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§i - Introduction 

A number of recent papers [ l ] [2] [3] [k] [5] [6] [6a] concern 
themselves with "asymptotically abelian systems"i.e. pairs of C -algebra CL 

and a locally compact group G together with a homomorphism g «• a of & 
g 

into the automorphism group of CL such that one has an "asymptotic abelian 
property" : the commutator 

a (A).B - B • a (A) 
g 5 

tends to zero for g € G tending to infinity for all elements A , B € CL 

(there are different ways of stating this condition corresponding to different 
choices of topologies - more general conditions can also be stated for general 
non topological - groups)o The consideration of such asymptotically abelian 
systems originates in algebraic field theory [iO] [11] where the C "'-algebra 
is that of quasi-local observables (i.e. bounded observables performed within 
bounded space-time regions together with their norm limits). The group G 
corresponds to some invariant group of the physical theory (e«g. spatial 
translations), and the condition of asymptotic abelianness expresses the 
physical requirement that observables performed far away from each other 
should in the limit not mutually influence themselves and are therefore 
quantum-mechanically described by commuting operators • In this context 
a physically important and mathematically basic problem is the investigation 
of invariant states over the systems [&9a] i.e. states § over CL 

such that $(<x (A)) = § (A) for all A € CL and g e & : those are 
g 
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dearly candidates for the mathematical description of physical equilibrium 

states since the latter are homogeneous (invariant- under space translations). 

Meanwhile it has been increasingly realized that from a mathematical 

point of view asymptotically abelian systems lead to a non commutative genera­

lization of standard (commutative) ergodic theory : indeed if we take the 

C -algebra CL to be abelian and thus isomorphic to an algebra of continuous 

functions on some locally compact space X , the (supposedly strongly continuouŝ  

homomorphism of & into the automorphism group of & becomes a homomorphism 

into homeomorphisms of X > asymptotic abelianness jeing automaticaly realize-"-

A state over CL invariant under & will then be rep esent̂ d by a bounded 

Radon measure |i over X invariant under these homeomorphisms . We thus 

obtain a special case of the usual setting of ergodic theory - the specializat'i i 

consisting in that the measure \i is bounded and the Borel structure of X 

stems from a locally compact topology (the fact that [i is invariant rather 

than quasi-invariant is inessential and would be removed if we considered covan'r 

representations rather than invariant states ) • The latter restrictions are 

however accompanied by a gain in flexibility in varying the (quasi)invariant 

measure fi for a given system {d}a} . 

The papers quoted above have revealed that basic theorems of standard 

ergodic theory still hold in the enlarged non commutative frame . The original 
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results of [i] , [2] and [3] have been generalized in several respects • 

In [5] .[6a] and Part I of [6] , results are given for an arbitrary group 

& • The second part of [6] on the other hand gives further results generali­

zing those of [2] for the case of a locally compact amenable group i.e* a 

group possessing invariant means • In this paper we study bhe more general 

"it-abelian systems", a notion defined in terms of the mean described in [14] 

by Godement and we investigate a non commutative ergodic theory in this enlarged 

frame • One should however not conclude from our results that amenable groups 

are irrelevant to the study of asymptotically abelian systems : it is indeed 

because the present paper is essentially confined to the study of the "vacuum 

theory" (i.e. representations generated by an invariant vector ) that we can 

work with Godementfs mean , since the latter is only defined on linear combina­

tions of functions of positive type on & f 

The paper comprises four sections JSection 2 presents results on 

GodementTs mean M as well as a mild extension theorem needed in Section 4 • 

Section 3 presents a generalization of-the mean ergodic theorem treating not 

only invariant vectors, but also vectors transforming, under finite dimensional 

representations of the group & • Section 4 defines Godementrs mean for alge~ 

braic elements modulated by positive type functions on & and studies general 

features of ergodic states, emphasis being put on the relationship to Mackey's 

theory of imprimitivity systems [17] • The paper concludes mentioning 
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a classification of ergodic states and some properties of the states 

generalizing results in [2] . 
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§2 - Properties of Godement*s mean 

In this section we collect known results mainly extracted from [¡3] 

and [I4]t We consider an arbitrary group & and denote by #(&) the set or' 

bounded complex functions on & , $(&) is a C'"-algebra under linear comb in 

tions of functions , the ordinary function product , the complex conjugation 

f->f of functions and the sup norm II ¡1 • If & is locally compact we denot 
00 

by #(0 and 0̂(G-) "the sub Ĉ -algebras of #(&) consisting of continuous 

functions on & respectively bounded and vanishing at infinity • lie denote b 

?(&) the set of continuous positive-type functions on & i.e. functions 

such that 
n 

N a. a. f(gT' g.) * 0 

for arbitrary ĝ e G and complex constants ct̂  > i = i , 2 , • 0 • n « 

Since consists of bounded functions and is closed under complex conjugal" 

the set V(Gr) of complex linear combinations of elements of is a sub-

* - algebra of S(G) . Its closure in 53(&) (Cf- completion) will be denoted by 

U (&) • It is well known (see, for instance [15] §13«4»5) "that U(Gr) (res-

P(Qr) ) consists of all coefficients (resp. positive coefficients) of arbitral 

unitary representations g € & -» U of G i.e. functions of the type 

g€ G ĉp J U Jijf) (resp. (cp j U ,jco)) where cp and \|r are vectors in the repre-

sentations Hilbert space of U • The fact that ^(&) is closed under multip? 

cation and complex conjugation stems from the existence of tensor products ar 

Conjugates of representations ([15]§"13«4»9) • Since those operations performe 

on finite dimensional representations again lead to finite-dimensional represe1 

tations, the norm-limits of coefficients of the latter,called almost periodic 
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functions on G , f orm an uniformly closed sub- * -algebra AP(G-) of 
AP(G-) can be identified with the C'"-algebra of all continuous complex functions 
on a compact group & whose continuous irreducible representations are one-
to-one with the finite-dimensional irreducible representations cf G • G is 
homomorphically and densely mapped into & ( in general in. a many-to-one way) 
and the above mentioned identification of almost periodic functions on G with 
continuous functions on & is obtained by continuous extension of the former tc 
G ( for these facts see for instance [15]§'»6 ). The mean M defined in [14] 

by Godement is roughly speaking an average process on elements f € l?(&) whih 
filters out the almost periodic functions • 

