RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

MARIA SELABASSO

I complessi lineari involutori

Rendiconti del Seminario Matematico della Università di Padova, tome 16 (1947), p. 159-211

http://www.numdam.org/item?id=RSMUP 1947 16 159 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1947, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

I COMPLESSI LINEARI INVOLUTORI

Memoria (*) di Maria Selabasso (a Sequals - Udine)

La nozione di prodotto di due complessi lineari di spazî S_h ed S_k contenuti in un S_n e subordinatamente, se h+k+1=n, la nozione di complessi lineari involutori è stata introdotta nella forma più generale attraverso l'algoritmo di rappresentazione dei complessi lineari mediante forme differenziali simboliche a coefficienti costanti da A. Comessatti nel suo commento alla Nota di U. Morin: Sugl'indici di singolarità a più dimensioni delle rarietà abeliane, pubblicato nel 1934 nei Rendiconti del Seminario Matematico della R. Università di Padova.

In questo lavoro, che sostanzialmente riproduce la mia dissertazione di laurea (1), io mi propongo di entrare maggiormente in dettagli su tale argomento, prendendo in considerazione tutti i tipi di prodotti ed i casi d'involutorietà di complessi lineari, che si presentano negli spazi delle cinque prime dimensioni.

Ho creduto opportuno premettere alla parte centrale della trattazione alcuni richiami sulle coordinate grassmanniane degli spazì subordinati in un S_n e sui relativi algoritmi di trasformazione, sulla notazione differenziale e sulle nozioni di prodotto e di involutorietà dei complessi lineari.

Quest'ultima nozione è stata da me estesa, dietro consiglio del Comessatti, anche al caso di complessi lineari di spazì di

^(*) Pervenuta in Redazione il 25 Agosto 1945.

⁽¹⁾ Discussa il 9-6-1940, relatore il prof. A. Comessatti ed eseguita nel Seminario Matematico dell'Università di Padova.

dimensioni non duali, e questo basandosi sul concetto di complesso lineare identico. I casi ch'io ho trattato particolareggiatamente nel mio lavoro, si riferiscono, però, solo all'involutorietà di spazì a dimensioni duali. Per distinguerli da quello generale, li ho chiamati casi normali d'involutorietà.

Nella ricerca delle condizioni d'involutorietà ho spesso adottato il principio, basato sulla proprietà associativa del prodotto di complessi lineari, secondo il quale un complesso lineare si può pensare scomposto nel prodotto di più altri. Tale principio, in assenza di altri criteri immediatamente applicabili, mi è riuscito di grande utilità.

CAP. I - NOZIONI INTRODUTTIVE

§ 1. – Richiami sulla nozione di coordinate grassmanniane (2) di un S_k in un S_k e relativi algoritmi di trasformazione.

1. – Riferiamo lo spazio S_n ad un sistema di coordinate proiettive omogenee, di cui A_0, A_1, \ldots, A_n siano gli n+1 punti fondamentali, e indichiamo con x_i $(i=0,1,\ldots,n)$ le coordinate proiettive omogenee di punto relative a questo sistema. Sia S_k uno spazio subordinato in S_n : si definiscono come coordinate grassmanniane dell' S_k in S_n gli $\binom{n+1}{k+1}$ minori d'ordine k+1 tra loro distinti e non tutti nulli, che si possono estrarre dalla matrice:

formata con le coordinate di k+1 punti linearmente indipendenti di S_k . Tali coordinate s'indicano brevemente col simbolo $X_{i_0 \ i_1 \dots i_k}$ ove $i_0 \ i_1 \dots i_k$ è una qualunque disposizione di classe k+1 dei numeri $0, 1, \dots, n$, notando che ogni altra coordinata $X_{i_2 \ i_1 \dots i_{s_k}}$ di S_k , per la quale $i_{s_0} \ i_{s_1} \dots i_{s_k}$ è una permutazione degl'indici $i_0 \ i_1 \dots i_k$, differisce dalla coordinata $X_{i_0 \ i_1 \dots i_k}$ al più per il segno; anzi essa ha lo stesso segno di $X_{i_0 \ i_1 \dots i_k}$ oppure il contrario secondochè la sostituzione $\begin{pmatrix} i_0 \ i_1 \dots i_k \\ i_{s_0} \ i_{s_1} \dots i_{s_k} \end{pmatrix}$ è di

⁽²⁾ Per notizie più dettagliate e dimostrazioni a questo proposito veggasi: Bertini - Geometria proiettiva degl'iperspazî - cap. 2°, nn. 15-16-17-18.

classe pari o dispari; vale a dire le coordinate grassmanniane soddisfano alla *legge di emisimmetria* (hanno, cioè, comportamento alternato) di fronte alle permutazioni degl'indici.

Osserviamo poi che, essendo gli S_k di S_n $\infty^{(n-k)}$ (k+1), le loro $\binom{n+1}{k+1}$ coordinate sono sovrabbondanti; si dimostra, infatti, che di esse solo (n-k) (k+1)+1 sono indipendenti e che, non appena due S_k di S_n hanno (n-k) (k+1)+1 coordinate uguali (o proporzionali), essi (in generale) coincidono. Perciò gli S_k d'un S_n si possono interpretare come punti d'una varietà $V_{(n-k)}$ (k+1) immersa in un $S_{\binom{n+1}{k+1}}-1$: tale varietà viene chiamata varietà grassmanniana.

2. – Dalla definizione stessa di coordinate grassmanniane di un $S_{\mathbf{k}}$ in $S_{\mathbf{n}}$ risulta che le coordinate grassmanniane di un $S_{\mathbf{k}}$ di $S_{\mathbf{n}}$ coincidono con le sue coordinate proiettive omogenee $x_{\mathbf{0}}, x_{\mathbf{1}}, \ldots, x_{\mathbf{n}}$.

Quanto alle coordinate grassmanniane $X_{i_0 \ i_1 \dots i_{n-1}}$ d'un S_{n-1} dimostriamo ch'esse altro non sono che le ordinarie coordinate plückeriane d'iperpiano, cioè gli n+1 coefficienti u_i della

sua equazione:
$$\sum_{i=1}^{n} u_i x_i = 0$$
.

Infatti, anzitutto le coordinate grassmanniane d'un S_{n-1} sono $\binom{n+1}{n}=n+1$, cioè tante quante sono le sue coordinate plückeriane; inoltre, per definizione, esse sono i minori d'ordine n, tra di loro distinti, estratti dalla matrice formata con le coordinate di n punti linearmente indipendenti $P_0, P_1, \ldots, P_{n-1}$ dell' S_{n-1} . Orbene tale matrice è la matrice dei cofficienti del sistema di n equazioni omogenee:

$$\sum_{i=1}^{n} u_i x_i^{(k)} = 0 \qquad (k = 0, 1, ..., n-1)$$

nelle n+1 incognite u_i , ottenuto esprimendo che gli n punti $P_0, P_1, ..., P_{n-1}$ appartengono all' S_{n-1} d'equazione: $\sum_{i=0}^{n} u_i x_i = 0.$ Siccome per l'indipendenza dei punti $P_0, P_1, ..., P_{n-1}$ tale ma-

trice ha caratteristica n, in base alla regola di Rouché-Capelli avremo:

(1)
$$\rho u_i = (-1)^i X_{0,1,\ldots,i-1,i+1,\ldots,n} \qquad (i=0,1,\ldots,n),$$

il che dimostra la proporzionalità tra le coordinate plückeriane d'iperpiano e le quantità $(-1)^i X_{0,1,\dots,i-1,i+1,\dots,n}$. Orbene nel formare le coordinate grassmanniane d'un S_k in S_n possiamo, a nostro piacere, scegliere, anzichè le coordinate del tipo X_{i_0} $i_1 \dots i_k$, le coordinate X_{i_0} $i_{i_1} \dots i_{i_k}$, ove i_{i_0} $i_{i_1} \dots i_{i_k}$ è una permutazione degl'indici $i_0, i_1, \dots i_k$; possiamo così stabilire di prendere come coordinate grassmanniane del nostro S_{n-1} le coordinate X_{i_0} $i_1 \dots i_{n-1}$, per le quali sia: X_{i_0} $i_1 \dots i_{n-1} = (-1)^i X_{0,1,\dots,i-1,i+1,\dots,n}$. Allora le relazioni (1) si riducono alle:

$$\rho \ u_i = X_{i_0, i_1 \dots i_{n-1}} \qquad (i = 0, 1, \dots, n)$$

dalle quali resta provato quanto volevamo dimostrare.

3. – Ricerchiamo ora le formule di trasformazione delle coordinate grassmanniane d'un S_k per effetto d'una trasformazione delle coordinate proiettive di punto.

Indichiamo con y_i e x_i (i = 0,1,...,n) rispettivamente le coordinate proiettive di punto nel vecchio e nel nuovo sistema; il passaggio dall'uno all'altro sistema sia rappresentato dalla sosti-

tuzione lineare: $x_t = \sum_{0}^{n} a_{ts} y_s (t = 0, 1, ..., n)$, nella quale, come

facilmente si può verificare, è $a_{is} = \frac{\partial x_t}{\partial y_s}$. Consideriamo uno spazio S_k di S_n e sieno $y_i^{(0)}, y_i^{(1)}, \ldots, y_i^{(k)}; x_i^{(0)}, x_i^{(1)}, \ldots, x_i^{(k)}$ le coordinate di k+1 suoi punti linearmente indipendenti con riferimento al vecchio e al nuovo sistema di coordinate proiettive. Allora la coordinata grassmanniana generale di S_k nel nuovo sistema è data da:

$$X_{r_0 \ r_1} ... \ r_k = \left[egin{array}{ccc} x_{r_0}^{(0)} \ x_{r_0}^{(1)} \ ... \ x_{r_0}^{(k)} \ x_{r_1}^{(0)} \ x_{r_1}^{(1)} \ ... \ x_{r_1}^{(k)} \ ... \ x_{r_k}^{(k)} \end{array}
ight] \ x_{r_1}^{(0)} \ x_{r_1}^{(1)} \ ... \ x_{r_k}^{(k)} \ ... \ ... \ x_{r_k}^{(k)} \ ... \ ... \ x_{r_k}^{(k)} \ ... \ ..$$

e, con passaggio al vecchio sistema di coordinate proiettive di punto, da:

$$X_{r_0 \ r_1 \cdots r_k} = \\ = \begin{vmatrix} a_{r_{0,0}} \ y_0^{(0)} + \cdots + a_{r_{0,n}} \ y_n^{(0)} & a_{r_{0,0}} \ y_0^{(1)} + \cdots + a_{r_{0,n}} \ y_n^{(1)} \cdots a_{r_{0,0}} \ y_0^{(k)} + \cdots + a_{r_{0,n}} \ y_n^{(k)} \\ a_{r_{1,0}} \ y_0^{(0)} + \cdots + a_{r_{1,n}} \ y_n^{(0)} & a_{r_{1,0}} \ y_0^{(1)} + \cdots + a_{r_{1,n}} \ y_n^{(1)} \cdots a_{r_{1,0}} \ y_0^{(k)} + \cdots + a_{r_{1,n}} \ y_n^{(k)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{r_{k,0}} \ y_0^{(0)} + \cdots + a_{r_{k,n}} \ y_n^{(0)} & a_{r_{k,0}} \ y_0^{(1)} + \cdots + a_{r_{k,n}} \ y_n^{(1)} \cdots a_{r_{k,0}} \ y_0^{(k)} + \cdots + a_{r_{k,n}} \ y_n^{(k)} \end{vmatrix};$$

ma il determinante ora scritto, in base alla definizione di moltiplicazione per righe di due matrici simili, risulta eguale al prodotto:

$$\begin{vmatrix} a_{r_0,0} & a_{r_0,1} \dots a_{r_0,n} \\ a_{r_1,0} & a_{r_1,1} \dots a_{r_1,n} \\ \vdots & \vdots & \vdots \\ a_{r_k,0} & a_{r_k,1} \dots a_{r_k,n} \end{vmatrix} = \begin{vmatrix} y_0^{(0)} & y_1^{(0)} & \dots & y_n^{(0)} \\ y_0^{(1)} & y_1^{(1)} & \dots & y_n^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ y_0^{(k)} & y_1^{(k)} & \dots & y_n^{(k)} \end{vmatrix}$$

e quindi, per il teorema di Biner:

la sommatoria essendo estesa a tutte le combinazioni $s_0 s_1 \dots s_k$ degl'indici $0,1,\dots,n$ a k+1 a k+1. Se ricordiamo che $a_{r_i,s_k} = \frac{\partial x_{r_i}}{\partial y_{s_k}}$, il determinante che compare a primo fattore negli addendi della sommatoria precedente altro non è che il determinante funzionale $\frac{D\left(x_{r_0},x_{r_1},\dots,x_{r_k}\right)}{D\left(y_{s_0},y_{s_1},\dots,y_{s_k}\right)}$, mentre il secondo determinante è la coordinata grassmanniana y_{s_0,s_1,\dots,s_k} : potremo perciò scrivere:

$$X_{\mathbf{r_0} \ r_1 \dots r_k} = \sum_{\mathbf{s_0} \ \mathbf{s_1} \dots \ \mathbf{s_k}} \frac{D\left(x_{\mathbf{r_0}}, x_{\mathbf{r_1}}, ..., x_{\mathbf{r_k}}\right)}{D\left(y_{\mathbf{s_0}}, \ y_{\mathbf{s_1}}, ..., \ y_{\mathbf{s_k}}\right)} \ Y_{\mathbf{s_0} \ \mathbf{s_1} \dots \ \mathbf{s_k}}$$

Tale relazione ci dà appunto il legame tra le vecchie e le nuove coordinate grassmanniane d'un S_k .

§ 2. – Forme differenziali simboliche e relative proprietà.

4. – Sieno u_0, u_1, \ldots, u_n n+1 variabili; dicesi prodotto differenziale simbolico di grado k+1 il prodotto:

$$d u_{r_0} d u_{r_1} \dots d u_{r_k}$$

dei differenziali di k+1 delle variabili considerate, con le convenzioni ch'esso soddisfi alla legge di emisimmetria di fronte alle permutazioni degl'indici e sia nullo quando in esso compaiono almeno due differenziali con gli stessi indici.

Dati allora due prodotti differenziali simbolici: $d u_{r_0} d u_{r_1} ... d u_{r_k}$ e $d u_{s_0} d u_{s_1} ... d u_{s_k}$, diremo prodotto di essi (nell'ordine) il prodotto differenziale seguente:

$$d u_{r_0} d u_{r_1} \dots d u_{r_k} d u_{s_0} d u_{s_1} \dots d u_{s_k}$$
.

Notiamo subito che tale prodotto è senz'altro nullo quando la somma dei gradi è h + k + 2 > n + 1, perchè allora in esso compaiono certamente due differenziali con indici eguali.

Consideriamo ora l'espressione:

$$\Phi_{h+1} = \sum_{r_0 \; r_1 \dots r_h} \; A_{r_0 \; r_1 \dots r_h} \, d \, u_{r_0} \, d \, u_{r_1} \dots d \, u_{r_h}$$

ove la sommatoria va estesa a tutte le combinazioni degl'indici 0,1,...,n ad h+1 ad h+1; la Φ_{h+1} dicesi forma differenziale

simbolica di grado h+1. I coefficienti $A_{r_0 r_1 \dots r_h}$, che in essa compaiono, sono funzioni delle variabili, in particolare possono essere delle costanti.

