
RAIRO Operations Research
RAIRO Oper. Res. 41 (2007) 193–211

DOI: 10.1051/ro:2007018

METAHEURISTICS BASED ON BIN PACKING
FOR THE LINE BALANCING PROBLEM

Michel Gourgand
1
, Nathalie Grangeon

2

and Sylvie Norre
2

Abstract. The line balancing problem consits in assigning tasks to
stations in order to respect precedence constraints and cycle time con-
straints. In this paper, the cycle time is fixed and the objective is
to minimize the number of stations. We propose to use metaheuris-
tics based on simulated annealing by exploiting the link between the
line balancing problem and the bin packing problem. The principle of
the method lies in the combination between a metaheuristic and a bin
packing heuristic. Two representations of a solution and two neighbor-
ing systems are proposed and the methods are compared with results
from the literature. They are better or similar to tabu search based
algorithm.

Keywords. Flow-shop, stochastic, Markovian analysis, simulation,
metaheuristic.

Mathematics Subject Classification. 90Bxx.

In the literature, most of the line balancing problems come from automotive in-
dustry and deal with vehicle assembly lines. In 1986, Baybars [4] proposes a
classification of these problems and defines the basic problem called SALBP (Sim-
ple Assembly Line Balancing Problem). This problem consists in assigning tasks
to stations in order to respect precedence constraints and cycle time constraint.
According to the considered objective, two kinds of problem are defined:

SALBP1: the cycle time is fixed. The objective is to minimize the number
of stations.

Received October 6, 2006. Accepted November 15, 2006.

1 Université Blaise Pascal, LIMOS CNRS UMR 6158, ISIMA, BP 10125, 63173 Aubière
Cedex, France; {gourgand,grangeon}@isima.fr
2 Université Blaise Pascal, LIMOS CNRS UMR 6158, Antenne IUT de Montluçon, Avenue
Aristide Briand, 03100 Montluçon, France; norre@moniut.univ-bpclermont.fr

c© EDP Sciences, ROADEF, SMAI 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/ro or http://dx.doi.org/10.1051/ro:2007018

http://www.edpsciences.org/ro
http://dx.doi.org/10.1051/ro:2007018

194 M. GOURGAND, N. GRANGEON AND S. NORRE

SALBP2: the number of stations is fixed. The objective is to minimize the
cycle time.

In this paper, we consider the SALBP1 problem. Few works concern the propo-
sition of metaheuristics based on simulated annealing for the SALBP1. These
works [6, 16, 18, 19, 26] consider classical neighboring systems (permutation, inser-
tion). Obtained results are worse than other methods such as tabu search [9, 27].
Our objective is to use metaheuristics based on simulated annealing by exploiting
the link between the line balancing problem and the Bin Packing problem.

In the first part, we present our hypotheses and notations. In the second part,
we give a state of the art for the SALBP1 and we detail the link with the Bin
Packing problem. The third part presents the principle of the proposed methods
and the neighboring systems. These metaheuristics are compared together and
with methods from the literature in the fourth part.

1. Statement of the problem

We consider the SALBP1. The hypotheses are the following:
• the line parameters are known (configuration, length, ...);
• the tasks are linked by precedence constraints;
• a task is performed by a unique station;
• a station can perform any task;
• at a given time, a station can perform at most one task;
• the time to perform a task does not depend on the assigned station;
• all the tasks must be assigned.

The notations are the following:
V : set of tasks linked by a precedence graph. |V | = n. The two fictitious

tasks: B and E are the first and last task of the graph.
c: cycle time,
tj: time to perform task j, j = 1, n. tB = tE = 0 ,
m: number of used stations,
Sk: station load, set of tasks assigned to station k ,
t(Sk): time of station k (sum of the duration of the tasks assigned to sta-

tion k).
The problem consists in assigning tasks to stations in order to minimize the

number of used stations. The assignment must verify the following constraints:
C1: precedence constraints between the tasks: if task j1 precedes task j2,

then, either j1 is assigned to a station before the station assigned to j2, or
j1 and j2 are assigned to the same station.

C2: cycle time constraint: the time of station k must be lower or equal to
the cycle time:

t(Sk) =
∑
j∈Sk

tj ≤ c, ∀k = 1, m.

METAHEURISTICS FOR THE LINE BALANCING PROBLEM 195

Table 1. Duration of the tasks.

Task 1 2 3 4 5 6 7 8 9 10 11
Duration 4 38 45 12 10 8 12 10 2 10 34

4

2

6

5 7

8

10

9

3

11

1

i j : i precedes j

Figure 1. Precedence constraints between the tasks (“Mansoor” instance).

Table 2. An optimal solution.

Station 1 2 3
Tasks 2, 5, 7, 9 1, 3, 4 6, 8, 10, 11
t(Sk) 62 61 62

Example 1. Table 1 and Figure 1 show the “Mansoor” instance of SALBP1 with
11 tasks.

If c = 62, an optimal solution is composed of 3 stations. Table 2 presents an
optimal assignment of the tasks to the stations.

2. State of the art and link with the Bin Packing

This state of the art is composed of two parts. In the first part, we consider the
exact and approached methods proposed for the SALBP1. In the second part, we
present the link between the line balancing problem and the Bin Packing problem.

