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S1 - Introduction

L number of recent papers [1] [2] [3] (4] [5] [6] [6a] concern
themselves with "asymptotically abelian systems"i.e. pairs of C*-algebra da
and & locally compact group G +btogether with a homomorphism g - “g of G

into the automorphism group of & such that one has an "asymptotic abelian

property"” : the commutator
ag(A).B -B. ag(A)

tends to zero for g € G tending to infinity for all elements 4, B € &
(there are different ways of stating this condition corresponding to different
choices of topologies - more general conditions can also be stated for general
non topological - groups)° The consideration of such asymptotically abelian
sysfems originates in algebraic field theory [10] [11] where the C*-algebra
is that of quasi-local observables (i.e. bounded observables performed within
bounded space-time regions together with their norm limits). The group &
corresponds to some invariant group of the physical theory (eeg. spatial
translations), and the condition of asymptotic abelianness expresses  the
rhysical requirement that observables performed far away from each other
should in the limit nof nutually influence themselves and are therefore
guantum-mechanically described by commuting operators . In this context

a physically important and mathematically basic problem is the investigation
of invariant states over the systems {a,a} ji.e, states & over a

such that @(ag(A)) = ®4) for all Ae€d and g € G : those are



¢clearly candidates for the mathematical  description of physical equilibrium

states since the latter are homogeneous (invariant under space translations).

Meanwhile it has been increasingly realized that from a mathematical
point of view asymptotically abelian systems lead to a non commutétive genera-
lization of standard (commutative) ergodic theory : indeed if we take the
C*-algebra d to be abelian and thus isomorphic to an algebra of continuous
functions on some locally compact space X , the (supposedly strongly continuous)
homomorphism of G into the automorphism group of d  becomes a homomorphism
into homeomorphisms of X , asymptotic abelianness oeing automaticaly realize~-
A state over d  invariant under G will then be rep esentCd by a bounded
Raden measure g over X invariant under these homeomorphisms . We thus
obtain a special case of the usual setting of ergodic theory - the specializa’: :
consisting in that the measure p  1s bounded and the Borel structure of X
stems from a locally compact topology (the fact that u is invariant rather
than quasi-invariént is inessential and would be removed if we considered covearic
representations rather than invariant states ) . The latter restrictions are
however accompanied by a gain in flexibility in varying the (quasi)invariant

measure p for a given system {d&,a} .

The papers quoted above have revealed that basic theorems of standard

ergodic theory still hold in the enlarged non commutative frame . The original



A
results of [i] , [2] and [3] have been senerclized in several respects .
In [5] ,[6&] and Part I of [6] , results are given for an arbitrary group
G . The second part of [6] on the other hand gives further results geaerali-
zing those of [2] for the case of a locally compact amenable group i.e. a
group'possessing invariant means . In this paper we s£udy the more genersl
"M - abelian systems", a notion defined in terms of the mean described in [14]
by Godement and we investigate a non commutative ergodic theory in this enlarged
frame . One should however not conclude from our results thot amenable groups
are irrelevant to thé study of asymptotically abelian systems : it is indeed
because the present paper is essentially confined to the study of the "vacuum
theory" (i.e. representations generated by an invariant vector ) that we can
work with Godement's mean , since the latter is only defined on linear combina-

tions of functions of positive type on G ,

The paper ecomprises four geotions iSection 2 presents results on
Godement's mean M  as well as a mild extension theorem needed in Section‘ L.
Section 3 opresents a generalization of the mean ergodic theorem treating not
only invariant vectors, but also vectors transformingAunder finite dimensional
representations of the group G . Section 4 defines Godement's mean for alge~
braic elements modulated by positive type functions on G and studies general
features of ergodic states, emphasis being put on the relationship to Mackey's

theory of imprimitivity systems [17)] . The paper concludes mentioning



a classification of ergodic states and some properties of the EII states

generelizing results in [2] .



82 - Properties of Godement's mean

In this section we collect known results mainly extracted from [ i3]
and [14], We consider an arbitrary group G and dencte by 8(G) the set o
bounded eomplex functions on G . 8(G) is a C*-algebra under linear combir
tions of functions , the ordinary function product , the complex conjugation
f+f of functions and the Sup norz: Il Hw « If G is locally compact we deno:
by #(G) and QO(G) the sub C*-algebras of ®B(G) consisting of continuous
functions on & respectively bounded and vanishing at infinity . We denote b

'P(G) the set of ¢ontinuous positive-type functions on &G i.e. functions

such that

for arbitrary 8s€ G and complex constants @ i=19,2, ceen
Since ?(G) consists of bounded functions and is closed under complex conjugat”-
the set U(G) of gomplex linear combinations of elements of #£(G) is a sub-
x - algebra of B(G) . Its closure in 3(G) (C*— completion) will be denoted bx
v (¢) . It is well knovm (see, for instance [15] &§13.4.5) that U(G) (res
P(G) ) consists of all coefficients (resp. positive coefficients) of arbitfar
unitary representations g e G -~ Ug of G id.e. functions of the type
geEG = (@IUg]W) (resp.(QlUgl@)) vhere ¢ and § are ﬁectors in the repre
sentations Hilbert space of U . The fact that P(G) is closed under multip’
gation and complex conjugation stems from the existence of tensor products ar
gonjugates of representations ([15]%13.4.9) . Since those operations performe
op finite dimensignal representations agaiﬁ lead to finite-dimensional represe’

tations, the norm-limits of coefficients of the latter,called almost periodic
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functions on &, form an uniformlyclosed sub-* -algebra AP(G) of U(G)
4P(G) can be identified with the C*—algebra of all continuous complex functions
on a compact group G whose continuous irreducible rewresentations are one-
to-one with the finite-dimensional irreducible representations of G . & is
homomorphically and densely mapped into G ( in general in a many-to-one way)
and the above mentioned identification of almest periodic functions on G with
continuous functions on & is obtained by continuous extension of the former ic
G ( for these facts see for instance [15]$i16 ). The mean # defined in [44]

by Godement is roughly speaking an average process on elements fe¢ U(G) whih

filters out the almost periodiec functions .