 ${f 5.}$ — Dicesi somma di un numero qualunque di forme differenziali dello stesso grado p la forma simbolica di grado p ottenuta sommando successivamente le date forme e poi riducendo i termini, che differiscono per una permutazione degli indici, ad un unico termine in base alla legge di emisimmetria, a cui soddisfano i prodotti differenziali simbolici.

Analogamente dicesi prodotto di due forme differenziali simboliche (anche di grado diverso) la forma differenziale simbolica ottenuta facendo il prodotto, per ordine, dei termini della prima per quelli della seconda e poi riducendo ad uno solo i termini, che differiscono per una permutazione degl'indici, cioè:

$$\begin{split} \Phi_{_{\rho}} \cdot \Phi_{_{q}} &= \\ = & \Sigma A_{\alpha_{1} \ \alpha_{2}} \dots_{\alpha_{p}} du_{\alpha_{1}} \ du_{\alpha_{2}} \dots du_{\alpha_{p}} \cdot \Sigma B_{\beta_{1} \ \beta_{2}} \dots_{\beta_{q}} du_{\beta_{1}} \ du_{\beta_{2}} \dots du_{\beta_{q}} = \\ &= & \Sigma A_{\alpha_{1} \ \alpha_{2}} \dots_{\alpha_{p}} B_{\beta_{1} \ \beta_{2}} \dots_{\beta_{q}} \ du_{\alpha_{1}} \dots \ du_{\alpha_{p}} \ du_{\beta_{1}} \dots \ du_{\beta_{q}} \ . \end{split}$$

La nozione di prodotto di due forme differenziali simboliche gode delle proprietà associativa e distributiva rispetto alla somma, non però della proprietà commutativa. Infatti facilmente si prova che:

$$\Phi_p \cdot \Phi_q = (-1)^{p \cdot q} \Phi_q \cdot \Phi_p$$

e quindi, se p e q sono numeri dispari, è:

$$\Phi_{p} \cdot \Phi_{q} + \Phi_{q} \cdot \Phi_{p} = 0$$

mentre, se uno almeno dei numeri p e q è pari, abbiamo:

$$\Phi \cdot \Phi_q = \Phi_q \cdot \Phi_p$$
.

Di qui si trae che il prodotto di due forme di/ferenziali, di cui una almeno di grado pari, è indipendente dall'ordine dei fattori.

In particolare, se $\Phi_q = \Phi_p$ e p = q è dispari, dalla (2) si trae: $(\Phi_p)^2 = 0$, ossia: Il quadrato d'una forma differenziale sinbolica di grado dispari è sempre nullo identicamente.

Notiamo inoltre che, se nel prodotto di più forme differenziali scambiamo due fattori Φ_{μ} e Φ_{ν} non consecutivi di gradi rispettivamente p e q e la somma dei gradi delle forme tra loro comprese è r, sarà:

$$\begin{split} \dots & \Phi_{\mu} \dots \Phi_{\nu} \dots = (-1)^{p(q+r)+qr} \dots \Phi_{\nu} \dots \Phi_{\mu} \dots = \\ & = (-1)^{pq+r(p+q)} \dots \Phi_{\nu} \dots \Phi_{\mu} \dots \end{split}$$

per modo che, se nel prodotto v'è un solo fattore di grado dispari, uno solo dei tre numeri $r, p \cdot q, p + q$ (anzi in tal caso $p \cdot q$ è sempre pari) può essere dispari, per cui: $p \cdot q + r(p+q)$ è sempre pari. Potremo quindi enunciare:

- 1) Il prodotto di più forme differenziali, di cui una solamente sia di grado dispari, è indipendente dall'ordine dei fattori.
- 2) Se nel prodotto di più forme differenziali si scambiano due fattori, i cui gradi sono della stessa parità, il prodotto cambia o no di segno secondochè i gradi dei due fattori sono entrambi dispari o pari. Ne segue:
- 3) Ogni prodotto di forme differenziali simboliche, che contenga due fattori eguali di grado dispari è identicamente nullo.

Di qui segue che ogni potenza p^{esima} d'una forma differenziale di grado dispari è identicamente nulla. Non altrettanto accade per una forma differenziale di grado pari; per essa, in base alla proprietà commutativa del prodotto di forme differenziali di grado pari, si trova che la potenza p^{esima} si ottiene moltiplicando per p! la somma di tutti i prodotti a p a p degli m prodotti differenziali di cui essa è somma.

Notiamo pure, in particolare, che il prodotto delle due forme $\sum A_{r_0 r_1 \dots r_h} d u_{r_0} d u_{r_1} \dots d u_{r_h}$ e $\sum B_{s_0 s_1 \dots s_k} d u_{s_0} d u_{s_1} \dots d u_{s_k}$ qualora sia h + k + 2 = n + 1, riducesi al sol termine:

$$F(AB) d u_0 d u_1 \dots d u_n,$$

dal momento che gli altri termini contengono tutti almeno due differenziali uguali.

6. – Vediamo ora come si comportano i prodotti differenziali simbolici rispetto ad un cambiamento di variabili.
Sia:

$$du_{r_0}du_{r_1}\ldots du_{r_k}$$

un prodotto differenziale simbolico relativo alle n+1 variabili u_o, u_1, \ldots, u_n ; supponiamo di dover passare da queste variabili alle v_0, v_1, \ldots, v_n mediante le n+1 relazioni:

$$u_i = u_i(v_0, v_1, \ldots, v_n)$$
 $(i = 0, 1, \ldots, n);$

allora il differenziale $d_{i}u_{r_{i}}$ sarà legato ai differenziali delle nuove variabili dalla relazione:

$$d u_{r_i} = \sum_{i=1}^{n} \frac{\partial u_{r_i}}{\partial v_i} d v_i$$

per cui sarà:

$$d u_{r_0} d u_{r_1} \dots d u_{r_k} = \prod_{0}^{h} d u_{r_i} = \prod_{0}^{h} \left\{ \sum_{0}^{n} \frac{\partial u_{r_i}}{\partial v_i} d v_i \right\} =$$

$$= \sum_{0}^{h} C_{s_0} \sum_{s_1 \dots s_k}^{s_1} d v_{s_0} d v_{s_1} \dots d v_{s_k},$$

ove la sommatoria va estesa a tutte le combinazioni, opportunamente ordinate, degl'indici $0, 1, \ldots, n$ ad h + 1 ad h + 1.

Calcoliamo ora i cofficienti $C_{s_0 \ s_1} \dots s_h$. Per questo notiamo che, se il prodotto differenziale simbolico: $d \ v_{s_0} \ d \ v_{s_1} \dots d \ v_{s_h}$ si è costruito prendendo $d \ v_{s_0}$ nel primo, $d \ v_{s_1}$ nel secondo, ..., $d \ v_{s_h}$ nell' $h + 1^{esimo}$ fattore del prodotto $\prod_0^n \left\{\sum_0^n \frac{\partial u_{r_i}}{\partial v_i} \ d \ v_i\right\}$, allora il suo cofficiente è: $\frac{\partial u_{r_0}}{\partial v_{s_0}} \cdot \frac{\partial u_{r_1}}{\partial v_{s_1}} \cdots \frac{\partial u_{r_h}}{\partial v_{s_h}}$. Perciò, se $s_0' \ s_1' \dots s_h'$ è una permutazione degl' indici $s_0 \ s_1 \dots s_h$, il cofficiente del prodotto $d \ v_{s_0'} \ d \ v_{s_1'} \dots d \ v_{s_h'}$ sarà dato da: $\left(-1\right)^p \frac{\partial u_{r_0}}{\partial v_{s_0}} \cdot \frac{\partial u_{r_1}}{\partial v_{s_1}} \cdots \frac{\partial u_{r_h}}{\partial v_{s_h}}$, essendo p la classe della sostituzione $\begin{pmatrix} s_0' \ s_1' \dots s_h' \\ s_0 \ s_1 \dots s_h \end{pmatrix}$.

Sarà quindi:

$$C_{s_0 \ s_1} \dots s_h = \sum \left(-1\right)^{p} \frac{\partial u_{r_0}}{\partial v_{s_0}} \cdot \frac{\partial u_{r_1}}{\partial v_{s_1}} \dots \frac{\partial u_{r_h}}{\partial v_{r_h}},$$

ove la sommatoria va estesa a tutte le *permutazioni* degl'indici s_0, s_1, \ldots, s_h ; ma allora, ricordando la definizione di valore d'un determinante, possiamo scrivere:

$$C_{s_0 \ s_1 \dots s_h} = \frac{D(u_{r_0} u_{r_1} \dots u_{r_h})}{D(v_{s_0} v_{s_1} \dots v_{s_h})}$$

e la relazione, che cercavamo, diventa:

$$d u_{r_0} d u_{r_1} \dots d u_{r_h} = \sum \frac{D (u_{r_0} u_{r_1} \dots u_{r_h})}{D (v_{s_0} v_{s_1} \dots v_{s_h})} d v_{s_0} d v_{s_1} \dots d v_{s_h} ,$$

ove, come abbiamo già detto, la sommatoria va estesa a tutte le combinazioni, opportunamente ordinate, degl'indici $0, 1, \ldots, n$ ad h+1 ad h+1.

Notiamo infine, senza dimostrarlo, che la nozione di prodotto di due forme differenziali simboliche è invariante per cambiamenti di variabili, vale a dire si può indifferentemente eseguire prima il prodotto e poi il cambiamento di variabili o viceversa.

Cap. II - PRODOTTI DI COMPLESSI LINEARI DI SPAZI S_k SUBORDINATI IN UN S_a .

§ 1. - Nozioni generali.

I. - Complessi lineari di S_k in S_n .

7. - Def. Dicesi complesso lineare di S_k in un S_n l'insieme H degli spazi S_k subordinati in S_n , che con le loro coordinate soddisfano all'equazione lineare:

(1)
$$\sum_{r_0, r_1, \dots, r_k} A_{r_0, r_1} \dots_{r_k} X_{r_0, r_1} \dots_{r_k} = 0,$$

ove i coefficienti Arori ... rk sono delle costanti.

Consideriamo uno spazio S_m subordinato in S_n ed interpretiamo in esso la relazione (1): abbiamo allora il seguente:

Lemma: Un complesso lineare di spazi S_k in un S_n individua in uno spazio S_m (m > k), subordinato in S_n , ancora un complesso lineare di spazi S_k .

Per questo scegliamo lo spazio S_m fondamentale (al qual caso possiamo sempre ridurci mediante un opportuno cambiamento di coordinate), per es. quello individuato dai vertici A_0, A_1, \ldots, A_m della piramide fondamentale delle coordinate. Allora per interpretare l'espressione (1) nello spazio S_m basta far sistema di essa con le n m equazioni $x_j = 0$ ($j = m + 1, \ldots, n$) dello spazio S_m , vale a dire basta sopprimere nella relazione (1) tutte le coordinate grassmanniane di S_k contenenti un indice maggiore di m. La relazione che così otteniamo, essendo ancora lineare nelle coordinate grassmanniane di S_k ci rappresenta dunque un complesso lineare di S_k nell' S_m , c. v. d.

8. – Notiamo che un complesso lineare di S_0 è un iperpiano e un complesso lineare di S_{n-1} è un'iperstella.

Infatti, per quanto abbiamo visto al n. 2 del \S 1 – cap. I a proposito delle coordinate grassmanniane di punto e d'iperpiano, l'equazione d'un complesso lineare di S_0 e quella d'un complesso lineare di S_{n-1} assumono rispettivamente le espressioni:

$$\sum_{i=1}^{n} a_{i} x_{i} = 0 \quad \text{e} \quad \sum_{i=1}^{n} x_{i} u_{i} = 0;$$

orbene tali relazioni ci rappresentano appunto la prima l' S_{n-1} di coordinate a_i e la seconda l'iperstella di centro il punto x_i .

II. - Notazione differenziale e nozione di prodotto di complessi lineari.

- **9.** Sappiamo dal cap. I che il comportamento delle coordinate grassmanniane X d'un S_k in S_n è caratterizzato dalle proprietà seguenti:
- a) Le X soddisfano alla legge di emisimmetria di fronte alle permutazioni degl'indici, in particolare una X con due indici eguali è nulla;
- b) Per una trasformazione di coordinate che faccia passar dalle y_i alle x_i esse si trasformano secondo la legge espressa dalla formula:

$$X_{r_0 r_1 \dots r_k} = \sum_{s_0 s_1 \dots s_k} \frac{D(x_{r_0}, x_{r_1}, \dots, x_{r_k})}{D(y_{s_0}, y_{s_1}, \dots, y_{s_k})} Y_{s_0 s_1 \dots s_k}.$$

Ciò mostra che le X si comportano alla stregua dei prodotti differenziali simbolici $du_{r_0} du_{r_1} \dots du_{r_k}$, di cui pure abbiamo parlato nel capitolo precedente. Appunto tale identità di comportamento suggerisce l'idea d'introdurre per i complessi lineari in discorso la notazione simbolica che deriva dal sostituire nel primo membro dell'equazione d'un complesso lineare al posto delle coordinate i corrispondenti prodotti differenziali. Con tale sostituzione il primo membro dell'equazione d'un complesso lineare di

 S_k in S_n assume l'aspetto d'una forma differenziale simbolica Φ (di grado k+1 in n+1 variabili) a coefficienti costanti. Orbene diremo che quella forma rappresenta il complesso e designeremo il complesso con la stessa lettera Φ o, più compiutamente, con Φ_{k+1} , ove interessi mettere in vista la dimensione k degli elementi del complesso.

Va avvertito che un complesso lineare individua la corrispondente forma Φ solo a meno d'un fattore costante e che pertanto due forme Φ , differenti per un fattore costante (in particolare per il segno) rappresentano lo stesso complesso.

- 10. I vantaggi della nuova notazione si rilevano principalmente attraverso il trasporto ai complessi della nozione di prodotto di due o più forme differenziali simboliche. Infatti, poichè ad ogni complesso lineare di spazi S_k in S_n è associata una forma differenziale di grado k+1 in n+1 variabili, dati in S_n due complessi lineari, uno di S_n e l'altro di S_n , potremo considerare il complesso lineare di spazi S_{n+k+1} legato al prodotto delle corrispondenti forme differenziali. Questo prodotto, se esiste, lo chiameremo prodotto dei due complessi considerati.
- 11. Come già per le forme differenziali simboliche la nozione di prodotto di due complessi lineari si estende facilmente al caso di più complessi lineari e, come per le forme differenziali, esso gode della proprietà associativa; anzi conviene osservare che, mentre nel prodotto di due forme differenziali il segno dipende in generale dall'ordine dei fattori, questo non accade per il prodotto di due complessi lineari, dal momento che il complesso prodotto si rappresenta eguagliando a zero la forma prodotto. Si ha dunque che il prodotto dei complessi lineari gode anche della proprietà commutativa.

Notiamo inoltre che, essendosi definito il prodotto di due complessi lineari in base alla nozione di prodotto di due forme differenziali simboliche, il prodotto di complessi lineari gode della proprietà di essere invariante per trasformazioni di coordinate. Per ragioni analoghe si vede che il quadrato d'un complesso lineare di S_k , con k pari, è identicamente nullo, ossia esso è, come diremo nel seguito, un complesso identico.