We first introduce a convenient notation for left and right translations 
of functions on & • We define 

[6„ * f] (g) = f(s~1 g) 
f € 3(G) , g 6 G , 

If * e Kg) = f(g s"'') 
s 

where the notation is a reminder of the fact that translations are the same as 
convolutigns by Dirac measures . If we denote by r (resp. T f) the convex 
hulls of 8 , s e G (respa e , s e G),the sets " T * f and ~Y~* rf~~ , s s 
f € &(&) , will thus denote the uniformly closed convex hulls of left resp* 
right translates of the function f ( note that for (i e V , v e Tf we have 
IffJL * f|J £ j| f || and |jf * v|| ±' || f || )o We are now ready to state the 

OO CO CO CO 
results which we shall need o 

(a) Let ? be the set of f € #(&) such that the closed convex hulls T * f 
and f * T1 both contain a complex constant . This constant is then unique 
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and the same for both • Denoting it by M(t) one has the properties 

(i) for all feg* U(f)U-!!f !! • £ is a closed subset of £(&), 

(ii) for all f fe ? , g e & and complex constants a one has 

f , of , 8 * f , f * e e 8 and Jt(f) = jK(f) , M(af) = att(f), 

§ s 
¿1(6 * f) = /l(f * e ) = M(f) 

s & 
(iii) f € , £ h 0 imply d(t) ^ 0 . 

Proof : Let a e f * T D (C and b € f * r f fl (C ( <C denotes the set of 

complex numbers). For each e >0 there are elements |i e T and v € T 1 such 

that 

|| fi * f - a || ± e and f * ~ bj| £ € 
00 CO 

Thus, since a * v 3 a and |i * b = b , 

|| |j, * f * v - a || ^ e and || a * f # v - b || £ e , 
CO 00 

whence [a - b| ^ 2 e and thus a = b since e is arbitrary • The other 

properties are obvious e 

The existence and properties of M. on U(&) will furnish the main 

technical tool in the three subsequent sections « We merely quote the two 

following results due to C-odement to whom the reader is refered for proofs 

( [14] §§23, 24). 

(b) One has y(&) £ g> . M is a two-sided translation invariant, unit norm 

positive linear form over the (T'-algebra U(Qr) £ S(s) . 
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The precise way in which almost periodic functions on & are "filtered 
out" by Godement's mean JA is expressed by : 

(c) Let g e ; cp admits a unique decomposition , cp = cp̂  + cp£ with 
cp1 , cp26 U(&) , ? 1 € AP(&) and 4 k 2 | 2 ) = 0 # ^ 9 € y(&) and cp(g) = C+^V |*? 

is a realization of cp as a coefficient of the unitary representation U of 
G on the Hilbert space JS , ̂  , ̂  € % , and if Ê  is the smallest pro­
jection in H containing all projections on finite-dimensional subspaces inva­
riant under U with Eg = I - Ê  , we have 

9 , (g ) = (t, i Ug^i U 2
) 

<P2(e) = (+1 \vz2\*2) 

Consequently the following are equivalent for cp e ?(&) : 
(i) does not contain any finite dimensional subrepresentation of & 
other than the trivial one of zero dimension ; (ii) il(|cp| ) = 0 ; (iii)it( |cp|) 

The equivalence of (ii) and (iii) is a special case of the known fact 
that, for a positive element A = |cp| of a C"r-algebra (here U(&) ) and for 

2 
an arbitrary state it , Jll(A) = 0 is equivalent to il(A ) = 0 . Indeed 
Schwartz's inequality yields A l (A) 2^il ( l ) • l ( A 2 ) and il(A2)2 ̂ M(A) • il(A^), 

The above mentioned isomorphism between AP(&) and £(&) (the C'̂ -algebr 
of continuous functions of the compact group G ) together with the uniqueness 
of normalized Haar measure on & (a two-sided invariant mormalized state over 
&(&) immediately entail : 
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(d) For any f € AP(&) one has 

*(f) = j f(g) Ms) 

G 

where f denotes on the right side the unique continuous extension of f eAP(G 

to & and dm is the normalized Haar measure on & • 

The next result serves to establish the connection between the present 

work and Part II of [6] : 

(e) If the group & is amenable each left (or right) invariant mean rj over 

reduces to M on ff -

Proof : Let f e f and choose ji € r(ver!) such that || (i * f - M(f)\\ £ e 
mm^tmammmmmmm CO 
(||f *v-JK(f)l| ¿6 ). It follows that 

CO 

h(n * f - *(f)| = h(f) - li{f)\ ± e (h(f * v- *(f))| = Jr)(f) - il(f)| - e) 

whence ri(f) = il(f) since s is arbitrary . 
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§ 3 - A generalized mean ergodic theorem 

This section describes Godement's means of group representations modulated 
by elements of tV(G-) • *Ve first give the 

Lemma 1 • Let & be a group and g e & -» U an unitary representation of G *~ g 
in a Hilbert space f£ . For each f e U{Gr) there is a unique bounded operator 

M(fU) such that, for all i|r.., t 2
 e ^ 

(1) (^|M(fU)U 2) = l[f(g) (̂ |U.|i|/2)] 

(we write jH(cp(g)) for Jt(cp) , g indicating a dummy variable )• This operator 
M(fU) is of norm not exceeding j| f || and lies in the Von Neumann algebra 

CO 
generated by the U , g € & •. 

