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CARTHAGINIAN ENLARGEMENT OF FILTRATIONS ∗
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Abstract. This work is concerned with the theory of initial and progressive enlargements of a refer-
ence filtration F with a random time τ . We provide, under an equivalence assumption, slightly stronger
than the absolute continuity assumption of Jacod, alternative proofs to results concerning canonical
decomposition of an F-martingale in the enlarged filtrations. Also, we address martingales’ characteri-
zation in the enlarged filtrations in terms of martingales in the reference filtration, as well as predictable
representation theorems in the enlarged filtrations.

Mathematics Subject Classification. 60G46, 60-02.

Received January 24, 2011. Revised September 28, 2011.

1. Introduction

We consider the case where a filtration F is enlarged to give a filtration F̃, by means of a finite positive random
variable τ . In the literature, two ways to realize such an enlargement are presented: either all of a sudden at
time 0 (initial enlargement), or progressively, by considering the smallest filtration containing F, satisfying the
usual conditions, that makes τ a stopping time (progressive enlargement).

The “pioneers” who started exploring this research field, at the end of the seventies, were Barlow (see [4]),
Jacod et al. (see the references that follow in the text). The main questions that raised were the following: “does
any F-martingale X remain an F̃-semimartingale?” And, if it does: “what is the semimartingale decomposition
in F̃ of the F-martingale X?”

The main contribution of the present work is to show how, under a specific equivalence assumption (see
Assumption 2.1), slightly stronger than Jacod’s one in [15], some well-known fundamental results can be proved
in an alternative (and, in some cases, simpler) way. We make precise that the goal of this paper is neither to
present the results in the most general case, nor to study the needed and difficult regularity properties, for
which we refer to existing papers (e.g., Jacod [15]).

Keywords and phrases. Initial and progressive enlargements of filtrations, predictable projection, canonical decomposition of
semimartingales, predictable representation theorem.
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Let us, now, motivate the title. Inspired by a visit to the Tunisian archaeological site of Carthage, where one
can find remains of THREE levels of different civilizations, we decided to use the catchy adjective “Carthaginian”
associated with filtration, since in this paper there will be THREE levels of filtrations.

We consider, then, three nested filtrations

F ⊂ G ⊂ Gτ ,

where G and Gτ stand, respectively, for the progressive and the initial enlargement of F with a finite random
time τ (i.e., a finite non-negative random variable).

Under a specific assumption (see the (E)-hypothesis below), we address the following problems:

• characterization of G-martingales and Gτ -martingales in terms of F-martingales;
• canonical decomposition of an F-martingale, as a semimartingale, in G and Gτ ;
• predictable representation theorem in G and Gτ .

The exploited idea is the following: assuming that the F-conditional law of τ is equivalent to the law of τ , after
an ad hoc change of probability measure, the problem reduces to the case where τ and F are independent.
Under this newly introduced probability measure, working in the initially enlarged filtration is “easy”. Then,
under the original probability measure, for the initially enlarged filtration, the results are achieved by means
of Girsanov’s theorem. As for the progressively enlarged filtration, one can proceed either by projecting on G

the results already obtained for Gτ (e.g., in Prop. 3.3), or, directly, by a change of probability measure in the
filtration G (e.g., in Prop. 5.5 (ii)).

The “change of probability measure” viewpoint for treating problems on enlargement of filtrations was re-
marked in the early 80’s and developed by Song in [22], and then by Ankirchner et al. [2] (see also [15], Sect. 5).
This is also the point of view adopted by Gasbarra et al. in [11] where the authors apply the Bayesian approach
to study the impact of the initial enlargement of filtration on the characteristic triplet of a semimartingale.

The paper is organized as follows. Section 2 introduces definitions and preliminary results which will be
crucial in the rest of the paper. Section 3 addresses the characterization of G-martingales and Gτ -martingales
in terms of F-martingales. In Section 4, the invariance of semimartingale property under the progressive and
initial enlargements of filtration is studied, and the formulae for the canonical decomposition of an F-martingale
as a semimartingale in G and Gτ are provided. In Section 5, we show that the enlarged filtrations G and Gτ

admit a predictable representation property, as soon as the reference filtration F enjoys one. Finally, Section 6
ends the paper with some concluding remarks.

2. Preliminaries

We consider a probability space (Ω,A,P) equipped with a filtration F = (Ft)t≥0 satisfying the usual
hypotheses of right-continuity and completeness, and where F0 is the trivial σ-field, completed by the P-negligible
sets of A.

Let τ be a finite random time with law ν, ν(du) = P(τ ∈ du). We assume that ν has no atoms and has R+

as support.
We denote by P(F) (resp. O(F)) the predictable (resp. optional) σ-algebra corresponding to F on R+ ×Ω.
Our standing assumption is the following:

Assumption 2.1 ((E)-hypothesis). The F-(regular) conditional law of τ is equivalent to the law of τ . Namely,

P(τ ∈ du|Ft) ∼ ν(du) for every t ≥ 0, P − a.s.

This assumption, in the case where t ∈ [0, T ], corresponds to the equivalence assumption in Föllmer and
Imkeller [10] and in Amendinger’s thesis [1], Assumption 0.2, and to hypothesis (HJ) in the papers by Grorud
and Pontier (see, e.g., [12]).
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Amongst the consequences of the (E)-hypothesis, one has the existence and regularity of the conditional
density, for which we refer to Amendiger’s reformulation (see remarks in p. 17 of [1]) of Jacod’s result (Lem. 1.8
in [15]): there exists a strictly positive O(F) ⊗ B(R+)-measurable function (t, ω, u) → pt(ω, u), such that for
ν-almost every u ∈ R+, p(u) is a càdlàg (P,F)-martingale and

P(τ > θ|Ft) =
∫ ∞

θ

pt(u)ν(du) for every t ≥ 0, P − a.s.

In particular, p0(u) = 1 for ν-almost every u ∈ R+. This family of processes p is called the (P,F)-conditional
density of τ with respect to ν, or the density of τ if there is no ambiguity.

Furthermore, under the (E)-hypothesis, the assumption that ν has no atoms implies that the default time τ
avoids the F-stopping times, i.e., P(τ = ξ) = 0 for every F-stopping time ξ (see, e.g., Cor. 2.2 in El Karoui
et al. [9]).

The initial enlargement of F with τ , denoted by Gτ = (Gτ
t , t ≥ 0), is defined as Gτ

t = Ft ∨ σ(τ). It was shown
in [1], Proposition 1.10, that the strict positiveness of p implies the right-continuity of the filtration Gτ .