III. - Complessi involutorî e complesso identico.

12. – Se nel fare il prodotto di due complessi lineari, uno di S_h e l'altro di S_k , in S_n le dimensioni h e k sono tali che h+k+1>n, il prodotto svanisce sempre; in tal caso non ha quindi senso parlare di prodotto di due complessi. Se invece accade che sia h+k+1=n, il prodotto dei due complessi lineari contiene un sol termine e allora, quando il coefficiente di quel termine è eguale a zero, si dice che i due complessi sono in involuzione.

La nozione di complessi lineari involutori si estende anche al caso di più di due complessi; così, ad es., tre complessi lineari Φ_{h+1} , Φ_{h+1} , Φ_{l+1} , tali che sia h+k+l+3=n+1, si dicono involutori se il coefficiente dell'unico termine del loro prodotto è eguale a zero.

13. - Facciamo ora alcune convenzioni.

Se nell'equazione d'un complesso lineare di spazi S_h in S_n tutti i cofficienti sono nulli, in effetto il complesso non esiste; converremo che una tal equazione rappresenti il complesso identico. Considereremo un simile complesso lineare come il complesso di tutti gli spazi S_h di S_n in quanto che le coordinate grassmanniane d'un qualunque S_h di S_n soddisfano alla sua equazione, essendo essa a coefficienti tutti nulli.

Converremo inoltre di considerare anche la coordinata grassmanniana $X_{01...n} \neq 0$ di un S_n in se stesso. Potremo perciò pensare che il simbolo $C \cdot X_{01...n} = 0$ rappresenti il complesso lineare di S_n in S_n stesso. Tale complesso sarà identico allorchè C = 0.

14. – Dalle convenzioni ora fatte segue una nuova enunciazione della condizione d'involutorietà di due complessi lineari: Due complessi lineari Φ_{h+1} , Φ_{h+1} , con h+k+2=n+1, sono involutori allorchè il loro prodotto è identico.

Sotto questa nuova forma la condizione d'involutorietà di due complessi lineari può venir estesa anche al caso in cui le dimensioni degli spazi dei due complessi non sono duali, convenendo di chiamare involutori due complessi lineari qualunque, il cui prodotto sia identico.

D'ora in poi il caso d'involutorietà, in cui sia h + k = n - 1, lo distingueremo dal caso generale chiamandolo caso normale d'involutorietà.

IV. - Spazi totali d'un complesso lineare.

15. – Sappiamo che un complesso lineare di S_h in S_n subordina in un S_m (h < m < n) un altro complesso lineare di S_h ; orbene può darsi che questo complesso indotto sia identico. Allora tutti gli S_h di S_m appartengono al complesso considerato e S_m si dice uno spazio totale del complesso. In particolare, se m = h, dire che S_h è spazio totale del complesso significa dire ch'esso vi appartiene.

A proposito di spazio totale d'un complesso lineare vale la seguente osservazione:

L' S_n fondamentale individuato dai primi m+1 vertici della piramide delle coordinate di S_n è uno spazio totale per un complesso lineare di S_h quando nell'equazione del complesso mancano tutti i coefficienti delle coordinate grassmanniane corrispondenti alle combinazioni di classe h+1 degli indici $0, 1, \ldots, m$.

Difatti, poichè lo spazio S_m (m>h) è individuato dai vertici A_0, A_1, \ldots, A_m della piramide fondamentale, gli S_h di S_m hanno le coordinate contenenti un'indice maggiore di m tutte nulle e quindi l'equazione del complesso lineare di S_h subordinato in S_m dal complesso considerato si riduce a contenere solamente le coordinate grassmanniane di S_h corrispondenti alle combinazioni di classe h+1 degl'indici $0, 1, \ldots, m$. Ma per ipotesi i coefficienti di tali coordinate sono tutti nulli, perciò il complesso lineare indotto in S_m dal complesso considerato è identico e di conseguenza S_m risulta spazio totale del complesso, c. v. d.

In particolare, se h=m, condizione perchè lo S_h fondamentale individuato dai primi h+1 vertici della piramide delle coordinate appartenga al complesso lineare considerato è che in esso il coefficiente della coordinata $X_{01...h}$ sia nullo.

16. – Teorema: Dati due complessi lineari Φ e Ψ di spazi S_h ed S_h in S_n e considerati i due complessi Φ' e Ψ' da essi indotti in un S_m , il prodotto $\Phi \cdot \Psi$ subordina in S_m il complesso $\Phi' \cdot \Psi'$.

Per vedere questo, indichiamo con $r_0 r_1 \dots r_k$ ed $r'_0 r'_1 \dots r'_h$ due generiche combinazioni di classe h+1 rispettivamente dei numeri $0, 1, \dots, n$ e $0, 1, \dots, m$; con $s_0 s_1 \dots s_k$ e $s'_0 s'_1 \dots s'_k$ due generiche combinazioni di classe k+1 rispettivamente dei numeri $0, 1, \dots, n$ e $0, 1, \dots, m$ e con $r_0 \dots r_h s_0 \dots s_k$ ed $r'_0 \dots r'_h s'_0 \dots s'_k$ due generiche combinazioni di classe h+k+2 sempre rispettivamente dei numeri $0, 1, \dots, n$ e $0, 1, \dots, m$. Allora, se:

(2)
$$\sum A_{r_0 \, r_1 \, \dots \, r_h} \, X_{r_0 \, r_1 \, \dots \, r_h}^{\ \ \ \ \prime} = 0$$
 e $\sum B_{s_0 \, s_1 \, \dots \, s_k} \, X_{s_0 \, s_1 \, \dots \, s_k} = 0$

sono le equazioni dei due complessi Φ e Ψ , l'equazione del loro prodotto sarà:

(3)
$$\sum A_{r_0 r_1 \dots r_h} B_{s_0 s_1 \dots s_k} X_{r_0 r_1 \dots r_h s_0 s_1 \dots s_k} = 0.$$

Prendiamo per S_m lo spazio fondamentale individuato dai primi m+1 vertici della piramide delle coordinate; allora le equazioni dei due complessi Φ' e Ψ' in esso subordinati rispettivamente da Φ e Ψ si ottengono dalle (2) sopprimendovi tutte le coordinate contenenti un indice maggiore di m; perciò le equazioni di Φ' e Ψ' saranno:

$$\Sigma\,A_{,r_0'\,r_1'\,\ldots\,r_h'}\,X_{r_0'\,r_1'\,\ldots\,r_h'}=0\quad {\rm e}\quad \Sigma\,B_{s_0'\,s_1'\,\ldots\,s_k'}\,X_{s_0'\,s_1'\,\ldots\,s_k'}=0$$

e quella del loro prodotto $\Phi' \cdot \Psi'$:

$$\Sigma \, A_{r_0' \, r_1' \, \dots \, r_h'} B_{s_0' \, s_1' \, \dots \, s_h'} \, X_{r_0' \, r_1' \, \dots \, r_h' \, s_0' \, s_1' \, \dots \, s_h'} = 0 \; .$$

Ma questa è, come facilmente si riconosce, la relazione che otteniamo dall'equazione (3) sopprimendovi le coordinate grassmanniane di S_{h+k+1} contenenti un indice maggiore di m; essa ci rappresenta dunque il complesso lineare $(\Phi \cdot \Psi)'$ subordinato in S_m da $\Phi \cdot \Psi$.

Ne segue che la condizione affinchè S_m sia spazio totale per il complesso $\Phi \cdot \Psi$ è che il complesso $\Phi' \cdot \Psi'$ sia identico.

Nel caso particolare in cui sia m=h+k+1 possiamo enunciare: Condizione necessaria e sufficiente affinchè un S_{h+k+1} appartenga al complesso lineare $\Phi_{h+k+2} = \Phi_{h+1} \cdot \Psi_{k+1}$ è che Φ_{h+k+2} vi subordini il complesso identico. Ma il complesso subordinato da Φ_{h+k+2} è $\Phi'_{h+1} \cdot \Psi'_{k+1}$; sussiste dunque il seguente:

Teorema: Il complesso lineare Φ_{h+k+2} , prodotto di due complessi lineari Φ_{h+1} , Φ_{k+1} (h+k < n-1) è l'insieme degli S_{h+k+1} , entro ai quali i due complessi dati subordinano complessi in involuzione.

- V. Casi elementari del prodotto e della condizione d'involutorietà di complessi lineari di S_h in $S_{\mathbf{n}}$.
- 17. Condizione necessaria e sufficiente perchè in $S_n h + 1$ complessi lineari K_1 (*) di punti siano involutorî è che gli h + 1 iperpiani da essi individuati siano dipendenti.

Sieno infatti, col ricorso alla notazione differenziale:

(4)
$$\sum_{i=0}^{n} a_{ii} dx_{i} = 0 \qquad (t = 0, 1, ..., h)$$

le h+1 equazioni dei complessi K_1 considerati. Essi saranno involutori se tutti i coefficienti dell'equazione del loro prodotto sono nulli. Ma tali coefficienti, come facilmente si vede ricorrendo alla notazione differenziale, altro non sono che i minori d'ordine h+1 della matrice dei coefficienti del sistema (4); quindi la condizione perchè gli h+1 complessi K_1 considerati siano involutori è che la matrice del sistema della loro equazione abbia caratteristica minore di h+1, vale a dire che gli h+1 iperpiani individuati dai K_1 siano dipendenti.

(3) D'ora in poi indicheremo con K_l un complesso di S_{l-1} .

In particolare, se h=n, si cade in un caso normale d'involutorietà. L'unico coefficiente del prodotto è il determinante dei coefficienti del sistema formato con le equazioni degli n+1 K_1 ; si può dunque enunciare: Condizione necessaria e sufficiente perchè in uno spazio S_n n+1 complessi lineari K_1 di punti siano involutorî è che gli n+1 iperpiani da essi individuati siano dipendenti, vale a dire passino per un punto.

18. – La condizione perchè in un S_n un K_1 ed un K_n siano involutor \hat{i} è che l'iperpiano rappresentante K_1 appartenga all'iperstella rappresentante K_n .

Infatti sieno:

$$\sum_{i=1}^{n} \lambda_i x_i = 0 \quad \text{e} \quad \sum_{i=1}^{n} \mu_i u_i = 0$$

le equazioni rispettivamente di K_1 e di K_n . Ricordando le relazioni intercedenti tra le coordinate plückeriane e quelle grassmanniane omogenee d'un iperpiano (vedi n. 2) e ricorrendo alla notazione differenziale, le precedenti equazioni possono scriversi nel modo seguente:

$$\sum_{0}^{n} \lambda_{i} dx_{i} = 0 \; ; \; \sum_{0}^{n} (-1)^{i} \mu_{i} dx_{0} dx_{1} \dots dx_{i-1} dx_{i+1} \dots dx_{n} = 0 \; .$$

Se ne deduce che l'equazione del prodotto $K_1 \cdot K_n$ riducesi al termine:

$$\left(\sum_{i=1}^{n} \lambda_{i} \, \mu_{i}\right) d \, x_{0} \, d \, x_{1} \dots d \, x_{n} = 0$$

e quindi i complessi K_1 e K_n sono involutorî se:

$$\sum_{i=1}^{n} \lambda_{i} \, \mu_{i} = 0 \ ,$$

ossia se l'iperpiano (λ) contiene il punto (μ), centro dell'iperstella.

19. - Il prodotto di un K_1 per un K_h è il complesso lineare K_{h+1} degli S_h passanti per gli S_{h-1} del complesso lineare subordinato dal K_h nell' S_{n-1} rappresentante il K_1 .

Indichiamo con U l'iperpiano K_1 e con K'_h il complesso in esso indotto dal K_h . Per un teorema precedente sappiamo che, se S_h è uno spazio del $K_{h+1} = K_1 \cdot K_h$, allora i due complessi K''_1 e K''_h in esso subordinati rispettivamente da K_1 e K_h risultano involutorî, vale a dire che l' S_{h-1} rappresentante il K''_1 appartiene all'iperstella di S_{h-1} individuata dal K''_h . Evidentemente, però, il K''_1 è l'intersezione di S_h con U, quindi appartiene al K'_h . Se ne deduce quanto volevasi dimostrare.

20. – Il prodotto di h K_1 in S_n è il complesso lineare speciale K_h degli S_{h-1} appoggiati all'intersezione S_{n-h} degli h iperpiani corrispondenti ai K_1 .

Per questo notiamo che h complessi lineari K_1 in S_n , ossia h S_{n-1} , subordinano in uno spazio S_{h-1} altrettanti complessi K_1 , rappresentanti nell' S_{h-1} h S_{h-2} ; sappiamo inoltre che il prodotto degli h K_1 in S_n induce nell' S_{h-1} il prodotto degli h K_1' corrispondenti e che l' S_{h-1} appartiene al prodotto K_h , se il complesso lineare in esso subordinato dal K_h è identico. Orbene ciò accade se gli h K_h' in S_{h-1} sono involutorî, ossia (vedi fine n. 17) se gli h S_{h-2} , individuati dagli h K_1' , passano per un punto. Ma ciò significa che l' S_{h-1} deve appoggiarsi all' intersezione S_{n-h} degli h iperpiani K_1 ; resta così provato quanto volevasi.

Tale risultato vale anche nel caso in cui qualcuno dei K'_1 sia identico, perchè allora lo spazio S_{n-1} giace in qualcuno degli S_{n-1} , quindi s'appoggia ad S_{n-h} .

§ 2. – Situazioni in S_1 .

I. - Complessi lineari e condizione d'involutorietà di due K_1 .

21. – In uno spazio S_1 possiamo considerare solo complessi lineari di punti. E siccome in S_1 l'equazione di un K_1 è del tipo: $a x_0 + b x_1 = 0$, se ne deduce che in S_1 un K_1 è un punto,

precisamente quello di coordinata non omogenea $x = \frac{x_1}{x_0} = -\frac{a}{b}$.

Quanto ai prodotti di complessi lineari in S_1 ha senso solo la considerazione del caso d'involutorietà normale di due K_1 . A questo proposito notiamo che, se:

$$\begin{cases} a x_0 + b x_1 = 0 \\ c x_0 + d x_1 = 0 \end{cases}$$

sono le equazioni di due K_1 , il loro prodotto, col solito ricorso alla notazione differenziale, diventa: $(ad - bc) dx_0 dx_1 = 0$. Ne segue che i due complessi K_1 sono involutori se:

$$ad-bc=0,$$

cioè se i due punti da essi individuati coincidono.

I. - Complessi lineari e loro prodotti.

22. - In S_2 possiamo considerare solamente complessi lineari di punti e di rette: i primi sono rappresentati da punteggiate: $ax_0 + bx_1 + cx_2 = 0$, i secondi da fasci di rette: $u_0 x_0 + u_1 x_1 + u_2 x_2 = 0$.

Quanto ai prodotti di complessi lineari, escludendo i casi di involutorietà, che tratteremo in seguito, ha significato solamente il prodotto di due complessi lineari di S_0 . A questo proposito notiamo come, in base all'osservazione generale fatta al n. 20, il prodotto di due K_1 in S_2 è il K_2 rappresentato dal fascio di rette di centro l'intersezione delle due punteggiate individuate dai due K_1 .

