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NUMBER OF PHASES IN ONE COMPONENT FERROMAGNETS*** 

Joël L. Lebowitz 
Department of Mathematics 

Rutgers University 
New Brunswick, New Jersey 08903 

Abstract 
Using a new inequality, derived here, we obtain information about 

the number of pure phases which can coexist in one component spin 
System with (many body) ferromagnetic interactions. This extends 
previous results [1] for spin-γ Ising Systems to continuous spin 
Systems. 

1. Introduction 
As is well known it follows from the gênerai formalism of 

statistical mechanics that phase transitions, e.g. the coexistence of 
two phases in equilibrium or the non-analytic behavior of the free 
energy as a function of température or magnetic field»can occur strictly 
only in infinité Systems - the proper mathematical idealization of 
macroscopic Systems which are described thermodynamically by intensive 
variables [2,3]· The microscopic corrélations in such a system are 
described by Gibbs states which are probability measures on the phase 
space of the System satisfying the DLR équations [3,4,5]· Thèse.states 
are the appropriate limits of finite volume Gibbs ensembles* 
Equivalently one may describe the state of the infinité System by 
means of corrélation functions. The latter are obtained as infinité 
volume limits of the equilibrium corrélations in a finite System with 
specified "boundary conditions". Apure thermodynamic phase the η 
corresponds (loosely speaking) to a translation invariant Gibbs state 
y (yel) with corrélation functions which "duster" at infinity, 
i.e. corrélations between différent local régions of the systera decay 
(however weakly) as the distance between thèse régions becomes larger 
and larger [3]· The latter condition is équivalent to the requirement 

that intensive variables be well defined.i.e. that fluctuations in "ail" 
•Based on lectures given at the Rencontres Physique Mathématique held 
in Strasbourg in May 1977 and at the International Conférence on the 
Mathematical Problems in Theoretical Physics held in Rome in June 1977. 
•Part of this work was done while the author was a visiter at IHES in 
Bures-sur-Yvette and in the Department Physique Théorique, CEN, Saclay, 
France, as a John Guggenheim Fellow on sabbatical leave from Yeshiva 
University, Ν·Υ· · 
AWork supported by NSF Grant #MPS 75-20638. 
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intensive variables, local functions averaged οver the volume of the 
System, vanish as the volume tends to infinity. The coexistence of 
several phases then corresponds to the existence, for a given inter­
action, température and magnetic field, of more than one translation 
invariant solution of the DLR équations. This is the same as the 
possibility of obtaining différent translation invariant infinité 
volume limits of the Gibbs measure (or the corrélation functions) from 
différent boundary conditions. Thèse states have also been shown to 
be (in many cases) the solution of a variational principle minimizing 
the infinité volume free energy density [3]. The latter states are 
sometimes called "equilibrium states" Ε (EC I), 

By a very gênerai theory [3-5] it is always possible to décompose 
any Gibbs state uniquely into "extremal" Gibbs states; the translation 
invariant extremal states corresponding to the pure phases. This me ans 
the following: given any "observable" f then its expectation value 
<f> in any I. equilibrium state can be written in the form 
<f>«jjfei ajc<^>k where <f>^ is the expectation value of <f> in the 
kth pure phase, 0<α^<1, and j^i0^'1, i.e. measures the fraction 
of volume occupied by the kth phase. The crucial point here is that 
the are independent of the observable f: η thus clearly 
représente the total number of phases which can coexist (at a given 
température and magnetic field) and the question then is to détermine 
n. (The Gibbs phase rule states that for an m-component fluid n<m+2, 
but this is far from proven and does not apply to spin Systems with 
gênerai interactions [3,6].) 