Let H = (Ht)t≥0 denote the smallest filtration with respect to which τ is a stopping time, i.e., Ht =
σ(�τ≤s, s ≤ t). This filtration is right-continuous. The progressive enlargement of F with the random time τ ,
denoted by G = (Gt)t≥0, is defined as the right-continuous regularization of F ∨ H.

In the sequel, we will consider the right-continuous version of all the martingales.
Now, we consider the change of probability measure introduced, independently, by Grorud and Pontier in [12]

and by Amendinger in [1]. Having verified that the process L, given by Lt = 1
pt(τ) , t ≥ 0, is a (P,Gτ)-martingale,

with E(Lt) = L0 = 1, these authors defined a locally equivalent probability measure P∗ setting

dP∗|Gτ
t

= Lt dP|Gτ
t

=
1

pt(τ)
dP|Gτ

t
.

They proved that, under P∗, the random time τ is independent of Ft for any t ≥ 0 and, moreover, that

P∗|Ft
= P|Ft

for any t ≥ 0, P∗|σ(τ) = P|σ(τ).

The above properties imply that P∗(τ ∈ du|Ft) = P∗(τ ∈ du), so that the (P∗,F)-density of τ , denoted by
p∗(u), u ≥ 0, is a constant equal to one, P∗ ⊗ ν-a.s.

Remark 2.2. The probability measure P∗, being defined on Ft for t ≥ 0, is (uniquely) defined on F∞ =
∨

t≥0Ft.
Then, as τ is independent of F under P∗, it immediately follows that τ is also independent of F∞, under P∗.
However, one can not claim that: “P∗ is equivalent to P on Gτ

∞”, since we do not know a priori whether 1
p(τ) is

a closed (P,Gτ )-martingale or not. A similar problem is studied by Föllmer and Imkeller in [10] (it is therein
called “paradox”) in the case where the reference (canonical) filtration is enlarged by means of the information
about the endpoint at time t = 1. In our setting, it corresponds to the case where τ ∈ F∞ and τ /∈ Ft, ∀ t.
Remark 2.3. Let x = (xt, t ≥ 0) be a (P,F)-local martingale. Since P and P∗ coincide on F, x is a (P∗,F)-local
martingale, hence, using the fact that τ is independent of F under P∗, a (P∗,G)-local martingale (and also a
(P∗,Gτ )-local martingale).

Notation 2.4. In this paper, as we mentioned, we deal with three different levels of information and two
equivalent probability measures. In order to distinguish objects defined under P and under P∗, we will use
a superscript ∗ when working under P∗. For example, E and E∗ stand for the expectations under P and P∗,
respectively. For what concerns the filtrations, when necessary, we will use the following illustrating notation:
x,X,Xτ to denote processes adapted to F,G and Gτ , respectively (we shall not use the same notation for
processes stopped at τ , so that there will be no possible confusion for the notation Xτ ).
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The following proposition provides a relation between martingales w.r.t. a “larger” and a “smaller” filtration
and turns out to be useful in the subsequent sections:

Proposition 2.5. Let F̃ be a filtration larger than F, that is Ft ⊆ F̃t, for every t ≥ 0. If x is a u.i. (uniformly
integrable) F-martingale, then there exists an F̃-martingale x̃, such that E(x̃t |Ft) = xt, t ≥ 0.

Proof. The process x̃ defined by x̃t := E(x∞ | F̃t) is an F̃-martingale, and

E(x̃t |Ft) = E

(
E(x∞ | F̃t) |Ft

)
= E(x∞ |Ft) = xt. �

Remark 2.6. The uniqueness of such a martingale x̃ is not claimed in the above proposition and does not hold
in general.

We now recall the definition of the immersion property, a terminology which will be used in the sequel.
Under a given probability measure Q, a filtration F is said to be immersed in a larger filtration F̃, if every
(Q,F)-martingale is a (Q, F̃)-martingale.

2.1. Characterization of different measurability properties

Before focusing on the three topics announced from the beginning, we recall some important results on the
characterization of Gτ

t and Gt-measurable random variables, as well as Gτ and G-predictable processes. The
necessary part of the result below, in the case of predictable processes, is due to Jeulin [19], Lemma 3.13. See
also Yor [25].

Proposition 2.7. One has:

(i) a random variable Y τ
t is Gτ

t -measurable if and only if it is of the form Y τ
t (ω) = yt(ω, τ(ω)), for some

Ft ⊗ B(R+)-measurable random variable yt(·, u);
(ii) a process Y τ is Gτ -predictable if and only if it is of the form Y τ

t (ω) = yt(ω, τ(ω)), t ≥ 0, where (t, ω, u) 
→
yt(ω, u) is a P(F) ⊗ B(R+)-measurable function.

Proof. The proof of part (i) is based on the fact that Gτ
t -measurable random variables are generated by random

variables of the form Xt(ω) = xt(ω)f
(
τ(ω)

)
, with xt ∈ Ft and f bounded Borel function on R+;

(ii) it suffices to notice that processes of the form Xt := xtf(τ), t ≥ 0, where x is F-predictable and f is a
bounded Borel function on R+, generate the Gτ -predictable σ-field. �

For what concerns the progressive enlargement setting, the following result is analogous to Proposition 2.7. The
necessity of part (ii) is already proved in Jeulin [19], Lemma 4.4.

Proposition 2.8. One has:

(i) a random variable Yt is Gt-measurable if and only if it is of the form Yt(ω) = ỹt(ω)�t<τ(ω) +
ŷt(ω, τ(ω))�τ(ω)≤t for some Ft-measurable random variable ỹt and some family of Ft ⊗B(R+)-measurable
random variables ŷt(·, u), t ≥ u;

(ii) a process Y is G-predictable if and only if it is of the form Yt(ω) = ỹt(ω)�t≤τ(ω) + ŷt(ω, τ(ω))�τ(ω)<t, t ≥ 0,
where ỹ is F-predictable and (t, ω, u) 
→ ŷt(ω, u) is a P(F) ⊗ B(R+)-measurable function.