Tra i prodotti di complessi lineari potremmo considerare, in particolare, il quadrato di un K_1 ; senonchè, trattandosi d'un complesso lineare di S_0 , cioè di spazi di dimensioni pari, sappiamo (vedi fine n. 11) che il suo quadrato è identicamente nullo, non ha quindi senso la sua considerazione.

II. - Casi normali d'involutorietà.

- **23**. Condizione d'involutorietà di tre K_1 . In base all'osservazione generale fatta alla fine del n. 17 possiamo affermare che tre complessi lineari di punti in S_2 sono involutorî se il determinante del sistema formato con le loro equazioni è eguale a zero, ossia se le tre punteggiate che rappresentano i complessi lineari K_1 passano per un punto.
- **24.** Condizione d'involutorietà d'un K_1 e un K_2 . Dall'osservazione fatta al n. 18 segue che un K_1 e un K_2 in S_2 sono involutorî, se la retta sostegno del K_1 appartiene al fascio individuato dal K_2 .

Notiamo che per la proprietà associativa, di cui gode il prodotto di complessi lineari, il caso d'involutorietà di tre K_1 si riduce al caso d'involutorietà di un K_1 e un K_2 e viceversa.

§ 4. Situazioni in S_3^* (4)

I. - Complessi lineari.

25. – In S_3^* possiamo considerare complessi lineari di punti, di rette e di piani. Quanto al loro significato geometrico notiamo che in S_3^* un K_1 è rappresentato da un piano: $ax_0 + bx_1 + cx_2 + dx_3 = 0$ e un K_3 da una stella di piani: $x_0 u_0 + x_1 u_1 + x_2 u_2 + x_3 u_3 = 0$. Un K_2 , invece, è il comune complesso lineare di rette dello spazio ordinario, la cui equazione viene indicata con la scrittura:

$$a_{01} p_{01} + a_{02} p_{02} + a_{03} p_{03} + a_{12} p_{12} + a_{23} p_{23} + a_{31} p_{31} = 0$$

ove le p_{ik} (i, k = 0, 1, 2, 3) sono le coordinate grassmanniane di retta in S_3^* - Abbiamo così in S_3^* la distinzione di complessi

⁽⁴⁾ Indicheremo con l'asterisco lo spazio S_3 , in cui ora opereremo, per distinguerlo dagli altri eventuali S_3 , da esso distinti, che dovremo considerare.

lineari K_2 in speciali e non speciali, chiamandosi speciali quei complessi lineari, per cui risulta: $a_{01} a_{23} + a_{02} a_{31} + a_{03} a_{12} = 0$, ossia quei complessi, i coefficienti delle cui equazioni possono interpretarsi come coordinate di retta in S_3^* ; cosicchè un complesso speciale K_2 in S_3^* è rappresentato dall'insieme delle rette di S_3^* apprograte ad una retta fissa (direttrice) di coordinate $p'_{ik} = a_{lm}$ (ove gl'indici i, k ed l, m sono complementari e tali che la permutazione $i \ k \ l \ m$ dei numeri 0, 1, 2, 3 risulti pari), dal momento che la relazione $\sum p_{ik} p'_{lm} = 0$ esprime analiticamente la condizione d'incidenza delle rette di coordinate p_{ik}, p'_{ik} .

II. - Prodotti di complessi lineari.

- **26. Prodotto di due** K_1 . Dall'osservazione generale del n. 20 segue che il prodotto di due K_1 in S_3^* è il complesso lineare speciale delle rette appoggiate all' S_1 , intersezione dei due S_2 individuati dai due K_1 , cioè il K_2 delle rette appoggiate all' S_1 , le cui coordinate (assiali) sono date dai minori del 2º ordine tra loro distinti, che si possono estrarre dalla matrice dei coefficienti delle equazioni dei due K_1 considerati.
- **27. Prodotto di tre** K_1 . Sempre in base all'osservazione generale del n. 20 possiamo affermare che *il prodotto di tre* K_1 generici (il che ci assicura che i tre piani corrispondenti non appartengono ad un fascio) è il K_3 rappresentato dalla stella di piani di centro il punto comune ai tre S_2 individuati dai tre K_1 .

In particolare, se gli S_2 , che rappresentano i tre K_1 , appartengono ad un fascio, il complesso prodotto K_3 risulta identico.

28. – **Prodotto di un** K_1 **per un** K_2 . – Per il teorema generale sul prodotto di complessi lineari possiamo senz'altro affermare che il prodotto di un K_1 per un K_2 è il K_3 rappresentato dalla stella di S_2 , entro ai quali i due complessi considerati, K_1 e K_2 , subordinano due complessi in involuzione.

Orbene sopra un piano π il complesso K_2 subordina il K'_2 , rappresentato dal fascio di rette avente per centro il punto P corrispondente del piano π nel sistema nullo di S_3^* individuato dal K_2 , mentre il complesso K_1 vi subordina il K'_1 , rappresentato

dalla punteggiata r, intersezione di π col piano σ , individuato in S_3^* dal K_1 . La condizione perchè su π i due complessi lineari K_1' e K_2' siano involutorî è che la r passi per P, cioè appartenga al complesso K_2' e quindi a K_2 . Se ne deduce che il complesso lineare $K_3 = K_1 \cdot K_2$ è costituito da tutti gli S_2 che segano il piano σ secondo rette di K_2 , cioè tutti i piani della stella di centro il punto S corrispondente di σ nel sistema nullo individuato in S_3^* dal K_2 .

III. - Casi normali d'involutorietà.

- **29.** Quattro K_1 . Dall'osservazione generale fatta alla fine del n. 17 si deduce che quattro K_1 in S_3^* sono in involuzione allorquando i quattro piani da essi individuati passano per un punto, cioè appartengono ad una stella.
- **30.** Un K_1 e un K_3 . Analogamente, dall'osservazione generale del n. 18 segue che in S_3^* un K_1 ed un K_3 sono involutorî allorquando il piano σ che rappresenta il K_1 , appartiene alla stella individuata dal K_3 .

31. - **Due** K_{2} . - **Sieno**:

$$\sum a_{ik} p_{ik} = 0$$
 e $\sum b_{ik} p_{ik} = 0$

le equazioni dei due K_2 considerati: la condizione affinchè essi siano in involuzione è la nota relazione di Klein:

$$\sum a_{ik} b_{lm} = 0,$$

ove, come precedentemente, gl'indici i, k ed l, m sono complementari e tali che la permutazione $i \ k \ l \ m$ dei numeri 0, 1, 2, 3 risulti pari. Perciò interpretando, com'è noto, le rette dell' S_3^* come punti d'una quadrica V_4^2 di $S_5(5)$, i due complessi K_2 sono in involuzione, se i due iperpiani, da essi individuati nell' S_5 , sono coniugati rispetto alla V_4^2 .

⁽⁵⁾ A tal proposito veggasi: Bertini - Geometria proiettiva degl' iperspazì - cap. 60, nn. 22, 23, 24, 25.

In particolare, se uno dei due K_2 è speciale, la condizione d'involutorietà dei due complessi esprime che la direttrice del complesso speciale appartiene al complesso non speciale, mentre, se entrambi i complessi sono speciali, la condizione d'involutorietà si traduce nella condizione d'incidenza delle loro direttrici.

32. – Al caso d'involutorietà di due complessi lineari di rette in S_3^* si può dare una nuova ed interessante interpretazione, qualora i due complessi siano tra di loro distinti e non speciali. Tale nuova interpretazione si compendia nel seguente:

Teorema: Condizione affinchè due complessi lineari $K \in K'$ di rette in S_3^* siano involutorî è che i due sistemi nulli corrispondenti $N \in N'$ siano permutabili o, ciò che è lo stesso, che il prodotto $N \cdot N'$ sia un'omografia biassiale armonica (6).

L'equivalenza delle due forme, sotto cui abbiamo enunciato il precedente teorema, discende dalle seguenti osservazioni:

Il prodotto di due sistemi nulli è, in generale, un'omografia biassiale: un'omografia, perchè prodotto di due reciprocità; biassiale perchè ammette per rette unite tutte le rette della congruenza lineare Γ , intersezione dei due complessi lineari K e K' corrispondenti ai due sistemi nulli. Sappiamo pure che le proiettività di S_3^* (in generale di S_n) formano gruppo; tra gli elementi involutorî di tale gruppo ci sono i sistemi nulli. Orbene sappiamo dalla teoria dei gruppi che: Condizione necessaria e sufficiente perchè due elementi involutorî di un gruppo siano permutabili è che il loro prodotto sia involutorio. Ne segue che l'omografia biassiale prodotto di due sistemi nulli permutabili è involutoria, quindi armonica; e viceversa, se il prodotto di due sistemi nulli è un'omografia biassiale armonica, i due sistemi nulli sono permutabili.

Fatte queste osservazioni, veniamo alla dimostrazione del teorema precedentemente enunciato.

⁽ $^{\circ}$) Questa nuova interpretazione del caso d'involutorietà di due complessi lineari di rette in S_3^* era già nota al Klein, il quale, però, la enuncia senza dimostrazione. Veggasi l'opera di Klein: Zur Theorie der Liniencomplexe des ersten und zweiten Grades.

Per la nota rappresentazione delle rette dell' S_3^* mediante i punti della V_4^2 di S_5 sappiamo come ogni trasformazione omografica dell' S_5 che trasformi in sè la V_4^2 è in S_3^* un'omografia o una correlazione e viceversa; in particolare ad un sistema nullo di S_3^* corrisponde in S_5 un'omologia armonica che muta in sè la V_4^2 , il cui asse è l'iperpiano individuato dall'equazione del complesso lineare di rette dell' S_3^* , relativo al sistema nullo considerato, e il cui centro è il polo di quest'iperpiano rispetto alla V_4^2 .

Siano dunque \overline{K} , \overline{K}' e \overline{P} , \overline{P}' rispettivamente gli assi e i centri delle due omologie armoniche \overline{N} , \overline{N}' di S_5 (che mutano in sè la V_4^2), corrispondenti ai due sistemi nulli N e N', individuati in S_3^* dai due complessi lineari di rette K e K'. In S_5 il prodotto $\overline{N} \cdot \overline{N}'$ è un'omografia, che trasforma in sè la V_4^2 e che ha per punti uniti i punti dell' S_3 , intersezione dei due iperpiani \overline{K} e \overline{K}' . L'intersezione di questo S_3 con la V_4^2 è una V_2^2 che ha per immagine nell' S_3^* la congruenza lineare luogo di rette unite nell'omografia biassiale $N \cdot N'$.

Supponiamo ora che i due complessi K e K' siano involutorî: allora i due iperpiani \overline{K} e \overline{K}' , da essi individuati in S_5 , risultano coniugati rispetto alla V_4^2 , cioè ognuno di essi contiene il polo dell'altro. Ma, dato che le due omologie \overline{N} e \overline{N}' sono distinte e non speciali (il che resta provato dall'ipotesi che i complessi K' e K' sono distinti e non speciali), questo equivale a dire che le due omologie \overline{N} e \overline{N}' di S_5 sono permutabili. Infatti dalla teoria generale dei gruppi sappiamo che due omologie \overline{N} e $\overline{N'}$ di S_5 (in generale di S_n), che siano permutabili ($\overline{N} \cdot \overline{N'} =$ $= \overline{N}' \cdot \overline{N}$), sono tali che ognuna di esse trasforma l'altra in se medesima ($\overline{N} = \overline{N'} \ \overline{N'} \ \overline{N'}^{-1}$, $\overline{N'} = \overline{N'} \ \overline{N'} \ \overline{N'}$), cioè sono tali che ognuna di esse trasforma in sè il centro e l'asse dell'altra e viceversa. Questo val quanto dire che il centro e l'asse della prima omologia devono essere rispettivamente punto e luogo di punti uniti per la seconda omologia e viceversa. Quindi il centro \overline{P} della prima omologia deve coincidere col centro \overline{P}' o stare sull'asse $ar{K}'$ della seconda omologia. Orbene, se fosse $\overline{P}\equiv \overline{P}'$, siccome

l'asse della prima dev'essere pure unito per la seconda omologia e d'altra parte esso non passa per \overline{P} (perchè K e K' non sono speciali), sarebbe pure $\overline{K} \equiv \overline{K'}$ e le due omologie, avendo lo stesso centro e lo stesso asse, coinciderebbero, il che non può avvenire dato che K e K' sono distinti. Dunque \overline{P} deve stare in $\overline{K'}$ e $\overline{P'}$ in \overline{K} . Viceversa, se questa situazione si verifica, le due omologie sono permutabili in quanto che ognuna di esse trasforma in se medesima l'altra.

Resta così provato che, se i due complessi K e K' sono involutorî, le due corrispondenti omologie armoniche \overline{N} e \overline{N}' di S_5 sono permutabili. Ma, se \overline{N} e \overline{N}' di S_5 sono permutabili, anche i due sistemi nulli N e N' di S_5^* lo sono; viceversa, se N e N' sono permutabili, lo sono pure \overline{N} e \overline{N}' e K e K' risultano, di conseguenza, involutorî. Resta così provato quanto volevasi dimostrare.

33. – Due K_1 e un K_2 . – Dalla proprietà associativa del prodotto di più complessi lineari segue che, se più complessi lineari $K', K'', \ldots, K^{(r)}$ sono in involuzione, raggruppandoli comunque per prodotti, si ottengono ancora complessi in involuzione. Ora, come abbiamo già visto, il prodotto di due K_1 in S_3^* è il complesso speciale K'_2 avente per direttrice l'intersezione p dei due piani rappresentanti i due complessi lineari K_1 e la condizione perchè questo K'_2 sia in involuzione col K_2 dato è che p appartenga al complesso lineare K_2 .

\S 5. - Situazioni in S_4 .

I. - Complessi lineari.

34. – In uno spazio S_4 possiamo considerare complessi lineari di punti, di rette, di piani e di S_3 . Sappiamo che un K_1 rappresenta un S_3 : $a x_0 + b x_1 + c x_2 + d x_3 + e x_4 = 0$ e un K_4 un' iperstella: $x_0 u_0 + x_1 u_1 + x_2 u_2 + x_3 u_3 + x_4 u_4 = 0$. Quanto

ai K_2 notiamo che, essendo S_4 uno spazio di dimensioni pari, un suo complesso lineare di rette è necessariamente singolare; si presentano così i due casi:

a) K_2 singolare di specie 1 o generale. – Considerazioni iperspaziali sui sistemi nulli singolari di specie h e relativi comlessi lineari di rette (7) portano a concludere che, se il K_2 è singolare di specie 1, esiste nel sistema nullo N ad esso associato un punto fondamentale O, coniugato di tutti i punti di S_4 ; appartengono perciò al K_2 tutte le rette di S_4 uscenti da questo punto, che vien detto centro del complesso. Inoltre ad una retta r uscente da O corrisponde un S_3 , omologo in N dei punti di r distinti da r0. Ne segue che r1 subordina nella stella di centro r2 un sistema nullo non singolare, in cui ad ogni retta r3 per r4 per r5 rimane associato un r5 per essa, che indicheremo con r6. Sono quindi rette di r7 anche le rette che in ogni r8 s'appoggiano alla corrispondente r7; anzi queste sono tutto le rette di r9.