2.1. State of the art

In the literature, a lot of papers deal with SALBP1. A recent state of the art
can be found in [23]. Table 3 shows the number of references cited in [23] according
to the proposed method: exact methods or approached methods.

Exact methods are the first studied methods. A lot of mathematical models
such as [4] and [28] have been proposed. A detailed survey on such models is given
in the chapter 2 of the book [24]. But [23] indicates that the resolution of such
models by using classical methods is not a realistic choice to solve real instances.
Other methods are branch and bound and dynamic programming.

196 M. GOURGAND, N. GRANGEON AND S. NORRE

Table 3. Papers cited in [23] according to the proposed solution method.

Exact methods
Dynamic programming ≈ 30 referencesBranch and bound techniques

Approached methods
Truncated branch and bound techniques ≈ 30 referencesConstruction heuristics
Genetic algorithm ≈ 20 references
Tabu search algorithm 5 references
Simulated annealing based methods 3 references
Ant colonies 2 references

Concerning approached methods, two kinds of methods can be distinguished:
heuristics and metaheuristics. A large variety of heuristic approaches has recently
been proposed. States of the art for this kind of methods are given in [2,8,25], ...
Most of the heuristics are greedy algorithms based on priority rules. The priority
rules are computed according to the time to perform the tasks and the precedence
relations. Two kinds of heuristics are distinguished: station-oriented heuristics
and task-oriented heuristics. They differ by the manner in which the tasks are
selected out of the set of available tasks.

• Station-oriented heuristics [23]: the heuristic starts with the first station
(k = 1). The following stations are considered successively. In each it-
eration, a task with highest priority which is assignable to the current
station k is selected and assigned. When station k is loaded maximally, it
is closed, and the next station k + 1 is opened.

• Task-oriented heuristics [23]: Among available tasks, one with highest pri-
ority is chosen and assigned to the earliest station to which it is assignable.

Task oriented heuristics can be divided into “Immediate Update First” and “Gen-
eral First Fit” [29]. They depend on whether the set of available tasks is updated
immediately after assigning a task or after assigning all currently available tasks.
Experimental results, in [27], show that station-oriented heuristics obtain better
results than task-oriented heuristics, but no theoretical dominance exists. Heuris-
tics COMSOAL (COmputerized Method for Sequencing Tasks on Assembly Line)
[3] and RPW (Ranked positional Weight) [15] are well known examples.

Concerning the metaheuristics, genetic algorithms are privileged,
[1, 11, 13, 21, 22]. A study of these papers [5] lets us to conclude that it is difficult
to implement the proposed methods because of the lack of details concerning the
generation of the initial population, the admissibility of the generated children, ...
[23] indicate that the results obtained by these methods are not significant be-
cause these methods are seldom compared with the methods of the literature, and
in general not tested on known data sets and if they are, in fact the simplest in-
stances are retained. Some papers are interested in the Tabu method [9,17,27] or

METAHEURISTICS FOR THE LINE BALANCING PROBLEM 197

Table 4. Link between the line balancing and the Bin Packing.

Terms from the line balancing problem Terms from the Bin Packing problem
Station Bin
Task Object

Cycle time Size of bin
Duration of task Size of object

in the simulated annealing based methods [16,18,19,26]. Two kinds of neighboring
systems are proposed:

• insertion: a task i (assigned to station k1) is randomly chosen. This task
is assigned to a station k2 (k2 �= k1) randomly chosen among the set of
stations which allows to respect the precedence constraints and the cycle
time constraint;

• permutation: two tasks i1 (assigned to station k1) and i2 (assigned to
station k2), not subjected to precedence constraints, are permuted such as
the cycle time constraint is verified.

Scholl and Becker [23] cite two papers about the implementation of ant colonies
[7], [20].

2.2. Link with the Bin Packing problem

Authors, like [13, 29] consider the parallel between the SALBP1 and the one
dimensional Bin Packing problem. They show that the SALBP1 can be reduced
to a Bin Packing by omitting the precedence constraints. The objects correspond
to the tasks, the bins to the stations. The distribution of objects in bins is similar
to the assignment of tasks to stations. In the Bin Packing problem, the sum of
the size of the objects in the same bin can not be greater than the size of the bin.
In the SALBP1, the sum of the duration of the tasks assigned to the same station
must be lower or equal to the cycle time. The link between the terms of both
problems is given by Table 4.

In the literature, a lot of methods allow to propose quickly a solution for the
Bin Packing problem. The Next Fit heuristic considers the objects according to a
sequence and assigns them to a current bin. If an object can not fit for the current
bin, the bin is closed and a new bin is opened. The new bin becomes the current
bin. In [10], we can see that this heuristic is linear in time and a performance
guaranty is given by:

NF (L) ≤ 2.OPT (L)− 1, ∀L

where
• L is an object sequence of any size to be placed in bins of the same size;
• NF (L) is the number of bins obtained by the Next Fit heuristic;
• OPT (L) is the optimal number of bins.

As a closed bin is never reopened, it is obvious that the efficiency of the heuristic
lies in the input object sequence: the heuristic, applied to two different sequences,

198 M. GOURGAND, N. GRANGEON AND S. NORRE

Metaheuristic
Bin Packing

heuristic

feasible
sequence

solution
and criterion

Figure 2. Combination between a metaheuristic and a Bin Pack-
ing heuristic.

may construct two different solutions in term of number of used bins or composition
of bins. The proposed method for the line balancing problem lies in this remark.