Proof. For part (i), it suffices to recall that Gt-measurable random variables are generated by random variables
of the form Xt(ω) = xt(ω)f

(
t ∧ τ(ω)

)
, with xt ∈ Ft and f a bounded Borel function on R+;

(ii) it suffices to notice that G-predictable processes are generated by processes of the form Xt = xt�t≤τ +
x̂tf(τ)�τ<t, t ≥ 0, where x, x̂ are F-predictable and f is a bounded Borel function, defined on R+. �

Such a characterization result does not hold for optional processes, in general. We refer to Barlow [4], remark
in pages 318 and 319, for a counterexample.
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2.2. Expectation and projection tools

Lemma 2.9. Let Y τ
t = yt(τ) be a Gτ

t -measurable random variable.
(i) If yt(τ) is P-integrable and yt(τ) = 0 P-a.s. then, for ν-a.e. u ≥ 0, yt(u) = 0 P-a.s.;
(ii) for s ≤ t one has, P-a.s. (or, equivalently, P∗-a.s.):
if yt(τ) is P∗-integrable and if yt(u) is P (or P∗)-integrable for any u ≥ 0,

E∗ (yt(τ) | Gτ
s ) = E∗ (yt(u) |Fs)∣∣u=τ

= E (yt(u) |Fs)∣∣u=τ
; (2.1)

if yt(τ) is P-integrable

E (yt(τ) | Gτ
s ) =

1
ps(τ)

E (yt(u)pt(u) |Fs)∣∣
u=τ

. (2.2)

Proof. (i) We have, by applying Fubini−Tonelli’s theorem,

0 = E (|yt(τ)|) = E
(
E

(|yt(τ)|
∣∣Ft

))
= E

(∫ ∞

0

|yt(u)| pt(u)ν(du)
)
.

Then
∫ ∞
0

|yt(u)| pt(u)ν(du) = 0 P-a.s. and, given that pt(u) is strictly positive for any u, we have that, for
ν-almost every u, yt(·, u) = 0 P-a.s.;

(ii) the first equality in (2.1) is straightforward for elementary random variables of the form f(τ)xt, given
the independence between τ and Ft, for any t ≥ 0. It is extended to Gτ

t -measurable r.v’s via the monotone class
theorem. The second equality follows from the fact that P and P∗ coincide on Ft, for any t ≥ 0.

Equality (2.2) is an immediate consequence of (2.1), since it suffices, by means of (conditional) Bayes’ formula,
to pass under the measure P∗. Namely, for s < t, we have

E (yt(τ) | Gτ
s ) =

E∗ (yt(τ)pt(τ) | Gτ
s )

E∗ (pt(τ) | Gτ
s )

=
1

ps(τ)
E (yt(u)pt(u) |Fs)∣∣

u=τ

,

where in the last equality we have used the previous result (2.1) and the fact that p(τ) is a (P∗,Gτ )-
martingale. Note that if yt(τ) is P-integrable, then E(

∫ ∞
0 |yt(u)|pt(u)ν(du)) = E(|yt(τ)|) < ∞, which implies

that E(|yt(u)|pt(u)) <∞. �
When working with the progressively enlarged filtration G, it is convenient to introduce the notation G

(resp., G∗(·)) for the Azéma supermartingale associated with τ under the probability measure P (resp., P∗).
More precisely,

Gt := P(τ > t|Ft) =
∫ ∞

t

pt(u)ν(du), (2.3)

G∗(t) := P∗(τ > t|Ft) = P∗(τ > t) = P(τ > t) =
∫ ∞

t

ν(du). (2.4)

Note, in particular, that (Gt)t≥0 is an F supermartingale, whereas G∗(·) is a (deterministic) continuous and
decreasing function. Furthermore, it is clear that, under the (E)-hypothesis and the hypothesis that the support
of ν is R+, G and G∗(·) do not vanish.

Lemma 2.10. Let Y τ
t = yt(τ) be a Gτ

t -measurable, P-integrable random variable. Then, for s ≤ t,

E(Y τ
t |Gs) = E(yt(τ) | Gs) = ỹs�s<τ + ŷs(τ)�τ≤s,

with

ỹs =
1
Gs

E

(∫ +∞

s

yt(u)pt(u)ν(du) |Fs

)
,

ŷs(u) =
1

ps(u)
E (yt(u)pt(u) |Fs) .
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Proof. From the above Proposition 2.8, it is clear that E(yt(τ) | Gs) can be written in the form ỹs�s<τ +
ŷs(τ)�τ≤s. On the set {s < τ}, we have, applying Lemma 3.1.2 in Bielecki et al. [5] and using the (E)-hypothesis
(see also [9] for analogous computations),

�s<τ E(yt(τ) | Gs) = �s<τ
E [E(yt(τ)�s<τ |Ft)|Fs]

Gs

= �s<τ
1
Gs

E

(∫ +∞

s

yt(u)pt(u)ν(du)
∣∣Fs

)
=: �s<τ ỹs.

On the complementary set, we have, by applying Lemma 2.9,

�τ≤sE(yt(τ) |Gs) = �τ≤sE [E(yt(τ) | Gτ
s )|Gs] = �τ≤s

1
ps(τ)

E (yt(u)pt(u) |Fs)∣∣
u=τ

=: �τ≤sŷs(τ). �

For s > t, we obtain E(Y τ
t |Gs) = 1

Gs

∫ ∞
s yt(u)ps(u)ν(du)�s<τ + yt(τ)�τ≤s.

As an application, projecting the martingale L (defined earlier as Lt = 1
pt(τ) , t ≥ 0) on G yields to the

corresponding Radon−Nikodým density on G:

dP∗|Gt
= 	t dP|Gt

,

with

	t := E(Lt|Gt) = �t<τ
1
Gt

∫ ∞

t

ν(du) + �τ≤t
1

pt(τ)

= �t<τ
G∗(t)
Gt

+ �τ≤t
1

pt(τ)
·

We now recall some useful facts concerning the compensated martingale of the default indicator process Ht =
�τ≤t, t ≥ 0. We know, from the general theory (see, for example, [9]), that the process M defined as

Mt := Ht −
∫ t∧τ

0

λs ν(ds), t ≥ 0, (2.5)

with λt = pt(t)
Gt

, is a (P,G)-martingale and that

M∗
t := Ht −

∫ t∧τ

0

λ∗(s) ν(ds), t ≥ 0, (2.6)

with λ∗(t) = 1
G∗(t) , is a (P∗,G)-martingale. Furthermore, since λ∗ is deterministic, M∗ (being H-adapted) is a

(P∗,H)-martingale, too.
We conclude this subsection with the following two propositions, concerning the predictable projection,

respectively on F and on G, of a Gτ -predictable process. The first result is due to Jacod [15], Lemma 1.10.

Proposition 2.11. Let Y τ = y(τ) be a Gτ -predictable, positive or bounded, process. Then, the P-predictable
projection of Y τ on F is given by

(p)(Y τ )t =
∫ ∞

0

yt(u)pt−(u)ν(du).