Perciò ogni retta di K_2 è proiettata da O secondo un S_2 tutto di rette del K_2 e di conseguenza, proiettando il K_2 da O su di un S_3 non passante per esso otteniamo nell' S_3 un \overline{K}_2 non speciale, in quanto che esso nasce dal sistema nullo non singolare, sezione coll' S_3 del sistema nullo non singolare subordinato dal K_2 nella stella di centro O.

b) K_2 singolare di specie 3 o speciale. – Da considerazioni iperspaziali analoghe alle precedenti, discende che in questo caso il centro del complesso K_2 è un piano ω , detto piano direttore, e le rette di K_2 sono tutte e sole le rette appoggiate a ω .

Quanto ai K_3 di S_4 , essendo le figure duali dei K_2 , sono essi pure, sempre singolari. Si hanno così due tipi:

- a') K_3 singolare di specie 1 o generale. In un tale K_3 esiste un S_3 fondamentale Ω e il complesso è l'insieme di tutti gli S_2 che segano Ω secondo le rette d'un complesso lineare.
- b') K_3 singolare di specie 3 o speciale. In base alla legge di dualità si vede che un tale K_3 ammette una retta fondamentale ω e il complesso è l'insieme degli S_2 appoggiati a ω .

⁽⁷⁾ Bertini: Geometria proiettiva degl' iperspazî – cap. 50, nn. 5-8.

Si riconosce poi facilmente che il caso a') si riduce al caso b') quando il K_2 , subordinato in Ω dal K_3 generale di S_4 , è speciale.

II. - Prodotti di complessi lineari.

- 35. Prodotto di due K_1 . Per l'osservazione generale del n. 20 il prodotto di due K_1 è il complesso speciale K_2 delle rette appoggiate all' S_2 intersexione dei due S_3 rappresentati dai due K_1 .
- **36. Prodotto di tre** K_1 . In base all'osservazione generale prima ricordata il prodotto di tre K_1 è il complesso speciale K_3 dei piani appoggiati all' S_1 intersezioni dei tre iperpiani, che rappresentano i tre K_1 .
- 37. Prodotto di un K_1 per un K_2 . Si possono presentare i due casi seguenti:
- a) Il K_2 è generale. Indichiamo con Ω l' S_3 dei punti di K_1 , con O il centro di K_2 , con K_2' il complesso lineare di rette subordinato in Ω da K_2 e supponiamo in un primo momento che Ω non passi per O: allora K_2' risulta non speciale.

Dall'osservazione generale fatta al n. 19 sul prodotto di un K_1 per un K_n in S_n segue che il K_3 , prodotto di K_1 per K_2 , è l'insieme degli S_2 passanti per le rette di K'_2 .

Nel caso che Ω passi per O il K_3 è ancora l'insieme degli S_2 che segano Ω secondo le rette di K_2' , ma in questo caso K_2' è il complesso speciale avente per direttrice la retta ω omologa di Ω nel sistema nullo subordinato da K_2 nella stella di centro O.

b) Il' K_2 è speciale. – Sia ω il piano direttore di K_2 e Ω l' S_3 individuato da K_1 . Ammesso che non si appartengano, ω e Ω hanno in comune una retta r, che viene ad essere la direttrice del complesso lineare K_2' subordinato da K_2 in Ω . Perciò il complesso prodotto K_3 , essendo l'insieme dei piani passanti per gli S_1 di K_2' , viene ad essere il complesso speciale degli S_2 appoggiati ad r.

Quando ω sta in Ω il prodotto K_3 è identico e i due complessi K_1 e K_2 sono perciò involutori. Infatti, dato che ω sta in Ω , possiamo scegliere la piramide fondamentale delle coordinate in S_4 in modo che i vertici A_0 , A_1 , A_2 , A_3 , stiano in Ω e di essi i primi tre giacciano in ω . Allora l'equazione di K_1 , che è quella di Ω , riducesi a:

e l'equazione di K_2 (esprimente che la retta generica individuata dai punti x_i e y_i s'appoggia a ω) a:

$$\begin{vmatrix} x_0 & x_1 & x_2 & x_3 & x_4 \\ y_0 & y_1 & y_2 & y_3 & y_4 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{vmatrix} = 0.$$

Questo determinante, sviluppato secondo la regola di Laplace prendendo come matrice quella formata con le due prime righe, dà:

$$x_3 y_4 - x_4 y_3 = 0.$$

Quest' equazione, ricordando la definizione delle coordinate grassmanniane di retta, riducesi a:

$$X_{34} = 0$$
.

Ricorrendo alla notazione differenziale simbolica si vede allora subito che il prodotto di K_1 per K_2 svanisce identicamente, c. v. d.

38. – **Prodotto di quattro** K_1 . – Dall'osservazione generale del n. 20 discende che il prodotto di quattro K_1 è l'iperstella di centro il punto d'intersezione dei quattro iperpiani, che rappresentano i complessi K_1 .

39. - Prodotto di due K_2 . - Si presentano vari casi:

a) I due K_2 sono generali. – Siano essi i due complessi K_2' e K_2'' , di centri rispettivamente O_1 e O_2 , che per ora supponiamo distinti. Sia r la congiungente i due centri; diciamo N_1 , N_2 i due sistemi nulli indotti rispettivamente nelle stelle di centri O_1 , O_2 da K_2' , K_2'' . Il prodotto $K_4 = K_2' \cdot K_2''$ è un' iperstella con un centro U che ora determineremo.

Per questo consideriamo gl'iperpiani dell'iperstella K_4 passanti per la retta $u_1 = UO_1$. Per un teorema più volte citato sappiamo che entro ad ognuno di questi iperpiani, sia esso Σ , devono restar subordinati due complessi lineari $\overline{K_2}$, $\overline{K_2}$ in involuzione.

Ora, poichè Σ passa per O_1 , K_2' è speciale ed ha per direttrice la retta s omologa di Σ in N_1 : dunque, per la condizione d'involutorietà di $\overline{K_2'}$ e $\overline{K_2''}$ la retta s deve appartenere a $\overline{K_2''}$, cioè a K_2'' . Viceversa, se s è una retta per O_1 che stia in K_2'' , l'iperpiano Σ , ad essa corrispondente in N_1 , appartiene al complesso prodotto K_4 , cioè passa per la retta u_1 . Ma le rette s di K_2'' per O_1 formano stella in uno spazio S_3 , che indicheremo con ρ_2 , il quale non è altro che il corrispondente in N_2 della retta $r=0_1\,0_2$. Pertanto gl'iperpiani Σ predetti (omologhi delle rette s in N_1) passeranno tutti per la retta corrispondente di ρ_2 in N_1 , la quale è la u_1 cercata.

Dunque la retta u_1 si costruisce così: Si trasforma r mediante N_2 in ρ_2 , indi ρ_2 mediante N_1 in u_1 .

Analogamente, invertendo l'ufficio dei due complessi, si trasformerà r mediante N_1 nell'iperpiano ρ_1 , indi ρ_1 mediante N_2 in $u_2 = UO_2$.

Le rette u_1 , u_2 concorrono nel punto U cercato.

Per far vedere che u_1 , u_2 risultano incidenti basta dimostrare che esse sono complanari. Ora u_1 giace in ρ_2 , in quanto

che esso è l' S_3 ad essa corrispondente in N_1 : d'altra parte ρ_2 passa per r, dunque, per il fatto che nelle corrispondenze involutorie le condizioni d'appartenenza vengono mantenute, lo spazio ρ_1 , corrispondente ad r in N_1 , conterrà u_1 ; sicchè, in definitiva, u_1 giace nel piano $\pi = (\rho_1, \rho_2)$ e analogamente così avviene di u_2 .

Notiamo che, se in particolare i centri dei due complessi K_2 coincidono, cioè se è $O_1 \equiv O_2 \equiv P$, allora il centro U dell' iperstella K_4 è P stesso.

b) Uno dei due K_2 è speciale. – Sia K_2'' in tali condizioni. Diciamo π il suo piano direttore e O_1 il centro di K_2' , che in generale non giace in π .

Se O_1 giace in π , allora il centro di K_4 è O_1 stesso; nel caso contrario esso è il centro del fascio di rette rappresentante il \overline{K}_2' , subordinato dal K_2' nel piano π .

c) Entrambi i due K_2 sono speciali. – Sieno π' e π'' i piani direttori dei due complessi. Nell'ipotesi più generale π' e π'' hanno un sol punto comune U. Tale punto è il centro dell'iperstella $K_4 = K_2' \cdot K_2''$.

Infatti, se Ω è un S_3 di K_4 , in esso K_2' e K_2'' devono subordinare due complessi $\overline{K_2'}$, $\overline{K_2''}$ in involuzione. Ora $\overline{K_2'}$ e $\overline{K_2''}$ sono i complessi speciali di S_1 aventi per direttrici rispettivamente le rette: $r' = (\pi' \Omega)$ e $r'' = (\pi'' \Omega)$; per l'involutorietà di essi (vedi n. 31) r' e r'' devono essere incidenti e, poichè giacciono rispettivamente su π' e π'' , non potranno incontrarsi che nel punto $U = (\pi' \pi'')$, che perciò viene ad essere il centro di K_4 .

Se invece π' e π'' si tagliano in una retta (e quindi giacciono in un S_3) K_2' e K_2'' risultano involutorî.

Infatti in ogni S_3 di S_4 i due complessi inducono due complessi speciali con direttrici incidenti (le direttrici sono gli S_1 intersezioni dell' S_3 con π' e π''), quindi ogni S_3 di S_4 appartiene a K_4 , che perciò risulta identico.

40. - Quadrato di un K_2 . - È un caso particolare del prodotto di due K_2 , qualora i due complessi coincidano. Dalle considerazioni del numero precedente si prevede che *il quadrato di*

un K_2 generale di centro O è l'iperstella di centro O, mentre il quadrato d'un K_2 speciale è identico. Confermiamolo analiticamente.

a) Il K_2 è generale. — Scelta la piramide fondamentale delle coordinate in S_4 in modo che il suo vertice A_4 coincida con O e gli altri vertici A_3 , A_2 , A_1 , A_0 si trovino in un S_3 non contenente O, il K_2 può rappresentarsi (*) con un' equazione del tipo:

$$a_0 X_{03} + a_1 X_{12} = 0$$
.

Ora il quadrato di tale complesso è il K_4 d'equazione:

$$a_0 a_1 X_{0123} = 0$$
.

Ma, per la nota relazione di proporzionalità tra coordinate grassmanniane e plückeriane d'un iperpiano esaminata al n. 2, è: $X_{0123} = u_4$, quindi il $K_4 = (K_2)^2$ è l'iperstella d'equazione:

$$a_0 a_1 u_4 = 0$$
,

ossia, l'iperstella di centro il punto $(0,0,0,0,a_0\cdot a_1)$, cioè il punto $A\equiv O$.

b) Il K_2 è speciale. – Allora, scelta la piramide fondamentale delle coordinate in S_4 in modo che i vertici A_2 , A_3 , A_4 cadano sul piano direttore π di K_2 e A_0 , A_1 su una retta r indipendente da π , l'equazione di K_2 diventa del tipo:

$$a_0 X_{01} = 0,$$

ove a_0 altro non è che la coordinata grassmanniana X_{234} di π . Facendo il quadrato di questa equazione col ricorso alla notazione differenziale simbolica, si vede immediatamente che esso svanisce identicamente, quindi $K_4=(K_2)^2$ è, in questo caso, identico, c. v. d.

⁽⁸⁾ Vedi la teoria generale dei sistemi nulli e relativi complessi lineari di rette in: Bertini - Geometria proiettiva degl' iperspaxi - cap. 50, nn. 5, 6, 7, 8.

- 41. Prodotto di due K_1 per un K_2 . Poichè il prodotto dei due K_1 è il K_2' speciale degli S_1 appoggiati al piano π , intersezione dei due S_3 rappresentanti i due K_1 , così, per la proprietà associativa del prodotto di complessi lineari, potremo dire che il prodotto dei due K_1 considerati per K_2 è uguale al $K_4 = K_2' \cdot K_2$. Perciò, secondochè K_2 è generale o speciale, si presentano le alternative b, c) del caso trattato al n. 39. Si ha quindi un caso involutorio (vedi c) se i due S_3 , individuati dai due K_1 , e il piano direttore di K_2 si tagliano in una retta.
- **42. Prodotto di un** K_1 **per un** K_3 . Si presentano i seguenti casi:
- a) Il K_3 è generale. Sia Ω l' S_3 dei punti di K_1 e Ω' lo spazio direttore di K_3 . Nell' ipotesi generale Ω e Ω' si tagliano in un piano, che indicheremo con π .

Per il teorema generale sul prodotto d'un K_1 per un K_n in S_n (vedi n. 19) possiamo affermare che il $K_4=K_1\cdot K_3$ è l'iperstella degli S_3 passanti per gli S_2 del complesso K_3' , subordinato in Ω dal K_3 , cioè l'iperstella avente per centro il centro U della stella di piani individuata in Ω da K_3' . Orbene, siccome K_3' è il complesso subordinato dal K_3 in Ω e il K_3 è l'insieme degli S_2 di S_4 che tagliano Ω secondo le rette d'un K_2 , così K_3' sarà la stella di piani di Ω che segano π secondo le rette del complesso K_2' , indotto in π da K_2 . Ma K_2' è rappresentato da un fascio di rette di ω con un certo centro P: ne segue che $U \equiv P$.

Notiamo in particolare che, se Ω e Ω' coincidono, il prodotto K_4 svanisce identicamente: ossia in questo caso K_1 e K_3 sono involutorî.

b) Il K_3 è speciale. – Sia Ω l' S_3 dei punti di K_1 e ω la retta, a cui s'appoggiano i piani di K_3 : si riconosce facilmente che il centro U dell' iperstella $K_4 = K_1 \cdot K_3$ è il punto d'intersezione di ω con Ω .

In particolare, se ω giace in Ω , si ha ancora un caso involutorio.

III. - Casi normali d'involutorietà.

- **43.** Cinque K_1 . Per l'osservazione generale fatta alla fine del n. 17 possiamo affermare che cinque complessi lineari di punti in S_4 sono involutori, se i cinque iperpiani da essi individuati passano per un punto.
- **44.** Un K_1 e un K_4 . Dall'osservazione generale del n. 18 deduciamo che un K_1 e un K_4 in S_4 sono involutorî, quando l'iperpiano K_1 passa per il centro dell'iperstella K_4 .
- 45. Un K_1 e due K_2 . Per la proprietà associativa del prodotto di complessi lineari la condizione d'involutorietà di un K_1 e due K_2 riducesi alla condizione d'involutorietà del K_1 e del K_4 , prodotto dei due K_2 . Orbene il K_4 , prodotto dei due K_2 , è un'iperstella di S_4 , il cui centro U si determina in base alle considerazioni fatte al n. 39; i tre complessi lineari considerati saranno dunque involutori se l'iperpiano Ω , individuato dal K_1 , passa per il punto U così determinato.
 - **46.** Un K_2 e un K_3 . Si presentano i casi seguenti:
- a) K_2 e K_3 generali. Sia O il centro di K_2 , Ω l' S_2 singolare di K_3 e Φ e Ψ i complessi lineari di rette indotti in Ω rispettivamente da K_2 e K_3 . Dimostriamo che la condizione d'involutorietà di K_2 e K_3 riducesi alla condizione d'involutorietà in Ω di Φ e Ψ .