We first introduce a convenient notation for left and right translations

of functions on G . Ve define

£(s™ g)

il

{6, = £} (g)
s f € %(G) s 8 € G,

£+ e }(g) = £les)

where the notation is a reminder of the fact that translations are the same as

eonvolutions by Dirac measures . If we denote by I' (resp. I'') the convex
hulls of 6, , 5€G (resp. e s 5 € G),the sets I « £ and f & L' ,
fe Q(G) , will thus denote the uniformly closed convex hulls of left resp.
right translates of the function f ( note that for uel ,veTl' we have
”p £ f”m < I!f”m and iif * v”m £ !]f”w ). ile are now ready to state the

results which we shall need .

(a) Let & be the set of f e B(G) such that the closed convex hulls T # F

and f % I'' both contain a complex constant . This constant is then unique



and the same for both . Denoting it by .(f) one has the properties

(1) for a1l feg [4(f)|£]lf!l . & is a closed subset of  B(G).
(ii) for all fe& , & € G and complex eonstanpts @ one has
£, af , 6g # £, f e €8 and WE) = H(E) , #af) = oit(f),
m(&g w £ = M(F x eg) = a(f)
(iii) fe , £2>0 imply «(f) > 0.

Proof : Let aec F#* 17 NC and bef *xT'NE ( C denotes the set of

complex numbers). For each € >0 there are elements yel and v € I'' such

that
lusxsf~all e and £ ox -bf] =e
o« 0
Thus, since a *v = a and pu=*b = b,
H g fxve-a Hm < g and I ax fx v =D Hw £g

whence |a - bl £2 ¢ and thus a =b since ¢ is arbitrary . The other

properties are obvious .

The existence and properties of i on 5(G) will furnish the main
technieal tool in the three subsequent sections . e merely quote the two
following results due to Godement to whom the reader is refered for proofs
( (1] 8823, 24).

(b) One has E(G) £ g o # is a twé-sided translation invariant, unit norm

positive linear form over the C'-algebra U(G) € 3(g) .



The precise way in which almost periodic functiorgon G are "filtered

out" by Godement's mean M is expressed by :

(¢c) Let ge U(G) ; ¢ admits & unique decomposition , ¢ = ¢, + ¢, With
@ 0 9p€ DB) 5 g € 2P(6) end il]gy]%)=0" If ¢ ¢ U(e) ama olg) = (¥,lul,
is a realiéation of ¢ as a coefficient of the unitary representation U of
G on the Hilbert space & , ¢1 s Wz € # , and if E1 is the smallest pro-
jeetion in # containing all projections on finite~dimensional subspaces inva

riant undér U with E2 = I - E1 s we have

o, (e) = (v [UB ¥,

i

op(6) = (b 1U.E,l¥,)

| Consequently the following are equivalent for ¢ € P(6) :
(1) U(£P> does not contain any finite dimensional subrepresentation of G

other than the trivial one of zero dimension ; (ii) M(l¢|2) =0 ; (iii)M(]e])

The equivalence of (ii) and (iii) is a special case of the known fact
that, for a positive element A = I@I of a C*-algebra (here 5(G) ) and for
an arbitrary state 4 , M(A) =0 is equivalent to M(AZ) = 0 . Indeed
Schwarfz's inequality yields M(A)2 £ M(1) o K(Az) and M(AZ)Q:sm(A) . M(AB),

The above mentioned isomorphism between AP(G) and €(E) (the C*-algebr
of continuous funetions of the compaet group G ) together with the uniqueness

of normalized Haar measure on G (a two-sided invariant mormalized state over

e(G) immediately entail :



(d) For any f ¢ AP(G) one has

i) = / £(g) am(3)
&

where f{ denotes on the right side fthe unique continuous extension of f e AP(G

to [ and dm 1is the normalized Haar measure on &

The next result serves to establish  the connection between the present

work and Part II of [6] :

(e) If the group G is amenable each left (or right) invariant mean m over

reduces to A on § .
Proof : Let f ¢ ¥ and choose u € I(vel') such that || u = £ - W(f)]] <e¢

(Il =v- m(f)ﬂw 2g ). It follews that
In(p » £ = #(e)| = |n(£) -i(e)] e (In(ee v- &(£))| = |n(e) - #(£)] 2 ¢)

whence n(f) = M(f) since & is arbitrary .



§ 3 - 4 generclized mean ergodic theorem

This section describes Godement's mearg of group representuatiorsmodulated

by elements of U(G) . e first give the

Lemma 1 » Let G be a group and g€ G = Ug an unitary representation of G
in a Hilbert space # . For each fe U(G) there is a unigue bounded operator

M(fU) such that, for all Yoo Vo0 &
(1) (o (e ) = wl£(8) (v | Uglv,y)]

(we write M(@(é)) for M(¢) , é indicating a dummy variable ). This operator
M(fU) is of norm not exeeeding £ |] and lies in the Von ieumann algebra

generated by the Ug , 8 € G o

Proof : (See [6] Lemma 4 ) The pight hand side of (1) makes sense by (b) of

Seetion 1 , and since # 3is a normalized state over 5(G), it is linear in ¢2 s

conjugate~-linear in ¢1 and of modulus not exceeding Hf“w . l¢1” . H$2H 5

whence the existence of a unique M(fU) satisfying (1) and of norm él]f[!w .