& 

Proof l (See [6] Lemma 4 ) The right hand side of ( l ) makes sense by (b) of 
Section i , and since M is a normalized state over ^(&), it is linear in i|r , 

conjugate-linear in and of modulus not exceeding j|fjj o || • |!̂ J| ; 
whence the existence of a unique M(fU) satisfying (1 ) and of norm |̂|f || 

CO 
Further v;e have, for any bounded operator T on Hi 

( ^ | T M ( f u ) -M(fu)T|t2> = ( T \ , | 4 f u ) | * 2 ) - M t ( f u ) | n 2 ) 

- 4 f (§ ) l (T * iUu * \%) - (*,KjTt ? )]J 
1 o ^ 1 g ^ 

= A[f(g) (ih|TU. - U . T U ) } 
o o 

Thus Ivl(fU) is contained in the bicommutant of all U , g € & . 
S 

The next theorem gives an explicit description of the operators M(fU) . 
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Theorem 1» Let G , U and ¿6 be as in the preceding Lemma and denote by 

E the smallest (orthogonal) projector in № whose range contains all the 
finite dimensional subspaces of X invariant under U and by the 
restriction of U to E $ . 
(i) If f € U(G) is the coefficient of a unitary representation of G 
disjoint from the representation , M(fU) = 0 , 

(ii) Let 

J &il 
(2) \ 

D 8 « V U ( < T ) * r ( c r ) 

CT€2 

be the factorial decomposition of , with 2 the set of equivalence 

classes of irreducible representations contained in , an element 

of the class cr acting in the finite dimensional Hilbert space , 

$!^°^ a Hilbert space of dimensionality equal to the multiplicity of c j 

and I 1 ^ the unit operator in . If c/0^ and ^ denote 

arbitrary vectors in ¿6^°^ we have 

where E ^ is the projector in <£ on the subspace ® ^ and 

d ^ is the dimension of cr • In particular 

(4) M(U) =: E Q , 

the projector onto vectors of & inva<ri£.nt under U • 
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(a) (6) 
Proof : Let U and U ' be two finite dimensional irreductible unitary 
representations of G in the respective Hilbert spaces * M and ^ and 
take § , T| € 7&^°^ and x,y € . It follows from (d) in Section 1 and 
from the orthogonality relations on the compact group G (see [15] § 1 5 . 2 . 5 ; 

contrary to Dixmier we take scalar products conjugate-linear in the first and 
linear in the second vector ) : 

f 0 if and are disjoint 
J6{(5|u^}h)(x U^|y)} < 

[d(i)(x|§)(Tl|y) if U<"> = U(P> 
(a) with d/ x = dimension of U 7 • (Ot) 

Proof of (i) : Let f(g) = (ujlpjv) correspond to a unitary representa­
tion Uf og G in the Hilbert space 151 disjoint from the representation ; 
let be the smallest projector in <$f whose range contains all finite dimen­
sional subspaces ; and write û  = F̂ u , = F̂  v , u^ = u - û  , v̂  = v - v̂  
and fi(g) = (ui|u^|vi) -,i = 1 f 2 . On the other hand set E X = I - E .We have, 
with obvious notations 

M(fU) = VL(£jF) + M(f2UE) + M(fUE ) 

The first term vanishes because of the above orthogonality relations since the 
finite dimensional representations and Uf are disjoint. The two other 
terms however vanish by (c) of Section 1 due to the fact that the representation 
x F 
and Uf 2 have no non vanishing finite dimensional subrepresentations (we 

remind that Ji(\h\ ) = 0 for a h 6 V (G) implies if(«ph) = 0 for all 

<P € ?/(G)). 
Proof of (ii) : in order to establish formula (3) we have to evaluate 

the quantity 
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(5) y . i K f ^ l u ^ V ^ ) ( u | u j v ) } , u , v e 
8 6 

Let us write 

u = u + V E ( o " } u + B \ 
O-' € S 
c ' ^ cr 

and analogously for v . we have, correspondingly 

(u|u |v) = ( E ( < | U ( ^ |E ( c r )v) + V ( E ( a ' V ^ V ^ ' W ( E ^ V v ) 6 8 / . 8 8 
crf no­

where the first term is the only one giving a non vanishing contribution to (5) 

as shown by (i) applied to the representations U 5 and ir 0"' ̂  , cr' ^ a" . 
Writing 

f -A 
E ^ u = ^ x ± ® x^ 

J , x ± , y ± e , xj_ , y| € * 

E ( c r )
 v = \ ' y ® y* 

we then have 
P q 

. (E(o'>u|u^)|E(<r)v)= V V (x.|u^|y.)(x'|yl) 
i = 1 j = 1 

and thus using the above orthogonality relations 
- — P q 

i i K ^ V ^ I ^ X u l u J v ) } = 7 ^ d ^ C ^ I ^ J ^ I y p U i l y J ) 
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P q 

= ( Г X. ® х- J |cp(cr))Uícr)! ® r ( < r ) j 7 7S ® yj ) , 
i = "I j"^ 1 

vfhence formula (j) » 
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§ 4 - Representations of Jll-abelian systems generated  

by an invariant vector 

Definition 1 . Let [&,a] be a pair of (T'-algebra CL and a homomorphic mapping 

g € & a of a group & into the automorphism group of CL • To each state $ 
S 

over cX we attach the following subset of #(G) : 

S $ = [g€& -* §(A 1[a G (A),B]A 2) | A , B, A . , A G € c£ j 

The system [#,a] is called Jit- abelian whenever for each state § ovex 

CL invariant under & (i.e» such that §(<x ( A ) ) = $(A) for all A e CL and 

g € & ) and each f 6 S $ we have |f | e $ and 

it (|f|) = o 

{<%,<x} is called weakly asymptotically abelian (cf. [6] Definition 1 ) 

whenever 

a) G is a locally compact non compact topological group 

b) a is strongly continuous (i.e. a (A) is norm continuous in g for each 

A-.€ a ) 

c) S_ € & (&) for each & - invariant state over CL • ' § o 

notation . In addition to the preceding notation, given a state § over CL 

invariant under & we will denote by U the respective *-representation 

of CL , unitary representation of G (both acting in the Hilbert space Jg ) 

and cyclic vector of (cyclicity is with respect to %^(&)) determined 

by (of. ['¡5] , 2 . 1 2 . 1 1 ) : 
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r(Q f th s(A)|Q #) = *(A)' 