Per questo decomponiamo K_3 in un K_1 per un K_2' : a norma di quanto si disse al n. 37, K_1 sarà lo stesso spazio Ω e il centro O_1 di K_2' resterà arbitrario, essendo, dopo ciò. K_2' individuato dal dover subordinare in Ω il complesso Ψ . Con questa decomposizione di K_3 la condizione d'involutorietà di K_2 e K_3 riducesi alla condizione d'involutorietà di $K_4 = K_2 \cdot K_2'$ e K_1 . Ora K_4 è un'iperstella, il cui centro U si determina col metodo indicato al n. 39; la condizione d'involutorietà cercata è dunque che U giaccia in Ω (ed appena vi giace per una posizione di O_1 vi giace per tutte le altre, come risulterà da

i i 💃

quello che segue), ossia che Ω appartenga a K_4 . Ma, per il teorema generale sul prodotto di complessi lineari visto alla fine del n. 16, Ω appartiene a $K_2 \cdot K_2'$, se i complessi Φ e Ψ in esso subordinati da K_2 e K_2' sono involutori; quindi, come avevamo affermato, K_2 e K_3 sono involutori se lo sono in Ω Φ e Ψ (°).

b) K_2 speciale e K_3 generale. – Sia ω il piano direttore di K_2 , Ω l' S_3 singolare di K_3 e Φ e Ψ i due complessi lineari di rette indotti in Ω rispettivamente da K_2 e K_3 .

Sempre in base alla proprietà associativa del prodotto di complessi lineari la condizione d'involutorietà del K_2 e K_3 considerati equivale, come precedentemente, alla condizione d'involutorietà in Ω di Φ e Ψ ; ma in questo caso Φ è il complesso speciale degli S_1 appoggiati alla retta $r=(\omega,\Omega)$, quindi tutto si riduce alla condizione che r appartenga a Ψ .

c) K_2 generale e K_3 speciale. – Sia O il centro di K_2 e r la retta, a cui s'appoggiano i piani di K_3 . Potremo allora pensare K_3 decomposto nel prodotto di un K_1 per un K_2' speciale, tali che l'iperpiano Ω , rappresentante K_1 , e il piano direttore ω di K_2' s'intersechino in r. Ragionando come nei casi precedentemente trattati si giunge a concludere che K_2 e K_3 sono involutori in S_4 se lo sono in Ω Φ e Ψ . Ora, però, Ψ è il complesso speciale di direttrice r; quindi, per l'involutorietà di Φ e Ψ , r dovrà appartenere a Φ e di conseguenza a K_2 . Si ha dunque che un K_2 generale e un K_3 speciale sono involutori se la retta r, a cui s'appoggiano gli S_2 di K_3 , appartiene a K_2 .

Potevamo ragionare anche nel modo seguente.

Per le osservazioni svolte al n. 39 sappiamo che il centro U di $K_4 = K_2 \cdot K_2'$ giace in un ω , essendo esso il centro del fascio di rette rappresentante il \overline{K}_2 subordinato in ω da K_2 :

⁽⁹⁾ Il procedimento ora seguito per la ricerca della condizione d'involutorietà di un K_2 e un K_3 in S_4 può generalizzarsi negli spazi S_n di dimensione pari per la ricerca della condizione d'involutorietà di un K_2 e un K_{n-1} . Infatti, se n è pari, un K_{n-1} ammette sempre un S_{n-1} , Ω , singulare e allora possiamo decomporre K_{n-1} nel K_1 , rappresentato da Ω , per un K_{n-2} , essendo questo assoggettato alla sola condizione d'indurre in Ω il complesso lineare Ψ per cui passano gli S_{n-2} di K_{n-1} .

d'altra parte per l'involutorietà di K_1 e $K_4 = K_2 \cdot K_2'$, a cui, come abbiamo già visto, si riduce l'involutorietà di K_2 e K_3 , Ω deve passare per U, quindi U deve giacere sulla retta $r = (\omega, \Omega)$. Orbene, come abbiamo già osservato in principio, un K_3 speciale avente per S_1 fondamentale la retta r può decomporsi in infiniti modi nel prodotto di un K_1 per un K'_2 speciale, purchè tanto l'iperpiano Ω rappresentante K_1 quanto il piano direttore ω di K'2 passino per r. Potremo dunque affermare che il K_2 e il K_3 considerati sono involutori quando almeno in un S_2 per r il complesso indotto da K_2 è un fascio col centro U su r. Ora un piano ω per r determina con O un S_3 , Σ , ed il centro U, di cui sopra si parla, è la traccia su ω della retta s corrispondente a Σ nel sistema nullo N, indotto da K_2 nella stella O. Al variare di ω per r, Σ descrive un fascio avente per sostegno il piano $\alpha = (0, r)$, e quindi s un fascio in un piano π per O. Per l'involutorietà di K_2 e K_3 bisognerà dunque che r s'appoggi a π , ossia ad una delle rette s. Ma l' S_3 , Σ , corrispondente in N alla s, a cui s' appoggia r, passa per r, quindi r è una retta di K_2 .

Siamo così giunti, per altra via, al risultato di prima, senonchè col ragionamento ora seguito si mette in evidenza il fatto che la scomposizione di K_3 in K_1 e K_2' può farsi in ∞^1 modi, cioè in tanti modi, quanti sono gli S_2 , ω , di Σ passanti per r: infatti per qualunque ω passante per r e giacente in Σ la situazione che si desidera è verificata.

d) K_2 e K_3 speciali. – Sia π il piano direttore di K_2 e r la retta, a cui s'appoggiano i piani di K_3 . Come nel caso precedente possiamo pensare K_3 decomposto in un K_1 e un K_2 speciale tali, che l'iperpiano Ω , rappresentante K_1 , e il piano direttore di K_2 s'intersechino nella retta r e allora la condizione d'involutorietà di K_2 e K_3 si traduce nella condizione d'involutorietà in Ω dei complessi Φ e Ψ subordinati in Ω rispettivamente da K_2 e K_2 , la quale condizione è soddisfatta non appena Ω appartiene all'iperstella $K_4 = K_2 - K_2$. Ora il centro U di K_4 è, come sappiamo, il punto comune ai piani ed ω : se ne deduce che, se un K_2 e un K_3 speciali sono involutori, la retta r, centro di K_3 , incontra il piano direttore π di K_2 .

- 47. Tre K_1 e un K_2 . Per la proprietà associativa del prodotto di complessi lineari risulta che la condizione d'involutorietà di tre K_1 e un K_2 si riconduce alla condizione d'involutorietà del K_2 considerato col complesso speciale K_3 , prodotto dei tre K_1 . Perciò, secondochè il complesso K_2 è generale o speciale, si presentano i due ultimi casi trattati nel numero precedente.
- **48. Due** K_1 **e un** K_3 . Per ragioni analoghe alle precedenti la condizione d'involutorietà di due K_1 e un K_3 si riconduce alla condizione d'involutorietà del K_3 e del K_2 speciale, prodotto dei due K_1 . Così, secondochè K_3 è generale o speciale, si presentano le alternative b) e d) trattate al n. 46.

§ 6. – Situazioni in S_5

I. - Complessi lineari.

49. In S_5 possiamo considerare complessi lineari di punti, di rette, di piani, di S_3 e di S_4 . Notiamo subito che in S_5 un K_1 è la figura duale d'un K_5 , un K_2 di un K_4 , mentre un K_3 è figura duale di se stessa.

Per le considerazioni generali fatte al \S 1 di questo capitolo possiamo affermare senz'altro che un K_1 in S_5 rappresenta un S_4 e un K_5 un'iperstella di S_4 . Quanto ai K_2 , essendo S_5 uno spazio di dimensione dispari, essi sono in generale non singolari; possono, però, essere anche singolari ed allora si presentano i due casi:

a) K_2 singolare di specie 2. – Da considerazioni iperspaziali sui sistemi nulli e sui complessi lineari di rette singolari risulta che nel caso d' un K_2 singolare di specie 2 esiste in S_5 una retta fondamentale r, i cui punti sono coniugati a tutti i punti di S_5 ; fanno quindi parte del K_2 considerato tutte le rette appoggiate alla r, che viene perciò chiamata centro del complesso.

Ora il sistema nullo N di S_5 associato al complesso lineare K_2 subordina nella stella di centro la retta r (che, come insieme degli S_2 , S_3 , S_4 passanti per r, può considerarsi uno spazio a tre dimensioni, di cui gli S_2 e gli S_4 sono rispettivamente i punti e gli iperpiani) un sistema nullo N_1 , in cui ad un piano π per r corrisponde un S_4 per π . Sono quindi rette del complesso K_2 tutte le S_1 appoggiate agli S_2 per r e contenute negli S_4 ad essi corrispondenti in N_1 . In ogni S_4 per r viene dunque subordinato dal K_2 un complesso lineare speciale K_2 , di cui l' S_2 , omologo dell' S_4 in N_1 , è il piano direttore. Se consideriamo invece un S_4 non passante per r, esso sarà incontrato da r in un punto, che viene ad essere il centro del $K_2^{\prime\prime}$ generale, indotto da K_2 nell' S_4 considerato.

b) K_2 singolare di specie 4. In questo caso esiste in S_5 un S_3 fondamentale, che indicheremo con Ω , detto centro del complesso: il K_2 considerato è allora formato da tutte e sole le rette appoggiate ad Ω .

Quanto ai K_4 in S_5 notiamo che anch'essi, come figure duali dei K_2 , possono essere o *generali o singolari*; in questo secondo caso si presentano le due alternative:

- a') K_4 singolare di specie 2. Allora in K_4 esiste un S_3 fondamentale Ω e il complesso lineare è l'insieme degli S_3 che tagliano Ω secondo rette d'un \overline{K}_2 .
- b') K_4 singolare di specie 4. In un tale K_4 esiste una retta fondamentale ω , per cui il K_4 viene ad essere l'insieme degli S_3 appoggiati ad ω .

Notiamo infine che il caso precedente a') si riduce al caso b') ora trattato qualora il complesso \overline{K}_2 , subordinato dal K_1 in Ω , sia speciale: in tal caso la retta fondamentale ω è la direttrice di \overline{K}_2 .

50. – Quanto ad un K_3 osserviamo ch'esso ha in S_5 comportamento analogo a quello d'un K_2 in S_3 . Infatti, come un K_2 in S_3 , così un K_3 in S_5 è figura duale di se stessa e inoltresso può essere o generale o speciale, il secondo caso presen tandosi allorquando i venti coefficienti dell'equazione del complesso si possono interpretare come coordinate grassmanniane

d'un S_2 in S_5 . Ma, come per due S_1 in S_3 , così per due S_2 in S_5 la condizione d'incidenza s'esprime (vedi n. seguente) eguagliando a zero una relazione bilineare tra le loro coordinate grassmanniane; perciò un K_3 speciale in S_5 viene ad essere l'insieme dei piani di S_5 appoggiati ad un S_2 fisso.

51. - In questo numero cercheremo di dare alla condizione d'incidenza di due S_2 in S_5 una interpretazione che ci possa servire per altre considerazioni che svolgeremo nel seguito. A tale scopo ricordiamo che le coordinate grassmanniane d'un S_2 in S_5 sono venti qualunque minori del 3º ordine, tra di loro distinti, estratti dalla matrice formata con le coordinate x'_i, x''_i, x'''_i (i = 1, 2, ..., 6) di tre punti linearmente indipendenti dell' S_2 . Orbene, per i nostri scopi ci converrà di scegliere le coordinate dell' S_2 in modo che dieci di esse, X_{ikl} , corrispondano a dieci combinazioni senza ripetizione, i k l, di classe tre dei numeri 1, 2, 3, 4, 5, 6, tali che due qualunque di esse non siano costituite da terne complementari e le altre, X_{mnp} , a dieci combinazioni senza ripetizione, m n p, di classe tre, sempre dei numeri 1, 2, 3, 4, 5, 6, tali che la terna m n p sia complementare della terna i k l e che la permutazione i k l m n p dei numeri 1, 2, 3, 4, 5, 6 sia pari. Allora, se x'_i , x''_i , x'''_i e y'_i , y''_i , y'''_i sono le coordinate di due terne di punti linearmente indipendenti che individuano due piani incidenti, ω e π , di S_5 , per la dipendenza di queste coordinate (dovuta al fatto che ω e π , essendo incidenti, stanno al massimo, in un S_4) dovrà essere:

$$\begin{vmatrix} x_1' & x_2' & x_3' & x_4' & x_5' & x_6' \\ x_1'' & x_2'' & x_3'' & x_4'' & x_5'' & x_6'' \\ x_1''' & x_2''' & x_3''' & x_4''' & x_5''' & x_6''' \\ y_1' & y_2' & y_3'' & y_4' & y_5' & y_6' \\ y_1''' & y_2''' & y_3''' & y_4'' & y_5'' & y_6'' \\ y_1''' & y_2''' & y_3''' & y_4''' & y_5''' & y_6'' \end{vmatrix} = 0$$

Dallo sviluppo secondo la regola di Laplace di questo determinante, prendendo come matrice quella formata con le prime tre righe, segue, indicando con X e Y rispettivamente le coordinate di ω e di π e ricordando le convenzioni fatte sulla scelta delle coordinate grassmanniane d'un S_2 in S_5 , che la condizione d'incidenza di ω e π s'esprime con la seguente relazione:

(1)
$$\sum (X_{ikl} Y_{mnp} - X_{mnp} Y_{ikl}) = 0,$$

ove la sommatoria va estesa alle dieci permutazioni $i \ k \ l \ m \ n \ p$ predette degl' indici $1, 2, \ldots, 6$.

Orbene, se interpretiamo X e Y come coordinate di punto in un S_{19} , la formula (1) ci dà la relazione bilineare che lega le coordinate di due punti coniugati in un sistema nullo di questo spazio. Di tale risultato ei serviremo in seguito trattando della condizione d'involutorietà di due K_3 in S_5 .

II. Prodotti di complessi lineari.

- **52. Prodotto di due** K_1 . Per l'osservazione generale del n. 20 notiamo che *il prodotto di due* K_1 *in* S_5 è *il* K_2 (singolare di specie 4) delle rette appoggiate all' S_3 intersexione dei due S_4 rappresentanti i K_1 .
- 53. Prodotto di tre K_1 . Sempre per l'osservazione generale prima ricordata il prodotto di tre K_1 in S_5 è il K_3 speciale dei piani appoggiati all' S_2 intersezione dei tre S_4 rappresentanti i K_1 .
- **54.** Prodotto di un K_1 per un K_2 . Si presentano i casi seguenti:
- a) Il K_2 è generale. Sia Ω l' S_4 rappresentante il K_1 e K_2' il complesso subordinato in Ω dal K_2 . Per l'osservazione generale del n. 19 il prodotto di K_1 per K_2 è il K_3 degli S_2 che tagliano Ω secondo le rette di K_2' .