This lecture is devoted mainly to the description of some new 
results regarding the number of possible phases in one component spin 
System with ferromagnetic interactions. We consider first the 
case of spin y Ising Systems. Thèse are the simplest non-trivial 
Systems for which such results can be derived in a mathematically 
Tigorous way. The main new resuit is that for such a System with even 
spin interactions (pair, quadruple,etc.) there can coexist, at zéro 
magnetic field, only two phases (up and down magnetization) at ail 
températures at which the energy is continuous in the température 
In particular, there are no intervais of température, below the 
critical température T c, at which three or more phases can coexist. 
This extends results previously known only for the two dimensional 
spin y Ising System with nearest neighbor pair interactions [7] and for 
higher dimension spin γ Ising Systems only at low températures [8]· 
We then indicate how similar results can be oHtained also 
for gênerai, bounded and unbounded, one component spin Systems. For 
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Xhe unbounded case there are still some gaps in the argument relating 
invariant Gibbs states to solutions of the variational principle, e.g. 
for what class of states are the two équivalent. It appears however 
that this is a soluble technical problem and that our results may 
be extended also to the field theory case. 

The main results are derived in section 3. They are based on a 
new inequality for ferromagnetic Systems which is derived for spin y 
Ising Systems in section 2. Section 4 is devoted to proving a similar 
inequality for gênerai spin Systems, 

2, Inequality 

Let Λ be a finite set of |A| sites, which for later applications 
we shall think of as a subset of a regular v-dimensional lattice, say 
7Z\ ^ a * J s i e ^ » ΐεΛ, the spin variable at the site i and define, 
SA*ieA s i l f * 0 Γ (with the index i repeated times) Ι^εΤΖ^. 
We let dp^(s^) be the free measure of the spin at the site i and 
0H«-£^A J R s R the energy (times the reciprocal température) of a spin 
configuration in Λ. The Gibbs measure du(S^), ^A*^si^f ^ε^* **as 

the expectation values for F(S^). 

<F >y-ZelJF(SA) exp [ZJK s K ] ( s ^ (2.1) 

We assume that the free measures, p^, are even and have a sufficiently 
strong decay as |s^| «• · for ail the moments of μ to exist. 

We wish to compare thèse expectations < >̂  with those obtained 
from the Gibbs measure d^f(SA) for a différent spin System in Λ -
one having free measures dp^(s^) and energy efHf»-ZJ£ ŝ . 

lemma 1. Let fa(s), α·1,·..,η be odd monotone non-decreasing 
functions of sdR and let Q(s,sf) be a symmetric, even, non-negative 
function of s and s", s'eR; Q(s9sv)«Q(sv,s)«Q(-s,-s,)>0. Then 

| Π [fa(s).fa(s')]ka[fa(s)^fa(s')]la QCs.s^dPiCsDdPiCs')^ 
(2-2) 

Proof: Letting s<->s' and s<->-s, s,<->-sl
> shows (remembering 

that p^ is an even measure) that M̂ «0 unless h eEk a and 
are even integers in which case the integTand is ηοη-negative· This 
is very similar to Ginibre's proof of the GKS inequalities [9,10]· 

Lemma 2. Let J^l^l l e t fi(si) b e o d d "«notone and gjiSj) be 
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either an odd or even bounded functions of |g^(si)|<Xi. Define 
^ A ^ i ^ i ^ » «Α<»Α>-ΐΪΑΐΜ·*"λΐ1· T h e n 

« } U±i, (»B)iB ] [£A C»A) " FAC»|) 3 d* CâA) dy · (S · ) 
(2.4) 

8 < £A > _ < fA*'*I <8 B

fA > <«B >' _ < gB fA>' < gB^ * 0 « 

Proof : Noting that dy(SA)dy (sp-exp [Σ(J K
S
K
+JKS£) ]Hdpi{si)dç>i(s»)/ZZ» 

we put ^ κ ^ ^ χ ^ ί ( JK* JK^ SK + SK^ + ^ K ~ J ^ S K " S K ^ A N D E X P A N D T H E 

exponential. We then factorize SK±S£, fA(sA) -f A(s A), a n d 

[l-gg(sB)gB(s^)] into products of terms of the form (si±s|), 
(fi(si)±fi(sp), [UgiCs^giCsl)]; e.g. f±(s^f±(Sj)-f±(s[)f±(s· )-
^{[fiCs^+fiCspn^ (sj)-fj(sj)] + [£i(si)-fi(s!)][fj (s^+fjCs!)]}. 
The final resuit is that I can be written as a sum of products of terms 
of the form in (2·3)· By our assumption, Ĵ >|Ĵ |, ail thèse 
terms have positive coefficients. Hence the lemma is proven. 