Proof. It is obtained by a monotone class argument and by using the definition of density of τ , writing, for
“elementary” processes, Y τ

t := ytf(τ), with y a bounded F-predictable process and f a bounded Borel function.
For this, we refer to the proof of Lemma 1.10 in [15]. �
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Proposition 2.12. Let Y τ = y(τ) be a Gτ -predictable, positive or bounded, process. Then, the P-predictable
projection of Y τ on G is given by

(p)(Y τ )t = �t≤τ
1
Gt−

∫ ∞

t

yt(u)pt−(u)ν(du) + �τ<tyt(τ).

Proof. In this proof, for clarity, the left-hand side superscript “(pG)” denotes the P-predictable projection on
G, while the left-hand side superscript “(pF)” indicates the P-predictable projection on F. By the definition of
predictable projection, we know (from Prop. 2.8 (ii)) that we are looking for a (unique) process of the form

(p G)(Y τ )t = ỹt�t≤τ + ŷt(τ)�τ<t, t ≥ 0,

where ỹ is F-predictable, positive or bounded, and (t, ω, u) 
→ ŷt(ω, u) is a P(F) ⊗ B(R+)-measurable positive
or bounded function, to be identified.

• On the predictable set {τ < t}, being Y τ a Gτ -predictable, positive or bounded, process (recall Prop. 2.7 (ii)),
we immediately find ŷ(τ) = y(τ);

• on the complementary set {t ≤ τ}, introducing the G-predictable process

Y :=(p G) (Y τ )

it is possible to use Remark 4.5, page 64 of Jeulin [19] (see also Dellacherie and Meyer [8], Chap. XX, p. 186),
to write

Y �]]0,τ ]] =
1
G−

(p F)
(
Y �]]0,τ ]]

)
�]]0,τ ]] =

1
G−

(p F)
(

(p G)(Y τ )�]]0,τ ]]

)
�]]0,τ ]].

We then have, being �]]0,τ ]], by definition, G-predictable (recall that τ is a G-stopping time),

Y �]]0,τ ]] =
1
G−

(p F)
(
Y τ

�]]0,τ ]]

)
�]]0,τ ]],

where the last equality follows by the definition of predictable projection, being F ⊂ G. Finally, given the
result in Proposition 2.11, we have

(p F)
(
Y τ

�]]0,τ ]]

)
t
=

∫ +∞

t

yt(u)pt−(u)ν(du)

and the proposition is proved. �

3. Martingales’ characterization

The aim of this section is to characterize (P,Gτ ) and (P,G)-martingales in terms of (P,F)-martingales.

Proposition 3.1 (characterization of (P,Gτ )-martingales in terms of (P,F)-martingales). A process Y τ =
y(τ) is a (P,Gτ )-martingale if and only if (yt(u)pt(u), t ≥ 0) is a (P,F)-martingale, for ν-almost every u ≥ 0.

Proof. The sufficiency is a direct consequence of Proposition 2.7 and Lemma 2.9 (ii).
Conversely, assume that y(τ) is a Gτ -martingale. Then, for s ≤ t, from Lemma 2.9 (ii),

ys(τ) = E (yt(τ)|Gτ
s ) =

1
ps(τ)

E (yt(u)pt(u) |Fs)|u=τ

and the result follows from Lemma 2.9 (i). �
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Remark 3.2. This result, being a consequence of the Girsanov theorem (cf. the proof of Lem. 2.9 (ii)), can
immediately be extended to (P,Gτ )-local martingales.

Passing to the progressive enlargement setting, we state and prove a martingale characterization result, first
formulated by El Karoui et al. in [9], Theorem 5.7.

Proposition 3.3 (characterization of (P,G)-martingales in terms of (P,F)-martingales). A G-adapted process
Yt := ỹt�t<τ + ŷt(τ)�τ≤t, t ≥ 0, is a (P,G)-martingale if and only if the following two conditions are satisfied

(i) for ν-almost every u ≥ 0,
(
ŷt(u)pt(u), t ≥ u

)
is a (P,F)-martingale;

(ii) the process m = (mt, t ≥ 0), given by

mt := E(Yt |Ft) = ỹtGt +
∫ t

0

ŷt(u)pt(u)ν(du), (3.1)

is a (P,F)-martingale.

Proof. For the necessity, in a first step, we show that we can reduce our attention to the case where Y is u.i.:
indeed, let Y be a (P,G)-martingale. For any T , let Y (T ) = (Yt∧T , t ≥ 0) be the associated stopped martingale,
which is u.i. Assuming that the result is established for u.i. martingales will prove that the processes in (i) and
(ii) are martingales up to time T . Since T can be chosen as large as possible, we shall have the result.

Assume, then, that Y is a u.i. (P,G)-martingale. From Proposition 2.5, Yt = E(Y τ
t |Gt) for some (P,Gτ )-

martingale Y τ . Proposition 3.1, then, implies that Y τ
t = yt(τ), where for ν-almost every u ≥ 0 the process(

yt(u)pt(u), t ≥ 0
)

is a (P,F)-martingale. One then has

�τ≤tŷt(τ) = �τ≤tYt = �τ≤tE(Y τ
t |Gt) = E(�τ≤tY

τ
t |Gt) = �τ≤tyt(τ),

which implies, in view of Lemma 2.9(i), that for ν-almost every u ≤ t, the identity yt(u) = ŷt(u) holds P-almost
surely. So, (i) is proved. Moreover, Y being a (P,G)-martingale, its projection on the smaller filtration F, namely
the process m in (3.1), is a (P,F)-martingale.

Conversely, assuming (i) and (ii), we verify that E(Yt |Gs) = Ys for s ≤ t. We start by noting that

E(Yt |Gs) = �s<τ
1
Gs

E(Yt�s<τ |Fs) + �τ≤sE(Yt�τ≤s |Gs). (3.2)

We then compute the two conditional expectations in (3.2):

E(Yt�s<τ |Fs) = E(Yt |Fs) − E(Yt�τ≤s |Fs)
= E(mt |Fs) − E (E(ŷt(τ)�τ≤s |Ft) |Fs)

= ms − E

(∫ s

0

ŷt(u)pt(u)ν(du) |Fs

)
= ỹsGs +

∫ s

0

ŷs(u)ps(u)ν(du) −
∫ s

0

ŷs(u)ps(u)ν(du) = ỹsGs,

where we used Fubini−Tonelli’s theorem and the condition (i) to obtain the next-to-last identity.
Also, an application of Lemma 2.10 yields to

E(Yt�τ≤s |Gs) = E(ŷt(τ)�τ≤s |Gs) = �τ≤s
1

ps(τ)
E (ŷt(u)pt(u) |Fs)∣∣

u=τ

= �τ≤s
1

ps(τ)
ŷs(τ)ps(τ) = �τ≤sŷs(τ)

where the next-to-last identity holds in view of the condition (ii). �
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Remark 3.4. The extension of this characterization result to local martingales is more difficult. Nevertheless,
the sufficient condition holds: if

(
ŷt(u)pt(u), t ≥ u

)
and (ỹtGt +

∫ t

0 ŷt(u)pt(u)ν(du), t ≥ 0) are (P,F)-local
martingales, then using F-stopping times Tn for localization, one gets that (Yt∧Tn , t ≥ 0) is a (P,G)-martingale,
hence Y is a (P,G)-local martingale.

