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$ 1 [Introduction,

e e

If a physical system consisting of a viscous fluid {and rigid
bodies) is not subjected to any external action, it will tend to a state
of rest (equilibrium). We submit now the system to a steady actinn
(pumping, heating, etc.) measured by a parameter W ¥). When W = 0 the
fluid is at rest. For [ >0 we obtain first a steady state , i.e., the
physical parameters describing the fluid at any point (velocity, tempera-
ture, etc ) are constant in time, but the fluid is no longer in equili-
brium. This steady situation prevails for small values of | . When U
is increased various new phenomena occur; (a) the fluid motion may remain
steady but rhange its symmetry pattern; (b) the fluid motion may become

periodic in time; (c) for sufficiently large d , the fluid motion becomes

very complicated, irregular and chaotic, we have turbulence

The physical phenomenon of turbulent fluid motion has received
various mathematical interpretations It has been argued by Leray {91
that it leads to a breakdown of the validity of the equations (Navier-
Stokes) used to describe the system. While such a breakdown may happen
we think that it does not necessarily accompany turbulence. Landau and
Lifschitz (8] propose that the physical parameters x describing a fluid

in turbulent motion are quasi-periodic functions of time:

x(t) = f(wl sty t)

* []
)Depending upon the situation, W will be the Reynolds number, Rayleigh

number, etc.



where f has period 1 in each of its arguments separately and the
+)
frequences Ai,.n.,U% are not rationally related.” It is expected
that k becomes large for large [ , and that this leads to the com-
plicated and irregular behaviour characteristic of turbulent motion.
We shall see however that a dissipative system like a viscous fluid
3t

will not in general have quasi-periodic motions *. The idea of Landau

and Lifschitz must therefore be modified.

Consider for definiteness a viscous incompressible fluid occu-

3

pying a region D of R . If thermal effects can be ignored, the
fluid is described by its velocity at every point of D . Let H be the
space of velocity fields v over D ; H 1is an infinite dimensional

vector space. The time evolution of a velocity field is given by the

Navier-Stokes equations

dv _
T oex, W (1)

where XH is a vector field over H . For our present purposes it is

3)
not necessary to specify further H or X

v

*
)Quasi—periodic motions occur for other systems, see Moser (10]).
3

A general existence and uniqueness theorem has not been proved for
solutions of the Navier-Stokes equations. We assume however that we have
existence and uniqueness locally, i.e., in a neighbourhood of some
v € H and of some time t
o o
+)This behaviour is actually found and discussed by E. Hopf in a model of
turbulence [A Mathematical Example Displaying Features of Turbulence,
Comm. Pure Applied Math. 303-322 (1948)].



In what follows we shall investigate the nature of the solutions
of (1), making only assumptions of a very general nature on Xu . It
will turn out that the fluid motion is expected to become chaotic when
increases This gives a justification for turbulence and some insight
inte its meaning To study (1) we shall replace H by a finite-dimen-
Ei

sinnal manifeld ~ and use the qualitative theory of differential equa-

tions

For W =0 , everv soluticn v(-) of (1) tends to the solution
V. = 0 as the time tends to =+ ® For I >0 we know very little
ahout the vector field Xu Therefcre it is reasonable to study generic
deformations from the situation at = 0 In other words we shall
ignore possibilities of deformation which are in some sense exceptional.
This point of view could lead to serious error if, by some law of nature
which we have overlooked, X, happens to be in a special class with
exceptional properties%%)‘ it appears however that a three-dimensional

viscous fluid conforms to the pattern of generic behaviour which we dis-

cuss below Our discussion should in fact apply to very general dissipative

M,

Akl

svstems

B
This replacement can in several cases be justified, see § 5.

For instance the differential equations describing a Hamiltonian (con-
servative) system, have very spoecial properties. The properties of a con-
servative system are indeed very different from the prrperties of a dissi-
pative svstem (like a viscous fluid) If a viscous fluid is observed in
an experimental setup which has a certain symmetry, it is important to
take into account the 1nvariance of X, under the correspomding symmetry
group This problem will be considered elsewhere

St

In the discussion of more specific properties, the behaviour of a viscous
fluid mav turn out to be nongeneric, due for instance to the local nature
ot the differential operator in the Navier-Stokes equations.



The present paper is divided into two chapters. Chapter I is
oriented towards physics and is relatively untechnical. In Section 2
we review some results on differential equations; in Sections 3-4 we
apply these results to the study of the solutions of (1), Chapter II
contains the proofs of several theorems used in chapter I. In Section 5,
center-manifold theory is used to replace H by a finite-dimensional
manifold. In Sections 6-8 the theory of Hopf bifurcation is presented
both for vector fields and for diffeomorphisms. In Section 9 an example

of '"turbulent" attractor is presented,
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§ 2. Qualitative theory of differential equations.

Let B = {x : |x| < R} be an open ball in the finite dimensional
*
euclidean space H ). Let X be a vector field with continuous
derivatives up to order r on B = {x : |xl SR}, r fixed 2 1

These vector fields form a Banach space R with the norm

el
x|l = sup sup  sup |a—5— X (x) |
1 sisy ’plS r x€ B

where

Al 5 1 5 Y

__E—- = ( ——T) (——;)

ax x 3x
and Ipl = Ppyt...+P, . A subset E of B is called residual if it con-

tains a countable intersection of open sets which are dense in @

Baire's theorem implies that a residual set is again dense in 8 ; there-
fore a residual set E may be considered in some sense as a ''large"
subset of 8 ., A property of a vector field X € 8 which holds on a

residual set of ®# is called generic

The integral curve x(-) through X € B satisfies x(0) = x

0
and d x(t)/dt = X(x(t)) ; it is defined at least for sufficiently

small !tl . The dependence of x(r) on X is expressed by writing

3

More generally we could use a manifold H of class o



‘t - S B F) . . .
x(t) X,t(xo) ; 5&,’ is called integral of the vector field X ;
8 is the time one integral, If =x(t) =x , i.e., X(x ) =0 , we
X,1 o) o}

have a fixed point of X . If x(7) = X and x(t) # x ~ for
0 <t < T we have a closed orbit of period 7 ., A natural generaliza-

tion of the idea of closed orbit is that of quasi-periodic motion:

x(t) = f(uo1 Esuvnsty t)

where f 1is periodic of period 1 in each of its arguments separately
and the frequencies Wys...,W  are not rationally related. We assume
S k . . . i . ; ko,
that f is a C -function and its image a k-dimensional torus T im-
bedded in B , Then however we find that a quasi~periodic motion is
, . *)
nongeneric., In particular for k = 2 , Peixoto's theorem ~ shows that
quasi-periodic motions on a torus are in the complement of a dense open
T
subset X of the Banach space of C  vector fields on the torus: T
)

consists of vector fields for which the non wandering set fI is com-

posed of a finite number of fixed points and closed orbits only,

As t =+ ® | an integral curve x(t) of the vector field X

may be attracted by a fixed point or a closed orbit of the vector field,

b6
or by a more general attractor ), It will probably not be attracted by

+#

)See Abraham [1].