(6) < 7C $(aG(A)) = U g TC$ (A ) U*_.. , A € CL , geG 

t u n - = 0. 
v. g $ $ 

Furthermore we will denote by EQ the projector in JS onto the one -
dimensional subspace generated by the vector ; by E 0 the projector in 
f$- with range jiff s $,|U ijr == \|r for all g € & j; by E the smallest 

* * g 
projector in № ̂  whose range contains all finite dimensional subspaces of fS^ 
invariant under U • Finally the Von Neumann ring generated by the ^(A) , 
A € CL and U ; g £ & will be denoted by and its commutant by (Ft!. • g 9 

Ve note that, since f€ f? (&) implies that f e S and JX(f) = 0 , weak asyr-î totic 
abelianness implies it-abelianness « The latter, more general, concept is inte­
resting in situations where a (A) and B tend to commute only for g -» <x> 
along certain directions ( possibly depending upon A and B ) • 

We now give 
Lemma 2 • Let {&,a] be an il-abelian system and $ a state over CL invariant 
under & . The set of functions 

F f , V V A : ^ & "* f ( § ) ( + 1 , V a g ( A ) ) l + 2 ) 

where f runs through U(G), ̂  and ^ through JS^ and A through CL 9 is 
contained in K . Furthermore . . J is linear in f , i|r and A 
and conjugate-linear in t 

Proof : Since 0^ is cyclic under ft$(A) and since IF is uniformly closed 
it suffices to prove that the set of functions 
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where A, , k0 and A run through <X,is contained in £ and that JH(G . ) 

is linear in f , Â  , A^ and A • For the proof we notice that 

G f ^ A ^ A ( g ) - tj(g) + f(g) f2(s) 

where 

f f.;(s) = f (g ) (n $ K §(A 1A 2)U* 7 c $(A ) |n § ) 

) f2(g) = §(A,(|>g(A), A 2] ) 

with e U(0r) and e , By Definition 1 , given c>0 , we can choose 

|i € T such that 

II \x * |f J || * e . 
¿1 00 

We then choose a | i f € r such that 

|| JIU |i * f - /t(f.) [} - e . • 

It follows 

£ ||u' » M fi " + *H* ¿6 (1 + || f || ) 
1 I OO <L 00 OO 

sincO the second term on the right hand side is majorized by 

II *i * (f^'L ~ " f'L * ^ f2' "eo ^ A s i c i i l a r argument for right 

Note that we have proven that |f| € £,i{(|f|) = 0 and f g € s(&) imply 
that ff2c .? and JH(ff2) = 0 ; whence easily follows, incidentally, that 

JK(|f | 2) = 0 Jll(|f j) - 0 • 
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translations shows that r . . e £ with 

whence the result • 

Lemma 3 • Let [a*a] be an jH-abelian system and $ a state over ai invariant 

under & with the notation of Definition 1 • To each f € U(&) there exists 

a linear norm-continuous mapping from oi to %(&)" fl Tc(d)f determined 

by 

(8) | M F ( A ) | * 2 ) - A (f(g ) (^h(ag (A))U 2 )? , 

A € a 

The correspondance f € •* is linear, positive (M^(A) ^ 0 if f h 0 

and A à O ) , bounded (|IMJA)J| ̂  }|f}| • JJAH ) . and such that II = 

* f °° f i 
if f = f̂  4» f 2 is the decomposition of § 2 , (c) ; 

(9) M F ( A ) = M F ( A * ) * , A € cZ 

and 

f M f ° as = M ? 

( 1 0 ) s € G , Â e a 

j U s M (A) lT1 » M f (A) 
-̂ s 

where f (g) = f(s~'g) and fS(g) = f (g s~! ) , g , s e& . In particular if 
S 

we taîje for f the constant function equal to 1 , we get a norm decreasing 

positive linear map M, from & to %(&)" D K(GL)' D UI ( we denote by Ui 

the commutator of the set [u jg e &} ). The M F ( A ) , A € a , f e , 
g i 

furthermore satisfy for each B € %(<%)" the relation 

( 1 1 ) M (A) B E = BM(f U)TC(A) E 

\ / f o o 
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through which they are determined owing to cyclicity of Q for %{&) • In 
particular 

(12) IvL(A) E = E %(A) E 4 J 1 4 ' о О 4 ' 0 

so that coincides v/ith the restriction to <Z of the mapping M of [6] , 

Theorem 1 (see formula (7) above ). 

Proof : (along the lines of [6] Lemma 1 ) 0 The right hand side of [8] exists 

and is linear in ^ , f and A and conjugate-linear in ^ by virtue of 

Lemma 2 о Furthermore its module does not exceed '|fj| • ||A|| • • Ht̂ ii у 
со 1 £ 

therefore we have a unique bounded operator M^(A) satisfying (8) ; and 
M (A) depends linearly upon f and A and has a noym not exceeding ||f|| • ||A||. I 00 
As in the proof of Lemma 1 in Section 3 Y J e show that̂  for each bounded aperator 
T on № and all ^ ,т|г e № 

(^|TMf(A) - M f(A)T |t 2) =A[f(g)(i|r1|T7c(ag(A)) - 7c(aG(A) )T| ̂ ) . 