4. Canonical decomposition

In this section, we work under P and we show that any F-local martingale x is a semimartingale in the initially
enlarged filtration Gτ and in the progressively enlarged filtration G, and that any G-local martingale is a Gτ -
semimartingale. We also provide the canonical decomposition of any F-local martingale as a semimartingale
in Gτ and in G. Under the assumption that the F-conditional law of τ is absolutely continuous w.r.t. the law
of τ , these questions were answered by Jacod in [15], in the initial enlargement setting, and in Jeanblanc and Le
Cam [16], in the progressive enlargement case. Our aim here is to recover their results in an alternative manner,
under the (E)-hypothesis.

We will need the following technical result, concerning the existence of the predictable bracket 〈x, p.(u)〉.
From Theorem 2.5.a in [15], it follows immediately that, under the (E)-hypothesis, for every (P,F)-(local)
martingale x, there exists a ν-negligible set B (depending on x), such that 〈x, p.(u)〉 is well-defined for u /∈ B.
Hereafter, by 〈x, p.(τ)〉 we mean 〈x, p.(u)〉 ∣∣

u=τ
.

Furthermore, according to Theorem 2.5.b in [15], under the (E)-hypothesis, there exists an F-predictable
increasing process A and a P(F)⊗B(R+)-measurable function (t, ω, u) → kt(ω, u) such that, for any u /∈ B and
for all t ≥ 0,

〈x, p.(u)〉t =
∫ t

0

ks(u)ps−(u)dAs a.s. (4.1)

(the two processes A and k depend on x, however, to simplify the notation, we do not write A(x), nor k(x)).
Moreover, ∫ t

0

|ks(τ)|dAs <∞ a.s., for any t > 0. (4.2)

The following two propositions provide, under the (E)-hypothesis, the canonical decomposition of any (P,F)-
local martingale x in the enlarged filtrations Gτ and G, respectively. The case of initial enlargement has been
essentially established by Jacod (see Thm. 2.5.c in [15]), using a direct verification. In our setting, one can
obtain Jacod’s result using the equivalent change of probability measure methodology (see also Amendinger [1]).
Indeed, in view of Remark 2.3, if x is a (P,F)-local martingale, it is a (P∗,Gτ )-local martingale, too. Noting
that dP

dP∗ = pt(τ) on Gτ
t , Girsanov’s theorem tells us that the process Xτ , defined by

Xτ
t := xt −

∫ t

0

d〈x, p.(τ)〉s
ps−(τ)

is a (P,Gτ )-local martingale. However, the proof presented here (for Prop. 4.1), is based on the (P,Gτ )-
martingales’ characterization result given in Proposition 3.1.

Proposition 4.1 (canonical decomposition in Gτ ). Any (P,F)-local martingale x is a (P,Gτ )-semimartingale
with canonical decomposition

xt = Xτ
t +

∫ t

0

d〈x, p.(τ)〉s
ps−(τ)

,

where Xτ is a (P,Gτ )-local martingale.



CARTHAGINIAN ENLARGEMENT OF FILTRATIONS 559

Proof. In view of Proposition 3.1 and Remark 3.2, using the notation Xτ = x(τ), it suffices to show that, for
ν-almost every u ≥ 0, the process

xt(u)pt(u) :=
(
xt −

∫ t

0

d〈x, p.(u)〉s
ps−(u)

)
pt(u), t ≥ 0,

is a (P,F)-local martingale. Indeed, integration by parts formula leads to

d(xt(u)pt(u)) = pt−(u)dxt + xt−(u)dpt(u) + d ([x(u), p(u)]t − 〈x(u), p(u)〉t) .

Hence, being the sum of three (P,F)-local martingales, the process x(u)p(u) is a (P,F)-local martingale. �
Now, any (P,F)-local martingale is a G-adapted process and a (P,Gτ )-semimartingale (from the above

Prop. 4.1), so in view of Stricker’s theorem in [23], it is also a G-semimartingale. The following proposition
aims to obtain the G-canonical decomposition of an F-local martingale. We refer to [16] for an alternative proof.

In order to study the canonical decomposition in G, we add a regularity condition.

Assumption 4.2. There exists a version of the process (pt(t), t ≥ 0), such that (ω, t) → pt(ω, t) is Ft⊗B(R+)-
measurable.

Then, the Azéma supermartingale G, introduced in equation (2.3), admits the Doob−Meyer decomposition
Gt = μt −

∫ t

0 pu(u)ν(du), t ≥ 0, where μ is the F-martingale defined as

μt := 1 −
∫ t

0

(pt(u) − pu(u)) ν(du)

(see, e.g., Sect. 4.2.1 in [9]).
Before passing to the rigorous result on the canonical decomposition in G, one can guess the form of the

decomposition by means of a heuristic argument, based on the equivalent change of probability measure: (P,F)-
local martingale x being a (P∗,G)-local martingale,

xt −
∫ t

0

1
	∗s−

d〈x, 	∗〉s

is a (P,G)-local martingale, where 	∗ := 1
� is the Radon−Nikodým density of P w.r.t. P∗, given by

dP

dP∗
∣∣
Gt

= �t<τ
Gt

G∗(t)
+ �τ≤tpt(τ) =

1
	t

= 	∗t .

Based on the form of 	∗, one has

�s<τd〈x, 	∗〉s = �s<τ
d〈x,G〉s
G∗(s)

·

This observation suggests Proposition 4.3 below, the proof of which is based on the (P,G)-martingales’ charac-
terization result presented in Section 3.