33

)A point x belongs to Q! (i.e. is non wandering) if for every neighbour-

hood U of x and every T> 0 one can find t>T such that S& t(U)ﬂ Ut ¢ .
b

k k
For a quasi-periodic motion on T we have 0 =T

i
A closed subset A of the non wandering set {1 is an attractor if it
has a neighbourhood U such that ﬂt> o £& t(U) = A . For more attractors
bl

than those described here see Williams [13].
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a quasi-periodic motion because these are rare. It is however possible
that the orbit be attracted by a set which is not a manifold., To visualize
such a situation in n dimensions, imagine that the integral curves of
the vector field go roughly parallel and intersect transversally some

piece of n-l-dimensional surface § (Fig.l).

Fz’g. 1.

We let P(x) be the first intersection of the integral curve through =x

with S (P 4is a Poincaré map).

Take now n-1 = 3 , and assume that P maps the solid torus

Ub into itself as shown in Fig. 2,

The set N

L S0 p" Hb is an attractor; it is locally the product of a

Cantor set and a line interval (see Smale [11] , Section I.9).



Going back to the vector field X , we have thus a 'strange" attractor
which is locally the product of a Cantor set and a piece of two-dimensional
manifold. Notice that we keep the same picture if X 1is replaced by a
vector field Y which is sufficiently close to X in the appropriate
Banach space. An attractor of the tvpe just described can therefore not

be thrown away as non-generic pathology.



§ 3. A mathematical mechanism for turbulence.

#*
Let Xu be a vector field depending on a parameter [ )

The assumptions are the same as in Section 2, but the interpretation

we have in mind is that Xu is the right-hand side of the Navier-Stokes

equations. When W varies the vector field XH may change in a number
of manners. Here we shall describe a pattern of changes which is physi-

cally acceptable, and show that it leads to something like turbulence.

For {4 =0 , the equation

dx _
T XU- (x)
has the solution =x=0 . We assume that the eigenvalues of the Jacobian
matrix AJk defined by
3 x
A%, = = (0
3 x

have all strictly negative real parts; this corresponds to the fact that
the fixed point O 1is attracting. The Jacobian determinant is not zero
and therefore there exists (by the implicit function theorem) §&(W) de-

pending continuously on K and such that

x‘_l (8(w) =0

*)To be definite, let (x, M) - XH(X) be of class C©
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In the hydrodynamical picture, £(u) describes a steady state.

We follow now &(uW) as M increases. For sufficiently small
M the Jakobian matrix AJk(M) defined by
3% 3

Ajk(m -—E aw (2)
o x

has only eigenvalues with strictly negative real parts (by continuity).
We assume that, as K increases, successive pairs of complex conjugate
eigenvalues of (2) cross the imaginary axis, for = ul, uz, H3,... ")
For & > My s the fixed point E&(1) 1is no longer attracting., It has
been shown by E. Hopf** that when a pair of complex conjugate eigenva-
lues of (2) cross the imaginary axis at ui , there is a one-parameter
family of closed orbits of the vector field in a neighbourhood of
(’(ul), ui> . More precisely there are continuous functions y(w) ,
M(w) defined for 0 = w <1 such that

(a) y(0) = giul) , (0) = b

(b) the integral curve of X through v(w) 1is a closed orbit for

K &)

w > 0,

Generically (&) > b, or M(w) < Hy for & # 0 ., To see how the

*) Another less interesting possibility is that a real eigenvalue vanishes,
When this happens the fixed point &(A) generically coalesces with
another fixed point and disappears (this generic behaviour is changed if

some symmetry is imposed to the vector field Xu )
3 .
)Hopf (6] assumes that X 1is real-analytic; the differentiable case

is treated in Section 6 of the present paper,
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closed orbits are obtained we look at the two-dimensional situation

in a neighbourhood of é(ul) for U < Hl (Fig. 3) and K > My (Fig. 4).

Fig’-3- / Fi

Suppose that when | c¢rosses ul the vector field remains like that
of Fig. 3 at large distances of &(W) ; we get a closed orbit as shown

in Fig. 5.

fjg 5.

Notice that Fig. 4 corresponds to M > “1 and that the closed orbit is
attracting. Generally we shall assume that the closed orbits appear for
o> “i so that the vector field at large distances of &(J) remains

attracting in accordance with physics. As | crosses ul we have then
replacement of an attracting fixed point by an attracting closed orbit.

The closed orbit is physically interpreted as a periodic motion, its

amplitude increases with



§ 3. a. Study of a nearly split situation

To see what happens whea i crosses the successive ui s
we let Ei be the two-dimensionsl linear space associated with the
i-th pair of eigenvalues of the Jacobian matrix In first approximation

the vector field Xp is, near £{u) , of the form

R0 =% . x) X (x) 3)
Xu xX) = XH 1 x1 + Xg E\XB 4. (3
wt [V}
where X ,, x, are the components of X and x 1in E, If «
Mo i il i
is in the interval (W4 , uk ) . the vector field X leaves invariant
k +1 vl

uk
a set T which is the cartesian product of k attracting closed orbits

Tl, ..,Tk in the spaces Bl o Bv suitable choice of cocrdinates

ak , . . , . vk
on T we find that the motion defined bv the vector field on T is

o~ S

quasi-periodic {(the frequencies x}, e m of the closed orbits in

E .,E. are in general not rationally related).

