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ON LATTICE DUAL-HOMOMORPHISMS
BETWEEN FINITE GROUPS

Nota (*) di GiovaNN1 ZAcHER (**) (¢ Padova)

Given two groups G and G, we say that ¢ is a dual-
homorphism between these two groups if the following condi-
tions are satisfied:

1) Every subgroup 1—1 of G is the image by ¢ of at least
one subgroup H of G; H—=9(H);

2) For - any two subgroups H, K of G we have
$(H U K) = o(8) N 9(K)
o(H N K) = oH) U 9p(K).

The aim of this paper is to give necessary and sufficient
conditions for a (finite) group G to be a dual-homomorphic
image of a finite group G. We shall prove that G has the
following structure: G=H, X H,... X H,, with t =1, where
the order of H, is relatively prime to that of H,; for i=j,
and H,; belongs to one of the following types of groups:

1) A modular non-Hamiltonian p-group;
2) A non-abelian P-group;
3) A simple non-abelian group with dual.

It is still an open question if groups of type 3) exist.
The group G is hence dual-isomorphic to a group H, and

(*) Pervenuta in Redazione il 23 settembre 1959.
Indirizzo dell’A.: Seminario matematico, Universita, Padova.
(**) This paper has been written while the author had an appointment
supported by the International Cooperation Administration under a
program administered by the National Academy of Sciences at the Uni-
versity of Illinois, Urbhana, Ill. U.S.A.
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therefore applying known results for lattice-homomorphisms
between groups we can also get the structure of G.

Our proofs will rely heavily on resulls contained in [1]1%),
and also our terminology will follow that used in [1].

1. - Notation: Capital latin letters like G, H, K, ... stand
for groups, meanwhile small latin letters, like a, b, ... for
elements of a group.

8,2 =Sylow group of order p*; {a}==-cyclic group gene-
rated by a; £(G)=1lattice of the subgroups of G; ®(G)=Frat-
tini subgroup of G; F(G)=—union of all minimal subgroups
of G; 9U¢(H)=normalizer of H in G; Cg (H)= centralizer
of H in G; H<]G=H normal in G; [G: H] =index of
H in G; 1=identity group; Hc K means that H is a
proper subgroup of K. A Hall subgroup of a finite group G
is a group which has order relatively prime to its index in G.

2. - In this section we shall be concerned with some pro-
perties of finite groups with duals.

Pror. I: If N is a characteristic element of £(G), and
if ¢ is a dual-isomorphism between G and G, then N=¢(N)
is a characteristic element in £(G).

CoroLLARY: If N is a characteristic element in £(G), then
N has a dual if G has one.

Prop. II: If N is a characteristic element in £(G), and if
H/N is such in £(G'/N), then H is a characteristic element
in £(G).

Pror. III: If G=H X K, with H a simple non abelian
group and if G is dual-isomorphic to G, then G=H X K,
where H=¢(H), K = ¢(K) and H, K, H, K are Hall subgroups
respectively of G and G?).

From our assumptions it follows, applying known results

1) Number in square brackets refer to the bibliography listed at
the end of this paper.

2) I am indebt to Prof. M. Suzuki for valuable suggestion in the
proof of this theorem.
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on direct products?®), that H XK=H, X K implies H, = H,
and H X K=H X K, implies K, = K. We have moreover that

1) G=HUK, HNEK=1

To prove that H is normal in G we have only to show thow that
for k€ K, H=FkHk—'. We consider the lattice automorphism
¢ of G defined by ¢=q¢ ke with ¢ a dual-isomorphism
between G and G, and k the inner-automorphism of G defined
by the element k. We have then Y(K)=—K and ¢(H) normal *)
in G. So from H X K=4¢(H) X K it follows that ¢(H)=H
and therefore kHk—'=— H. With the same argument one pro-
ves that also K is normal in G, and so from (1) we get that
Now let’s assume that g is a prime divisor of [H:1] and
[K:1]. Then also®) [H: 1], [K:1] must have a common prime
divisor p. Consider in G a group P of order p such that

(2) PNH=PNK=1, 1CPUHCG.

Applying the inverse lattice isomorphism ¢—* to P, HK,1,G,
(2) gives us

@) PUH=PUK=G; 1CPNHCH
If we put H={h|hk=wu€ P}, K,={k | hk=u € P}, then
(3) H2H,, K2K,, H,XK,2P, PNH<H,, PNK<K,.