We can rewrite (2.4) in the form 

It now follows from (2·S) that 

Corollary 3: Let JK>|J£|, <fA>«<fA>' and <gB>
e<gB>

f^0, then 

< £A«B > i B < fA«B > f-

Corollary 3 is particularly useful for the case of spin j Ising Systems 
vhich correspond to having dp^ (ŝ )«̂ i(|ŝ |-1) . Setting 
f̂ (ŝ )*ĝ Cŝ )»ŝ  (and writing ŝ =ô «±l to emphasize that we are 
dealing with a spécial case) we may use the following basic group 
property for the σΑ"ΐεΑσΐ* (tilis i s 3 u s t L I K E S A W I T H ι±91$ vi e At 
since σ?»1) °A°B*AC w i t h CeA Δ Β, A Δ Β the symmetric différence 
between A, BCA, This yields the additional results. 

Corollary 4: Let Jg> | J£ | · Then < σ Α > β < σ Α > 1 2111(1 <σΒ>»<σβ>,^0 imply 
< σ Α σ Β > β < σ Α α Β > ΐ f 0 T a 1 1 Α,Β*1Λ. 
Corollary S: Let ^χ>ΜχΙ· Then: (1) <oi>-<oi>,^0 for ail the one 
site sets ίεΛ implies < σ Α > β < σ Α > Ι £ o T Α^Λ. 
(2) <oiOj>»<aiaj>V0 for ail ι,̂ εΛ implies <σΕ>«<σΕ>! for ail 
sets Ε containing an even number of sites, |E| even. 

Proof: By Corollary 3 <ο^>«<σ^>·^0 ' and <ο.>~<σ^>'ίΟ implies 
< 0i°j > e < 0i aj > 1* Furthermore since JK>0 it follows from the GKS 
inequalities that < σΑ σΒ >- < σΑ > < σΒ >- 0* H e n c e <oiOj>><oi><Oj»0. The 
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rest follows by induction. The proof of (2) is similar since 
<aB>m<ahakalak°l* f o r a 1 1 Β<=:Λ· 

The proof of Corollary*s 4 and 5 for spins with gênerai measures 
is a bit more complicated. It is postponed to section 4 following 

the discussion in the next sections of sorne conséquences of thèse 
inequalities. 

3. Equilibrium States for Spin j Systems 

We skall now use the inequalities derived in the last section to 
obtain information about the number of equilibrium states for infinité 
Ising Systems. To do this we assume that the interactions are 
translation invariant jA*^*A+X w ^ e r e A + x i s ^ e s e t A translated 
by a lattice vector x. In particular for the one point sets AeieZv, 
ΒΦ·^, the magnetic field (times β) and for |A|«2, Jr. 4\*B<Ki-j), 
etc.. The energy of a spin configuration in ΛθΖΖν will dépend 
on the specified values of the spins outside A, i.e. we consider the 
spins outside A to be fixed and act as boundary conditions for the 
spins in A. A particular boundary condition "b" then corresponds to 
a lattice spin configuration σ*5 such that σ^ β σ^ f° r ^ ε Λ

0· 
(Generally σ^«±1; σ?«0 correspond to zéro b.c.). We then have, 
corresponding to Eq. (1) f 

H ( £ A Î b ) " ' B J { 0 > l * B < W *B'° ( 3 a ) 

where {0} désignâtes the origin and the sum over χ goes over ail χ 
such that {Β+χ}Π A is not empty, i.e., at least some of the sites in 
B*x are in A. We assume from now on that Φβ>0, i.e. positive 
ferromagnetic interactions. It is then clear that μ + corresponding 
Xo plus b.c., o%l f 'dominâtes1 ail other b.c.. Hence defining 
«JA>(6fh;b.A) as the expectation value of σΑ, ACA, for the 
Hamiltonian (3.1) at reciprocal température Ρ and magnetic field h 
we can identify <σΑ> of Sec. 2 with «*A>(e,h;+,A) and <σΑ>!  

with «'^(BflubyA) for any other boundary condition. (Our notation 
implies the ,fphysicistM point of view where β and h-ίβΦ̂ } are 
independent "externally controlled" variables while Φ κ > |K|>2, are 
f,givenM interactions). 