1 k

Replacing Xu bwv Xu is a perturbation. We assume that this

perturbation is small, i.e. we assume that Xu nearly splits according

to (3) 1In this case there exists a ¢  manifold (torus) Tk close to

o

vk ) C . . ) o
T which is invariant for Xp and attracting The condition that

3 g -
)This follows from Kelley L7 ' Theorem 4 apd Thecrem 5, and also from
recent work of Pugh (unpublished). That T is attracting means that it has
- . K
a neighbourhood U such that (>0 ﬁk t(L) = Tk . We cannot call T

an attractor because it need not consist of non-wandering points
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(%3

XH - XLl be small depends on how attracting the closed orbits

T T for th tor field X b herefore th
17+l are for the vector fie Ul""’xuk ; therefore the con

dition is violated if | becomes too close to one of the ui .

We consider now the vector field Xu restricted to Tk . For
reasons already discussed, we do not expect that the motion will remain
quasi-periodic. If k = 2 , Peixoto's theorem implies that generically
the non—wandering.set of T2 consists of a finite number of fixed points
and closed orbits. What will happen in the case which we consider is
that there will be one (or a few) attracting closed orbits with frequencies
uﬁ, w, such that u&/ w, goes continuously through rational values.

Let k > 2 , In that case, the vector fields on Tk for
which the non-wandering set consists of a finite number of fixed points
and closed orbits are no longer dense in the appropriate Banach space.
Other possibilities are realized which correspond to a more complicated
orbit structure; '"strange" attractors appear like the one presented at
the end of Section 2. Taking the case of T4 and the C3—topology we
shall show in Section 9 that in any neighbourhood of a quasi-periodic ;

there is an open set of vector fields with a strange attractor,

We propose to say that the motion of a fluid system is turbu-

lent when this motion is described by an integral curve of the vector

3
field XU which tends to a set A ), and A is neither empty nor a

*
R R + o , :
More precisely A 1is the w Llimit set of the integral curve x(*), i.e.,

the set of points & such that there exists a sequence (tn) and £t~
x(tn) -8
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fixed point nor a closed orbit. In this definition we disregard nonge-
neric possibilities (like A having the shape of the figure 8, etc.).
This proposal is based on two things

(a) We have shown that, when H 1increases, it is not unlikely that an
attractor A will appear which is neither a point nor a closed orbit.
(b) In the known generic examples where A 1is not a point or a closed
orbit, the structure of the integral curves on or near A 1is compli-

cated and erratic (see Smale [11] and Williams [13)).

We shall further discuss the above definition of turbulent motion in

Section 4.



§ 3. b. Bifurcations of a closed orbit,

We have seen above how an attracting fixed point of X  may

o)

be replaced by an attracting closed orbit Y when the parameter crosses

the wvalue U1 (Hopf bifurcation). We consider now in some detail the

next bifurcation; we assume that it occurs at the value W' of the

*3 33
parameter ~ and that lim Y is a closed orbit YH' of X , )
= .

Let @u be the Poincaré map associated with a piece of hypersur-

face S transversal to YH , for 4 € (“1’ u') . Since YH is
attracting, P, = s N YH is an attracting fixed point of @u for

M€ {4, M') . The derivative d & (p ) of @u at the point p

1° Mo

is a linear map of the tangent hyperplane to S at

!

p ., to itself.
o)

We assume that the spectrum of d éu,(pu.) consists of a

finite number of isolated eigenvalues of absolute value 1, and a part

~ ' 3#33¢)
which is contained in the open unit disc {zt ¢l [z| <1 } . Accor-

ding te § 5, remark (5.6), we may assume that § 1is finite dimensional.

3

In general W' will differ from the value uz introduced in § 3.a.
33
"There are also other possibilites: If Y“ tends to a point we have

a Hopf bifurcation with parameter reversed, The cases where lim Y
M-t
i3 not compact or where the period of yu tends to % are not well

v

understood; they may or may not give rise to turbulence,

it
If the spectrum of d Qu,(pu,) is discrete, this is a reasonable

assumption, because for “1 < WU < W' the spectrum is contained in the

open unit disc.



- 16 -

With this assumption one can say rather precisely what kind of generic
bifurcations are possible for | = ' . We shall describe these bifurca-
tions by indicating what kind of attracting subsets for X (or @u)

I

there are near YU' (or p ,) when M >

u'

Generically, the set E of eigenvalues of d @u,(pu,) ,with

absolute value 1 , is of one of the following types:

1. E={+1)}
2. E={-11}
3 E = { a, o } where QO , @ are distinct.

For the cases 1 and 2 we can refer to P. Brunovsky (3].In fact in case 1
the attracting closed orbit disappears (together with a hyperbolic closed

orbit); for & > W' there is no attractor of XH near YH' . In case 2

there is for W > H' (or W <u' ) an attracting (resp. hyperbolic) closed

orbit near. YH' , but the period is doubled.

1f we have case 3 then @u has also for WM slightly bigger

than H' a fixed point P, generically the conditions (a)',...,(e)

in theorem (7,2) are satisfied. One then concludes that when YU' is a

"vague attractor" (i.e. when the condition (f) is satisfied) then, for

M > ', there is an attracting circle for @u ; this amounts to the
. 2

existence of an invariant and attracting torus T  for Xu . If YU'

is not a '"vague attractor" then, generically, Xu has no attracting

set near Y for d > !

o



§ 4. Some remarks on the definition of turbulence.

We conclude this discussion by a number of remarks

(1) The concept of genericity based on residual sets may not
be the appropriate one from the physical view point. In fact the comple-
ment of a residual set of the H-axis need not have Lebesgue measure zero.
In particular the quasi-periodic motions which we had eliminated may in
fact occupy a part of the M-axis with non vanishing Lebesgue measure*
These quasi-periodic motions would be considered turbulent by our defini-
tion, but the "turbulence" would be weak for small k . There are

arguments to define the quasi-periodic motions, along with the periodic

ones, as non turbulent (see (4) below).

(2) By our definition, a periodic motion ( = closed orbit of
Xu ) is not turbulent. It may however be very complicated and appear

turbulent (think of a periodic motion closely approximating a quasi-periodic

one, see § 3. b, second footnote).