If T commutes with тс(й) this is also the case for M^(A) # therefore 
M (A) £ 7i(oX)l! • On the other hand for T = %(в) 0 В e cip the right-hand term 
vanishes according to Definition 1 and thus M^(A)e ft(<Z)F • Finally the pro­
perties (9) and (10) easily follow fr<*m the real character and translation 
invariance of Ii : we have , for ijr̂  , ̂  e № 

(Ф1|М?(А)|11г2)=-Л[?(вК1|г1^(а.(А5|ф2)} = AlfQC^fcgCA*))!*^] 

= ( ^ ( A * ) ! ^ ) = (^|Mf(A*)*|*2) 

and 
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(tJU A M f ( A ) l f 1|t 2) = (if ̂ |M f(A)|u^ 2) = M{f(%W^^(a.(A))\\]'s\2)} 

= ̂ [f(l)(^k(asg(A))|1If2) } =Ji(f(s"1g)(1lr1K(^(A))|1|f2)]. 

As for property O O * ^ suffices to verify it for B = I since M,(A) €*(£)' . 
Verification is immediate using Definition (8) and taking account of (4) • 

Property (12) then follows immediately from (4) • More generally if 
f € & -> x^(g) > i = 1 9 2 , are one-dimensional unitary representations of 
& we have 

(13) M— (A) E = E TC(A) E 
A,-] A. 2 A. -j A 2 

where E is the projector in $ with range [i|f € $ |u \|f = Xn(s)^ >gfi &l Q-nd X,2 g ^ 
analogously for E 

X 1 X 2 

Remark : We note that , in the case of weak asymptotic abelianness,the Lemma 
can be proved without using the fact that the representation %^ of u was 
generated by the invariant state $ * All we need for the proof is the existence 
of a covariant representation of the weakly asymptotically abelian system {Ciya] 

(i.e. a pair of * - representation % of 31 and a continuous unitary represen­
tation U of & -both in the Hilbert space 3% - satisfying 

U rc(A) t f 1 = *(a ( A ) ) , A e CL , g € & ) 
6 5 o 

such that in̂ . addition the subspace of vectors of Jg invariant under U is 
cyclic for %(&) in 'X . If the group & is amenable with right or left 
invariant mean t] the construction above with r) instead of M can be applied 
to the universal representation of a (direct sum of all cyclic representations 
cf. [6] Lemma 1 ) yielding a linear mapping Ac CL->r](f„ a A ( A ) ) of notm 

g § 
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£ |jf j| from (Z to the center of its Von Neumann enveloping algebra <5L' ' • 
oo 

The above mapping M can then be obtained by composition with the 

representation % extended to oC ^ in the standard manner ( [15] * 12.1.5) ° 

(14) Mf(A)= 7i(7j(f.ag(A))) 

Theorem 2 . Let {&>u\ be an M-abelian system and $ a state over CL inva­
riant under & with the notation of Def« 1 . We then have that 

a) the set of operators E Q %^ (A) E q is abelian (and consequently ^ 0 ^ $ E^ 

is a maximal abelian Von Neumann ring ) • 

b) the Von Neumann ring (R^ is abelian and isomorphic to E^ E^ T 

c) the following eonditions are equivalent 

(i) EQ = E (uniqueness of the ,!va«mum*T) 

(ii) for all Add it[§(A*cu(A» -|§(A)|2 I = 0 

(iii) for all A € a and ^ , \|r € fS^ 

J^(a.(A))(t2) - ^ A K ^ U g ) ! - 0 

(weak clustering property)• 
(iv) M^A) is a multiple of the identity (equal to §(A).l) fo* all Ae a 

(v) the set of operators U [U® | g € &} is irreducible ( or ft^ 
consists of all bounded operators on ^ ) . 
(vi) tfL is a factor 
(vii) $ is an extremal element of the convex set of states over cX 

invariant under & • 

We do not give the proof of this theorem for which we refer the reader 
to refs [1 ] through [6]. We limit ourselves to noticing that a) immediately 
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results from the il-abelianness condition 

^ [ ( ^ k $ ( [a | (A ) , B ] ) | i|r2) = 0 , ̂ ,^6 KQ, A,B, e a , 

taking account of expression (4) o 

Invariant states $ satisfying the equivalent condition (i) through (vii, 

are called extremal invariant or ergodic states (E - states) « 

The abelian character of E^ %^\^J E q together with the cyclicity of 

fi^ imply [6] that the commutant (R^ of the Von Neumann algebra generated 

by the KAA) and , A € CL 9 g € & , is abelian ; and furthermore 

that the mapping M from ^ to (R^ determined by 

(15) M(T) E $ = E ^ T E §
 F T € «, 

^ ̂ ' v ' 0 O 0 § 
/ $ $ I 

is normal and onto (consequently E £L E and tfU are isomorphic as Von 
^ J o § o $ 

Neumann algebras ) . 
Theorem 3 • Let [a,a] be an j/l-abelian system and § a state over (X inva­
riant under ffitb. again the notation of Definition 1 the following are equi­
valent 

(i) E 0 - E $ 

(ii) for all A e a , ii\ |$ (A*CU(A)) - |§(A)|2J]= 0 

(iii) for all A e CL and > ̂  G ^ > 

AlK^I^CagCA))!^) - §(A)(llr1|ljr2)|! = 0 

Proof : The implication (iii)=>(ii) is trivial • Further (ii)=>(i) as a 
consequence of (c) of Section 2 taking account of the cyclicity of Q and 
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the relation 

*(A*ag(A)) - |*(A) 2 = (« s (A)n $|u| |x§(A)Q$ ) 

where EQ = I - EQ .In order to prove the implication (i)=>(iii) it 

suffices to show that , as a result of (i), the function 

f : geG -» |$(Aia (A)A2) - §(A)$(A^A2)\ 

is contained in ? for all A., , A^ ,A eu and that moreover J!t(f) = 0 • 

We have 

f(g) - ̂ (A^ [ag(A),A2] ) j + | ( ^ ( A * ApQ $jU*E^ $(A)Q §)| 

and (iii) follows from (c) of Section 2 using Lemma 2 and it-abelianness 

of {6L,a} 

The invariant states § satisfying the equivalent condition (i) to (iii) 

are obviously ergodic states . We will call them weakly mixing states or 

IHj ~ states see Definition 2 belov/) because they are a generalization of the 

weakly mixing states of standard (commutative) ergodic theory • 

Theorem h- • Let [<%,OL] be an Jft-abelian system a.nd let $ be an ergodic state 

over ¿1 with the notation of Definition 1 leaving out for shortness the sub­

scripts and superscripts § • We adopt also the notation of Theorem 1 ( see 

formula (2) in Section 2) for the decomposition of IT̂  into factors • Further­

more we set, for Ae & , a € 2 and cp, 1]/ e <fl/°̂  

(16) vffl (A) = M 5 (A) v,here f(g) = (<p | |+ ) . 
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Then 
(cr) 1 