Further we have, for any bounicd operator T on &

il

(v, |T(£0) - u(e0)T]¥,) (7%, la(eu) [v,) = (v |aew)| T,

= k() (b 110, - UTl)]

Thus M(fU) is gonteined in the bicommutant of all UQ sy, 8 € G .
Q

The next theorem gives an explicit description of the operators MN(fU) .



Theorem 1¢ Let G , U and # be as in the preceding Lemma and dénote by
E the smallest (orthogonal) projector in # whose range contains ail the
finite dimensional subspaces of # dinvariant under U and by UE the
restriction of U to E& .

(1) I £ ¢ U(G) dis the coefficient of o unitary representation of G

disjoint from the representation o , i(fU) = 0 .

(i1i) Let -
ze = ) &g 500
(2) oey
ﬁ@
£ . Z o) g 1@
g 8
oex

be the factorial decomposition of UE ,» with Z +the set of equivalence

. . . . e g o
classes of irreducible reprcsentations contained in JE s U( ) an clement

of the class o acting in the finite diicensional Hilbert space %(G)

21 (0)

b

a Hilbert space of dimensionality equal to the multiplicity of ¢

and I'(oj the unit operator in %’(G) . If @(o) and w(G) denote

arbitrary vectors in %(Oﬁ we have
~ - ! .
() ol 1y = a6 (] o sl
where E(G) is the projector in & on the subspace ﬂ(g) ® %'(09 and

d(c) is the dimension of o + In particular

(%) #(U) = E_,

o]

the projector onto vectors of & invaricnt under U o
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(8)

Proof : Let U(a) and U be two finite dimensional irreductible unitary
representations of G in the respective Hilbert spaces Jé(d) and JQ(B) and
take § , M € aé(“) and x,y € %5(6) . It follows from (d) in Section 1 and
from the orthogonality relations on the compact group G (see [15] § 15.2.5;
contrary to Dixmier we take scalar products conjugate-linear in the first and
linear in the second vector )

0 if U(a) and U(B) are disjoint

wf €105 1) G 0P )3
d'(';)(x\€)('ﬂ‘y) e ul® o y(#)

. . : ()
with d = dimension of U .
(@)

Proof of (i) : Let £{g) = (u\Ué\v) correspond to a wnitary representa-
tion U' og G in the Hilbert space ¥' disjoint from the representation UE H
let F1 be the smallest projector in &' whose range contains all finite dimen-
sional subspaces ; and write u, = F1u y Vq o= F1 ViU, =U=U , VvV, =V-=-1,
and fi(g) = (ui\Ué\vi) ;1 = 1,2 , On the other hand set E* = I -E . We have,

with obvious notations

M(£y) = M(f1UE) + M(foE) + M(fUEL)

The first term vanishes because of the above orthogonality relations since the
finite dimensional representations UE and U'F1 are disjoint. The two other
terms however vanish by (c) of Section 1 due to the fact that the representation
UEL and U'F2 have no non vanishing finite dimensional subrepresentations (we
remind that Jt(\h\z) =0 fora h€ V(G) implies 4H(ph) =0 for all

¢ € 17(a)).

Proof of (ii) : in order to establish formula (3) we have to evaluate

the quantity



(5) J:i{(qD(U)IUéd)l‘{f(G)) (ulUgl’VN , u,ved

Let us write

) ~1 A
u = E(O-> u + \ E(Cﬁ)u + E u
-
o' € X
o' £ o

and analogously for v . We have, correspondingly

(alulv) = (E(U)ulUéd) 12{)yy, Z(E(G')ﬂUéo—')lE(d OREITERS

o' Lo
where the first term is the only one giving a non vanishing contribution to (5)
8
!
as shown by (i) applied to the representations ﬁE and U(G.) , 0 £ o
Writing
b
(@, _ \ ,
B u > | Xi & xl
) i=1 (
O‘ Pl ad
. s Xy 5 Vs € v"u’(),x;,yieﬁg
iE(f) v - \ v, ®
k j =i
we then have
D q
() 1. (o) (o) N N (@) ot
@l e = l CRLAIMICHPA)
i=1 J =1

and thus using the above orthogonality relations

P g
J%{(@(U)Wéw|¢(G))(H?Ugl\f)§ = ? Z dz;)(xilcp(d))(w(d)lyj)(xgjyé)

i=t =




e

whence formula (3) .



§4 - Representations of Ml-abelian systems generated

by an invariant vector

Definition 1 . Let {¢,al be a pair of C*—algebra d and a homomorphic mapping

g €G-~ ag of a group & into the automorphism group of & . To each state &

over & we attach the following subset of 8(G) :

55 = fgec <I>(A1[ag(A),B]A2) | &, B, A, &y € d }

The system Ed,a} is called M- abelian whenever for each state & over
¢l invariant under G (i.e. such that @(ag(A)) = 8(A) for all Led and

g €G ) and each f € S® we have !fle ¥ and

a(le]) = o

fc,al is called weakly asymptotically abelian (ef. [6] Definition 1)

whenever
a) G is a locally compact non compact topological group

b) «a is strongly continuous (i.e. aP(A) is norm continuous in g for each
o

Aed)

c) Séeseo(G) for each G - invariant state over & .

ilotation . In addition to the preceding notation, given a state & over d
invariant under G we will denote by Tp U@ the respective =-representation
of & , unitary representation of G (both acting in the Hilbert space %@ )
and cyelic vector Qg of & (cyclicity is with respect to ﬂ@(d)) determined

by (ef. [15 , 2.12.41 ) ¢



(glmg(a)[2,) = 2(a)
(6) my(a (4)) = U7 my (4) US_ ,hed ,get
U Q@ = Q@

Furthermore we will denote by EQ@ the projector in %® onto the one -

$ .
dimensional subspace generated by the vector Q@ ; by E, the projector in

#, with range v e B Uz Yy = ¥ for all ge G }; by E® the smallest

projector in # . whose range contains all finite dimensional subspaces of £@

®
invariant under U@ . Finally the Von Neumann ring generated by the ﬂé(A) s

1

A e dl and Uz s & € G will be denoted by ﬂ@ and its commutant by R® .