(3) We have shown that, under suitable conditions, there is an

attracting torus ™ for Xu if M is between M and M, ., . We
assumed in the proof that K was not too close to Uk or Uk+1 . In
1 2

fact the transition from T to T is described in S:--ion 3.b, but the

# 2
On the torus T , the rotation number & is a continuous function of

M . Suppose one could prove that, on some HM-interval, W is non constant
and is absolutely continuous with respect to Lebesgue measure; then W

would take irrational values on a set of non zero Lebesgue measure.



. k el
transition from T to T appears to be a complicated affair when

k >1 . In general, one gets the impression that the situations not
covered by our description are more complicated, hard to describe, and

probably turbulent.

(4) An interesting situation arises when statistical properties

of the motion can be obtained, via the pointwise ergodic theorem, from

an ergodic measure m supported by the attracting set A . An observable
quantity for the physical system at a time t is given by a function

X, on H , and its expectation value is m(xt) = m(xo) . If m is
"mixing" the time correlation functions m(xt yo) - m(xo) m(yo) tend

to zero as t = ® | This situation appears to prevail in turbulence, and
"pseudo random" variables with correlation functions tending to zero

3
at infinity have been studied by Bass ~. With respect to this property

of time correlation functions the quasi-periodic motions should be classi-

fied as non turbulent.

(5) In the above analysis the detailed structure of the equations
describing a viscous fluid has been totally disregarded. Of course some-
thing is known of this structure, and also of the experimental conditions
under which turbulence develops, and a theory should be obtained in which

these things are taken into account,

. "
See for instance [2;.
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§ 5. Reduction to two dimensions.

- 1 , .
Definition (5.1). Let & : H—>H be a C map with fixed

point p €H , where H 1is a Hilbert space. The spectrum of & at p

is the spectrum of the induced map (d@)p : Tp(H) —_ Tp(H)

Let X be a Cl vectorfield on H which is zero in p € H

For each t we then have d(r@X t)p : TP(H) —> Tp(H) , induced by the

time t integral of X . Let L(X) : Tp(H) —> TP(H) be the unique

t.
continuous linear map such that d(&8, ) = e L(X)

X,t'p
We define the spectrum of X at p to be the spectrum of L(X) (Note

that L(X) also can be obtained by linearizing X ).

Proposition (5.2). Let Xu be a one-parameter family of

Ck vectorfields on a Hilbertspace H such that also X , defined by
k

X(h, W = (Xu(h),o) , oo HXR is C . Suppose:

(a) X, is zero in the origin of H

(b) For K <O the spectrum of X, in the origin is contained in
{z €¢ | Re(z) <0}

(¢) For H =0 , resp. & >0 , the spectrum of X  at the origin

i
has two isolated eigenvalues A(M) and A(W) with multiplicity

one and Re(A(W)) = 0 , resp. Re(A(W)) >0 . The remaining part

of the spectrum is contained in {z € C | Re(2) <0}

Then there is a (small) 3~dimensional c®-manifold V° of H XR con-

taining (0, 0) such that:



e
1. V™ 1is 1locally invariant under the action of the vectorfield X

( X 1is defined by X(h, W) = (Xu(h), 0) ); locally invariant means

that there is a neighbourhood U of (0, 0) such that for

el =1 ¥ =8 L@ e

b

2. There is a neighbourhood U' of (0, 0) such that if p €U' ,

is recurrent, and has the property that £X r(p) €U' for all t

3

e
then p €V

1%
3. in (0, O) Ve is tangent to the W axis and to the eigenspace of
A0, A0
Proof: We construct the following splitting T (H xR) = v© & v°®

(0,0)

v© is “angent to the | axis and contains the eigenspace of A(W)
AW s v® is the eigenspace corresponding to the remaining (compact)
part of the spectrum of L(X) . Because this remaining part is compact
there is a & >0 such that it is contained in {z € € | Re(z) < - 8} .
We can now apply the centermanifold theorem [57, the proof of which

: - - e Yic
generalizes to the case of a Hilbert space, to obtain V as the center-

. - r , . k beal o4 , k
manifold of X at (0, 0) Lby assumption X iz C , so V is C
. ) . Lk
if we would assume only that, for each H, X is ( (and ¥ only

t
A v ¢ -
ct ), then V& would be ct but, for each M, , Ve N fu= M, J would be

¢ 1,

. ; s
For positive t, d(@X t>0 0 induces a contraction on V
3 bl

N ) . | ! -éf_’”; ) .
(the spectrum is contained in {z S é?{ < e } ). Hence there is a

i
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neighbourhood U' of (0, 0) such that

«©
"
u'n (W QX . (U'ﬂ C (U' NV®) . Now suppose that p € U' 1is recurrent
t=1 ’
and that 5& t(p) €17' for all t . Then given € >0 and N >0
3
there is a t > N such that the distance between p and 5& (p) is

<€ . It then follows that p € (U' N ) <V for U' small enough,

This proves the proposition.

Remark (5.3). The analogous proposition for a one parameter set of
diffeomorphisms QH is proved in the same way. The assumptions are then:
(a)' The origin is a fixed point of éu

(b)' TFor W <0 the spectrum of @u at the origin is contained in
{z €¢ | |z| <1}

(e)' For K =0 resp. >0 the spectrum of @u at the origin has
two isolated eigenvalues A(M) and A()  with multiplicity one
and [K(U)l =1 resp. |AMW]| >1 . The remaining part of the
spectrum is contained in {z €¢ | |z] <1}

One obtains just as in proposition ( 5.2) a 3-dimensional center manifold

which contains all the local recurrence.

Remark (5.4). If we restrict the vectorfield X , or the diffeomorphism

¢ (defined by &(h, W) = (@u(h), M) ), to the 3-dimensional manifold

ve we have locally the same as in the assumptions (a), (b), (c), or

(a)', (b)', (c)' where now the Hilbert space has dimension 2. So if we want
to prove a property of the local recurrent points for a one parameter family

of vectorfield, or diffeomorphisms, satisfying (a) (b) and (¢), or (a)',

(b)'" and (c)', it is enough to prove it for the case where dim(H) = 2 .
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Remark (5.5). Everything in this section holds also if we replace our

Hilbert space by a Banach space with Ck—norm; a Banach space B has

k . qon . k .
C" -norm if the map x —> |xii , x € B is C except at the origin,

This Ck-norm is needed in the proof of the center manifold theorem,

Remark (5.6). The propositions (5.2) and (5.3) remain true if

1. we drop the assumptions on the spectrum of X resp. @u for

I
M >0

2, we allow the spectrum of Xp resp. @D to have an arbitrary
but finite number of isolated eigenvalues on the real axis resp.

the unit circle.