(i) One has U M^U;(A) U M / N (A) , g € & 4 g ФИГ g Л<т\ Л 
g Y , v 

(ii) The vectors M^(A )n belong to the subspace ® . More 
ф , 1|Г 

precisely , if [ф̂ ] is an orthonormal base of , the M^°^ (A)Q 
фк,ф 

deliver for appropriately chosen A , an orthonormal base of a subspace 
of Й equivalent to * 
(iii) For each pair cr, cr1 € 2 the representation <g> ^ is not 
disjoint from U • 
(itf) For each cr € 2 one has cr e 2 where t/0^ is the conjugate of the 
the representation l/0"̂  « 

Proof : Property (i) immediately results fram (10) applied to the definition 
(16) . From it follows that the (A)Q are contained in ® Л? 1^ 
and span a suospace of $ equivalent to fir if they are linearly inde­
pendent • However one gets from (11) 

M- (A)Q = M(f U)TI(A)Q 

and, specializing to the choice of f in (16), by use of (З) 

0?) M ^ ] (А)П = | Ф ) U | ® I'(<r) ? E ( < r W ) Q 

so that one has 

(18) ( M ^ ^ ( A ) Q | (A)Q)= 6K L d^H^p .IKE^ ® Г M)EK(A)Q||2 

where E, is the projector onto \|r in . Thus the M̂ °̂ . (A) are 
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mutually orthogonal and of common length, By the cyclicity of Q ,th3 
latter can be chosen equal to unity for an appropriate choice of A and ^ , 
whence (iii) . Due to irieducibility of %(ci) U U & the vectors M^°~^(A)Q , ' 

k 
k = 1 , 2 , oo« ^(Q-) > then generate a subspace cyclic for %(oi) in $> 
and thus, if we choose a coefficient f e f(&) of representation Uv , 
cr1 € 2 , and a B € d such that M~f (B)Q ^ 0 we have at least one k 
for which M-.(B) M^cr\(A)n ^ 0 . The non-disjointness of ® l/0"' ̂  
and U then resuitsfrom the fact that, for a finite dimensional group repre­
sentation, any quotient representation is equivalent to a subrepresentation • 

Finally let f be a coefficient of tjie representation a € 2 and 
A an element of a such that M-(A)Q ^ 0 # We have (fi|M̂ (A) | Q)*(K F (A*)fi|f 
^ 0 (cfo (9)) and thus H (A*)Q ^ 0 . But M (A*)fi € ® so 
that cr e 2 * 

The rest of this section handles the more special situation where the 
system [cZ,ot] is supposed to be weakly asymptotically abelian and discusses 
further the relationship with the standard ergodic theory » In this connexion, 
the next theorem will allow us to apply Mackey's results [16] by reduction 
to a commutative C "-algebra • 

Theorem 5 • Let \ci9 a.} be a weakly asymptotically abelian system with a non 
compact group & and $ a state over ol invariant under & with thef 

notation of the preceding Theorem , We denote further by N the stabilizer 
of E i.ee the intersection of the kernels of all finite-dimensional subre-
presentations of U • If we assume the quotient group 9 — G / N to be 
either compact or connected (which is true if & itself is connected ) 
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the set of operators E %(A) E , E e Ci , is abelian . 

Proof : N is obviously a closed invariant subgroup of G- , so that 9 = G/ft 
is a topological group . By definition, the direct sum of all finite dimensio­
nal representations of 9 is faithful « Thus, by [15] > 16.4.6 , 9 is a 
direct product K, x T with K. compact and T = R n , n integer 0 

(R° is the group with one element ; if n = 0 , % is compact )• Let T 
—1 

be a canonical homomorphism of & onto 9 , set & 1 = T (T) and , for 
A 

a continuous character % € T of the group T , let E be the projector 
X 

with range [ty €$|TJ ,,i|r ~ x(T(s!))^ for all gTe &!j • The first step in 
o 

the proof is to show that E № is stable under U and that 
X 

(19) S = 2 E . 

Nov? &1 is obviously a closed invariant subgroup of & with N an invariant 
subgroup of G1 * Each character x € ^ defines a one-dimensional unitary 
representation g! -> x(T(o!)) °f &! > different characters yielding diffe­
rent representations so that F = 2 A E is a sum of orthogonal projectors0 

X eT x 

Clearly E ̂  T a Take now a i|r € E <?£ • For arbitrary ge & , gf e Gf we 
X 

—1 —1 have g gf ge&' and thus U y = gf = x(T(g*))^ because 
g V g 

T(gT)c T is in the center of 9 « Thus Urit U i|r = x(T(gf)U t > showing 
6 g g 

that E JS is invariant under U 0 Let U = U E be the corresponding X X X " 
subrepresentation of U • Obviously U (n) = x(T(n)) ~ I ^ o r n € N so 

X 
that U ~ V o T where V is a unitary representation of 9 X X X * 
The kernel J of V contains all elements kt € g with ke K , t e T 