We note that,since fe ’L?O(G) inpliesthnt £ e & and #{f) =0, weck osyrtouic
abelianness implies .i-abelianness . The latter, more general, concept is inte-
resting in situations where ag(A) and B tend to commute only for g = o

along certein directions ( possibly depending upon A and B ) .

We now give

o

Lemma 2 . Let {ci,al be an Ji-abelian system and ¢ a state over & invariant

under & . The set of functions

T ¢ 66 > 26) (ylnla (4D ]ny)

5 and A -through & , is

} is linear in f ’ Wz and A

where f runs through U(G), ¢1 and wz through #

contained in & . Furthermore #{F, N
: -'-3V1’¢23

and conjugate-linear in ¥ .

Proof : Since Q. is cyclic under né(ﬂ) and since & 1is uniformly closed

$

it suffices to prove that the set of functions
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i e ) B e ()
where A, , A, and A run through &,is contained in § and that #(G )
1 2 fA,l,Az,A

is linear in f , A1 ’ A2 and A . For the proof we notice that

Gf,A1,A2,A(g) = f£,{g) + f(g) £,(s)
where
£.(s) = f(s)(nq,lwq,(A,lAz)Lr: rg(4)]0;)

£,(g)

It

o(a;[a (a), 4,1)

with f, € U(6) and f,€8; « By Definition 1 , given &>0 , we can choose

w €T such that

lw lg,l

IN
(v}
.

We then choose a u'el such that
Mpwpre, - oae)) Il = e
It follows
s p» Gf,Aq’Az,A - 4
e o gy - KD et e (erll e (1 I £ 1])

sinc¢ the second term on the right hand side is majorized by

(<)

” uo* (ffZ)“w £ 'tf”w ”H * lfgl ”m . A similar argument for right

() Note that we have proven that £l e g,u(]|e]) =0 and f, € #(G) imply
that f£f¢ % and M(ff ) = 0 ; vhence easily follows, incidentally, that

K(|e)? )—0 — M(lfl)



translations shows that G, , . € & with
f,n1 ,AQ,A

(7) (6 ) = (N gl iy Uny(A)] 0y )

f,Aq,AZ,A

whence the result .

Lemms, 3 . Let fd,a} be an Jl-abelian system and & a state over { invariant
under G with {the notation of Definition 1 . To each f € U(G) there exists

a linear norm~-continuous mapping Mf from & to w(&)" N w(d)' determined

by
¥y Ve B

(8) (b () ) = L2(@) oy Inlag(a)¥))

A e d

The correspondance fe U(G) -»M, is linear, positive (Mf(A) >0 if £ 20

r
and A >0 ), bounded (”Mf(A)H < Hwa . ]l ) . and such that M o= Mf.1

if £=1£, + £, is the decomposition of §2 , (c)

(9) ig(a) = Mf(A*)* , Aed

and

(10) - seG ,hed

t U, Mf(A) U: = Mfs(A)

where fs(g) = f(s—ﬁg) and £°(g) = f (g s-q) , & 5 8 €6 o In particular if
we tale for f the constant function ecual to 1, we get a norm decreasing
positive linear map M, from & to =w(a)"n x(2)' N Ué ( we denote by Ué
the commutator of the set {Uglg € G} ). The Mf,(A) ,hea, fe U(G),

furthermore satisfy for each B ¢ w(ci)" the relation

(41) Mf(A) BE = BM(f U)r(A) E,
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through which they are determined owing to cyclicity of Q for =(d) o In

particular

=

(12) i, (4) E, = E, m(A) o

so that M1 coincides with the restriction to & of the mapping M of [6] ,

Theorem 1 (see formula (7) above ).

Proof : (along the lines of [6] Lemma 1 ) « The rdght hend side of [8] exists
and is linear in wz , f and A4 and conjugate-linear in ¢2 by virtue of

Al gl

Lemma 2 . Furthermore its module does not exceed Hwa . 114
therefore we have a unique bounded operator Mf(A) satisfying (8) ; and

Mf(A) depends linearly upon f and A and has & noym not exceeding Hwa, Hille
As in the proof of Lemma 1 in Segtion 3 we show that, for each bounded gperator

T on & and 2ll ¢1 sV o € #

(o [Tma(8) - (a)T |y, ) = w{2(8)(w, [Prloy(4)) - w(ap(2))Ty,)

If T commutes with =(d) +this is also the gase for Mf(A), therefore

Mf(A) £ 7(&)" . On the other hand for T = =(B) , B €, the right-hand term
vanishes according to Definition 1 and thus Mf(A)e (&))" « Finally the pro-
perties (9) and (10) easily follow frem the yeal character and translation

invariance of # ¢ we have , for W1 s ¢2 e &

(v, P2 ) =4 EF (e )y, I (D) = (@) Cudmlag (], )3

= (B (8 y) = (v (8™ [y,

and
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Oy 10 00,0007 1) = (% i (80974, = (@) (U0, oy (810 U] 14,)]