It follows from the GKS inequalities [10,11] that 

lim <oA>(B.h;*,A)«<aA>(Bth;+) (3.2) 
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exist and are translation invariant 
^aMx>(efh;*)»<aA>(Ô,h;*). (3.3) 

To avoid unnecessary complications we assume that the interactions are 
of "finite range", Φ̂ *0 unless BCN, Ν bounded. The thermodynamic 
free energy per site, if;(g,h)«lim {|Λ| "^n Tr(exp[-0H(£A;b)])} then 
exists and is independent of h. 

We shall write <oi>(Pfh;+)»m(6,h;*), the magnetization per site 
with + b.c.· For more gênerai boundary conditions, (including a 
superposition, with specified weights, of différent σ*5) the limit 
At2Zv might have to be taken along subsequences to obtain infinité 
volume corrélation funetions <oA>(S»h;b) which need not, in gênerai, 
be translation invariant [12]. It is however always possible to average 
over translations to obtain translation invariant corrélation functions. 
The set of corrélations, <oA>(S,h;b), AC2ZV, obtained from 
<oA>(6,h;b,A) as A*2Z define an infinité volume Gibbs measure. 
Thèse measures are identical to the ones which satisfy the DLR équations 
and the translation invariant ones are identical to the solutions of 
a variational principle (minimizing the free energy per unit volume) 
[3-5]· We shall sometimes write <a/f+ £° r /σΑΡ+(ά£), ^+εΙ being 
the measure obtained with + b.c. 

Thèse considérations also lead to an identification of the 

<aA>^, μεΐ, with derivatives of the free energy density ¥(J) with 
respect to ^ β β φ Α ^ t 3 - 5] · 

Y(J)-lim%) lAp^n Z(J:b,A), (3.4) 
~ A*2 V 

and we have used J for the argument of Ψ to emphasize that Ψ can 
be thought of as a function of ffall possible" potentials Ĵ . Ψ(£) , 
being a convex function of each J f̂ will be differentiable for almost 
ail values of (keeping the other interactions fixed)· 

We are now ready to state our first theorem about the number of 
possible equilibrium states. 

Theorem 6. Let Ψ(β,h) be the infinité volume free energy per site of 
an Ising spin System with translation invariant interactions ; 
Φ κ*Φ κ + χ>0, χεΖ ν , 6*{o}*h# I f the derivative of Ψ with respect to 
h exists (is continuous) and is positive, > 0, then there is 
a unique translation invariant Gibbs state. In particular 
<^>(efh;b)a<oA>(e,h:*)«af/3JA for ail boundary conditions b. 
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Proof: Given any μεΐ, <σΑ> -3f/3JAf when the latter exists [3-5], 
and the theorem then follows from Corollary 5 with <σ^«3Ψ/31ι. 

Remark: Theorem 6 states that differentiability o£ Ψ with respect to 
h implies differentiability of Ψ with respect to ail interactions. 
It thus gêneralizés to ferromagnetic many spin interactions the results 
of Lebowitz and Martin-Lof [11] for the case when the interactions are 
such that the Fortuin, Kasteleyn and Ginibre, (FKG) inequalities hold, 
e,g. when only pair interactions are présent, φχ"°ι l Kl > 2 [13]. In 
that case however the results are stronger; there is a.unique Gibbs 
state, (and so I*G) whenever 3¥(B,h)/3h exists. For pair interactions 
this is true for ail h^O, and is always true at sufficiently high 
températures [2,3]· 

The positivity requirement on 3Y/3h is however not as restrictive 
as it might appear. First, by GKS, <ai>(e,h;+)>0 if h>0 and hence 
^|^^-"0—>h a0. Second, if the interactions are such that 
<Ojj>(B,h«0;+)>0 for |E| even, e.g. when the nearest neighbor pair 
interactions is positive, then it is easy to show [14] that 
<<^>(β,0;*)*0—«><σρ>(&0;+)βΟ for ail |Q| odd. This implies, by GKS, 
that Φκ«0 for ail |K| odd. Thèse facts in turn imply that the odd 
corrélations vanish for ail b.c. since, for |Q| odd, 