X 
and x(^) ~ 1 • therefore 9 /J is compact , V (and also U ) is a sum 

X X 
of finite-dimensional representations and E £ E whence F £ E : (19) is 

X 
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(*) established 
Thus to prove the Theorem it is enough to show that, for x% X" G ^ 

and A,. ; A^ € CI 

(20) E X^(A.,)E%(A 2)S X„ = S X^(A 2)EA(^)S X„ 

whereby the left hand term is equal to 

(21) 2U E ,7c(A )E *(A )E , 
X̂ T 

Now since G/Gf = (G-AO/C&'A) = 9ft = Kj is compact and & is non 
compact, by Proposition 1 p .31 of [19 ] > &f must be non compaot and the 
system [oifCc1], where a1 is the restriction of a to &f , is weakly 
asymptotically abelian » Therefore if WQ denote by M^(A), f e B(&T)> the 
means defined for the group G! as was done in (8) for the group & , we 

A 
have by ( 13 ) , for % 2 e T and A e <5L 

I'd. (A) E = E TC(A) E X*j %2 X<j X2 X2 

E M 1 (A) = E %(:,) E 
2 I 2 1 2 

where X 2 denote also the functions X̂  ° T , #2 ° T O N & ' • T H U S 

(21) can be written 

2A E ,7<A)Ml F(A )E „ = 2A E M „ (A ) r,(A ) E 
X çT x̂-̂-

= 2A E . TC(A.) E „ „ %{k,) E 
X € T X! v 2 y x FXX" V 1 xn 

= 2A E , rt(A.) E 7t(Aj E „ 
X € T X 2 x • X n 

(*) At this point the proof of the theorem is deduced to the abelian case 
for which a proof was given by &. Gallavotti and D# Ruelle (private comnmnica-
tion )• 
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thus proving (20; q0eodo 

Remark . Me note that in the preceding proof the fact that the representation 
% of CL was generated by the invariant state § was not actually used • 
All we need for the proof is the existence of a covariant representation of 
the weakly asymptotically abelian system {oL,a} such that the subspace 
E<# is cyclic for %(&) in № 

Me will now see that Theorem 4 renders available for the study of cova­
riant representation of weakly asymptotically abelian systems Mackey's theory 
of imprimitivity systems • Since we work in a C*-algebra frame we have in fact 
to deal with the more special case in which Borel structures are provided by 
locally compact topologies . 

, Lemma 4 o Let CL- be a C''-algebra , g-» a a homomorphic mapping of the 
locally compact group & into the homomorphism group of CL such that 
g->a (A) is norm continuous in g for each A € CL and (ft,!]) a covariant 

b 
representation of the system [CL,a] in a Hilbert space <№ « Let E be a 
projector in the commutant of the set [U |g e G-j such that E % (CL) E 

b 
is abelian « Me denote by the commutative C'-algebra of operators on 
Effi generated by the E % (A) E , A e CL y by its spectrum and by M*~*M 

the G-elfand isomorphism : 
(22) li(s) = <S , M> , S €?f , ii € , M €& o (?0 • 

(i) If v/e set 17"= EU2 and define 
S S 

(23) a (M) = tf3 M , M g , g e & 
s g s " 
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we get a homomorphism g -> a of & into the automorphism group SUi 

that g -» a (M) is norm continuous in g e & for each M e 61 
ó 

(ii) The dual action of & on ^f" given by 

(24) < [g]s , M > = <s , a ̂  (M) > , s 6 ^ , g e & 
S 

defines a homomorphism g -* [g] of & into the homeomorphism group of 
such that (s,g)-+[g] is continuous from rjf' x & to 5̂*~ • 

(iii) Let us call P the unique regular spectral measure P on such 

that , for all M e 'tjtfi 

K (25) M = j M(s) dP(s) 

The support of P is the vrhole 
T 

and we have, for all Borel subsets A 
of T 

(26) VS P(A) = P([g]A) . 
g S 

[IT' , P , g -*[g] } is called the system of imprimitivity attached to E . 

If the set of operators TÍ(A), A e 61 and U , g € & is irreducible 
g 

in <fé , this system is ergodic « The converse is true if E<fé is cyclic for 
%((%) in ffi and invariant under %{ci)1 fl • 
(iv) Let the covariant representation (7t,U) be generated as above by a state 
$ over SL invariant under & with corresponding cyclic invariant vector 
Q cE^e The Filbert space E<# can then be identified with Lg^ n ) where 
the bounded &-invariant Ration measure (i on ̂ T"' is defined by 
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(27) < (Ji, M > = (O|M|Q) , M c?o(T) 

with the elements of acting multiplicatively 

(28) [M t ] (s) = M(s)t(s) , t e L2(T, u),Me^,s e^, 

whilst the group acts by "shifts of the variable" 

(29) [ ^ i ( s ) = H U " 1 ] s) e L ^ u ) , g eG, s e^. 

The spectral measure P is then of unit multiplicity : we have 

(30) [P(AH}(s) = x A (s)*(s) , + e L 2(^u) , s 6 T 

where ^ s "the characteristic function of the Borel subset A of • 
n n Proof : a defined by (23) is such that a (.n,EIl(A.)E =.n,En(a (A. ))E, 1 g g 1—' 1 1—1 g i 

A^ € CL. Thus., for M a polynomial of elements of the type E n (A)E 3 Ae ol9 

and, by density, for a general element of MX , M-»a (M) is •-homomorphic 
and norm continuous in g (the latter property stems from the assumed norm 
continuity of a (A) in g for A e ai). The mapping g -» [g] defined in 
(24) is evidently homomorphic J and [g] is continuous in the *-weak topology 
as the transposed of a continuous operator , and id therefore a homeomorphismr 
For s . s!e d1, and M. e i = 1,2,..» n , we havej on the other hand 