An improvement of the Next Fit heuristic is the Best Fit heuristic. In this
heuristic, the bins are never closed. All the bins are considered for insertion of
an object. If no bin can be assigned to an object, then a new bin is created, else
the object is assigned to the most filled bin that can accept it. The performance
guaranty of the heuristic is:

BF (L) ≤ 17
10

.OPT (L) + 2, ∀L

where BF (L) is the number of bins obtained by the Best Fit heuristic.
In the literature, the heuristics Next Fit and Best Fit, dedicated to the Bin

Packing problem have been adapted to the line balancing problem. The adaptation
of these heuristics [13,24,29] consists in considering only the sequence of admissible
tasks (all the predecessors of the tasks have been assigned to a station) instead of
considering all the sequence of tasks. This list of admissible tasks changes during
the heuristic.

To our knowledge, no metaheuristic which exploits this link with the Bin Pack-
ing problem exists for the line balancing problem. Few papers concern the propo-
sition of metaheuristics for the SALBP1 because of the difficulty to build feasible
neighbor solutions. The existing neighboring systems do not work well. In this
paper, we propose to go further into the parallel between the SALBP1 and the
Bin Packing problem.

3. Proposed method

The principle of the proposed method lies in the combination between a meta-
heuristic and a Bin Packing heuristic (Fig. 2). At each iteration, the metaheuristic
provides to the Bin Packing heuristic a sequence which respects the precedence
constraints. From this sequence, the Bin Packing heuristic builds a solution (as-
signment of the tasks to the stations) and computes corresponding performance
criterion.

METAHEURISTICS FOR THE LINE BALANCING PROBLEM 199

We need to propose:
• a representation of a sequence;
• a Bin Packing heuristic to build feasible solutions;
• a neighboring system that modifies the sequence at each iteration;
• one or more performance criteria to compare two solutions.

3.1. Representation of a sequence

A sequence is represented by a sequence of tasks:

σ = {B, σ1, σ2..., σn, E}

where σi is the task assigned to the ith position in the sequence. This sequence
must respect the precedence constraints. An obvious initial sequence consists in
sorting the tasks according to the decreasing number of successors.

Remark 1. For the instance described by Table 1 and Figure 1, the computation
of the number of successors allows to build the sequence sσ:

σ = {B, 1, 2, 4, 5, 6, 7, 8, 9, 10, 3, 11, E}

3.2. Heuristic

We propose to represent a solution by a list sσ, composed of tasks and separators
(|). A separator symbolizes a change of station. This sequence can be built
either by the Next Fit heuristic (Algorithm 1), either by the Best Fit heuristic
(Algorithm 2).

For example, {B, |, σ1, σ2, |, σ3, σ4, |, ..., σn, |, E} means that tasks σ1 and σ2 are
assigned to the first station, tasks σ3 and σ4 are assigned to the second station, ...

In the Next Fit heuristic, the tasks are considered according to the sequence
σ. The task σi is assigned to the current station if the cycle time constraint [C2]
is verified. Else, the current station is closed and a new station is created. This
heuristic builds a feasible solution which respects the precedence constraints [C1]
if the input sequence respects them and the cycle time constraint [C2].

Remark 2. For the problem described by Table 1 and Figure 1, the Algorithm 1
builds for σ, the solution:

sσ = {B, |, 1, 2, 4, |, 5, 6, 7, 8, 9, 10, |, 3, |, 11, |, E}

This solution is composed of 4 stations.

In the Best Fit heuristic, the tasks are considered according to the sequence σ.
All the stations are considered for insertion of a task. The task σi is assigned to the
most filled station that allows the task σi to respect the precedence constraints:
the first considered station for insertion is the station with the highest number that
contains a predecessor of the task. If no station can be assigned to the task, then

200 M. GOURGAND, N. GRANGEON AND S. NORRE

Algorithm 1 Next Fit heuristic for the line balancing

1: Input: σ, a sequence of tasks
2: Output: sσ, m, (t(Sk), k = 1, m)
3: k := 1
4: t(Sk) := 0
5: sσ := {B, |}
6: for i := 1 to n do
7: if c − t(Sk) < tσi then
8: k := k + 1
9: sσ := sσ ∪ {|}

10: t(Sk) := 0
11: end if
12: sσ := sσ ∪ {σi}
13: t(Sk) := t(Sk) + tσi

14: end for
15: sσ := sσ ∪ {|, E}
16: m := k

a new station is created. This heuristic builds a feasible solution which respects
the precedence constraints [C1] if the input sequence respects them and the cycle
time constraint [C2].

Remark 3. For the instance described by Table 1 and Figure 1, the Algorithm 2
builds for the initial sequence σ, the solution:

sσ = {B, |, 1, 2, 4, 6, |, 5, 7, 8, 9, 10, |, 3, |, 11, |, E}

This solution is composed of 4 stations.

3.3. Metaheuristic

We consider the combination with metaheuristics based on simulated anneal-
ing: stochastic descent, Kangaroo algorithm [14] and Improved Solution Kangaroo
Algorithm [12]. In this part, we present the combination between these metaheuris-
tics and a Bin Packing heuristic.