The group P is maximal in G, therefore by (3) we have either
P—=H X K,,orG=H, XK,.

If P=H, X K,, we must have either F,—=H or K,=K,
which is not possible by (2'). If G=H, X K,, then H,=H,
K,=K. But then PN H<H, 1cPNHcH give a contra-
diction, recalling that H is simple. Hence [H:1] must be rela-
tively prime to [K:1].

8) See Ch. III in [2].
4) See th. 14. II in [1].
5) See th. 4, I in [1].
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CoroLLARY : Let G be a group dual-isomorphic to a group G.
Let N be a minimal non abelian subgroup of G. Then the
group N is a characheristic element in £ (G).

Let ¢ be an automorphism of £(G); then ¢(N) is normal
in G, is simple and has order equal to that of N ®). Therefore
if we consider the minimal characteristic element H of £(G)
which contains N, it is a direct product of simple non abelian
groups all of the same order. But H has a dual (Corollary to
prop. I), and so by prop. III, H must coincide with N.

‘We now prove the following

TaeEoREM 1: Let G be a finite group dual-isomorphic to a
group G. Then G is the direct product of groups with pairwise
relatively prime orders where each factor i3 either a simple non-
abelian group with dual, or a P-group, or a modular non-
Hamiltonian p-group.

If G is solvable the theorem has been proved by Suzuki?).
We shall use induction on the order of G. Let N be a minimal
normal subgroup of G and assume that N is simple non-abelian.
The group G /N is dual-isomorphic to N, and therefore by
induction, G/N is a direct product of groups f[l, vy " s
belonging to the types mentioned above. The group ﬁ,:H,/N
is a characteristic element of £(G/N), N is such in G (Corol-
lary to prop. III), therefore H; is a characteristic element of
£(@) (prop. II). It follows that H, has a dual. We consider
the centralizer C(N) of N in H,;; N is simple and therefore
C(N)UN=CQN)XN. If C(N) X N=H;, we have only to
apply prop. III to reach the conclusion. Assume now
1cC(N) cC(N) X G. The group H,/C(N) has a dual and there-
fore by induction we have H,/C(N)=F;X Nc(N)/C(N); but
this implies C(N) X N = H,, against our assumption. The only
case left to consider is that for which C(N)=1. If we set
®(H,/N)=M,/N, the group M, is a characteristic element in
£ (Hy). If M,DN, H/N is a modular p-group, and applying
induction to M; we conclude with the desired result. Hence let

o) See th. 14, II and th. 15, II in [1].
7) See th. 5, IV in [1].
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M,=N, so that H,/N is or simple non-abelian or a P-group 8).
The group H,—¢(H,) has the following structure: ¢(N )__N H,,
H,/N is simple non abelian, and N is or simple non abelian,
or a P-group.

If C(N)C N, then it is easy to see that we can find two
groups Q, Q_1 of H, such that we have

@ HDOU=QN=QNDN; QN Q,=TCN.

If ¢ is a dual-isomorphism between H, and H,, then applying
¢ to (4), we get

4) 1CU=QNN=QNNCN:QU@=T2NDT.

Now N is normal in H;, so U is normal in N, which is impos-
sible because N is simple. Hence C(N)UN=H,. If N is not
an abelian P-group, then C(N)UN=C(N)X N, and we may
apply prop. IIT to reach the conclusion. If N is an elementary
abielan group, then H,— C(N)UN =C(N) and N is the center
of H,. We show that N can’t be a proper subgroup of a
Sylow group S of H,. S can’t be cyclic, because by a th.of
Zassenhaus °) H;/N would not be simple. But then 3 a group
U S 8 which covers N and two groups Q, Q1 such that the
following relations are satisfied

HOU=QUN=Q,UNDN; QN =TS NCUT.
and we reach the same contradiction as previously for (4).

To complete our proof there is left to consider the case
that G does not contain a simple non abelian normal subgroup.
With N we indicate the union of all normal subgroups of G.
" Then N must coincide with @. Otherwise G/N would be a
direct product of simple non abelian groups ﬁl PR H,. 1f
H,/N =H~‘, then as we saw before, H; would have a dual

H, and N would be a simple non abelian normal subgroup
of H,. But then H,—=N X T where N and T have order

8) See for definition pag. 11 in [1].
v) See [3].
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relatively prime, and H; and therefore G would contain a
normal simple non abelian subgroup, which is against our
assumptions. Thus the theorem is proved.