. . . . . “ac .
The dimension of the invariant manifold V is then equal to that number

of eigenvalues plus one.
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§ 6. The Hopf bifurcation.

. . . .k .
We consider a one parameter family XU of C ~-vectorfield on

2 . . 2
R , k 25 | as in the assumption of proposition (5.2) (with R instead

of H ); A(W) and A()  are the eigenvalues of X, in (o, 0)

Notice that with a suitable change c¢f coordinates we can achieve

, S v . 3
X, = (Re X(p)xl + Im X(M)xz) axl + (-Im K(p)x1+Re X(u)xz) 5;; + terms of
higher order,
o ; d (W) o
Theorem (6.1) (Hopf [61). If ( ! )H=O has a positive
real part, and if A(0) # 0 , then there is a one-parameter family of

closed orbits of X(=(Xu, 0)) on ‘RS =1R2 X]Rl near (0, 0, 0) with

o
period near %1(0) ; there is a neighbourhood U of (0, 0, 0) in

3 , . . . . .
R such that each closed orbit of X , which is contained in U , is

a member of the above family.

If (0, 0) 1is a 'vague attractor" (to be defined later)

for Xo , then this one-parameter family is contained in {4 >0} and

the orbits are of attracting type,

Proof. We first have to state and prove a lemma on polar-coordinates:

2
Lemma (6.2). Let ¥ be a Ck vectorfield on R and let

- 2 2 .
X(0,0) = 0 . Define polar coordinates by the map Y : R~ —>R , with

. , k~2 .
¥(r, ©) = (r cos @ r sin ) . Then there is a unique C ~-vectorfield

“ 2 At .
X on R , such that Y,(X) =% (i.e. for each (r, @

[% ]
d Y(X(r, @) = X(r cos ¢ r sin ©).
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Proof of Lemma (6.2). We can write ¥ = X 9 + X S -
1 9x 2 ox
1 2
X+x. X, [ 1 3
= W R B / (x S + x ° WO+ : X2X1+xlxz) (-x 9 +x 0 )
~ 2 3x 2 Ox 2 2 T2 x 19x
X + %, Kv;1+x2 1 2 (x1+x2) 1 2
f (x,, x.) f (x,, x.)
- r’r T v D 1 T2 o

(%) a w
Where zZ. (= S;) and Z@ (= %EQ are the "coordinate vectorfields" with
w
respect to (r, ¢ and r = % V x§+ xg (Note that r and Y*(Zr) are
bivalued.)
¥ 3

Now we consider the functions ¥ (fr) = fr o ¥ and Y (f@) . They are

3 * 3
zero along (r = 0} ; this also holds for = (Y (f)) and (Y (£ ))

% or r dr ©
b4 (f) 'f'*(f )

By the division theorem - .3 , resp ———E“L , are Ck_1 resp. Ck_2

r

’4'* ) \{'*/
LLE D N «f¢)

We can now take X = ——— Z + ——5— Z

the uniqueness
r r r

is evident.

Definition (6.3). We define a Poincaré map P, for a vector-

field X as in the assumptions of theorem (6.1):

P is a map from {(Xl’ x

< Wl x| <e, x, =0, [uf =ul to the

2’ 2
(Xl’ M)  plane; M is such that Im(A(W)) # O for |ul < Moo oe is

sufficiently small. P_, maps (Xl’ x M) to the first intersection point

X 2°
of £& t(xl’ *gs W), £ >0 , with the (Xl’ 4) plane, for which the
) i . . g ' |
sign of x; and rhe =x, coordinate of X,t(xl’ Xy M) are the same.

]
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Remark (6.4), P, preserves the K coordinate. In a plane u=constant
the map PX is illustrated in the following figure
\ z,
/////——\x\\?(u)
«“w S
! xI
~__,,///// Fig. 6.
/,«./-esma/ curve of X
at Vaadd ConslFanl
Im(A(u)) # O means that X has a 'non vanishing rotation" ; it is rthen

clear that P is defined for ¢ small enough.

X
k-2
Remark (6.5). It follows easily from lemma (6.2) that Py is ¢C
We define a displacement function V(xl, i) on the domain of PK as
follows:
P.(x,, 0, W) = (x, + V(x,, W, 0, &) ; V is k2
X 1’ 3 1 15 1) . bl

This displacement function has the following properties:-

(1) V is zero on {x = O] the other zeroes of V occur in pairs

1

>
(of opposite sign), each pair corresponds to a closed oxbit of
X . If a closed orbit Y of X is contained in a sufficiently

small neighbourhood of (0, 0} , and intersects {x130} oniy

pa

twice then V has a corresponding pair of zeroes (namely the two

points v N (domain of Py )



o
(ii) For W <0 and x, = 0, o<y ; for >0 and x, = O
1 7ok 1 7
1 9
N ; v .
— >0 and for « =0 and x = = >0 . This follows
54 Jooluex
1 1
from the assumptiouns on A(u) Hence, again by the division
o’ . , @
: k- 7 . ) J
theorem, V = i“ is ¢ k . v(0, 0) is zero, 3% >0 , so
) 3

A

there is locally a urique Ck‘3—curve L of zeroes of V passing
through (0, 0) lLocally the set of zeroes of V 1is the union
of 4 and {x,=0} . 4 induces the one-parameter family of

closed orbits.
(iii) Let us say that (0, 0) 1is a '"vague attractor" for X, if

V(Xl’ 0) = - A x? + terms of order > 3 with A >0 . This means

rd
that the 3  order terms of XO make the flow attract to (0, 0).

n 2
In that case V = alu - A x{ + terms of higher order, with Ol
w
and A >0 , so V(xl. <)  vanishes onlv if X = 0 or K >0

This proves that the one-parameter familv is contained in {u> O} .

(iv) The following holds in a neighbourhood of (0, 0, 0) where

I,

vy
If V(xl, i) = 0 and ( jl ) <0 , then the closed orbit

T (x, L, W)

i

witich cuts the domain of PK in  (x,, W) is an attractor of Xu
This follows from the fact that (xl, i) is a fixed point of Py
and the fact that the derivative of P, in (x W) , restricted

X 1’

to this w~ level, is smaller than 1 {in absolute value),.