3.3.1. Stochastic descent

The basic algorithm is the stochastic descent, which accepts the neighbor solu-
tion if its criterion is better or equal to the criterion of the current solution. This
algorithm allows generally to find a local minimum. The principle algorithm is
described by Algorithm 3.

The stop criterion is, for instance: maximum number of iterations reached, or
optimal solution obtained.

METAHEURISTICS FOR THE LINE BALANCING PROBLEM 201

Algorithm 2 Best Fit heuristic for the line balancing

1: Input: σ, a sequence of tasks
2: Output: sσ, m, (t(Sk), j = 1, K)
3: k := 1
4: t(Sk) := 0
5: t(S0) := −1 // fictitious station
6: sσ := {B, |}
7: for i := 1 to n do
8: kbest := 0
9: j1 := highest number of the station that contains a predecessor of σi in σ

10: for j := j1 to k do
11: if c − t(Sj) < tσi and t(Sj) > t(Skbest

) then
12: kbest := j
13: end if
14: end for
15: if kbest = 0 then
16: k := k + 1
17: t(Sk) := 0
18: kbest := k
19: sσ := sσ ∪ {|}
20: end if
21: Insert {, σi} in sσ such that σi is assigned to the station kbest

22: t(Skbest
) := t(Skbest

) + tσi

23: end for
24: sσ := sσ ∪ {|, E}
25: m := k

3.3.2. Kangaroo algorithm

A simple way to leave a local minimum is to restart a stochastic descent from
a new randomly chosen starting point. This scheme introduces the successive de-
scents algorithm. The Kangaroo algorithm (Algorithm 4) follows this scheme but
the new starting point is obtained by perturbing the local minimum. This algo-
rithm allows, after a stochastic descent to accept any solution (by using another
neighboring system) and to start again with a new stochastic descent.

Two neighboring systems are used, a first one V for the stochastic descent, and
a second one W , generally larger than V , for the perturbation (called kangaroo
jump). This algorithm has been proved to converge in probability [14] if neighbor-
ing system W satisfies the accessibility property. The proof of the convergence lies
in the fact that the kangaroo algorithm builds a Markov chain where any state can
lead to an absorbing state and the absorbing states constitute the global optimal
set.

A is the maximum number of iterations without improvement. best corresponds
to the best found solution. k is the number of iterations since the last improvement.

202 M. GOURGAND, N. GRANGEON AND S. NORRE

Algorithm 3 Combination between a stochastic descent and a Bin Packing heuris-
tic
1: Input: stop criterion, a sequence σ of tasks
2: Output: a solution sσ

3: Compute sσ, by applying the Bin Packing heuristic with σ as input sequence.
4: while unsatisfied stop criterion do
5: Choose uniformly and randomly σ′ in the neighboring system V of σ
6: Compute sσ′ , by applying the Bin Packing heuristic with σ′ as input se-

quence
7: if sσ′ is better than sσ then
8: σ := σ′

9: sσ := sσ′

10: end if
11: end while
12: sσ is the solution of the combination

Algorithm 4 Combination between the Kangaroo algorithm and a Bin Packing
heuristic
1: Input: stop criterion, a sequence σ of tasks, A > 0
2: Output: a solution sbest

3: Compute sσ, by applying the Bin Packing heuristic with σ as input sequence.
4: k := 0, σbest = σ, sbest := sσ

5: while necessary do
6: if (k < A) then
7: Choose uniformly and randomly σ′ in the neighboring system V of σ
8: Compute sσ′ , by applying the Bin Packing heuristic with σ′ as input

sequence
9: if sσ′ is better or equal to sσ then

10: if sσ′ is better than sσ then
11: k:= 0
12: if sσ′ is better than sbest then
13: σbest := σ′, sbest := sσ′

14: end if
15: end if
16: σ := σ′, sσ := sσ′

17: end if
18: k := k + 1
19: else
20: Choose uniformly and randomly σ′ in the neighboring system W of σ
21: Compute sσ′ , by applying the Bin Packing heuristic with σ′ as input

sequence
22: k := 0
23: if sσ′ is better than sbest then
24: σbest := σ′, sbest := sσ′

25: end if
26: σ := σ′, sσ := sσ′

27: end if
28: end while
29: sbest is the solution of the combination

METAHEURISTICS FOR THE LINE BALANCING PROBLEM 203

3.3.3. Improved Solution Kangaroo Algorithm

This method, also called ISKA is an improvement of the Kangaroo Algorithm.
The improvement consists in starting the new stochastic descent from the best
found solution. The line 20 in Algorithm 4 becomes:

20: Choose uniformly and randomly σ′ in the neighboring system W of σbest

3.3.4. Proposed neighboring systems

In her thesis, Boutevin [6] interested in the proposition of a metaheuristic based
on simulated annealing. Our objective is to improve the obtained results by the
proposition of a better neighboring system than the existing neighboring sys-
tems [6]. One of the problems was the difficulty to compute a feasible neighbor
solution because of the constraints.

3.3.4.1 Classical neighboring system

A classical neighboring system consists in choosing randomly a task and insert-
ing it at a new position in the sequence. The new position is randomly chosen
among the positions which respect the precedence constraints [C1]. The Algo-
rithm 5 is the classical proposed neighboring system: the moved task is chosen
among the set of tasks that can be moved (step 4 and 8), according to the prece-
dence constraints.