3. - We pass now to the study of the groups which are
dual-homomorphic images of finite groups.

Let G be a group and ¢ a fixed dual-homomorphism between
the finite groups G and G. With G, we indicate the intersection
of all subgroups H of G such that ¢(H)=—1, and with E the
union of all subgroups K of G such that ¢(K)=G.

In order to determine the structure of the group G, we
prove the following propositions:

Prop. IV: Let ¢ be a dual-homomorphim between G and
G. 1If E=1, then ¢ induces a one to omne correspondence
between minimal and maximal subgroups respectively of G
and G; it follows ¢(F(@G)=®(G). If G=G,, then ¢
induces a one to one correspondence betwen the maximal
and minimal subgroups respectively of G and G; it follows
?(2(G)) =F(G).

The proof is obvious.

Prop. V: Let ¢ be a lattice homomorphism of G on a
lattice L, and assume that the lower kernel E of ¢ is 1.
Then the restriction ¢, of ¢ on F(@) is a lattice isomorphism.

Obviously the lower kernel of F(@) is 1, and F(F(G)) = F(G).
Now suppose that ¢, is a proper lattice homorphism. Then there
3 at least one Sylow subgroup S of F(G) of order p* with
@ >1 on which ¢, induces a proper lattice homomorphism;
therefore we have!®) F(G)=S UN where N is a normal
complement of S, and S is a cyclic or a generalized quaternion
group. In the latter case, SUN=S X N; but then
F(F(G))C F(@), which is impossible. Hence S must be cyclic.
Now consider two minimal subgroups P and @ of F(G) with
PcS. The group PU N is a proper normal subgroup of
F(G). If @ has order a divisor of [N:1], then Q & NcPN.
Otherwise Qc8’, where S* is a conjugate to P in PN and

10) See pp. 70-71 in [1].
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therefore Q —c PN c F(G). But then F(F(G)) S PN C F(®) which
is impossible. Hence ¢, is a lattice isomorphism.

If ¢ is a homomorphism of the lattice L onto the lattice
L, if o is an element of L, then with ¢—(a) we indicate the
union of all those elements of L for which ¢(a) =a. We assume
that ¢ is a complete homomorphism of the lattice £(G) of a
group, finite or infinite, onto a lattice L, cardinal product
of sublattices L, , L, , ...., L, . L has a maximal and a minimal
element, and therefore also L;(i=1, 2, ..., n). If we set
G=4¢'0,..1;..0,) then we have the following.

Prop. VI: G is a torsion group, G=@G, Uy G,..U G,,
GN..NGu.NG.=E, G/E=G/E X G,/E X ... X Go/E
and each element of G;/E has order relatively prime to every
element of Gy/E for ¢ = j.

We give the proof in the case n=2. The extension to the
general case is obvious.

We have ¢(G, N G,)=4(G,) N§(G,) = (I, 0,) N(0;, I,)=0.
therefore £ —=1¢—(0) 2 G, N G, . On the other hand, 0 < (I,, 0,),
0 < (0,, I,) and therefore §—*(0) S ¢—*(I, 0,), §—(0) S ¢(0,, I,)
and so E=¢—*(0) S G, N G,; but then E=G, NG, and G, N G;
is a normal subgroup of G We want to prove now that
G, is normal in G. Let be ¢g,¢ E, 9,€@Q,, 9.¢E, 9,€G,. We
consider the group H=g,{g,}g9, = and we shall see that Hc G,
Let o(H)=1[l,, 1,]. All what we have to show is that I,=0,.
From I, > 0, follows (I,, 1,)= (0,, 1,) >0 and g,{g,}g, con-
tains a subgroup (¢} such that ¢({¢t})=1{[0,, L,L] >0, so t¢ E.
t is then given by t=g,g7'g; = With m integer greater then 0,
and ¢({t, g.})=0o({t) VU ¢({g.) €L,, so that @(igy})€L,.
In other words ¢g," € G, NG,; but G,N @G, is normal in G,
8o t is also in F and therefore ¢({t})—0, against our as-
sumption. We conclude that I,=0,, and 8o g.{g,}g. €G,.
@, is therefore normal in G, U G,; similarly one shows that also
G, is normal in G, U G,. Now we prove that all the elements
of G have finite order. Assume that g is not periodic. Then
E=1").