1E2(8) (o ey (),) 1 = 20207 2)(wy Iy, (D) 1)1

A

As for property (11), it suffices to verify it for B = I since MW(A)E () .
Verification is immediate using Definition (8) and taking account of (4) .
Property (12) then follows immediately from (4) « More gaperaliy if

feG~ xi(g) s, =1, 2 , are one-dimensional unitary representations of

G we have

13 Mo A E = E (A E
() w W =3, A 5
where EXg is the projector in # with range {V € & Ug Vo= Xz(g)w ,2 € Gland
analogously for E
g Y i X g

Remark : Ve note that , in the case of weak asymptotic abelianness,the Lemma

can be proved without using the fact that the representation =y  of ¢ was

generated by the invariant state & . All we need for the proof is the ecxistence
of a covariant representation of the weakly asymptotieally abelian system (o, al
(i.e. a pair of = - representation = of & and a continuous unitary revresen-

tation U of G =-both in the Hilbert space # - satisfying
Ug'n(A) Ué1 = W(QQ(A)) ,hed,ge)

such that in. addition the subspace of vectors of # invariant under U 1is
cyclic for ﬂ(d} “in # « If the group G 1is amenable with rignt or left

invariant mean m the construction above with 1 instecd of M can be applied
to the universal representation of ¢ (direct sum of all cyclic representations

cf. [6] Lemma 1 ) yielding & linear mapping Ace€ &-eﬁ(fé ag(ﬁ)) of notm



N
nN

or

< |If}] from & +to the center of its Von Neumann enveloping algebra A
(oo
The above  mapping Mf can then be obtained by  composition with the

representation ® extended to a@"* in the stendard manner (1571, 12.1.5):
(1) Mo(8)= n(F(£5%5(4)))

Theorem 2 . Let {d,a} be an M-abelian system and & a state over ¢ inva~

‘riant under G with the notation of Def. 1 . We then have that

a) the set of operators Ef T (&) Ef is abelian (and gonsequently Ejﬂé Ei
is a maximal abelian Von Neumann ring } .

¢
°

b) the Von Neumann ring R@

is abelian and isgmorphig to E ﬂ@ Ei .

¢c) the following eonditions are equivalent
(1) E, = Eo (uniqueness of the "vasuum')
)
(i1) for all Aed M{@(A*ag(A)) -la(a)]?1= o

(iii) for all A € ¢ eand by Yy € By

{0 Imglag ()W) = aadyy )t = 0

(weak  clustering property).
(iv) M1(A) is a multiple of the identity (equal to &(4).I) for all Ae &

(¥) the set of operators ﬂ@(d) U EU?
&

| & ¢ G} is irredugidle ( or R,
consists of all bounded operators on %é ) .
(¥i) R® is a factor

(¥ii) @ 4is an extremal element of the convex set of states over d

invariant under G

We do not give the proof of this theorem for whieh we refler the reader

to refs [1] through [6]. Ve limit ourselves to notieing that a) immediately
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results from the Ji-abelienness condition
iy, i%uaém ;3D vy) = 0 s Vaaln€ #yy AB, € d
taking account of expression (4) .

Invariant states & satisfying the equivalent condition (1) through (¥ii)

are called extremal invarisznt or ergodic states (E - states) .

The abelian character of Ef 'n@(d) Ef together with the c¢yclicity of

Q@ imply [6] that the commutant Ré of' the Von Neumann algeora generated
by the ﬂ@(A) and  US ,Aed , geG , is abelian ; and furthermore

-

that the mapping M from ﬂ@ to Ré determined by
> P ®
5 E -
(15) M(T) B E T E y Te Ry

is normal znd onto (consequently Ef R@ Ei and Ré are lisomorphic as Von

Neumann algebras ) .

7

Theorem 3 « Let {&,a} be an sl-abelian system and & a state gver d inva-

riant under . With again the .aotation of Definition 1 the following are equi-~

valent
(1) By = E°
(i1) for all A e, #ffe(a%a,(4)) - l@(A)lzl}z 0
(iii) for all A e & and byoa Y, € B,
AL Gy Imglag(6))1wy) = 2(8)(u ly )} = o

Proof : The implication (iii)=(ii) is trivial . Further (ii)=(i) as =

consequence of (c) of Section 2 taking account of the cyclicity of 0, and
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the relation

@(A”"ag(A)> - fae) ® = (ﬂ@(fk)Q@IU: Eg@ Imgl)3y )

Y
where EQ@ = I - EQ@ +» In order to prove the implication (i):s(iii) it

suffices to show that , as a result of (i), the flunction
. ; - N
f:geG - [@(Aqag(.zx)fxz) - @(.A.)@(A1A2,}

is contained in g for all A, , A ,Aeq and that moreover We) =0

Ve have
(6) < s, Lo (8),8,1)] + |Gry(a3 810,108 5 my(2)0y)

and (iii) follews from (c) of Section 2 wusing Lemma 2 and il-abelianness

of {d,a} .

The invariant states® satisfying the equivalent condition (i) to (iii)

are obviously ergodic states . wWe will call them weakly mixing states or

EI - states see Definition 2 below) because they are a generalization of the

weakly mixing states of standurd (commutative) ergodic theory .