Algorithm 5 First proposed neighboring system

1: Input: σ, a sequence of tasks
2: Output: σ′, a sequence of task, neighbor of σ
3: σ′ := σ
4: repeat
5: Choose randomly a task σi

6: Compute i1, the position of the nearest predecessor of σi in σ
7: Compute i2, the position of the nearest successor of σi in σ
8: until i1 + 1 �= i2 − 1
9: Choose randomly a new position i′, i′ ∈ [i1 + 1, i2], i′ �= i

10: Insert σi into position i′ in σ′

Remark 4. In the sequence σ = {B, 1, 2, 4, 5, 6, 7, 8, 9, 10, 3, 11, E} built for the
example (Tab. 1 and Fig. 1),

• task 3 can be inserted in a position between positions 1 to 9 (B is in
position 0).
For example, the insertion in σ, of task 3 in position 4 leads to the neighbor
solution:

σ′ = {B, 1, 2, 4, 3, 5, 6, 7, 8, 9, 10, 11, E}
and the Algorithm 1 provides the solution:

sσ′ = {B, |, 1, 2, 4, |, 3, 5, |, 6, 7, 8, 9, 10, |, 11, |, E}

204 M. GOURGAND, N. GRANGEON AND S. NORRE

This solution is different from the solution in the previous remark, but the
number of stations is identical.

• task 7 can be inserted in position 5 or 7.
The insertion in σ, of task 7 in position 5 leads to the neighbor solution:

σ′′ = {B, 1, 2, 4, 5, 7, 6, 8, 9, 10, 3, 11, E}

and the Algorithm 1 provides the solution:

sσ′′ = {B, |, 1, 2, 4, |, 5, 7, 6, 8, 9, 10, |, 3, |, 11, |, E}

This solution is identical to the solution in the previous remark. The task 7
is assigned to the same station.

3.3.4.2 Improved neighboring system

The classical neighboring system may construct sequences that lead to the same
solutions after applying the Bin Packing heuristic. An improved neighboring sys-
tem, which allows to reduce the number of identical solutions, consists in moving
the task to another station. This can be easily done in the case of the combination
with the Next Fit heuristic: the new position of a task depends on the position of
the predecessors and the successors, and on the position of the separators which
correspond to the station assigned to the task. The new position is chosen such
that the task will be assigned to another station. The Algorithm 6 describes this
neighboring system.

Remark 5. In the solution sσ = {B, |, 1, 2, 4, |, 5, 6, 7, 8, 9, 10, |, 3, |, 11, |, E},
• task 3 can be inserted between positions 1 and 9 in σ.

For example, the insertion in σ of task 3 in position 4 leads to the neighbor
solution:

σ′ = {B, 1, 2, 4, 3, 5, 6, 7, 8, 9, 10, 11, E}
and the Algorithm 1 provides the solution:

sσ′ = {B, |, 1, 2, 4, |, 3, 5, |, 6, 7, 8, 9, 10, |, 11, |, E}

• task 7 can not be moved.
• task 10 can be inserted in position 11 in σ. The insertion in σ of task 10

in position 11 leads to the neighbor solution:

σ′′ = {B, 1, 2, 4, 5, 6, 7, 8, 9, 3, 10, 11, E}

and the Algorithm 1 provides the solution:

sσ′′ = {B, |, 1, 2, 4, |, 5, 6, 7, 8, 9, |, 3, 10, |, 11, |, E}

The solutions sσ′ and sσ′′ are different from the initial solution, but the number
of stations is identical.

METAHEURISTICS FOR THE LINE BALANCING PROBLEM 205

Algorithm 6 Second neighboring system

1: Input: σ, a sequence of tasks, sσ the corresponding solution
2: Output: σ′, a sequence of tasks, neighbor of σ
3: repeat
4: Choose randomly a task σi

5: Compute i1, the position of the nearest predecessor of σi in σ
6: Compute i2, the position of the nearest successor of σi in σ
7: Compute i3 < i, the position of the nearest separator in sσ

8: Compute i4 > i, the position of the nearest separator in sσ

9: until i1 + 1 ≤ i3 or i4 + 2 ≤ i2
10: if i1 + 1 ≤ i3 and i4 + 2 ≤ i2 then
11: Choose a new position i′, i′ ∈ [i1 + 1; i3 + 1] ∪ [i4 + 2; i2], /sσi′ �= |
12: else
13: if i1 + 1 ≤ i3 then
14: Choose a new position i′, i′ ∈ [i1 + 1; i3 + 1], /sσi′ �= |
15: else
16: Choose a new position i′, i′ ∈ [i4 + 2; i2], /sσi′ �= |
17: end if
18: end if
19: Insert σi into position i′ in sσ

20: σ′ := sσ − {|}

3.4. Performance criteria

The objective is the minimization of the number of used stations (m). However,
a lot of solutions have the same number of used stations. So, we proposed to use
finest criteria. By finest criteria, we mean criteria which allow to detect promising
solutions, i.e. solutions in which some stations are a little loaded and some stations
nearly loaded rather than solutions in which stations are all half loaded [13]. It will
be easier to empty the little loaded stations by loading the nearly loaded stations.