0-<OQ>(6,0;+)><OQ>C6,0;b)»-<aQ>(B,0;-b) (3.5) 

where -b is the b.c. obtained from b by reflection; °~i*~~a\* W e 

are therefore left, when 3¥(g,h)/3h«0 at h«0, only with the possible 
nonuniqueness of the even corrélation functions. We shall now consider 
this problem which is also, as we shall see, the central problem when 
3f(gfh)/3h is discontinuous at h«0 and there are only even inter­
actions, e.g. in the Ising model with ferromagnetic pair interactions. 

Définition: We call a (finite) collection of bounded sets ίΚα>, 
K^{0} ail a, generating for the even sets, {Ka}*G iff; given any 

\j m bounded set £ C2Z , |E| even, we can write σΕ β

η Πι σ{Κ }» m 

ai*xn 
fini te, with Κ eG, and x„ a lattice vector (we may have Κ «K ). * i i j 

By the proof of part (2) of Corollary 5, G will be generating 
iff it générâtes ail the sets consisting of pairs of sites U,j}. 
Letting e a be the unit vector in the a t h direction it is now easy 
to see that the ν nearest neighbor sets, κ

α"ί°,β α}, αβ1,..·,ν are 
generating, e.g. the product (° 0° e ) σβ + e )«<*0

a
e *e w l i e r e ei* e2 

1 1 1 2 1 2 
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is one of the next nearest neighbor sites of the origin, etc. · 
It follows from part (2) of Corollary 5 that if the expectation 

values of oY in a translation invariant state μ are positive and 
α 

equal to <σκ >(βfh;•)>(), for ail Κ eGf then ail the even α 
corrélation functions of μ are the same as in the • state. This will 
be the case for ail translation invariant μ whenever Ψ is 
differentiable with respect to J R 9 for ail KaeK and 3¥/3JK >0. ot α 
We now show that this is équivalent to having ¥(&»h) differentiable 

with respect to β. 
Théorem 7: Let the conditions of theorem 6 hold and let Φ ν >0 for ail 
KaeG. If 3Ψ(β,1ι)/3β exists, i.e. the energy per site (apart from the 
magnetic field contribution) is continuous in β, then the expectation 
value of Og, |E| even, is the same in ail translation invariant 
states: < σΕ >μ* < σΕ >+ f o r μ ε Ι * 
Proof : By the gênerai arguments [3-5] mentioned earlier 3Ψ(β,1ι)/3β 
continuous implies that for every μεΐ. Y *γ«Ύ>±Μ 1 *γ<ον>%ί . K*{0} * * K3{0} By (7) <σκ>^><σκ>^, hence the continuity of 
* 5 ^ > h ^ implies that < σχ >+" < σκ >μ f o r a 1 1 μ ε Ι a n d a 1 1 K s u c h t h a t  

Φκ>0. In particular Φ χ >0 for ail Καεδ and by GKS <oR >+>0 so 
α α 

part (2) of Corollary S implies that < σ£ >+ β < σΕ >μ f o r a 1 1 lEl e v e n « 
The interest of theorem 4 lies primiarly in what it tells us about 

the number of extremal translation invariant Gibbs states for a system 
with even ferromagnetic interactions, when h»0t and Ψ(β,1ι) not 
differentiable at h*0. Since Ψ(β,1ι) is now symmetric (and convex) 
in h the non differentiability of Y at h-0 corresponds to the 
existence of a spontaneous magnétisation with [11]ο 

**(β) - lim 3 ψ ί Μ ? - -lim 3 f i j g > h ) « <σ. >(β,)ι«0 ;•>-
» 0 3 h h*° ^ 1 (3.6) 

m -<σλ>(β,1ι«0;-> 

Hère <oA>(efh;-)«(-l)l
Al<oA>(B,h;+) is the expectation of σ Α in the 

infinité volume Gibbs state μ_ obtainedf as A+ZZV
 t with "minus11 

boundary conditions (translation invariance is assured if h>0). As 
already mentioned there are cases, i.e. only pair interactions (ferro­
magnetic) , when h«0 is the only place where a phase transition is 
possible. With more gênerai even interactions only the symmetry h -h, 
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is known a pTiori. In a récent paper [14] we were able, using the GKS 
inequalities, to obtain some information about the Gibbs states of 
such a System at h«0. The following theorem greatly extends those 
results. 