Theorem 4 . Let {a,a} be an fl~abelian system and let & be an ergodic state
over ¢ with the notation of Definition 1 leaving out for shortness the sub-
scripts and superscripts & . We adopt alsoc the notation of Theorem 1 ( see
formula (2) in Section 2) for the decomposition of UE into factors . Further

(o)

more we set, for Ae &, coe X and o, ye &

(16) r.@fp‘iz (2) = 1y (8)  vhere f£(g) = (qalUgr)lu’r) .
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Then ( )
: - 7T T\Y(O‘) v _1 — AT o Ial
(i) One has ugm@,w(k) Ug = AU(O) yr(n) sy 8 € G
g ‘\"Ll’
ii) The vectors M(Gg(A)Q belong to the subspace %(00 ® £‘<00 . lore
P, Y
precisely , if {¢ } is an orthonormal base of £<oj , the M(oﬁ (A)n

(\Pk’w
deliver for appropriately chosen A , ¥ an orthonormal base of a subspace

of # equivalent to %(cﬁ .

(iii) For each pair o, o' €I the representation
disjoint from U .

A3

(i¥) For each o€ % one has o € & where

(o)

the representation U .

is the conjugate of the

Proof : Property (i) dimmediately results fram (10) applied to the definition
o
(16) « From it follows that the M( ) (4)  are contained in £(0g<g %'(G>

Px
Y
£

and span a supspace of & eguivalent to if they are linearly inde-

pendent . However cone gets Irom (11)
Mz (4)0 = M(T U)n(4)0
and, specializing to the choice of f in (16), by use of (3) .,
(17) ﬁﬁ(@n = QQHQ>OM®I”@} 2%(a)a

so that one has

t

(18) (Mij? N (m)al pr:z«’# (£)a)= 5,

2P IIE, @ 1 (ol

is the projector onto ¢ in %(Gﬁ . Thus the M(07 (4) are

where E
Pr sV

]



mutually orthogonal and of common length. By the cyclicity of Q sths

latter can be chosen equal to unity for an anpropriate choice of A and V¥ ,

whence (iii) . Due to irieducibility of =(C)U U, the vectors Méco (Lo,
3

k

) then generate a subspace cyclic for w=(¢) in 7

yle)

G

k:/'l’ 2, LI ) d.(G_

and thus, if we choose a coefficient fe P(G) of representztion s
g'el , and a Be & such that M;, (BYQ # 0 we have at least one k
for which MZ;,(B) MIS)Z?QI(A)Q # 0 . The non~disjointness of U(O') ® U(cr')
and U then resultsfrom the fact that, for o finite dimensionel group repre-~

sentation, any gquotient representation is equivalent {0 & subrepresentation .

(o)

Finally let £  YDbe & goefficlent of the representation U 7, ¢ €% and
L an glement of &  such that NF(A)Q £ 0 . We have (Q]M?(A)lﬂ)z(mf(f39}ﬂ)
£ 0 (cf. (9)) and thus I‘va(A*)Q £0 . But Mf(A”’)Q e #9) ® PICIIN

that o€ 3 .

The rest of this section handles the more special situation where the
system {d,a}l 1is supposed to be weakly asymptotically abelian and discusses
further the relationship with the standard ergodic theory . In this connexion,
the next theorem will allow us to apply Mackey's results [16] by reduction

to a commutative C*~algebra .

2@9252@_2 . Let {d,i} be a weakly asymptotically abelian system with a non
compact group & and ® a state over & invariant under G with the:
notation of the preceding Theorem . Ve denote further by I the stabilizer
of E i.e. the intersection of the kernels of all finite-dimensional subre-
presentations of U . If we assume the quotient group ¢ = G/ I +to be

either compact or connected (vhich is true if G itself is connected )



N

the set of operstors © w(A) E , E € &, is abelian .

Proof : N is obviously a closed invariant subgroup of G , so that ¢ = GA

is o topologicrnl group « by definition, the direct sum of all finite dimensio-

nal representctions of ¢  is faithful . Thus, by [15] , 16.L.6 , 9§ is a

n

direct product K. x T with K1 compact and T = R, n integer > O

(RO is the group with one element ; if n = 0, ¢ dis compact ). Let =

be a canonical homomorphism of G onto § , set G' = L (T) and , for

~

a continuous character % € T of the group T , let EX be the projector

Mt

Uy = v(s(g"))y for all g'e G'} . The first step in

with runge {y €3

the proof is to show that EX # 1s stable under U and that

(19)

4

it

b
X €

+3»
t=]
>

Now G' 1is obviously o closed invaricnt subgroup of G with N an invariant
A

subgroup of G' . Zach character y €T defines a one-dimensional unitary

representation g' - yx(t(g')) of ¢' , different characters yielding diiTe-

rent represeuntations so that F = Xi; EX is a sum of orthogonul projectors.
Clearly L = I' . Take now a { € E%% . For arbitrary geG , g' e G' we
have g—1g' ge &' and thus U _ "ﬂ, = x(r(gnjg’ g = X(T(g'))¢ because
r(g')e T is in the center ofg gg F Thus Ug' Ug‘¢ = x(T(g')Ug$ , showing
that EX% is inveriant under U . Let Ux = U EX be the corresponding
subrepresentation of U . Cbviously Ux(n) = y(w(n)) =1 for n el so

that UX = VX o T where VX is =2 unitery representation of § .

The kernel & of VX contains all elements kteé with keX , t e T

mnd ‘X<t> =1 o Toerefore §/J is compact , VX (and also UX ) is a sum

of finite-dimensional representations and Ey £ E whence F £ I ; (19) is
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(%)

established .