11) See th. 5, III in [1].
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Now o({9} N (G, U @.))=¢({g)) N I=19({g}) & 0, therefore
3 m>0 such that 1c{¢g™}€G,UG,. We put gm=t¢, and
t has infinite order too. We may assume that g™ does not
belong either to G, or @,, otherwise if for example g™ € G, ,
if g, 1 is an element of G,, then ¢g™g,.¢ G,, g™g,¢ G, and
g™g, is aperiodic being G,U G,=@G, X G,. Hence ¢({t})=[1,, I,]
with I, > 0 (i=1, 2). Therefore exists a subgroup {¢,} of {¢}
and two subgroups {%,}, {#,} of {¢,}, different from 1 such
that {¢,} U {¢,})={(t}, {t,} N{¢,})=1, which is impossible, be-
cause ¢ is torsion free. Hence g has finite order and G is a
torsion group. Now we want to prove that every element of
G,/E has order prime to each element of G,/E. Let a,€ G,
a;¢ E af €E with p a prime number. Then a,a,¢ E, thus
o({a,a,))=1[1, 1,] with 7, > 0,, which is impossible. Finally
assume that there exists an element ¢ ¢ G, U G, ; then g ¢ E, and
therefore ¢({g}) &F 0. We may assume that g is of prime power
order; but then ¢({¢g})=1[1, 0,] or [0,, I,], so that g belongs
to G, or G,, against our assumption. Hence G =G, U G,.
Our proposition is completely proved.

We call a group G a P,-group if G has order p*¢f(a=1,
f=1) with p > q prime numbers in which S is cyclic, Sp»
is elementary abelian and if {b} =28, a € Spa, then bab— =a"
with r=/=1 mod. p and independent of a.

Pror. VII: If G is a P,-group dual-homomorphic to a
group Go1 and if E=1, then G is a P-group and G,= F(G).
Conversely if G is a P-group, then G= G/E is a P,-group
with F(G)=G,.

Let p*¢® with p > ¢ be the order of G and assume a > 1.
Then if P is a minimal subgroup of the group S,=, the group
G /P is again a P,-group, and applying induction we conclude
that ¢ induces a dual-isomorphism on ( G/P),= G,/P and on
P and therefore on @G,; moreover F(Q) < G,. Now if L£(F(Q))
is reducible then so would be £(G/®(@)) and therefore £(@);
but then by prop. VI also £(G) would be reducible which is
not possible becanse @G is a P,group. G, and G are hence
P-groups, and G, = F(G). If a=1, the group F(Q) is a P-group
of order pq. But then ®(G)=1 and therefore F(G)= G.

Let A be a normal minimal subgroup of G, contained in
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® (@) which we assume greater than 1. Then G5 A4, 2 F(@), there
fore A is a P,-group; but then G/A is a P-group and so ®(G)& A4,
that is ®(G)=A. Hence the group ®(G) has order a prime.
G/ ®(G) is a group of order p? or pr (r < p), so G has order
p® or rip, or rp*. If G is not a p-group, its Sylow subgroups
are cyclic; but F(G)cG. If G is a p-group, it must be non
abelian, of exponent p, because F(G)=@, and @ is regular.
But then G contains p(p + 1) subgroups of order p, meanwhile
G, has only p+ 1 maximal subgroups. Hence ®(G)=1, G
is a P-group, and F(G)=4G,.
The converse follows from th. 15, IIT in [1].

Prop. VIII: Let ¢ be a dual-homomorphism between G and
G, where @ is a group of order p’¢¢ (a=1, =0, p > q).
Then G has a dual and G ,/E, is dual-isomorphic to G, if G
is not cyclic.