Theorem 8: Let the condition of theorem 6 hold and let Φκ»0 for ail 
|K| odd and Φ„ >0 for ail Κ ε6. If 3Ψ(β,1ι«0)/3β exists then there 
are at most two extremal translation invariant Gibbs states, μ + and 
μ_. Thèse states coïncide if 3Ψ(β,1ι)/31ι exists at h»0. 

Proof: By theorem 7 the differentiability of Ψ(β,Ο) implies that the 
<σΕ>^, |E| even, are the same in ail μεΤ. If furthermore 
3f(B,h)/3heÛ, at h«0, then by the remarks following theorem 6 the 
odd corrélations vanish for ail μεΰ and the state μεΐ is then 
unique. (When the FKG inequalities hold differentiability with respect 
to h implies differentiability with respect to β). When Ψ is not 
differentiable at h«0, m*(fi)>0, there are at least two extremal 
translation invariant Gibbs states, μ + and μ_, [11]· Let μ(β,0·^) 
be an invariant state then ii(e,0;b)=y[y(e,0;b)+y(B,Q;-b)] is an 
invariant state in which ail the odd corrélations vanish by symmetry. 
Hence μ(β,0^)«γ[μ4+μβ] which, since invariant Gibbs states form a 
simplex, i.e. each state has a unique décomposition into extremal states, 
implies that μ(β,0^)βγμ++(1-γ)μ_, 0<γ<1. This complètes the proof. 
(The last part of the argument, which is also used in refs. [7] and [8], 
I heard originally from Ruelle). 

Remarks : i) It follows [2] from GKS that there exists a unique β ς  

such that {0, 0<β 
>0, t>tc 

We always have [2,15] β ς ?#ο > 0 a n < i * o r v> 2 (with non-vanishing Φκ) , 
8c<Bp<» by the Peierls argument (or the more récent method of 
Frohlich, Simon and Spencer [16] for v>3). Using the convexity of 
Ψ(Β,Ο) it follows from theorem 8 that with the possible exception at 
a countable number of values of β, there is a unique μεΐ for B <6 C 

and two extremal states μεΐ for β>βς. In particular there are no 
triple or higher order points at h«0 when the energy is continuous 
in β· 

ii) The state, at h«0, obtained with "zeroM (or periodic) b.c. 
y0(yp) is translation invariant and has vanishing odd corrélations 
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[2,15]· Hence μο
βμρ«γ[μ++ρ.]. This implies in particular the 

existence of "long range order" in' thèse states for B>BC» i.e. 

<σ.σ.> ι• ». ι[m«(g)]2>Q, for β>β_. (The converse of this 
statement, long range order «*> m*(B)>0, is also true [2])# 

iii) For the two dimensional Ising System with nearest neighbor pair 
interactions the continuity of 3Ψ(β,1ιβ0)/3β follows from Onsager1 s 
[1,17] exact computation of Ψ(β,Ο). Hence theorem 6 establishes the 
existence of exactly two extremal states for ail β>β ·, (β being 

C ν 
here the place where the second derivative of Ψ(β,0) diverges 
logarithmically [18])· This resuit for the square lattice was proven 
earlier, using duality, by Messager and Miracle-Sole [7]. For more 
gênerai Ising Systems with even ferromagnetic interactions this resuit 
is known at low températures (not ail the way to Tc) from the work of 
Gallavotti and Miracle-Sole and of Slawny [8]. Gallavotti and Miracle-
Sole used (for nearest neighbor interactions) a beautiful version of 
the Peierls argument while Slawny uses the Asano-Ruelle method of 
locating zéros of the partition function to prove analyticity of ψ(£) 
in the even interactions at sufficiently large β. Using the above 
theorem it is sufficient to establish that Ψ(β,Ο) is C 1. This can 
be done readily if the corrélation function in the + state cluster 
sufficiently well for Σ[<σ

