Therefore exists a subgroup $\{t_0\}$ of $\{t\}$ and two subgroups $\{t_1\}$, $\{t_2\}$ of $\{t_0\}$, different from 1 such that $\{t_1\} \cup \{t_2\} = \{t_0\}, \{t_1\} \cap \{t_2\} = 1$, which is impossible, because t is torsion free. Hence g has finite order and G is a torsion group. Now we want to prove that every element of G_1/E has order prime to each element of G_2/E . Let $a_i \in G_i$ $a_i \notin E : a_i^p \in E$ with p a prime number. Then $a_1 a_2 \notin E$, thus $\varphi(\{a_1a_2\}) = [l_1, l_2]$ with $l_i > 0_i$, which is impossible. Finally assume that there exists an element $g \notin G_1 \cup G_2$; then $g \notin E$, and therefore $\varphi(\{g\}) \neq 0$. We may assume that g is of prime power order; but then $\varphi(\{g\}) = [l_1, 0_2]$ or $[0_1, l_2]$, so that g belongs to G_1 or G_2 , against our assumption. Hence $G = G_1 \cup G_2$. Our proposition is completely proved.

We call a group G a P_1 -group if G has order $p^zq^\beta(\alpha \ge 1$, $\beta \ge 1$) with p > q prime numbers in which S_{q^β} is cyclic, S_{p^2} is elementary abelian and if $\{b\} = S_{q^\beta}$, $a \in S_{p^2}$, then $bab^{-1} = a^r$ with $r = 1 \mod p$ and independent of a.

Prop. VII: If G is a P_1 -group dual-homomorphic to a group $G\supset 1$ and if E=1, then \tilde{G} is a P-group and $G_0=F(G)$. Conversely if G is a P-group, then $\tilde{G}=G/E$ is a P_1 -group with $F(\tilde{G})=\tilde{G}_0$.

Let $p^{\alpha}q^{\beta}$ with p>q be the order of G and assume $\alpha>1$. Then if P is a minimal subgroup of the group $S_{p^{\alpha}}$, the group G/P is again a P_1 -group, and applying induction we conclude that φ induces a dual-isomorphism on $(G/P)_0=G_0/P$ and on P and therefore on G_0 ; moreover $F(G)\leq G_0$. Now if $\mathcal{L}(F(G))$ is reducible then so would be $\mathcal{L}(\bar{G}/\Phi(\bar{G}))$ and therefore $\mathcal{L}(\bar{G})$; but then by prop. VI also $\mathcal{L}(G)$ would be reducible which is not possible because G is a P_1 -group. G_0 and \bar{G} are hence P-groups, and $G_0=F(G)$. If $\alpha=1$, the group F(G) is a P-group of order pq. But then $\Phi(G)=1$ and therefore $F(\bar{G})=\bar{G}$.

Let A be a normal minimal subgroup of \bar{G} , contained in

 $\Phi(\bar{G})$ which we assume greater than 1. Then $G \supset A_0 \supseteq F(G)$, there fore A is a P_1 -group; but then G/A is a P-group and so $\Phi(\bar{G}) \subseteq \bar{A}$, that is $\Phi(\bar{G}) = A$. Hence the group $\Phi(G)$ has order a prime. $\bar{G}/\Phi(G)$ is a group of order p^2 or pr (r < p), so \bar{G} has order p^3 or r^2p , or rp^2 . If \bar{G} is not a p-group, its Sylow subgroups are cyclic; but $F(\bar{G}) \subset G$. If G is a p-group, it must be non abelian, of exponent p, because $F(\bar{G}) = \bar{G}$, and \bar{G} is regular. But then \bar{G} contains p(p+1) subgroups of order p, meanwhile G_0 has only p+1 maximal subgroups. Hence $\Phi(G) = 1$, \bar{G} is a p-group, and $F(G) = G_0$.

The converse follows from th. 15, III in [1].