Thus to prove the Theorem it is enough to show that, for x', x" ¢ T

T A ; " = o -“. 47 4.3. E
(20) -L‘qu‘:("'.;)Eﬂ(“2>“Xn : Xl'ﬂ:( 2)1—"‘< '2) X”

whereby the left hand term is equal to

(21) 2 B m(a, )B w(i,)E
5 €T X T2y
Now since G/G' = (G/N)/(G'A1) = §/T = X, is compact ecnd G is non

1

compaet, by Proposition 1 p.31 of [19] , G' nust be non compact and the

system {c,e'}, vhere a' 4s the restriction of a to G' , is wezkly
asynptotisally abelian . Therefore if we dgnote by EE(A), f e B(G'), the
nmeans defined for the group G' s was done in (8) for the group G , we

have by (13), for Xy Xy € T and Ae d

| .
L. Fey E = E T .z‘ E
E M! (i) = E =w(i)E

Xo %4 %2 X3 %o

where Xqs %o denote also the functions X4 ° T xz o T on G' . Thus

(21) cen be written

i

Lo T, w{a)li, (8,

XET Xn Za EX' P‘LXXH (A2) W(A/‘) Exn

eT

e a 7‘(*&;) A it

= Za EX, 7c(“2) Ex‘xx DN

yeT

Zo B, wm4,) B owl(s,) B
XET Xl ( d) % ( *l) Xn

(*¥) At this point the proof of the theorem is deduced to the abelian cose
for W%ich a proof was given by G. Gallavotti and D. Ruelle (private coxaunica-
tion ).



thus proving (20) g.e.d.

Remark . ‘e note that in the preceding proof the fact that the representation

® of « wes generated by the inveriant state &  was not actually used .
£11 we ne€d for the proof is the existence of a covariant representation of
the weakly asymptotically abelian system {d,a} such that the subspace

E#  is cyclic for =(¢) in # .

We will now see that Thecrem 4 renders available for the study of cova-
riant representation of weokly asymptotically abelien systems Mackey's theory
of imprimitivity systems . Since we work in a C*—algebra frame we have in fact
to deal with the more special case in which Borel structures are provided by

locally compact topologles .

Lemme & - Let & be 2 C*—algebra s g~>ag a homomorphic mapping of the

locally compact group & into the homomorphism group of <& such that

g »a_(4) is norm continuous in g for each A €c¢ and (m,U) = covariant
o

s

representation of the system {¢.,a} in a Hilbert spece & . Let E be a

projector in the commutant of the set {Uq g € G such that E = Qi)E

is abelian . Ve denote by”azz the comutative C*—algebra of operators on
E# generated by the E xn (A) B, &£ €ci , by ¥ its spectrum and by Me-N
the Gelfand isomorphism

(22) (s) =<s , > v s el 0 e e () .

="
(1) If we set Ug = EE%E and define

(23) a (1) = U u ot , M ed@, gec
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- we get a homomorphism g -a
o
(o]

that g - oc”(M) is norm continuous in ge G for each M e &
g

(1) The dual ection of G on P iiven by

(24) <lgls , > = <5, a0, (1) > ,se'U", g et

g
defines a homomorphism g -» [g] of & into the homeomorphism group of (3

such that (s,g)—*[g] is continuous from 'b" x G to W .

(iii) Let us call P +the unique regular spectral measure P on 'b'(‘ such

that , for all M e 237

(25) M = fM(s)d_P(s)
The support of P 1s the vhole 'b& and we have, for all Borel subsets A

ofa/b

(26)  vPEa) U, = P([ele) .
& g

hn)
fU“ s P s g »[g]} is called the system of imprimitivity cttached to E

If the set of operators mw(A),A ed znd Ug , g€ G is irreducible
in & ,this system is ergodic . The converse is true if E# 1is cyclic for

() in #  and invariant under  w(<)' N U(‘} .

(i%) Let the covariant representotion (m,U) be generated as above by a state
& over & invariant under G with corresponding cyclic invariant vector
0 € E&, The Filbert space EZ can then be identified with LZQ"”,;L) “here

the bounded G-inveriant Redon measure u  on U is defined by

of G into the zutomorphism group 767 suck



(27) < i, N> = (alu|) , :eo(r)

with the elements of J¢ acting multiplicatively

(28) Gy 3(s) = u(s)u(s) y ¥ e LU u), Welll,s 7S,

whilst the group acts by "shifts of the variable"
B -1
(29) el(s) = ¥(l7 1 s) e L(d5u), g €6, s et

The spectral measure P is then of unit multiplicity ! we have

(30) o)Vl (s) = x, (s)¥(s) s Ve L(Tu) , s e TF

where XA is the characteristic function of the Borel subset A of QTL.
Proof : o, defined by (23) is such that ag(ii,lEH(Ai)E =i§1EH(ag(Ai))E,
Aie ¢e Thus, for M a polynomial of elements of the type EI](A)E, Aed,
and, by density, for a general element of th,, M->ag(M) 1s x=homomorphic

and norm continuous in g (the latter property stems from the assumed norm
continuity of ag(A) in g for A € ¢l). The mapping g - [g] defined in
(24) is evidently homomorphic j; and [g] is continuous in the x-weak topology
as the transposed of a continuous operator , and id therefore a homeomorphism-

For s , s'e 7" and Miezayﬁ, i=1,2,s.e n , we have; on the other hand

]«:[g]s,mi >= <[g's",u, > | =

IN

I< [g]s,l,>~< [g]s',Mi>|+| < [elog, >-< [g']st,M, >| <

IN

I<s,a _, (Mi)> <s'ya, (Mi)> |+ [a » (Mi) - a _1(Mi)H
£ 8 g g'
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The condition that the first term be less than % amcunts to choosing s!