We propose to use the following criteria:

• ratio of the load of the most loaded station on the load of the least loaded
station:

f1 = max
k=1,m

{t(Sk)}/ min
k=1,m

{t(Sk)}

The objective is to maximize f1.
• criterion proposed by [13] for the Bin Packing problem:

f2 =
1
m

m∑
k=1

(
t(Sk)

c

)2

.

The objective is to maximize f2.

206 M. GOURGAND, N. GRANGEON AND S. NORRE

These criteria allow to compare two sequences σ and σ′: sequence σ′ is better
than sequence σ if:

Version 1 m(σ′) ≤ m(σ)
Version 2 m(σ′) < m(σ) or (m(σ′) = m(σ) and f1(σ′) >= f1(σ))
Version 3 f2(σ′) ≥ f2(σ)

Criteria are computed by using either Next Fit heuristic (Algorithm 1), either Best
Fit heuristic (Algorithm 2) according to the combination described by Figure 2.
m(σ) (resp. m(σ′)) is the number of stations for sequence σ (resp. σ′).

4. Computational experiments

We have tested the following scenarios: (H, M, N, C) where:

• Heuristic (H): Algorithm 1, Algorithm 2;
• Metaheuristic (M): stochastic descent (algo 3), Kangaroo algorithm (algo

4), ISKA;
• Neighboring system (N): classical (algo 5), improved (algo 6);
• Criterion (C): version 1, version 2, version 3.

The data sets are the 269 data sets from the assembly line balancing library:
http://www.assembly-line-balancing.de/.

In the following, the term “method” refers to a scenario (H, M, N, C). As meta-
heuristics are stochastic algorithms, we have run Nbrep = 10 replications of each
method with the following parameters: 1000000 iterations and 20000 iterations
before a jump for KA and ISKA.

Chiang [9] describes the application of tabu search on Nbinstances = 64 data
sets chosen among the 269 data sets. Table 5 presents a comparison between
our results for the Nbinstances = 64 data sets and results obtained by [9]. Four
different versions of the tabu search are developed: best improvement with task
aggregation, best improvement without task aggregation, first improvement with
task aggregation, and first improvement without task aggregation.

For each instance j, j = 1, Nbinstances and each method, we define:

mi,j: the number of stations obtained by replication i, i = 1, Nbrep for in-
stance j;

mopt,j: the optimal number of stations for instance j;
mmin,j: the smallest number of station obtained for instance j

mmin,j =
Nbrep

min
i=1

mi,j ;

relj: the standard deviation between mmin,j and mopt,j for instance j

relj = 100 ∗ (mmin,j − mopt,j)/mopt,j .

METAHEURISTICS FOR THE LINE BALANCING PROBLEM 207

For each method and each version of the performance criterion, we give:

#opt: the number of instance where the optimal solution is obtained at least
one time by the 10 replications (i.e. mmin,j = mopt,j).

#opt10: the number of instance where the optimal solution is obtained by
the 10 replications (i.e. mi,j = mopt,j, i = 1, Nbrep);

avg.rel: the average standard deviation from the optimal solution.

avg.rel = 1/Nbinstances

Nbinstances∑
j=1

relj ;

max.rel: the maximum standard deviation from the optimal solution.

max.rel = max
j=1,Nbinstances

relj .

We obtain better results than [9]. The best combination is the combination
with Best Fit heuristic and classical neighboring system: the optimal solution is
obtained at each replication.

Table 6 presents results for the proposed combination for all the Nbinstances =
269.

In the majority of the cases, ISKA and the Kangaroo algorithm obtain the
best results, except for versions 1 and 2 of the performance criteria with the
classical neighboring system. However, ISKA and the kangaroo algorithm are the
most robust methods: on the 10 replications, they more often obtain an optimal
solution.

For versions 1 and 2 of the performance criteria, the results obtained with the
improved neighboring system are worse than classical neighboring system, not
only in term of number of optimal solutions obtained, but also in term of standard
deviation. Only version 3 of the performance criteria obtains slightly better results
with the improved neighboring system. The improved neighboring system does
not bring anything concerning the quality of the obtained solution. A study of
the behavior of the performance criterion during the metaheuristic shows that this
neighboring system only accelerates the convergence of the method during the first
10000 iterations.

Version 1 of the performance criterion is the most naive version and obtains
worse results. Indeed, a great number of sequences have the same criterion, if only
this criterion is considered. Versions 2 and 3 of the performance criterion allow to
order the sequences by privileging the sequences which lead to a greater disparity
in the occupation of the stations.

Whatever the used neighboring system, version 3 of the performance criterion
allows to obtain the greatest number of optimal solutions. However, it is the
version 2 which allows to have a more robust behavior: among the 10 replications,
the optimal solution is more often obtained (203 optimal solutions are obtained
by the 10 replications of Kangaroo algorithm).

208 M. GOURGAND, N. GRANGEON AND S. NORRE

Table 5. Comparison with the results obtained by [9] (64 data
sets among the 269 ones).