Combining (iii) and (iv) it follows easilv that, if (0, 0) 1is a vague

attractor, the closed orbits of our one parameter familv are, near (o, 0) ,
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of the attracting type.

Finally we have to show that, for some neighbourhood U of
(0, 0) , every closed orbit of X , which is contained in U , is a
member of our family of closed orbits. We can make U so small that

every closed orbit Yy of X , which is contained in U , intersects

the domain of PX

Let p =(x1(Y), 0, M(Y)) be an intersection point of a closed orbit Y

with the domain of PX . We may also assume that U 1is so small that

PX[U N (domain of PX)] C (domain of P, ). Then P.(p) 1is in the

domain of PX but also PX(p) CU so (PX)Z(p) is defined etc.; so

P)l((p) is defined.

Restricted to (k= (V)] PX is a local diffeomorphism of

a segment of the half line (x;, 20 or x, S0 , x, =0

! . ) , = u(y) )

into that half line.

If the X, coordinate of P;(p) is < (resp. > ) than xl(Y) then

the x; coordinate of P;+1(p) is < (resp. > ) than the x, coordi-

1
nate of P;(p) , 80 p does not lie on a closed orbit. Hence we must
assume that the x, coordinate of PX(p) is XI(Y) , hence p 1is a
fixed point of P hence p 1is a zero of V , so, by property (ii),

X 3

Y 1is a member of our one parameter family of closed orbits.
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§ 7. Hopf bifurcation for diffeomorphisms.

2 2
We consider now a one parameter family @u "R —>R of

diffeomorphisms satisfying (a)', (b)' and (¢)' (Remark (5.3)) and such
that:

d N
(d) Fm (A >0

u=0

Such a diffeomorphism can for example occur as the time one integral of a
vectorfield XH as we studied in section 2. In this diffeomorphism case
we shall of course not find any closed (circular) orbit (the orbits are
not continuous) but nevertheless we shall, under rather general conditions,
find, near (0, 0) and for W small, a one parameter family of invariant

circles

We first bring éu’ bv coordinate transformations, into a simple
form:
We change the W« coordinate in order to obtain

(d) Ml =1+u

: 2
After an appropriate ( M dependent) coordinate change of R~ we then

have ®(r, ©, W) = ((1 + Wr, ©+ f{(4), M) + terms of order r2 , where
. Pl
X, =T cos ¢ and X, =T sin @ ; " %= 23"+ terms of order r means

that the derivatives of ¢ and &' wup to order 4 - 1 with respect to

agree for (x,, x,) = (0, 0)

(x . )

10 X’

We now put in one extra condition-

(e) £(0) # % 21m for all k, £ =5
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Proposition (7.1). Suppose @u satisfies (a)', (b)', {(c)', (d)' and (e)

X k
and is C , k 25 . Then for M near O , by a K dependent coordinate

. 2
change in R~ , one can bring @u in the following form:

éu(r, © = ({1 + u)r—fl(u)‘r3, © -+ fz(u)+ fq(u).rz) + terms of order r5

, . . 2, ©
For each K |, the coordinate transformation of R is C

k-4

, . . 2 .
the induced coordinate transformation on R~ XR 1is only C

The next paragraph is devoted to the proof of this proposition.

Qur last condition on @u is:

(£) fl(O) # 0 . We assume even that fl(O) > 0 (this corresponds to
the case of a vague attractor for K = 0. see section 6); the case

-1
fl(O) < 0 can be treated in the same way (by considering @—U

instead of @u ).

Notation: We shall use N@H to denote the map

3

(r, @ —> ((L+)r - £,(0.17, @+ £,(W) + f3<u>.r2>

and call this 'the simplified @4 "
:

(W1 ]

Theorem (7.2). Suppose QH is at least C~ and satisfies (a)', (b)',

(c)', (d)' and (e) and N , the simplified ¢ , satisfies (£). Then

there is a continuous one parameter family of invariant attracting circles

of QH , one for each . € (0,g) , for € small enough.
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Proof: The idea of the proof is as follows:

the set L = {u = fl(u).rz} in (r, q, M) - space is invariant under

N® ; N® even 'attracts to this set" . This attraction makes %

stable in the following sense: {@n(Z)}n:g is a sequence of manifolds
which converges (for K small) to an invariant manifold (this is actually
what we have to prove); the method of the proof is similar to the methods

used in [4], (5] .

First we define Ug = {(r, o, W|r # 0 and 5 €(f (W-9, £,00+81)
5'<<fl(u) , and show that Né(Ué) CUg and also, in a neighbourhood of

(o, 0, 0) , é(ué) CUg . This goes as follows:

If p €9 Ug » and r(p) 1is the r-coordinate of p , then the
r-coordinate of N&(p) is r(p) + d(r(p))3 and p goes towards the
interior of Ué . Because ¢ equals N? , modulo terms of order rS ,
also, locally, Q(Ué) CU; . From this it follows that, for ¢ small

enough and all n 20 ¥UZ) Sug ; £ =LN {0 <uc<e]

~

Next we define, for vectors tangent to a M level of U6 , the

slope by the following formula: for ¥ tangent to Ué N {u= Ho} and

X=X é— + X EL the slope of X 1is Xr
r or * T N S0P

; for X _ = 0 the
!-J-O.X(‘9

slope is not defined.