We consider the group G=G,/ENG, = GO/FO, induces
on G a dual- -homomorphism ¢, onto G in which G, =@, E=1.
If ¢, is a dual-isomorphism, then there is nothing to prove.
Thus we may assume that ¢, is a proper dual-homomorphism,
that £(@) is irriducible by prop. VI and ®(G)>1 by prop. III
and IV. Between F(@) and G/ d)((_?), ¢, induces a dual-iso
morphism; so G/ ® (@) and F(G) are P-groups, being (@)
irreducible. If F(G) is an abelian P- -group, then G and therefore
also G is a cyclic p-group. Hence let F(G) be a non abelian
P-group of order rp . We then show that ¢, can’t be a
proper dual-homomorphism. We induction on the order of G.
From our assumptions it follows that the p-Sylow group
Spz is mormal in G, on 8,2, ¢, induces a dual-isomorphism
and the r-Sylow groups S,r are cyclic and do not contain
a normal subgroup. If (I)(é)Dl, ®(@) is contained in Sp2;
on G/®(G), ¢, induces a dualhomomorphism ¢ with
(G/D(G)=G/D@, E@G/D(G)=1 By induction ¢ is
a dual-isomorphism and so is ¢, on (I)(G~)CS,,1; hence ¢, is a dual-
isomorphism, against our assumption. If ®(G)=1, then 8y is
elementary abelian, and F((i):)S,a Let P be any fixed mini-
mal subgroup of Syz; we then show that P is normal in G.
If P=2_8 2, then there is nothing to prove. So let be a > 1;
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by H we denote the maximal subgroup of index » in G. From
H, 2 F(G)> 82D P follows

1C ¢(Hy) S @ (G) C ¢(Spx) C ¢(P).

®(G) is a cyclic group and hence 9(H) is normal in G@.
H, is dual-homomorphic to G/¢(H,), so by our assumptions it
must be a dual-isomorphism. G/¢(H) is a non abelian P-group
and H is a P,group (prop. VII); moreover O(G)= ¢(H).
If we set T=S,yN H, then P= (T UP)N 8y, ¢(T)=¢(S U
U@, 9(P)=(p(T) N ¢(P)) U ¢(8,2); therefore o(P)=
=28 U @ (@) N ¢(P)] U 9(8px) = [D(GF) U (¥(8) N
N (P)IU @(8p2) =[9(8rr) N 9(P)]U 3(8yz). But then
8,y U P) N\ 8p2=P, because ¢, induces a lattice isomorphism
on Spz. Hence P is normal in G. But then we conclude that
G is a P,-group. By prop. VII G= G, = F(@) and 9, is a
dual-isomorphism, which is against our assumption. Our prop.
is now completely proved. We are now able to prove the
following:

TaeorEM: A group G is the dual-homomorphic image of

a finite group G if and only if G is the direct product of
groups Hl, Hz, ey H,,, where [H;:1] is relatively prime to
[I—I,-: 1] for i=Fj and H, belongs to one of the following types
of groups:

1) A modular non Hamiltonian p-group;

2) A non abelian P-group;

3) A simple group with o dual.

Let ¢ be a dual-homomorphism between G and G; if we set
G= (fo/Eo, then ¢ induces a dual-isomorphism (pr9p. V)
between F(G) and G/(IJ(G) By theorem I, G/®(G) =
_M X M . X M, with M, either a modular p-group, or a
P-group or a simple non abelian group with dual, and
where M, has order relatively prime to J!_I, if i j. From
known properties of the Frattini subgroup, it follows that
G==H, X H,..X H, where M, ~ H/O®H,) and O(G)=
= (I)(Hl) X . >< O (H,). By prop. VI, we get that G= G/E ==
__H X H . X Ht, where H, is dual-homomorphic to Hi If
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M, is not a simple non abelian group, H, is a group of order
p*qP with «a > 0, 3= 0; by prop. VIII and th. 5, IV in [1],
H,; is either a modular non-Hamiltonian p-group, or a non
abelian P-group. Assume now that M, is a simple group.
‘We have then that ¢ determines a dual-isomorphism between
F(H,) and H,/O(H,) =~ M,; the group F(H,) is therefore simple;
but then ¢ determines a dual-isomorphism between H, and
H,, and therefore by th. I, (I)(H)—l M, ~ H;, F(H.)_ H,,
and H, is a simple non abelian group with dual. This com-
pletes the proof of theorem IT.

Theorem II states that if G is the dual-homomorphic
image of a finite group G, the group G ha a dual H
where we may assume for H the following structure
H=M X T X T X oo X T,., where M is a nilpotent Hall
subgroup of H, with dual, and T; is a simple non abelian
Hall subgroup with dual. The determination of the finite
groups G lattice homomorphic to such a group H is a solved
problem (see [1] pp. 57) and so we can determine the structure
of the finite groups dual-homomorphic to G.
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