Scenario with Next Fit heuristic and classical neighboring system

Criterion Version 1 Version 2 Version 3
Metaheuristic SD K ISKA SD K ISKA SD K ISKA

#opt 59 59 59 60 60 60 60 60 60
Percentage of optimality92,1992,19 92,19 93,75 93,75 93,75 93,75 93,75 93,75

#opt10 56 56 56 59 59 59 51 57 57
Percentage of optimality 87,5 87,5 87,5 92,19 92,19 92,19 79,69 89,06 89,06

Scenario with Next Fit heuristic and improved neighboring system

Criterion Version 1 Version 2 Version 3
Metaheuristic SD K ISKA SD K ISKA SD K ISKA

#opt 63 63 63 60 60 60 58 60 60
Percentage of optimality98,4498,44 98,44 93,75 93,75 93,75 90,63 93,75 93,75

#opt10 60 60 61 59 59 59 44 55 55
Percentage of optimality93,7593,75 95,31 92,19 92,19 92,19 68,75 85,94 85,94

Scenario with Best Fit heuristic and classical neighboring system

Criterion Version 1 Version 2 Version 3
Metaheuristic SD K ISKA SD K ISKA SD K ISKA

#opt 64 64 64 64 64 64 64 64 64

Percentage of optimality 100 100 100 100 100 100 100 100 100
#opt10 64 64 64 64 64 64 64 64 64

Percentage of optimality 100 100 100 100 100 100 100 100 100
Tabu search from [9]

Best Best First First
Metaheuristic improvementimprovementimprovementimprovement

with task without task with task without task
aggregation aggregation aggregation aggregation

#opt 51 62 51 62
Percentage of optimality 79.7 96.9 79.7 96.9

Table 6 presents also some results obtained by [25] for the same instances. In
this paper, the proposed methods are two tabu methods, called PrioTabu and
EurTabu. The difference between the two methods is the heuristic to build the
initial solution. For each method, we give #opt, avg.rel. and max.rel. previously
defined.

We obtain better results than [25] in term of number of optimal solutions.
If we consider all the scenario (H, M, N, C), we obtain 241 optimal solution

for the 269 data sets. The 28 instances for which we do not obtain the optimal
solution are described by Table 7.

METAHEURISTICS FOR THE LINE BALANCING PROBLEM 209

Table 6. Comparison with the results obtained by [25] (269 data sets).

Scenario with Next Fit heuristic and classical neighboring system
Criterion Version 1 Version 2 Version 3

Metaheuristic SD K ISKA SD K ISKA SD K ISKA
#opt 195 192 193 212 211 207 218 223 224

#opt10 158 160 158 182 189 190 132 171 170
avg.rel 1.37 1.34 1.45 1.00 0.97 1.06 1.12 0.97 0.95
max.rel 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33

Scenario with Next Fit heuristic and improved neighboring system
Criterion Version 1 Version 2 Version 3

Metaheuristic SD K ISKA SD K ISKA SD K ISKA
#opt 181 182 182 204 208 211 215 225 225

#opt10 164 167 165 181 187 189 114 164 167
avg.rel 1.69 1.62 1.45 1.10 1.03 0.94 1.31 0.90 0.94
max.rel 14.29 14.29 14.29 33.33 33.33 33.33 33.33 33.33 33.33

Scenario with Best Fit heuristic and classical neighboring system
Criterion Version 1 Version 2 Version 3

Metaheuristic SD K ISKA SD K ISKA SD K ISKA
#opt 198 196 198 219 216 213 217 221 224

#opt10 186 187 186 200 203 202 176 195 197
avg.rel 1,13 1,14 1,13 0,68 0,72 0,76 0,77 0,67 0,62
max.rel 14,29 14,29 14,29 14,29 14,29 14,29 14,29 14,29 14,29

Tabu search and truncated branch and bound from [25]
Method Prio Tabu Eur Tabu

Parameters L=50 L=500 L=50 L=500
#opt 191 200 212 214
avg.rel 1.14 0.86 0.67 0.63
max.rel 14.29 7.69 7.69 7.69

Table 7. Instances for which we do not obtain the optimal solution.

Name of the instance Cycle length
ARC111 11570
barthol2 85 121 146

lutz3 110
scholl 1394 1452 1483 1515 1584 1659 1742 1787 1834 1883 1935

1991 2049 2111 2177 2247 2322 2402 2488 2580 2680 2787
tonge70 151

5. Conclusion

In this paper, we have studied the SALBP1, a classical theoretical line balancing
problem. To solve this problem, we have proposed a combination between meta-
heuristic and heuristic by exploiting the link between the line balancing problem

210 M. GOURGAND, N. GRANGEON AND S. NORRE

Metaheuristic algorithm
List

feasible
sequence

solution
and criterion

Figure 3. Combination between a metaheuristic and a list algorithm.

and the Bin Packing problem. To implement this combination, we have proposed
two neighboring systems, an adaptation of the Next Fit and the Best Fit heuristics
and performance criteria. The proposed methods have been tested on instances
from the literature. Our results are better than the results from [9] and similar to
the results from [25].

The principle of the proposed method can be generalized to other problems
with constraints like precedence constraints. Figure 3 presents this generalization.

Our further works concern an industrial line balancing problem. We plan to
take into account more constraints such as incompatibilities between operations,
compulsory assignment, ...

References

[1] E.J. Anderson and M.C. Ferris, Genetic algorithms for combinatorial optimization: The
assembly line balancing problem. ORSA J. Comput. 6 (1994) 161–174.

[2] M. Amen, Heuristic method for cost-oriented assembly line balancing: A survey. Inter. J.
Prod. Econ. 68 (2000) 1–14.