ΑσΒ+χ>(Β»0;•)-«?A>(β,0 ;•)<σβ+χ>(β,0;+)]<« 
[18]. The latter can be easily proven for large β by a Peierls type 
argument [19] which actually establishes exponential dustering. 
iv) Theorem 8 can be gêneraiized, in a fairly direct way, using the 
ideas of Slawny, Gruber and their coworkers to non-even interactions. 
One then gets a larger number of extremal states: thèse are related 
to the group, acting on the spins, which leaves the Hamiltonian 
invariant. 

4. General One Component Spin Systems 

In order to generalize theorems 5-8 to arbitrary (rapidly decaying) 
free measures p̂ (dŝ ) we first need the analog of corollarys 4 and 5 
for such p^'s. This can be achieved by defining 

fs, |s|<X 

° C s ; X ) " [ λ, Is|>i, o<x<-. ( 4 a ) 

and choosing in Lemma 2, fi(si)«gi(si)«o(si,Xi). Using (2.5) the 
analog of Corollary 4 would now be: 
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Corollary 4': Let j K > I J K U T H E N < Σ Α ^ - Α ; Λ Α ^ > Β < Σ Α ^ - Α ; Λ Α ^ > F A N D 

^B^B^B^'^B^B^B^' i m P j i e s ^A (5A ; AA ) aB^B ;V > e^A (5A ; XA ) aB (SBÎ XB ) > f 

where ^ CC§ c^ c) e
ig c[a(s i;X i)] x, ^-1,2,.... 

To obtain the analog of Corollary 5 we make two remarks: (a) since 
both o(s;X) and s-o(s;X) are odd monotone increasing functions of 
•s it follows from Lemma 2 that <o(s;X)>><a(s;X)>f and 
<s-o(s;X)>><s-o(s;X)>f. Hence <si>«<si>' implies 
<o(si;Xi)>«<o(si;Xi)>f for ail X^O. Similarly <siSj>«<siSj>' 
implies <σ(5Α;λ^σ(5.. ;Xj)>«<o(si;Xi)a(Sj ;Xj)>!, etc. Since 
t^(si;Xi)/Xi]2 + 1 as \ i + 0, and s^O, 
«Ks^X^ [oCs2;X2)]2a(s3;X3)>-<a(s1;X1) [a(s2;X2) ]2a(s3;X3)>· for ail 
X 2 —><o(s1;X1)a(s3;X3)>«<a(s1;X1)a(s3;X3)>f (if P2(ds2) is not 
concentrated on s2«0, which is an irrelevant case). 

Permitting now the {X^ in Corollary 4· to vary arbitrarily we 
obtain 

Corollary S1 : Let jK>I JKI« T h e n : C1) <si>«<si>1 ΥίεΛ implies 
yCdS^-y1 (dŜ ) . (2) <5^^ >e<siSj>1 for ail i,jeA implies that ail 
even moments of μ and y1 are equal. 

Let us consider first the case when p(dS) has compact support 
in some interval [-R,R]. Identifying ±b.c with s^tR, for ieAc, 
Theorems 6-8, remain unchanged. In the case of unbounded spins 
however the situation is more complicated. It was shown by Lebowitz 
and Presulti [20] for the case of pair interactions (but this 
restriction is unessential) that if one restricts oneself to ,fregular,f 

Gibbs states - those for which y(dS^), the projection of y on the 
région Ω c2Zv, does not grow "too fast" - then the rôle of y+ will 
be played by states obtained as the infinité volume limit of Gibbs 
states with b.c. s!?*±a £n |j|. It seems likely that the translation 
invariant regular Gibbs states satisfy the variational principle 
(indeed ail the solutions of variational principle may be regular) and 
theorems 6-8 would then apply to thèse states. (Indeed, using methods 
similar to thèse, Theorem 6 has been extended recently to classical 
rotators [21]). 
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