Proposition 4.3 (canonical decomposition in G). Any (càdlàg) (P,F)-local martingale x is a (P,G)-
semimartingale with canonical decomposition

xt = Xt +
∫ t∧τ

0

d〈x,G〉s
Gs−

+
∫ t

t∧τ

d〈x, p.(τ)〉s
ps−(τ)

, (4.3)

where X is a (P,G)-local martingale.
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Proof. Relying on Remark 3.4, we check that X , defined in (4.3), is a (P,G)-local martingale. We note that
Xt = �t<τ x̃t + �τ≤tx̂t(τ) with

x̃t = xt −
∫ t

0

d〈x,G〉s
Gs−

, x̂t(u) = xt −
∫ u

0

d〈x,G〉s
Gs−

−
∫ t

u

d〈x, p.(u)〉s
ps−(u)

·

We have to verify that

(i) (x̂t(u)pt(u), t ≥ u) is a (P,F)-local martingale;
(ii) (x̃tGt +

∫ t

0
x̂t(u)pt(u)ν(du), t ≥ 0) is a (P,F)-local martingale.

In the proof of Proposition 4.1, we verified that (i) holds. In order to show (ii), we apply Itô’s formula

d
(
x̃tGt +

∫ t

0

x̂t(u)pt(u)ν(du)
)

= Gt−dxt + d([x,G]t −〈x,G〉t)+ x̃t−dμt +(x̂t(t)− x̃t−)pt(t)ν(dt)+dzt, (4.4)

where zt :=
∫ t

s=0

∫ s

u=0 ν(du)dζs(u) and ζt(u) := x̂t(u)pt(u). The first three terms on the righthand-side of (4.4)
are (P,F)-local martingales, the fourth term is zero since x̂t(t) − x̃t− = Δx̃t, and the F-adapted process x̃ has
no jump at time τ (because, in our setting, τ avoids F-stopping times). So, if we show that z is a (P,F)-local
martingale, we are done. To do this, applying Fubini−Tonelli’s theorem, one has

zt =
∫ t

u=0

∫ t

s=u

dζs(u)ν(du) =
∫ t

0

(ζt(u) − ζu(u))ν(du).

So, for t0 < t, one has

zt =
∫ t0

0

(ζt(u) − ζu(u))ν(du) +
∫ t

t0

(ζt(u) − ζu(u))ν(du).

Now, if (ζt(u), t ≥ 0) is a (P,F)-martingale, one gets E(zt |Ft0) = zt0 . In the case where ζ.(u) is a (P,F)-local
martingale the result is achieved by means of a localization argument. �
Remark 4.4. In a recent paper, Kchia et al. [20] have obtained the same decomposition formula, using pro-
jection tools, in a more general setting. The main challenge in their approach is that if a Gτ -local martingale is
G-adapted, it is not necessarily a G-local martingale (as remarked also by Stricker [23]).

The following lemma provides a formula for the predictable quadratic covariation process 〈x,G〉 = 〈x, μ〉 in
terms of the density p.
Proposition 4.5. Let x be a (P,F)-local martingale and μ the F-martingale part in the Doob−Meyer decom-
position of G. If kp− is dA⊗ dν-integrable, then

〈x, μ〉t =
∫ t

0

dAs

∫ ∞

s

ν(du)ks(u)ps−(u), (4.5)

where k was introduced in equation (4.1).
Proof. First consider the right-hand side of (4.5), that is, by definition, predictable, and apply Fubini−Tonelli’s
theorem

ξt :=
∫ t

0

dAs

∫ ∞

s

ks(u)ps−(u)ν(du)

=
∫ t

0

dAs

∫ t

s

ks(u)ps−(u)ν(du) +
∫ t

0

dAs

∫ ∞

t

ks(u)ps−(u)ν(du)

=
∫ t

0

ν(du)
∫ u

0

ks(u)ps−(u)dAs +
∫ ∞

t

ν(du)
∫ t

0

ks(u)ps−(u)dAs

=
∫ t

0

〈x, p·(u)〉u ν(du) +
∫ ∞

t

〈x, p·(u)〉t ν(du)

=
∫ ∞

0

〈x, p·(u)〉t ν(du) +
∫ t

0

(〈x, p·(u)〉u − 〈x, p·(u)〉t) ν(du).
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To verify (4.5), it suffices to show that the process xμ− ξ is an F-local martingale (since ξ is a predictable, finite
variation process). By definition, for ν-almost every u ∈ R+, the process (mt(u) := xtpt(u) − 〈x, p·(u)〉t, t ≥ 0)
is an F-local martingale. Then, given that 1 =

∫ ∞
0
pt(u)ν(du) for every t ≥ 0, a.s., we have

xtμt − ξt = xt

∫ ∞

0

pt(u)ν(du) − xt

∫ t

0

(pt(u) − pu(u)) ν(du)

−
∫ ∞

0

〈x, p·(u)〉t ν(du) +
∫ t

0

(〈x, p·(u)〉t − 〈x, p·(u)〉u) ν(du)

=
∫ ∞

0

mt(u)ν(du) −
∫ t

0

(mt(u) −mu(u)) ν(du) + xt

∫ t

0

pu(u)ν(du) −
∫ t

0

pu(u)xuν(du).

The first two terms are local martingales, in view of the martingale property of m(u). As for the last term,
using the fact that ν has no atoms, we find

d
(
xt

∫ t

0

pu(u)ν(du) −
∫ t

0

pu(u)xuν(du)
)

=
(∫ t

0

pu(u)ν(du)
)

dxt + xtpt(t)ν(dt) − pt(t)xtν(dt)

=
(∫ t

0

pu(u)ν(du)
)

dxt

and we have, indeed, proved that xμ− ξ is an F-local martingale. �
We end this section proving that any (P∗,G)-martingale remains a (P∗,Gτ )-semimartingale, but it is not

necessarily a (P∗,Gτ )-martingale. Indeed, we have the following result.

Proposition 4.6. Any (P∗,G)-martingale Y ∗ is a (P∗,Gτ )- semimartingale which can have a non-null bounded
variation part.

Proof. The result follows immediately from Proposition 3.3 (under P∗), noticing that the (P∗,G)-martingale
Y ∗ can be written as Y ∗

t = ỹ∗t �t<τ + ŷ∗t (τ)�τ≤t. Therefore, in the filtration Gτ , it is the sum of two Gτ -
semimartingales: the processes �t<τ and �τ≤t are Gτ -semimartingales, as well as the processes ỹ, ŷ∗(τ). Indeed,
from Proposition 3.3, recalling that the (P∗,F)-density of τ is a constant equal to one, we know that, for every
u > 0,

(
ŷ∗t (u), t ≥ u

)
is an F-martingale and that the process

(
ỹ∗tG∗(t)+

∫ t

0 ŷ
∗
u(u)ν(du), t ≥ 0

)
is an F-martingale,

hence ỹ∗ is a G-semimartingale.
It can be noticed that the (P∗,G)-martingale M∗, defined in (2.6), is such that M∗

t is, for any t, a Gτ
0 -

measurable random variable. Therefore, M∗ is not a (P∗,Gτ )-martingale, since, for s ≤ t, E(M∗
t |Gτ

s ) = M∗
t �=

M∗
s , but it is a bounded variation Gτ -predictable process, hence a Gτ -semimartingale with null martingale part.