[3] A.L. Arcus, Comsoal a computer method of sequencing operations for assembly lines. Inter.
J. Prod. Res. 4 (1966) 259–277.

[4] I. Baybars, A survey of exact algorithms for the simple assembly line balancing problem.
Manage. Sci. 32 (1986) 909–932.

[5] C. Boutevin, L. Deroussi, M. Gourgand and S. Norre, Supply chain Optimisation, chapter
Hybrid methods for line balancing problems, edited by A. Dolgui, J. Soldek, O. Zaikin,
Kluwer Academic Publishers (2004).

[6] C. Boutevin, Problème d’Ordonnancement et d’Affectation avec Contraintes de Ressources
de type RCPSP et Line Balancing. Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand
(2003).

[7] J. Bautista and J. Pereira, Ant algorithms for assembly line balancing. In Berlin Springer,
editor, Ant algorithms, Third International Workshop, ANTS 2002 Proceedings, Bruxelles
(Belgique), edited by M. Dorigo, G. Di Caro, M. Sampels Lect. Notes Comput. Sci. 2463
(2002) 65–75.

[8] T.K. Bhattacharjee and S. Sahu, A critique of some current assembly line balancing techni.
Technical report, Indian Institute of Technology, Kharagpur, India (1987).

[9] W.C. Chiang, The application of a tabu search metaheuristic to the assembly line balancing
problem. Ann. Oper. Res. 77 (1998) 209–227.

METAHEURISTICS FOR THE LINE BALANCING PROBLEM 211

[10] E.G. Coffman Jr., M.R. Garey and D.S. Johnson, Approximation algorithms for bin packing:
A survey, in Approximation Algorithms for NP-Hard Problems, edited by Dorit S. Hochbaum
(1997) 46–93.

[11] A.L. Corcoran and R.L. Wainwright, Using libga to develop genetic algorithms for solving
combinatorial optimization problems. Appl. Handbook Genetic Algorithms 1 (1995) 144–172.

[12] L. Deroussi, Heuristiques, métaheuristiques et systèmes de voisinage. Ph.D. thesis, Univer-
sité Blaise Pascal, Clermont-Ferrand II (2002).

[13] E. Falkenauer and A. Delchambre, A genetic algorithm for bin packing and line balancing,
in Proceedings of IEEE International Conference on Robotics and Automation (ICRA92),
Los Alamitos, Californie (1992) 1186–1192.

[14] G. Fleury, Méthodes stochastiques et déterministes pour les problèmes NP-difficiles. Ph.D.
thesis, Université Blaise Pascal, Clermont-Ferrand II (1993).

[15] W.B. Helgeson and D.P. Birnie, Assembly line balancing using the rank positional weight
technique. J. Ind. Eng. 12 (1961) 394–398.

[16] A. Heinrici, A comparison between simulated annealing and tabu search with an example
for the production planning, in Operations Research Proceedings, Amsterdam, 1993, edited
by Dyckhoff et al. Springer, Berlin (1994) 498–503.

[17] S.D. Lapierre, A. Ruiz and P. Soriano, Balancing assembly lines with tabu search. Eur. J.

Oper. Res. (2004) in press.
[18] P.R. McMullen and G.V. Frazier, Using simulated annealing to solve a multiobjective as-

sembly line balancing problem with parallel workstations. Inter. J. Prod. Res. 36 (1998)
2717–2741.

[19] V. Minzu and J.M. Henrioud, Stochastic algorithm for task assignment in single or mixed-
model assembly lines. APII-JESA 32 (1998) 831–851.

[20] P.R. McMullen and P. Tarasewich, Using ant techniques to solve the assembly line balancing
problem. IEE Transactions 35 (2003) 605–617.

[21] B. Rekiek, Assembly Line Design: Multiple Objective Grouping Genetic Algorithm and the
Balancing of Mixed-model Hybrid Assembly Line. Ph.D. thesis, Université Libre de Bruxelles
(2000).

[22] J. Rubinovitz and G. Levitin, Genetic algorithm for assembly line balancing. Inter. J. Prod.
Econ. 41 (1995) 444–454.

[23] A. Scholl and C. Becker, State-of-the-art exact and heuristic solution procedures for sim-
ple assembly line balancing. European Journal of Operational Research, special issue on
Balancing of Automated Assembly and Transfer Lines, edited by A. Dolgui 168 (2006)
666–693.

[24] A. Scholl, Balancing and Sequencing of Assembly Lines. Physica-Verlag Heidelberg,
New-York (1999).

[25] A. Scholl and R. Klein, Balancing assembly lines effectively – a computational comparison.
Eur. J. Oper. Res. 114 (1999) 50–58.

[26] G. Suresh and S. Sahu, Stochastic assembly line balancing using simulated annealing. J.
Production Res. 32 (1994) 1801–1810.

[27] A. Scholl and S. Voss, Simple assembly line balancing – heuristic approaches. J. Heuristics
2 (1996) 217–244.

[28] F.B. Talbot and J.H. Patterson, An integer programming algorithms with network cuts for
solving the single model assembly line balancing problem. Manage. Sci. 32 (1984) 85–99.

[29] T.S. Wee and M.J. Magazine, Assembly line as generalized bin packing. Oper. Res. Lett. 1
(1982) 56–58.