By direct calculations it follows that if X 1is a tangent vector
of Ug N {n = uo} with slope <1 , and W is small enough, then the

slope of d(N®) (X) is = (1 - KH_) for some positive K . Using this,
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the fact that EE \» constant on U6 and the fact that ¢ and N% only
r

differ by terms of order r5 one can verify that for € small enough

and X a tangent vector of Ug N {u= uo} . uo <€ , with slope =1,

d®(X) has slope <1

From this it follows that for € small enough and any n 20 ,

1. Qn(ze) CUg and
2. the tangent vectors of @n(Ze) N {u= uo} , for uo < ¢ have

slope <1
This means that for any uo £€¢€ and n 20

n _ - , ,
$ (Ze) N {u= uo} {(fn (@), o, uo)} , where fn u is a unique

’uo *To

smooth function satisfying:

\ ub ’ duo ‘
. £, @ S tom o Vraos ] for all o
o 170 1l o

d
' —_— =
2. a0 (fn’ub(¢9) W~ for all ¢
[- <]
We now have to show that, for W small enough, {f }
o n, M
o n=0
converges,

We first fix a ¢% and define

=
o
[}

(fn(qoo), @ uo)

o
[N
]

§(p1) (ri, @ M)

P, = (f (wo), O, .uo) Py

n+l o ¥(p,)

(rys @5 M)

Using again the fact that (fn " ((p))z/pb v constant (independent of uo),

bl

[¢]
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one obtains:

-r'] s - - '
rzl (1 K, uo)! fn, u0((,00) fn+1, pro((DO)I and

| | —
Yoar t < W I _
LIRS T fn,uo(“%) fn+1,uo(“%), vhere Ky , K, >0

and independent of ub

By definition we have f ' and f

' - ] = '

nel,u (9 =7 ne2,l (99 T T
o o

We want however to get an estimate for the difference between

d _
1 1 _— =
fn+1,uo(¢ﬁ) and fn+2,ub(¢ﬁ) . Because 7 (fn+2,uo(¢») Ho ;

3/2
2'“0 If

i 1y _ Wy, o< v <
'fn+2,uo(¢b) fn+2,ub(“ﬁ)| “bl“E ol sk oM

(¢%)—f

n+l, 4 (¢%)|
o

1 _ ! = o
We have seen that |[f uo(¢>1) fn+2,uo(¢§)l Irl r2[

n+1

b

S (L= ¥ ) tfn,uo(soo)-fm’uoupo)]

3/2
' _ -~
So |f (@) - f M Ry W) [£

<
o+l (9] ) (1 +k

n+2,uo(¢a 2 n,ub(¢%)_fn+l,uo(¢g)!

3/2

We shall now assume that K is so small that (1+K.p K i )=K_ (4L )< 1
o 2o 10 370

and write p(f , f ) = max (If (o) -f (¢3|)
n, M n+1,ub o o, n+1,u-o
It follows that

m
<
m, f 11 ) (K3(Ho)) 'p(fo,u , fl,u )

(o] (o} [o] o]

This proves convergence, and gives for each small “o > 0 an invariant



and attracting circle. This family of circles is continuous because the

limit functions £, u depend continuously on Ub , because of uniform
3
o

convergence,

s f”’u is not only continuous but even
0

Lipschitz, because it is the limit of functions with derivative = Ho

Remark (7.3). TFor a given M

Now we can apply the results on invariant manifolds in [4], [5] and obtain

the following:

1f QH is C° for each W then there is an €r > 0 such that
the circles of our family which are in {O < u< Cr} are Cr . This
comes from the fact that near M =0 in U6 the contraction in the

r-direction dominates sufficiently the maximal possible contraction in

the ¢ -direction.
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§ 8. Normal forms (the proof of proposition (7.1)).

First we have to give some definitions,Let !r be the vector-
space of r-jets of vectorfields on iRz in 0 , whose {(r-1)-jet is zero
(i.e. the elements of Xr can be uniquely represented by a vectorfield
whose component functions are homogeneous polynomials of degree r ).

V. 1is the set of r-jets of diffeomorphisms GRZ, 0) —> GRZ, 0) , whose
(r-1)-jet is "the identity" . Exp : Er -—> Vr is defined by:
for a € v, , Exp(@) 1is the (r-jet of) the diffeomorphism obtained by

integrating Q over time 1.

Remark (8.1). For r 22 , Exp is a diffeomorphism onto and

Exp(Q) e Exp(B) = Exp(@ + B) . The proof is straightforward and left to

the reader.

Let now A : GRZ, 0) —> GRZ, 0) be a linear map. The induced
transformations A : ¥ —>V_  are defined by Ar(a) = A, , or,

equivalently, Exp(Ar(Q)) = A e Exp a*A_l

Remark (8.2). If [Y]r is the r-jet of VY: GRZ, 0) —> GR2, 0) and
dY is A , then, for every QO € Xr , the r-jets [Y]r° Exp(a) and

Exp(Ar Q) OEYJr are equal., The proof is left to the reader.

A splitting V_=V' &V" of V_ 1is called an A-splitting,
-r -r -r -r
A GRZ, 0) —> GRZ, 0) linear, if

1. y; and Xg are invariant under the action of Ar

2. Arlv; has no eigenvalue one,
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Example (8.3). We take A with eigenvalues A , A and such that

k/4 2mi

A] # 1 or such that |A| =1 but A4e with k, 4 5 . We

may assume that A 1is of the form

cos & sin Q
Ikl . For 2 £i =4 we can obtain a A-splitting of
-sin @ cos &

V., as follows:
-

!{ is the set of those (i-jets of) vectorfields which are, in polar

i 9 i-1 ¢ ,
coordinates of the form al Ty + az r S . More precisely
39 293
1 = L] . = ! =
22 o , !3 is generated by r 3¢ and TS and 24 0

(the other cases give rise to vectorfields which are not differentiable,

in ordinary coordinates).

!; is the set of (i-jets of) vectorfields of the form

13 i-1 3 ng” ?”
g1(¢»r 3 g2(¢ﬁ r 7 with X g1(¢D = . g2(¢ﬂ =0
g1(¢9 and g2(¢9 have to be linear combinations of sin(j.¢) and
cos(j.@) , j S5 , because otherwise the vectorfield will not be

differentiable in ordinary coordinates (not all these linear combinations

are possible).

2
Proposition (8.4). For a given diffeomorphism Q:GRZ, 0)—>®R",0)

with (d@)o = A and a given A-splitting V, = V! @?X; for

2
2 =41 =< io , there is a coordinate transformation # : GRZ,O) —> R",0)

such that:
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1. (dm)o = identity

2. For each z =i = i0 the i-jet of &' = o ? ok—l is related to

its (i-1)-jet as follows: Let [@']i_l be the polynomial map of

degree = i-1 which has the same (i-1)-jet. The i-jet of &' is

related to its (i-1)-jet if there is an element a € V! such that

Exp a=’Eé'Ji_1 has the same i-jet as &'

Proof. We use induction: Suppose we have a map M such that 1 and 2
hold for i < i1 < io . Consider the il jet of o & o K_l . We

now replace % by Exp @ ¢ # for some Q € Xg . ne d o Kal is

then replaced by Exp(Q) ¢ % < ¢ o WL o Exp(—&% , according to remark

(8.2) this equal to Exp(-Ai a) o Exp(Q) o #od e Wl = EXP(GFAi G)°K°§°K~1

1 1

A, lV? has no eigenvalue one, so for each B € V! there is
e -1,

a unique a € y; such that if we replace X by Exp Qon | Kvéok_l
1

is replaced by Exp Bo X< °K—1 . It now follows easily that there is

a unique a € X; such that Exp @ on satisfies condition 2 for i S1i

1 1

This proves the proposition.