In other terms, H is not immersed in Gτ under P∗. �
As in Lemma 4.6, we deduce that any (P,G)-martingale is a (P,Gτ )-semimartingale. Note that this result

can also be proved using Lemma 4.6 and a change of probability argument: a (P,G)-martingale is a (P∗,G)-
semimartingale (from Girsanov’s theorem), thus also a (P∗,Gτ )-semimartingale in view of Lemma 4.6. By
another use of Girsanov’s theorem, it is thus a (P,Gτ )-semimartingale.

5. Predictable representation theorems

The aim of this section is to obtain predictable representation property (PRP hereafter) in the enlarged
filtrations G and Gτ , both under P and P∗. To this end, we assume that there exists a (P,F)-local martingale z
(possibly multidimensional), such that the PRP holds in (P,F) (cf. Assumption 5.1, below). Notice that z is
not necessarily continuous.

Beforehand we introduce some notation: Mloc(P,F) denotes the set of (P,F)-local martingales, and M2(P,F)
denotes the set of (P,F)-martingales x, such that

E
(
x2

t

)
<∞, ∀ t ≥ 0. (5.1)
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Also, for a (P,F)-local martingale m, we denote by L(m,P,F) the set of F-predictable processes which are
integrable with respect to m (in the sense of local martingale), namely (see, e.g., Def. 9.1 and Thm. 9.2. in He
et al. [14])

L(m,P,F) =

{
ϕ ∈ P(F) :

(∫ ·

0

ϕ2
sd[m]s

)1/2

is P − locally integrable

}
.

Assumption 5.1 (PRP for (P,F)). There exists a process z ∈ Mloc(P,F) such that every x ∈ Mloc(P,F) can
be represented as

xt = x0 +
∫ t

0

ϕsdzs

for some ϕ ∈ L(z,P,F).

We start investigating what happens under the measure P∗, in the initially enlarged filtration Gτ .
Recall that, assuming the immersion property, Kusuoka [21] has established a PRP for the progressively

enlarged filtration, in the case where F is a Brownian filtration.
Also, under the equivalence assumption in [0, T ] and assuming a PRP in the reference filtration F, Amendinger

(see [1], Thm. 2.4) proved a PRP in (P∗,Gτ ) and extended the result to (P,Gτ ), in the case where the underlying
(local) martingale in the reference filtration is continuous. Under the (E)-hypothesis, Grorud and Pontier [13],
Proposition 4.3 have established a PRP for (P,Gτ )-local martingales, in the case where the filtration F consists
of a point process and a continuous martingale (typically a Brownian motion).

Proposition 5.2 (PRP for (P∗, Gτ )). Under Assumption 5.1, every Xτ ∈ Mloc(P∗,Gτ ) admits a representa-
tion

Xτ
t = Xτ

0 +
∫ t

0

Φτ
sdzs (5.2)

where Φτ ∈ L(z,P∗,Gτ ). In the case where Xτ ∈ M2(P∗,Gτ ), one has E∗( ∫ t

0
(Φτ

s )2d[z]s
)
< ∞, for all t ≥ 0

and the representation is unique.

Proof. From Theorem 13.4 in [14], it suffices to prove that any bounded martingale admits a predictable
representation in terms of z. Let Xτ ∈ Mloc(P∗,Gτ ) be bounded by K. From Proposition 3.1, Xτ

t = xt(τ)
where, for ν-almost every u ∈ R+, the process

(
xt(u), t ≥ 0

)
is a (P∗,F)-martingale, hence a (P,F)-martingale.

Thus Assumption 5.1 implies that (for ν-almost every u ∈ R+),

xt(u) = x0(u) +
∫ t

0

ϕs(u)dzs,

where (ϕt(u), t ≥ 0) is an F-predictable process.
The process Xτ being bounded by K, it follows by an application of Lemma 2.9(i) that for ν-almost every

u ≥ 0, the process (xt(u), t ≥ 0) is bounded by K. Then, using the Itô isometry,

E∗
(∫ t

0

ϕ2
s(u)d[z]s

)
= E∗

(∫ t

0

ϕs(u)dzs

)2

= E∗ (
(xt(u) − x0(u))2

) ≤ E∗(x2
t (u)) ≤ K2.

Also, from Stricker and Yor [24], Lemma 2, one can consider a version of the process
∫ ·
0 ϕ

2
s(u)d[z]s which is

measurable with respect to u. Using this fact,

E∗
[(∫ t

0

ϕ2
s(τ)d[z]s

)1/2
]

=
∫ ∞

0

ν(du)
(

E∗
(∫ t

0

ϕ2
s(u)d[z]s

))1/2

≤
∫ ∞

0

ν(du)K = K.
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The process Φτ defined by Φτ
t = ϕt(τ) is Gτ -predictable, according to Proposition 2.7, it satisfies (5.2), with

X0(τ) = x0(τ), and it belongs to L(z,P∗,Gτ ).
If Xτ ∈ M2(P∗,Gτ ), from Itô’s isometry,

E∗
(∫ t

0

(Φτ
s )2d[z]s

)
= E∗

(∫ t

0

Φτ
sdzs

)2

= E∗(Xτ
t −Xτ

0 )2 <∞.

Also, from this last equation, if Xτ ≡ 0 then Φτ ≡ 0, from which the uniqueness of the representation
follows. �

Passing to the progressively enlarged filtration G, which consists of two filtrations, G = F ∨ H, intuitively
one needs two martingales to establish a PRP. Apart from z, intuition tells us that a candidate for the second
martingale might be the compensated martingale of H , that was introduced, respectively under P (it was
denoted by M) and under P∗ (denoted by M∗), in equation (2.5) and in equation (2.6).

Proposition 5.3 (PRP for (P∗,G)). Under Assumption 5.1, every X ∈ Mloc(P∗,G) admits a representation

Xt = X0 +
∫ t

0

Φsdzs +
∫ t

0

ΨsdM∗
s

for some processes Φ ∈ L(z,P∗,G) and Ψ ∈ L(M∗,P∗,G). Moreover, if X ∈ M2(P∗,G), one has, for any t ≥ 0,

E∗
(∫ t

0

Φ2
sd[z]s

)
<∞ , E∗

(∫ t

0

Ψ2
s λ

∗(s)ν(ds)
)
<∞,

and the representation is unique.