\<[s]atU± >- <[g']s',Mi> | £ 

± |< [g]s,Mi>-< [g]s»,Mi>| + | < [gJs'̂ L >-< [g'Js'.lL >| £ 

± |<s,a _ 1 ( M I ) > < s», a_ 1(M i)> j+ ||a ^ (M ) - a . . ^ M )|| 

6 g g g' 
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The condition that the first term be less than ~ amounts to choosing sf 

in a *-weak neighbourhood of s and the second term is less than ~ for 
gf in a neighbourhood of g ; thus we have the continuity of (g,s) ~>gs • 
The uniqueness of the regular spectral measure P yielding (26) is well 
known (*-representations of abelian C*-algebras are one-to-one with regular 
spectral measures on their spectrum)0 If the support of the spectral measure 

A 

P was smaller than o n e could find an M 0 vanishing on <y~ so thai 
M = 0 , a contradiction « Relations (26) is obtained by setting a (M) for 
M in M and using (23) and (2k)• Let us next denote by (R the Von Neumanv 
algebra generated by the TC(A), A e 61 and U , g € & ; and by <Rg the Von 
Neumann algebra of operators on EM> generated by (fflC and the , g € *'; 

Since E commutes with the , contains E (R E • Therefore if (R is 
irreducible in , the same holds for E (RE , and a fortiori for (R^ ( or 
equivalently for the system of P(A) and tF) in E<?8 .Conversely if E c ft and 
ftg is irreducible, (̂ gV = (ft! )g ' reduces to the scalarso But if E$ 
is cyclic for %(&) it separates R l and thus (Rx also reduces to the 
scalars and (R is irreducible. Finally, if % is generated by an invarian"-
state $ , cyclicity of the corresponding vector Q e E<78 for TC(<£) in * 
entails cyclicity of fi for the commutative C"-algebra WX in E$ • The 
Segal-&elfand construction applied to the state (24) over then shows in 
the familiar way (cf«. [21 ]§1 7*4) that E*«? is isomorphic to L^^jj.) with th 
property (27). On the other han for M e 'Wt. and g€G we have by (23) 
E a ^ 
U Mfi = a (M)Q whence for the corresponding element M € £ Cff) C L ( T , û , 
g g O c. 
using (24), 

[Û ]M (s) = i jM) (s) = M([g-1] s) 

(*) Proposition 1 Chapt. I §2 of [20] . 
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On the other hand the spectral measure (30) in our case evidently fulfills 
(26)5 completing the proof of our Lemma • 

Theorem 4 in the setting of the appended remark together with the 
previous Lemma allow a direct application of ThePrem 2 in [l 6] to give 

Theorem 6 • Let (ft,U) be an ergodic covariant representation of the weakly 
asymptotically abelian system [c%,a} with a non compact separable & (ergo-
dicity means irreducibility of the system ft(A) , A € oi and U , g € G ) 
and let E }§ be as in Theorem 5 with 2 the set of irreducible finite-
dimensional components of U acting on Hilbert spaces • Denote 
furthermore by K the compact group obtained by taking the closure of cp(&) , 
where cp is the homomorphic continuous map g e & into the product 
of unitary groups in all № , cr e 2 • Then there exists a closed subgroup 
H of K , a unitary representation L of H and a unitary map M of E^ 
onto the Hilbert space of the representation of K induced by L such 
that 
(i) w B v;"1 ~ B L 

(ii) W Vf1 =r U 1, v for all g€ G 
where B and B are the complete boolean algebrasof projections determined 
respectively by the canonical imprimitivity system of and the imprimitivit 
system attached to S « 

We conclude this section by noticing that the classification of 
ergodic states given in [2] can be generalized to the case of non abelian 
gyoups in the following manner • 



- 34 -

Definition 2 . Let [&9a] be a weakly asymptotically abelian system and § 
state invariant under & with the notation of Definition 1 • Let N be 

9 
$ $ 

the kernel of the representation g -> U E and g the quotient group 
g 

= G/Nj . We distinguish the following three classes of ergodic states 
(i) $ is called an Ê -state (or a weakly mixing state , cf. Theorem 3 

above) whenever the only finite dimensional subrepresentation of is the 
one-dimensional subrepresentation spanned by the invariant vector i.e. 
9 ̂  = G/N̂  is the group with one element • 

(ii) § is called an E^-state if it is not an Ê -state and if the 
quotient group 9^ = G/Ŵ  is compact • In other terras an E^-state is an 
Ê j-state is an ergodic state for which 9^ is compact and contains more 
than one element . 

(iii) § is called E^^-state whenever 9^ is not compact . 

Remarks • 

We add some remark on E^-states over a weakly asymptotically abelian sys­
tem [oi,a] ; the proofs are either immediate or easily deduced from what 
preceeds and the literature . 

1 ° ) If § is an E^-state it follows from (19) that 
E ^ = s X§ , U * = • all g € N § ] . 

This properly is trivial for Ê - states , where = G , and false 
in general , though not always-for E^^-states • 

2°) Let $ be an ergodic state over {dl,a} and 2 the set of all 
irreducible components of the tensor products of finite subfamilies of 2 
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(see Theorem 4)« If ^ 3 separable and 9^ connected, the following . 
are equivalent 

(ii) $ is an E^-state » 
$ 

If we assume 9^ to be connected , E ̂  separable implies that 
\x\x € T, E ^ 0} is a countable subgroup of T (see equation (19)) > 

A A 

whence the equivalence of 2 = 9^ to the fact that T is countable 
(or n = 0 ) • 

3°) Let CL be separable and <±> an E^-state over [oL9a] • Using 
the methods of Section 5 in [2] (where some points of rigour need to be 
fixed as will be done in a forthcoming paper), or alternatively of [4] , 
one can show the existence of an ergodic state 9 over the weaMLy asymp­
totically abelian syste:;: [cX,a|N̂ ] such that the unique decomposition of $ 
into extremal N̂ -invariant states can be written 

*(A) = j cp?(A)dm(̂ ) 

h 
where m the Haar measure on 9^ and cp̂  is defined by the relation 

c p / \ = c p ° a , geG-M g ) Y g ' 

with T the canonical homomorphism of fr onto 9 ̂  • 

An E^-state is thereby uniquely represented as the average of a state 
with "lower symmetry" • 
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