Orbene, nell'ipotesi in cui ci siamo posti che K_2 sia generale, K_2' non può essere speciale. Infatti, se K_2' fosse speciale, dovrebbe esistere in Ω un piano ω , a cui sono appoggiate tutte le rette di K_2' : allora il sistema nullo individuato da K_2 in S_5 degenererebbe in quanto che in esso ai punti di ω corrisponde-

rebbe un iperpiano fisso. Ω , e quindi K_2 sarebbe singolare, contro l'ipotesi.

b) Il K_2 è singolare di specie 2. – Il K_3 prodotto è ancora l'insieme degli S_2 che tagliano Ω secondo le rette di K_2' . Quest' ultimo complesso è generale come nel caso a) ed ha per centro il punto d'intersezione di Ω con la retta r, centro di K_2 .

Nel caso particolare che r appartenga ad Ω K_2' è speciale e il relativo piano direttore è l' S_2 , ω , corrispondente a Ω nel sistema nullo indotto da K_2 nella stella (r). Perciò in questo caso il prodotto K_3 è speciale ed è l'insieme degli S_2 appoggiati ad ω .

c) Il K_2 è singolare di specie 4. – Se K_2 è singolare di specie 4 ed Ω è il suo S_3 fondamentale, allora K_2' è speciale ed il suo piano direttore ω è l' S_2 intersezione di Ω con Ω . In questo caso dunque il prodotto K_3 è certamente speciale, essendo esso l'insieme dei piani appoggiati a ω .

Se, in particolare, Ω appartiene a Ω , K_3 è identico, ossia K_1 e K_2 sono involutorì.

- **55.** Prodotto di quattro K_1 , Sempre in base all'osservazione generale del n. 20 possiamo affermare che il prodotto di quattro K_1 è il K_4 (singolare di specie 4 degli S_3 appoggiati all' S_1 intersezione dei quattro S_4 , che rappresentano i K_1 .
- 56. Prodotto di un K_1 per un K_3 . Sia Ω ΓS_4 rappresentante il K_1 e K_3' il complesso subordinato in Ω dal K_3 . Per Γ osservazione, già citata, del n. 19 il $K_4 = K_1 + K_3$ è Γ insieme degli S_3 , che tagliano Ω secondo gli S_2 di K_3' .

Orbene K_3' può essere generale o speciale, il secondo caso presentandosi allorchè K_3 è speciale, ossia quando K_3 è l'insieme dei piani appoggiati ad un S_2 fisso, ω : allora la retta, a cui sono appoggiati i piani di K_3' , è evidentemente la retta $r = (\omega, \Omega)$.

Dunque, se K_3 è speciale, il prodotto K_4 è singolare di specie 4, poichè allora i suoi S_3 sono gli S_3 appoggiati alla r.

Se, essendo K_3 speciale, ω appartienc a Ω , si ha un case involutorio.

57. – Prodotto di due K_2 . – Sieno K_2' e K_2'' i due complessi considerati; nel caso generale non possiamo dire altro che il loro prodotto K_4 è l'insieme degli ∞^7 S_3 , Ω , di S_5 entro ai quali K_2' e K_2'' subordinano complessi \overline{K}_2' e \overline{K}_2'' involutori.

Ora degli ∞^7 S_3 di K_4 se ne possono determinare facilmente ∞^5 in base alle seguenti osservazioni.

Sieno N' e N'' i sistemi nulli di S_5 che generano i complessi K_2' e K_2'' . Si consideri un punto P di S_5 e sieno S' e S'' gli S_4 ad esso corrispondenti rispettivamente in N' e N''; allora tutte le rette di S' per P appartengono a K_2' e tutte le rette di S'', pure per P, appartengono a K_2'' . Indichiamo con Ω 1' $S_3 = (S', S'')$: un tale S_3 appartiene al $K_4 = K_2' \cdot K_2''$. Infatti le rette della stella di Ω di centro P appartengono tanto a K_2' che a K_2'' : questo significa che i complessi $\overline{K_2'}$ e $\overline{K_2''}$, indotti in Ω rispettivamente da K_2' e K_2'' , sono speciali con le direttrici incidenti in P. Ma allora K_2' e K_2'' sono involutori e perciò Ω appartiene a K_4 , c. v. d.

Questo ragionamento si può ripetere per ogni altro punto dell' S_5 : si trovano così ∞^5 S_3 del complesso K_4 .

Osserviamo che per il prodotto di due K_2 si può dire qualcosa di più in alcuni casi particolari che ora esamineremo.

1) Uno dei due K_2 è singolare di specie 4. – Sia il K_2'' in queste condizioni e indichiamo con Ω'' il suo S_3 fondamentale. Allora, sia che K_2' sia generale o singolare di specie 2, il $K_4 = K_2' \cdot K_2''$ è il complesso singolare (di specie 2) degli S_3 , Ω , che tagliano Ω'' secondo le rette del complesso lineare φ , subordinato in Ω'' da K_2' .

Infatti in questo caso dei due complessi \overline{K}_2' , \overline{K}_2'' indotti in Ω da K_2' e K_2'' il \overline{K}_2'' è il complesso lineare speciale avente per direttrice la retta $r = (\Omega, \Omega'')$, quindi, per l'involutorietà di K_2' e K_2'' , r dovrà appartenere a \overline{K}_2' , quindi a K_2' ed infine, giacendo in Ω , a φ , c. v. d.

In particolare se, essendo K_2' singolare di specie 2, avviene che Ω'' , passando per il centro r di K_2' , contiene un piano ω per r e giace nell' S_4 omologo di ω nel sistema nullo indotto da K_2' nella stella (r), allora tutte le rette di Ω'' appartengono a K_2' ,

quindi φ , contenendo tutte le rette di Ω'' , è identico. Ma allora lo è anche K_4 , perchè viene a contenere tutti gli S_3 di S_5 ; perciò- K_2' e K_2'' sono involutorì.

2) I due K_2 sono entrambi singolari di specie 4. – Allora il loro prodotto è il K_4 singolare (di specie 4) degli S_3 , Ω , appoggiati alla retta r, intersezione dei loro spazi fondamentali Ω' e Ω'' .

Infatti in questo caso K_2' e K_2'' sono i due complessi speciali di Ω aventi per direttrici le rette $r' = (\Omega, \Omega')$ e $r'' = (\Omega, \Omega'')$. Per l'involutorietà di \overline{K}_2' e \overline{K}_2'' r' e r'' dovranno essere incidenti e il loro punto d'incontro cadrà, evidentemente, sulla $r = (\Omega', \Omega'')$: quindi gli S_3 di K_4 s'appoggiano tutti a r, e. v. d.

58. – Quadrato d'un K_2 . – Indichiamo con N il sistema nullo individuato in S_5 dal K_2 e ricordiamo che in esso ad un S_0 corrisponde un S_4 per l' S_0 . ad un S_1 un S_3 , non avente in generale relazione d'incidenza con l' S_1 , ad un S_2 un S_2 , ad un S_3 un S_1 e a un S_4 un S_0 di S_4 stesso. Si dimostra facilmente che un S_3 e un S_1 omologhi in N sono sghembi o si appartengono e così pure che due S_2 corrispondenti in N sono sghembi o coincidono.

Come un S_2 coincidente col suo omologo viene chiamato piano autoconiugato in N, così chiameremo autoconiugato in N un S_3 che contiene l' S_1 ad esso corrispondente.

Osserviamo che, se S è un S_3 autoconiugato in N, il complesso lineare in esso indotto da K_2 è speciale e la retta r, omologa di S in N, ne è la direttrice e viceversa. Non solo, ma ogni piano π per r e giacente in S è tutto costituito da rette di K_2 , quindi, come si vede subito, è un piano autoconiugato. Viceversa, se π è un S_2 autoconiugato, ogni S_3 per esso è pure autoconiugato e la retta corrispondente a quell' S_3 giace in π . Ne segue che gli S_2 autoconiugati in N sono i piani totali di K_2 , mentre gli S_3 autoconiugati sono gli S_3 passanti per i piani totali di K_2 . Ora per ogni piano totale di K_2 passano ∞^2 S_3 , mentre in ogni S_3 autoconiugato giacciono ∞^1 piani totali, che formano fascio intorno alla retta r omologa dell' S_3 .

Dimostriamo che il $K_4 = K_2^2$ è l'insieme degli S_3 autoconiugati in N.

Difatti, se Ω è un S_3 di K_2^2 , il K_2 dovrà subordinare in esso un complesso lineare di rette involutorio con se stesso, cioè speciale. Quindi gli S_3 di K_2^2 sono quelli nei quali K_2 induce un complesso speciale, cioè gli S_3 autoconiugati in N, c. v. d.

Tenuto conto che gli S_3 di K_2^2 sono ∞^7 e che ognuno contine ∞^1 piani totali di K_2 , mentre per ogni S_2 totale passano ∞^2 S_3 di K_2^2 , ne segue che il sistema dei piani totali di K_2 è ∞^6 .

59. – Prodotto d' un K_2 per due K_1 . – Sieno K_1' , K_1'' e K_2 i tre complessi, di cui ricerhiamo il prodotto; indichiamo con Ω' , Ω'' i due S_4 che rappresentano K_1' e K_1'' e con $\bar{\Omega}$ l' $S_3 = (\Omega', \Omega'')$. In base alla proprietà associativa del prodotto di complessi lineari il prodotto dei tre complessi considerati si riduce al $K_4 = \bar{K}_2 \cdot K_2$, ove $\bar{K}_2 = K_1' \cdot K_1''$. Ma \bar{K}_2 è il complesso singolare (di specie 4) delle rette appoggiate a $\bar{\Omega}$; perciò, in base, a quanto abbiamo visto al n. 57, potremo senz' altro affermare che, se K_2 è generale o singolare di specie 2, il complesso $K_1' \cdot K_1'' \cdot K_2$ è il K_4 singolare (di specie 2) degli S_3 , che tagliano $\bar{\Omega}$ secondo le rette del complesso Φ subordinato in $\bar{\Omega}$ da K_2 , mentre, se K_2 è singolare di specie 4, il prodotto $K_1' \cdot K_1'' \cdot K_2$ è il K_4 singolare (di specie 4) degli S_3 appoggiati alla retta $r = (\bar{\Omega}, \Omega)$, ore Ω è l' S_3 fondamentate di K_2 .

In particolare, se Φ è identico, i complessi K'_1 , K''_1 , K_2 sono involutorì, comè risulta dalle considerazioni svolte alla tine del caso 1°) del n. 57.

- **60.** Prodotto di cinque K_1 . In base ad un'osservazione generale più volte citata possiamo affermare che il prodotto di cinque K_1 è l'iperstella di centro il punto comune ai cinque S_4 , che rappresentano i complessi considerati.
- 61. Prodotto d' un K_1 per un K_4 . Indichiamo con Ω l' S_4 che rappresenta il K_1 e con K_4' il complesso subordinato

in Ω dal K_4 . Dall'osservazione generale del n. 19 discende immediatamente che il $K_5 = K_1 \cdot K_4$ è l'iperstella avente per centro il centro U di K_4' .

Notiamo in particolare che, se K_4 è singulare di specie 2, U giace nel piano intersezione di Ω con l' S_3 fondamentale di K_4 , mentre, se K_4 è singulare di specie 4, U è il punto d'intersezione di Ω con la retta fondamentale ω di K_4 .

In quest'ultima ipotesi, se ω giace in Ω , il K_1 e K_4 risultano involutorî.

62. - **Prodotto d' un** K_1 **per due** K_2 . - In base alla proprietà associativa del prodotto di complessi lineari notiamo che, detti K_2' , K_2'' i due complessi lineari di rette considerati, il prodotto di essi per un K_1 è uguale al complesso prodotto di K_1 per $K_4 = K_2' \cdot K_2''$. Siamo così ricondotti al caso trattato nel numero precedente, osservando che, per quanto abbiamo visto al n. 57, K_4 , come prodotto di due K_2 , è singolare di specie 2, se dei due complessi K_2' e K_2'' uno è singolare di specie 4, ed è singolare di specie 4, se entrambi i complessi K_2' e K_2'' sono singolari di specie 4.

In quest'ultimo caso, se la retta intersezione dei due S_3 fondamentali giace nello spazio Ω di K_1 , si ha involutorietà.

63. – Prodotto d'un K_2 per un K_3 . – Il prodotto $K_2 \cdot K_3$ è l'iperstella degli S_4 , $\overline{\Omega}$, entro ai quali K_2 e K_3 subordinano due complessi \overline{K}_2 , \overline{K}_3 involutori.

Orbene, siccome Ω è uno spazio a quattro dimensioni, i complessi \overline{K}_2 e \overline{K}_3 possono essere generali o speciali; si presentano così per l'involutorietà di essi le quattro alternative trattate nel n. 46. Anzi da quanto s' è visto in quel numero seguono le seguenti considerazioni.

1) K_3 non speciale e K_2 qualunque. - Un K_3 generale di S_5 induce in un S_4 , Ω , un \overline{K}_3 , che ammette ivi un S_3 fondamentale Ω' . Tutti gli S_2 di Ω' stanno in K_3 , cioè in K_3 , talchè Ω' è uno spazio totale di K_3 . Ora in S_5 vi sono ∞^4 di tali Ω' totali, poichè in ogni S_4 ne giace uno ben determinato

(formano una figura duale d'una congruenza di rette d'indice 1), e d'altra parte, come in seguito vedremo, un Ω' è tale per ∞^1 $\overline{\Omega}$. È chiaro inoltre che un Ω' totale è spazio fondamentale in ciascuno degli ∞^1 Ω per esso, per il relativo \overline{K}_3 . Questo e l'insieme degli S_2 che segano Ω' secondo le rette d'un complesso lineare Ψ , il quale, al variare di $\overline{\Omega}$ nel fascio di asse Ω' , varia anch'esso in un fascio (come si verifica, ad es., per via analitica).

Ora sia Φ il complesso lineare indotto da K_2 in Ω' . La condizione affinchè $\bar{\Omega}$ appartenga al complesso K_5 è che Φ e Ψ siano involutori. Variando Ω nel fascio di asse Ω' , Φ resta fisso e Ψ varia in un fascio, quindi esiste una (ed una sola, a meno che non lo siano tutte) posizione di $\bar{\Omega}$ per cui Φ e Ψ sono involutori.

Si vede così che per ciascuno degl' \mathbf{x}^4 spazi Ω' totali per K_3 passa un iperpiano Ω dell'iperstella K_5 , che resta determinato nel modo predetto.

2) K_3 speciale e K_2 qualunque. Il centro dell'iperstella K_5 è il centro U del fascio di rette che rappresenta il complesso indotto da K_2 nel piano direttore ω di K_3 .

Infatti, se K_3 è speciale, pure K_3 risulta tale e il suo S_1 fondamentale è la retta $r=(\Omega,\omega)$. Ma allora la condizione d'involutorietà di K_3 e K_2 (vedi n. 46, c.)) è che r stia in K_2 , cioè in K_2 . Dunque Ω , per appartenere a K_5 , deve tagliare ω in una retta di K_2 , quindi passare per il centro U del fascio di rette indotto su ω da K_2 , e. v. d.

3) K_2 singolare di specie 4 e K_3 qualunque. — Allora il centro di K_5 è il centro U della stella di S_2 che rappresenta il complesso subordinato dal K_3 nell' S_3 fondamentale, Ω , di K_2 .