Proof. It is known that any (P∗,H)-local martingale ξ can be represented as ξt = ξ0 +
∫ t

0 ψsdM∗
s for some

process ψ ∈ L(M∗,P∗,H) (see, e.g., the proof in Chou and Meyer [7]). Notice that ψ has a role only before τ
and, for this reason, ψ can be chosen deterministic.

Under P∗, we then have:

• the PRP holds in F with respect to z;
• the PRP holds in H with respect to M∗;
• the filtration F and H are independent.

From classical literature (see Lem. 9.5.4.1(ii) in Jeanblanc et al. [18], for instance) the filtration G = F ∨ H

enjoys the PRP under P∗ with respect to the pair (z,M∗).
Now suppose that X ∈ M2(P∗,G). We find

∞ > E∗(Xt −X0)
2 = E∗

(∫ t

0

Φsdzs +
∫ t

0

ΨsdM∗
s

)2

= E∗
(∫ t

0

Φ2
sd[z]s

)
+ 2E∗

(∫ t

0

Φsdzs

∫ t

0

ΨsdM∗
s

)
+ E∗

(∫ t

0

Ψ2
s λ

∗(s)ν(ds)
)
,

where in the last equality we used the Itô isometry. The cross-product term in the last equality is zero due to
the orthogonality of z and M∗ (under P∗). From this inequality, the desired integrability conditions hold and
the uniqueness of the representation follows (as in the previous proposition). �

Remark 5.4. In order to establish a PRP for the initially enlarged filtration Gτ and under P∗, one could have
proceeded as in the proof of Proposition 5.3, noting that any martingale ξ in the “constant” filtration σ(τ)
satisfies ξt = ξ0 + 0 and that under P∗ the two filtrations F and σ(τ) are independent.
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Proposition 5.5 (PRP under P). Under Assumption 5.1, one has:

(i) every Xτ ∈ Mloc(P,Gτ ) can be represented as

Xτ
t = Xτ

0 +
∫ t

0

Φτ
sdZτ

s

where Zτ is the martingale part in the Gτ -canonical decomposition of z and Φ ∈ L(Zτ ,P,Gτ );
(ii) every X ∈ Mloc(P,G) can be represented as

Xt = X0 +
∫ t

0

ΦsdZs +
∫ t

0

ΨsdMs,

where Z is the martingale part in the G-canonical decomposition of z (cf. Eq. (4.3)), M is the (P,G)-
compensated martingale associated with H and Φ ∈ L(Z,P,G), Ψ ∈ L(M,P,G).

Proof. The assertion (i) (resp. (ii)) follows from Proposition 5.2 (resp. Prop. 5.3) and the stability of PRP
under an equivalent change of measure (see for example Thm. 13.12 in [14]). �

The PRP for the progressively enlarged filtration with a random time (i.e., part (ii) of the above propo-
sition), has been first presented by Jeanblanc and Le Cam [17]. Our proof has the advantage that it can be
straightforwardly generalized to the case where τ is a vector of random times, as is discussed in the last section.

6. Concluding remarks

We conclude the paper with some important comments:

• In the multidimensional case, that is when τ = (τ1, . . . , τd) is a vector of finite random times, the same
machinery can be applied. More precisely, under the assumption

P(τ1 ∈ dθ1, . . . , τd ∈ dθd |Ft) ∼ P(τ1 ∈ dθ1, . . . , τd ∈ dθd)

one defines the probability P∗ equivalent to P on Gτ
t = Ft ∨ σ(τ1) ∨ · · · ∨ σ(τd) by

dP∗

dP

∣∣
Gτ

t
=

1
pt(τ1, . . . , τd)

, (6.1)

where pt(τ1, . . . , τd) is the (multidimensional) analog to pt(τ), and the results for the initially enlarged
filtration are obtained in the same way as for the one-dimensional case.
As for the progressively enlarged filtration, we define H := H1 ∨ · · · ∨ Hd, where Hi stands for the natural
filtration of the indicator process Hi = (�τi≤t, t ≥ 0). The progressive enlargement of F with the vector
(τ1, . . . , τd), is then defined by (the right-continuous regularization of) the filtration F ∨ H. One has to note
that, in this case, a measurable process is decomposed into 2d terms, corresponding to the measurability of
the process on the various sets {τi ≤ t < τj , i ∈ I, j ∈ Ic} for all the subsets I of {1, . . . , d}.
An interesting point is the generalization of the proof of predictable representation theorem for the progres-
sively enlarged filtration, in the multidimensional case. Under the probability P∗, defined in (6.1), the filtra-
tion H is independent of F. So, once a PRP for H holds true, it is straightforward to generalize Proposition 5.3
to the multidimensional case. To this end, we further assume that the (joint) law P(τ1 ∈ dθ1, . . . , τd ∈ dθd)
of τ is absolutely continuous w.r.t. the Lebesgue measure on (R+)d. One then has P(τi = τj) = 0 and thus
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the process H = (H1, . . . , Hn) is an n-variate point process (in the terminology of Brémaud [6]). So, H

enjoys the PRP with respect to the compensated martingales of H1, . . . , Hn (see for instance Brémaud [6]
Chap. III, Sect. 3, Thms. 9 and 11);

• in this study, honest times (recall that a random time L is honest if, for any t, it is equal to an Ft-measurable
random variable on {L < t}) are automatically excluded, as we explain now. Under the probability P∗, the
Azéma supermartingale associated with τ , being a continuous decreasing function, has a trivial Doob−Meyer
decomposition G∗ = 1 − A∗ with A∗

t =
∫ t

0
ν(du). So, A∗

∞ = 1 and, in particular, τ can not be an honest
time: recall that in our setting, τ avoids the F-stopping times and therefore, from a result due to Azéma
(cf. [3], part (b) of the Thm. in pp. 300 and 301), if τ is an honest time, the random variable A∗

∞ should
have exponential law with parameter 1, which is not the case (note that the notion of honest time does not
depend on the probability measure);

• under the (E)-hypothesis, the immersion property between F and G is equivalent to pt(u) = pu(u), t ≥ u
(cf. [16], Cor. 3.1). In particular, as expected, the canonical decomposition formula presented in Proposi-
tion 4.3 is trivial, that is, the two integral terms on the right-hand side of (4.3) vanish;

• Predictable representation theorems can be obtained in the more general case, where any (P,F)-martingale
x admits a representation as

xt = x0 +
∫ t

0

∫
E

ϕ(s, θ)μ̃(ds, dθ),

for a compensated martingale associated with a point process.
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