Proof of proposition (7.1). For | near O , d@H is a linear map of
the type we considered in example (8.3). So the splitting given there is
a déu—splitting of Ki , 1 =2, 3, 4, for H near zero. We now apply
proposition (8.4) for each H and obtain a coordinate transformation

n  for each MW which brings @u in the required form. The induction

)

step then becomes:
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Given Ku , satisfying 1 and 2 for i < il there is for each H a

unique au € y; such that Exp & ° Ku satisfies 1 and 2 for 1 =i
1

au depends then c’ on M if the il—jet of ¢ depends ¢’ on w ;

this gives the loss of differentiability in the U direction.

1
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§ 9. Some examples,

In this section we show how a small perturbation of a quasi-periodic
flow on a torus gives flows with strange attractors (Proposition (9.2))

and, more generally, flows which are not Morse~Smale (Proposition (9.1)).

Proposition (9.1). Let W be a constant vector field on

T = RZ), k 23 , In every ¢l small neighbourhood of W there

exists an open set of vector fields which are not Morse-Smale.

We consider the case k = 3 . We let W= (ui, ﬁb, U%) and we
may suppose O = ui s “é s w3 ., Given € >0 we may choose a constant

vector field &' such that

LT = ‘l v l /
ot - wlly = llwr - wll < er2
@! P w! P
w>0,0< 4="L<cy | 0<2 =2«
3 w9 wy %2

where Py» Pys d4q» 9, are integers, and Py 9 and P, 4y have no
common divisor. We shall also need that 49> 4, are sufficiently large

and satisfy

1
= < <
7 Sa'ey <2
P . . . mj m2
All these properties can be satisfied with q = 2 » 4y = 3

Let I =1{x €R : 0 £x $1} and define g, h: I° —>T" by
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g(xl, Xy, x3) = (xl(mod 1), xz(mod 1), x3(mod 1))

—¢.-1 -1
h(xl, X, x3)—(q1 x1+p1q2x3(mod l),q2 Xyt oy x3(mod 1), q1q2x3(mod 1))

We have ¢ 13 = h 13 - 73 and g (resp. h) has a unique inverse on

points gx (resp. hx) with x € 13

We consider the map f of a disc into itself (see [11] Sec. I.5,

Fig. 7) used by Smale to define the horseshoe diffeomorphism.

Imbedding 4 in T2
1 2 1 2 2
c =< <£ =< <21 c
bl 3<% <5 3<x,<3lcr
. < . 3_ .2 1
we can arrange that f appears as Poincaré map in T~ =T X T
More precisely, it is easy to define & vector field X = (?, 1) on

T2 X Ti such that if & € A , we have

(£(8), 0) = ﬁx,l(g, 0)

where QX | 1s the time one integral of X (see Fig. 7).
b

i

—

0 E flE) 2 Fig.7.



Finally we choose the restriction of X to a neighbourhood of

2(312 X 1) tobe (0, 1) (ie. X =0),

If x €¢ i3 , then & x = hog_1 is uniquely defined and

the tangent mapping to ¢ applied to X gives a vector field Y

Y(¥(x)) = [d ¥(x)] X(x)
[ -1
9 LS U
$ = -
where (a4 ¥(x)] 4, Py 9
91 9
Y has a unique smooth extension to T3 , again called Y
Let now Z = (q1 qz)_ u% Y . We want to estimate
HZ - W'Hr =  sup NC
o: [p| S
where
N = sup sup  |D° 2, (y) - D" 1{! (*)
yE T3 i=1,2,3
and Dp denotes a partial differentiation of order lp! Notice that
it suffices to take the first supremum in (¥*) over vy € h i3 , 1.e.

vy = & x where x € ¢ f3 . We have

Q/
~
o
N
e

-1
\—pl—pz (q; q,) /
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so that
d D
sup | <=— . < (g, + q,) sup | — .
i |9y L2y oy
Notice also that \ /
-1 X, + -1
9 & TP 9 P1 94
-1 -1 -1
z W = ' » - oW
{9 - wp =Gagay) — wg | qy” Xy +py q) Y31 Py 9
94 9 L
-1
94 X
) -1, -1
(q9)) "wy | 4y X,
0
Therefore

-1 -1 1
NP < (q1 q2) wé(q1 + qz)]p| (?:1; ) 4 ) f;ul) ) '!XiH|p|

| -2 r+l e n
flz - gl < wt el
iz |}r (ql q2) (ql+q2) [\L3I{XHI.J
If we have chosen 45 4, sufficiently large, we have

lz - wll, <el2
and therefore HZ - wHZ <eg

Consider the Poincaré map P : T2 —_—> T2 defined by the vector

field Z on T3 = T2 X Tl . By construction the non wandering set of P

contains a Cantor set, and the same is true if Z 1is replaced by a
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sufficiently close vector field 2Z' . This concludes the proof for k = 3

In the general case k 2 3 we approximate again & by W' rational

and let
ii P.
0 <——=-—2 <1 for i =1,...,k-1
4
We assume that the integers Py ’ Qe oPp_q ' 9 have no

i#1 i#Fk-1i

common divisor. Furthermore 995 are chosen sufficiently large

S|

and such that
max /" (min < C
( : q.) ( . q,)

where € 1is a constant depending on k only.

The rest of the proof goes as for k = 2 , with the horseshoe
diffeomorphism replaced bv a suitable k-l-diffeomorphism. In particular,
using the diffeomorphism of Fig., 2 (end of § 2) we obtain the following

result

k
Proposition (9.2). Let W be a constant vector field on T ,

k 24 | In every Ck-l—small neighbourhood of & there exists an open

set of vector fields with a strange attractor,
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