Infatti, se K_2 è singolare di specie 4, il K_2 risulta speciale e il suo piano direttore è l' S_2 $\omega = (\bar{\Omega}, \Omega)$. Perciò se K_3 e generale, detto Ω' l' S_3 fondamentale di K_3 , dalle considerazioni svolte al n. 46, b) si deduce che per l'involutorietà di K_2 e K_3 occorre e basta che la retta $r = (\omega, \Omega')$ appartenga al complesso

 Ψ , secondo le cui rette gli S_2 di \overline{K}_3 segano Ω' ; vale a dire ω deve appartenere a \overline{K}_3 , ossia a K_3 . Ma i piani di K_3 in Ω formano una stella di centro I', perciò, siccome ω sta in $\overline{\Omega}$, $\overline{\Omega}$ dovrà passare per U.

La sufficienza è evidente dal momento che K_5 dev'essere un'iperstella.

Se poi Ω è spazio totale di K_3 , il prodotto K_5 è identico, quindi K_2 e K_3 risultano involutori.

In particolare se anche K_3 è speciale il centro U di K_5 è il punto d'intersezione di Ω col piano direttore ω di K_3 .

- **64. Prodotto di due** K_1 **per un** K_3 . Sieno K_1' , K_1'' , K_3 i tre complessi ed Ω' , Ω'' gli S_4 che rappresentano i due complessi di punti. L'iperstella $K_1' \cdot K_1'' \cdot K_3$ è il $K_5 = K_2 \cdot K_3$, ove $K_2 = K_1' \cdot K_1''$. Ma K_2 è il complesso singolare di specie 4 avente per S_3 fondamentale lo spazio $\Omega = (\Omega', \Omega'')$, quindi (vedi caso 3^0) del numero precedente) il centro di K_5 è il centro U del K_3' subordinato in Ω da K_3 .
- 65. Prodotto d'un K_2 per tre K_1 . Sieno K_1' , K_1'' , K_1''' e K_2 i complessi di cui ricerchiamo il prodotto e Ω' , Ω'' , Ω''' gli iperpiani individuati dai tre K_1 . In base alla proprietà associativa del prodotto di complessi lineari avremo anche in questo caso che il complesso $K_1' + K_1'' + K_1''' + K_2$ è l'iperstella $K_5 = K_3 + K_2$, dove $K_3 = K_1' + K_1'' + K_1'''$. Ma K_3 è il complesso speciale avente per piano direttore l' S_2 $\omega = (\Omega', \Omega'', \Omega''')$, quindi (vedi n. 63, caso 2º)) il K_5 è l'iperstella il cui centro è il centro U del fascio di rette indotto in ω da K_2 .

Se, in particulare, K_2 è singulare di specie 4 ed Ω è il suo S_3 fondamentale, risulta $U=(\omega,\Omega)$.

III. - Casi normali d'involutorietà.

66. - Sei K_1 . - Per un'osservazione generale, a cui più volte abbiamo fatto ricorso, la condizione d'involutorietà di sei K_1 in S_5 è che gl'iperpiani da essi individuati passino per un punto.

- **67**. Un K_1 e un K_5 Da un'osservazione di carattere generale segue che un K_1 e un K_5 sono involutori se l'iperpiano, che rappresenta K_1 , appartiene all'iperstella.
- **68.** Un K_2 e quattro K_1 . Sieno K_1' , K_1'' , K_1''' , K_1'''' e K_2 i complessi considerati ed Ω' , Ω''' , Ω'''' , Ω'''' gli S_4 che rappresentano i quattro K_1 . La condizione d'involutorietà cercatu è che la retta $r = (\Omega', \Omega'', \Omega''', \Omega'''')$ appartenga a K_2 .

Difatti sia ω il piano, (contenente r) in cui si tagliano i primi tre iperpiani, U il centro del fascio indotto da K_2 in ω . La condizione cercata si trasforma al solito in quella che siano involutori i due complessi $K_2 \cdot K_1' \cdot K_1'' \cdot K_1'' \cdot K_1'''$. Ma il primo complesso (vedi n. 65) è l'iperstella col centro nel punto U; dunque per l'involutorietà Ω'''' deve passare per U e, siccome Ω'''' taglia ω in r, così r deve passare per U e quindi (in quanto giace in ω) appartenere a K_2 , c. v. d.

69. – Un K_2 e un K_4 . – Per il caso generale possiamo dare solamente una risposta di carattere analitico e cioè: un K_2 e un K_4 generici di S_5 sono involutori se il loro invariante è nullo.

Dal punto di vista geometrico possiamo dire qualcosa solo nei casi seguenti:

a) K_4 singolare di specie 2 e K_2 generico. – Detto Ω l' S_3 fandamentale di K_4 , la condizione d'involutorietà di K_2 e K_4 si traduce nella condizione d'involutorietà in Ω del complesso Φ , subordinato in Ω da K_2 , col complesso Ψ , secondo le rette del quale gli S_3 di K_4 tagliano Ω .

Difatti, in base alle considerazioni svolte nel n. 57, essendo K_4 singolare di specie 2, possiamo pensarlo decomposto nel prodotto d' un K_2' singolare di specie 4, avente Ω per spazio fondamentale, e un K_2'' singolare di specie 2 di direttrice r arbitraria, essendo dopo di ciò K_2'' determinato dal dover subordinare in Ω il complesso Ψ . Allora la condizione d' involutorietà di K_4 e K_2 si traduce nella condizione d' involutorietà di K_2 , K_2'' , K_2 . Senonchè K_2' , essendo singolare di specie 4, si può

pensare decomposto nel prodotto di due K_1 , che indicheremo con K_1' , K_1'' , i cui S_4 rappresentativi Ω' , Ω'' s'intersecano in Ω . Di conseguenza K_4 e K_2 saranno involutori, se è identico il complesso $K_1' \cdot K_1'' \cdot K_2'' \cdot K_2$, quindi $K_1' (K_1'' \cdot K_2'') \cdot K_2$ ed infine $K_1' [(K_1'' \cdot K_2'') \cdot K_2]$. Ora (vedi n. 54, b)) il $K_3 = K_1''' \cdot K_2''$ è il complesso dei piani, che tagliano Ω'' secondo le rette del complesso \overline{K}_2'' , subordinato in Ω'' da K_2'' ; la condizione d' involutorietà cercata si traduce dunque nella condizione che K_1' appartenga al $K_5 = K_3 \cdot K_2$ e quindi, per il teorema generale sul prodotto di complessi lineari, nella condizione che i due complessi $\overline{K_2}$, $\overline{K_3}$, subordinati in Ω' da K_2 e K_3 , siano involutori.

Orbene, poichè Ψ è il complesso subordinato in Ω da K_2'' , e quindi anche da K_2'' ed $\Omega = (\Omega', \Omega'')$, così il K_3 subordinato in Ω' da K_3 sarà l'insieme degli S_2 che tagliano Ω' secondo le rette di Ψ ; ma allora Ω è lo spazio fondamentale di K_3 e quindi spazio totale non solo per K_3 , ma anche per K_3 . Perciò, in base alle considerazioni generali svolte al n. 63 possiamo concludere, c. v. d., che K_2 e K_4 sono involutori, se lo sono in Ω Φ e Ψ .

In particolare, se K_2 è singulare di specie 4 allora Φ è speciale ed ha per direttrice la retta r, intersezione di Ω con l' S_3 fondamentale, $\overline{\Omega}$, di K_2 : perciò l'involutorietà di K_2 e K_4 implica che r appartenga a Ψ .

- b) K_4 singolare di specie 4 e K_2 generico. In questo caso possiamo pensare K_4 scomposto nel prodotto di quattro K_1 , i cui S_4 rappresentativi s' intersecano nella retta r, a cui s' appoggiano gli S_3 di K_4 . Si è così ricondotti al caso trattato nel n. 68, per cui si conclude: Un K_4 singolare di specie 4 e un K_2 generico sono involutori, se la direttrice r di K_4 appartiene a K_2 .
- e) K_2 singolare di specie 4 e K_4 generico. Due tali complessi sono involutori, se l' S_3 fondamentale, Ω , di K_2 appartiene a K_4 .

Infatti, essendo K_2 singolare di specie 4, possiamo pensarlo scomposto nel prodotto di due K_1 , che indicheremo con K_1' , K_1'' ,

i cui S_4 rappresentativi Ω' , Ω'' s' intersecano in Ω . Allora la condizione d' involutorietà di K_2 e K_4 si traduce nella condizione d' involutorietà di K_1' e $K_5 = K_1'' \cdot K_4$.

Orbene, per quanto s'è visto nel n. 67, K_1' e K_5 sono involutorî, se Ω' passa per il centro U dell'iperstella K_5 ; ma dalle considerazioni svolte al n. 61 a proposito del prodotto d' un K_1 per un K_4 , U giace in Ω'' , essendo esso il centro dell'iperstella di S_3 determinata dal complesso K_4'' , indotto in Ω'' da K_4 . Dunque K_2 e K_4 sono involutorî, se K_2 può venir scomposto in due K_1 tali che i loro iperpiani rappresentativi Ω' , Ω'' si tagliano in Ω e tali inoltre che i centri dei complessi K_4' , K_4'' in essi subordinati da K_4 giacciono in Ω . Orbene questo accade solo quando Ω appartiene a K_4 , perchè allora, condotto un iperpiano qualunque Ω' per Ω , il centro U del K_4' , ivi subordinato, giace in Ω stesso.

70. – **Due** K_1 **e un** K_4 . – Siano K_1' , K_1'' , K_4 i complessi considerati e Ω' , Ω'' gli iperpiani che rappresentano i due K_1 : per la proprietà associativa del prodotto di complessi lineari la condizione d'involutorietà cercata si traduce nella condizione d'involutorietà di K_4 e $K_2 = K_1' \cdot K_1''$. Perciò, essendo K_2 il complesso (singolare di specie 4) degli S_1 appoggiati all' S_3 $\Omega = (\Omega', \Omega'')$, ci si riconduce al caso c) del numero precedente. Se ne deduce che la condizione d'involutorietà vercata è che $\Omega = (\Omega', \Omega'')$ appartenya a K_4 .

71 - Due
$$K_3$$
. - Sieno:

$$\Sigma U_{ikt} X_{ikt} = 0$$
 , $\Sigma V_{ikt} X_{ikt} = 0$

le equazioni dei due K_3 in questione. Col ricorso alla notazione differenziale simbolica e tenendo conto delle convenzioni, con eni nel n. 51 abbiamo stabilito di scegliere le venti coordinate grassmanniane d'un piano in S_5 , la condizione d'involutorietà dei due K_3 è allora data dalla relazione:

(1)
$$\Sigma \left(U_{ikl} \ V_{mnp} - U_{mnp} \ V_{ikl} \right) = 0,$$

ove, in base alle convenzioni testè citate nel n. 51, le due terne complementari d'indici $i \ k \ l \ m \ n \ p$ devono essere tali che $i \ k \ l \ m \ n \ p$ risulti una permutazione pari dei numeri 1, 2, 3, 4, 5, 6. Si trova così per l'involutorietà di due K_3 in S_5 una condizione analitica analoga a quella di Klein per due K_3 in S_3 .

In particolare, se uno dei due K_3 è speciale, la relazione d'involutorietà (1) esprime che il piano direttore del complesso speciale appartiene al complesso non speciale; mentre, se entrambi i K_3 sono speciali, la relazione (1) esprime la condizione d'appoggio dei loro piani direttori.

Alla condizione d'involutorietà di due K_3 in S_5 possiamo dare un'altra interpretazione trasportandoci nell' S_{19} , ov'è immersa la grassmanniana V_9 dei piani di S_5 . A tale scopo ricordiamo come nel n. 51 s'era trovato che la condizione d'incidenza di due S_2 in S_5 si può esprimere mediante la relazione:

(2)
$$\sum_{i=1}^{n} (X_{ikl} Y_{ninp} - X_{ninp} Y_{ikl}) = 0,$$

la quale, interpretata nell' S_{19} , ci dà la relazione che lega le coordinate X, Y di due punti coniugati in un sistema nullo N di S_{19} .

In base a questo risultato dimostriamo che la condizione d'involutorietà di due K_3 in S_5 equivale in S_{19} alla condizione di coniugio nel sistema nullo N dei due iperpiani di S_{19} , corrispondenti ai due K_3 .

Per questo notiamo che, se nella (2) pensiamo fisse le X e variabili le Y, essa ci rappresenta in S_{19} un iperpiano, per cui si vede che i punti Y, coniugati in X d'un punto fisso X, variano in un iperpiano; le coordinate plückeriane U_{tkl} di questo iperpiano sono i coefficienti delle Y nella (2), abbiamo cioè:

(3)
$$\begin{cases} U_{ikl} = -X_{mn_l} \\ U_{mn_l} = X_{ikl} \end{cases} .$$

Ora la condizione di coniugio di due iperpiani U e V è che al secondo appartenga il punto X omologo del primo, cioè che valga la relazione:

$$\sum V_{ikl} X_{ikl} + \sum V_{mnp} X_{mnp} = 0,$$

la quale, in forza delle (3), diviene:

$$\sum \left(U_{ikl} V_{mnp} - U_{mnp} V_{ikl}\right) = 0.$$

Ma questa formula, interpretata in S_5 , ci esprime appunto la condizione d'involutorietà dei due complessi K_3 , le cui equazioni, col ricorso alle convenzioni stabilite nel n. 51 sulla scelta delle coordinate grassmanniane d'un S_2 in S_5 , sono:

$$\Sigma \; U_{ikl} \; X_{ikl} + \Sigma \; U_{mnp} \; X_{mnp} = 0 \quad \text{e} \quad \Sigma \; V_{ikl} \; X_{ikl} + \Sigma \; V_{mnp} \; X_{mnp} = 0.$$

Resta dunque provato quanto volevasi dimostrare.

72. – Tre K_1 e un K_3 . – Sieno K_1' , K_1'' , K_1''' , K_3 i complessi in questione e Ω' , Ω'' , Ω''' gli S_4 rappresentativi dei tre K_1 . Per la proprietà associativa del prodotto di complessi lineari il prodotto $K_1' \cdot K_1'' \cdot K_1''' \cdot K_3$ si riduce al complesso $\overline{K_3} \cdot K_3$, ove $\overline{K_3} = K_1' \cdot K_1'' \cdot K_1'''$. E siccome $\overline{K_3}$ è speciale, la condizione d'involutorietà di K_1' , K_1'' , K_1''' , K_3''' , K_3 si traduce nella condizione di appartenenza a K_3 del piano $\overline{\omega} = (\Omega', \Omega'', \Omega''')$.

In particolare, se K_3 è speciale ed ω è il suo piano direttore, la condizione d'involutorietà cercata è la condizione d'appoggio di ω a $\overline{\omega}$.

- 73. Un K_1 , un K_2 e un K_3 . Sempre per la proprietà associativa del prodotto di complessi lineari possiamo affermare che i complessi K_1 , K_2 , K_3 sono involutori se l'iperpiano, che rappresenta K_1 , appartiene all'iperstella $K_5 = K_2 \cdot K_3$, determinata in base alle considerazioni fatte al n. 63.
- **74.** Tre K_2 . Anche per la condizione d'involutorietà di tre complessi lineari di rette, K'_2 , K''_2 , K'''_2 , ci si riconduce ad un caso già trattato, notando che il prodotto dei tre K_2 è, ad es.. uguale al prodotto di K'_2 per $K_4 = K''_2 + K'''_2$.