in a x-weak neighbourhood of 5 and the second term is less than for

nojm

g' in a neighbourhcod of g ; thus we have the continuity of (g,s>~>gs o
The uniqueness of the regular spectral measure P yielding (26) is well
known (#-representations of abelian C*—algebras are one~to-one with regular
spectral measures on their spectrum ). If the support of the spectral measurc
P was smaller then @%“, one could find an ﬁ # 0 wvenishing on 9" so tha’
M =0, a contradiction . Relations (26) is obtained by setting ag(M) for
M in M and using (23) and (24). Let us next denote by ® +the Von Neuman
algebra generated by the w(4), A € ¢ and Ug’ g €G;and by & the Von
Neunann algebra of operators on E# generated by Y and the Ug s & €1
Since I commutes with the Ug s RE contains ERE . Therefore if R 1is
irreducible in # , the same holds for ERE , and a fortiori for RE ( or
equivalently for the system of P(4) cnd [g)il E# .Conversely if E ¢ ® and
QE is irreducible, (ﬁE)' = (R')E(v> reduces to the scalars. But it E#
is cyclic for m(c) it seperates R! and thus R' also reduces +o the
scalars and ® 1is irreducible. Finally, if = 1is generated by an invarian”
state &, cyclicity of the correspording vector Q € E# for ﬂ(d} in &
entails cyclicity of Q for the cormmutative C*—algebra Jt in E# . The
Segal-Gelfand construction applied to the state (24) over 0T then shows in
the femiMar way (cf.[21]§17.4) that E& is isomorphic to LZ(ZF,H) with th
property (27). On the other han for W € W ana geG we have by (23)

Ug MO = ag(M)() whence for the corresponding element ﬁ € @O(ﬁﬂ C Lz(ﬁz p}

using (2L),

P

wgzx& ()= () (3) = u((s™']s)

(*) Proposition 1 Chept. I §2 of [20] .
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On the other hand the spectral measure (50) in our case evidently fulfills

(26), completing the proof of our Lemma .

Theorem 4 1in the setting of the appended remark together with the

previous Lemma ollow a direct application of Thedorem 2 in [16] to give

Theorem 6 « Let (%,U) be an ergodic covariant representation of the weakly
asympototically abelian system fa,al with « non compact separeble G (ergo-
dicity means irreducibility of the system n(a) , A ed and Ug , 8 € G )
and let E ,9 be as in Theorem 5 with I the set of irreducible finite-

g(OO . Denote

dimensional components of U =acting on Hilbert spaces
furthermore by K the compact group obtained by taking the closure of ¢(G) s
where ¢ 1s the homomorphic continucus map g e & »Zué°);<re %} into the product

of unitary groups in all £<G)

sy 0 €L 4 Then there exists a closed subgroup
H of KX , a unitary representation L of H and a unitery map W of E#%
onto the Hilbert space of the representation UL of K induced by L such
that

AR =1
(i) wBW = B

B -1

ii) WU_ W = UL fer 211 € G
(12) i (&) 8
where B~ and B are the eomplete boolean algebrasof projections determined

respectively by the canonical imprimitivity system of UL and the imprimitivit

system attached to E .

We conclude this section by noticing that the classification of
ergodic stotes given in [2] can be generalized to thecase of non abelian

groups in the following manner .
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Definition 2 + Let {d,a} be a weakly asymptotically abelian system and &

state invariant under G with the notation of Definition 1 . Let N¢ be

the kernel of the representation g = UZ EQ and §® the quotient group

g G/N® o We distinguish the following three classes of ergedic states

®=‘

(1) & is called an EI-state (or a weakly mixing state , ¢f« Theorem 3
above) whenever the only finite dimensional subrepresentation of U@ is the

one-~dimensional subrepresentation spanned by the invariant vector Q@ i.e.

95 = G/Né is the group with one element .

(i1) & is called an EII-state if it is not an EI—state and if the

quotient group §g = G/N® is compact . In other terms an E__.~state is an

IT

EII-state is an ergodic state for which g@ is compact and contains more

than one eleﬁent .

iii) & dis called E.___-state whenever §. is not compact .
— $

IIT
Remarks .

We add some remark on EII-states over a weakly asymptotically abelian sys=-
tem {a,a} s the proofs are either immediate or easily deduced from what

preceeds and the literature .

1°) If & is an E ~state it follows from (19) that

E@o’(,’@ ={\];/11;54‘8@,Ug\1;=1]; 2ll ge N@} .

This property is trivial for Ei-states , Where N@ = G, and false

in generel , though not always for E__ . -states .

1IT
2°) Let & be an ergodic state over {&,a} and I the set of all

irreducible components of the tensor products of finite subfamilies of I
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(see Theorem k). If Eéﬁé is separsable and §@ connected, the following .:-

are equivalent

(1) ¥ =9, ;

(ii) 8 is an EII-state .

If we assume 9@ to be connected , E@%® separable implies that
{x]x € T, EX £ 0} is a countable subgroup of T (see equation (19)) 5

~

whence the equivalence of = §© to the fact that T 1is countable

(or n=0).

3°) Let ¢ be separable and & an EII~state over {d,a} « Using
the methods of Section 5 in [2] (where some points of rigour need to be
fixed as will be done in a forthcoming paper), or alternatively of [4] ,
one can show the existence of an ergodic state ¢ over the wezkly asymp-—

totically abelian systex {a,alN@} such that the unique decomposition of &

into extremal Né-invariant states can be written

#2) = [ og(a)an(s)

Is

where m 1is the Haar measure on 9@ and @g is defined by the relation

Prg) T P 7 % o BeE

with 1t the canonical homomorphism of G onto §® .
An EII-st&te is thereby uniquely represented as the average of a state

with "lower symmetry" .
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