Prop. VIII: Let φ be a dual-homomorphism between G and \overline{G} , where G is a group of order $p^{\alpha}q^{\beta}$ ($\alpha \geq 1$, $\beta \geq 0$, p > q). Then G has a dual and G_0/E_0 is dual-isomorphic to G, if \overline{G} is not cyclic.

We consider the group $\tilde{G} = G_0/E \cap G_0 = G_0/E_0$; φ induces on \tilde{G} a dual-homomorphism φ_1 onto \tilde{G} in which $\tilde{G}_0 = \tilde{G}$, $\tilde{E} = 1$. If φ_1 is a dual-isomorphism, then there is nothing to prove. Thus we may assume that φ , is a proper dual-homomorphism, that $\mathfrak{L}(G)$ is irriducible by prop. VI and $\Phi(G)\supset 1$ by prop. III and IV. Between $F(\tilde{G})$ and $\overline{G}/\Phi(\overline{G})$, φ_1 induces a dual-iso morphism; so $\overline{G}/\Phi(\overline{G})$ and $F(\tilde{G})$ are P-groups, being $\mathfrak{L}(\overline{G})$ irreducible. If $F(\tilde{G})$ is an abelian P-group, then \tilde{G} and therefore also \tilde{G} is a cyclic p-group. Hence let $F(\tilde{G})$ be a non abelian P-group of order rp. We then show that φ_1 can't be a proper dual-homomorphism. We induction on the order of \tilde{G} . From our assumptions it follows that the p-Sylow group S_{p^2} is normal in G, on S_{p^2} , φ_1 induces a dual-isomorphism and the r-Sylow groups S_{r} are cyclic and do not contain a normal subgroup. If $\Phi(\tilde{G})\supset 1$, $\Phi(\tilde{G})$ is contained in S_{p^2} ; on $\tilde{G} / \Phi(\tilde{G})$, φ_1 induces a dual-homomorphism ψ with $(\tilde{G}/\Phi(\tilde{G}))_0 = \tilde{G}/\Phi(\tilde{G}), E(\tilde{G}/\Phi(\tilde{G})) = 1.$ By induction ψ is a dual-isomorphism and so is φ_1 on $\Phi(\tilde{G}) \subset S_{p^2}$; hence φ_1 is a dualisomorphism, against our assumption. If $\Phi(\tilde{G}) = 1$, then S_{ρ^2} is elementary abelian, and $F(\tilde{G}) \supset S_{n^2}$ Let P be any fixed minimal subgroup of $S_{p^{\alpha}}$; we then show that P is normal in \tilde{G} . If $P = S \alpha$, then there is nothing to prove. So let be $\alpha > 1$;

by H we denote the maximal subgroup of index r in G. From $H_0 \supseteq F(G) \supset S_{p^2} \supset P$ follows

$$1 \subset \varphi(H_0) \subseteq \Phi(\overline{G}) \subset \varphi(S_{p^2}) \subset \varphi(P).$$

 $\Phi(\overline{G})$ is a cyclic group and hence $\varphi(H)$ is normal in G. H_0 is dual-homomorphic to $\overline{G}/\varphi(H_0)$, so by our assumptions it must be a dual-isomorphism. $\overline{G}/\varphi(H)$ is a non abelian P-group and H is a P_1 -group (prop. VII); moreover $\Phi(\overline{G}) = \varphi(H)$. If we set $T = S_{r\uparrow} \cap H$, then $P = (T \cup P) \cap S_{p^2}$, $\varphi(T) = \varphi(S_{r\uparrow} \cup \Phi(\overline{G}))$, $\varphi(P) = (\varphi(T) \cap \varphi(P)) \cup \varphi(S_{p^2})$; therefore $\varphi(P) = [(\varphi(S_{r\uparrow}) \cup \Phi(\overline{G})) \cap \varphi(P)] \cup \varphi(S_{p^2}) = [\Phi(\overline{G}) \cup (\varphi(S_{r\uparrow}) \cap \varphi(P))] \cup \varphi(S_{p^2}) = [\varphi(S_{r\uparrow}) \cap \varphi(P)] \cup \varphi(S_{p^2})$. But then $(S_{r\uparrow} \cup P) \cap S_{p^2} = P$, because φ_1 induces a lattice isomorphism on S_{p^2} . Hence P is normal in G. But then we conclude that G is a P_1 -group. By prop. VII $G = G_0 = F(G)$ and φ_1 is a dual-isomorphism, which is against our assumption. Our prop. is now completely proved. We are now able to prove the following:

THEOREM: A group \overline{G} is the dual-homomorphic image of a finite group G if and only if \overline{G} is the direct product of groups \overline{H}_1 , \overline{H}_2 , ..., \overline{H}_n , where $[\overline{H}_i:1]$ is relatively prime to $[\overline{H}_j:1]$ for $i \neq j$ and \overline{H}_i belongs to one of the following types of groups:

- 1) A modular non Hamiltonian p-group;
- 2) A non abelian P-group;
- 3) A simple group with a dual.

Let φ be a dual-homomorphism between G and \overline{G} ; if we set $G = \tilde{G_0}/E_0$, then φ induces a dual-isomorphism (prop. V) between $F(\tilde{G})$ and $G/\Phi(\overline{G})$. By theorem I, $\overline{G}/\Phi(\overline{G}) = \overline{M_1} \times \overline{M_2} ... \times M_t$ with $\overline{M_i}$ either a modular p-group, or a P-group or a simple non abelian group with dual, and where $\overline{M_i}$ has order relatively prime to $\overline{M_j}$ if $i \neq j$. From known properties of the Frattini subgroup, it follows that $\overline{G} = \overline{H_1} \times \overline{H_2} ... \times H_t$ where $\overline{M_i} = \overline{H_i}/\Phi(\overline{H_i})$ and $\Phi(\overline{G}) = \Phi(\overline{H_1}) \times ... \times \Phi(H_t)$. By prop. VI, we get that $\overline{G} = G/E = \overline{H_1} \times \overline{H_2} ... \times \overline{H_t}$, where $\overline{M_i}$ is dual-homomorphic to $\overline{H_i}$. If

 M_i is not a simple non abelian group, \overline{H}_i is a group of order $p^{\alpha}q^{\beta}$ with $\alpha>0$, $\beta\geq0$; by prop. VIII and th. 5, IV in [1], H_i is either a modular non-Hamiltonian p-group, or a non abelian P-group. Assume now that \overline{M}_i is a simple group. We have then that φ determines a dual-isomorphism between $F(\tilde{H}_i)$ and $\overline{H}_i/\Phi(\overline{H}_i) \simeq \overline{M}_i$; the group $F(\tilde{H}_i)$ is therefore simple; but then φ determines a dual-isomorphism between H_i and \overline{H}_i , and therefore by th. I, $\Phi(\overline{H}_i)=1$, $M_i\simeq \overline{H}_i$, $F(\tilde{H}_i)=\tilde{H}_i$, and \overline{H}_i is a simple non abelian group with dual. This completes the proof of theorem II.

Theorem II states that if \bar{G} is the dual-homomorphic image of a finite group G, the group G ha a dual \bar{H} where we may assume for \bar{H} the following structure $\bar{H} = \bar{M} \times \bar{T}_1 \times \bar{T}_2 \times ... \times \bar{T}_m$, where M is a nilpotent Hall subgroup of \bar{H} , with dual, and \bar{T}_i is a simple non abelian Hall subgroup with dual. The determination of the finite groups G lattice homomorphic to such a group \bar{H} is a solved problem (see [1] pp. 57) and so we can determine the structure of the finite groups dual-homomorphic to \bar{G} .

BIBLIOGRAPHY

- [1] Structure of a group and the structure of its lattice of subgroups, by M. Suzuki, Ergeb. der Math. und ihrer Grenzgebiete, Heft 10, Springer Verlag, Berlin.
- [2] The theory of groups, by H. Zassenhaus, Chelsea Publishing Company, New York, 1958.
- [3] H. Zassenhaus: ther endliche Fastkörper, in Abh. Math. Seminar, Universität Hamburg, vol. 11.