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PENALIZATION VERSUS GOLDENSHLUGER−LEPSKI STRATEGIES
IN WARPED BASES REGRESSION

Gaëlle Chagny
1

Abstract. This paper deals with the problem of estimating a regression function f , in a random design
framework. We build and study two adaptive estimators based on model selection, applied with warped
bases. We start with a collection of finite dimensional linear spaces, spanned by orthonormal bases.
Instead of expanding directly the target function f on these bases, we rather consider the expansion of
h = f ◦ G−1, where G is the cumulative distribution function of the design, following Kerkyacharian
and Picard [Bernoulli 10 (2004) 1053–1105]. The data-driven selection of the (best) space is done with
two strategies: we use both a penalization version of a “warped contrast”, and a model selection device
in the spirit of Goldenshluger and Lepski [Ann. Stat. 39 (2011) 1608–1632]. We propose by these
methods two functions, ĥl (l = 1, 2), easier to compute than least-squares estimators. We establish
nonasymptotic mean-squared integrated risk bounds for the resulting estimators, f̂l = ĥl ◦ G if G is
known, or f̂l = ĥl ◦Ĝ (l = 1, 2) otherwise, where Ĝ is the empirical distribution function. We study also
adaptive properties, in case the regression function belongs to a Besov or Sobolev space, and compare
the theoretical and practical performances of the two selection rules.
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1. Introduction

1.1. Statistical framework

Consider the observation sample (Xi, Yi)i∈{1,...,n} (n ∈ N\{0}) of couples of real random variables following
the regression setting,

Yi = f(Xi) + εi, 1 ≤ i ≤ n, (1.1)

where f : (a; b) ⊂ R → R is the unknown function that we aim at recovering. The random variables (εi)i∈{1,...,n}
are unobserved, centered, admitting a finite variance σ2, and independent of the design (Xi)i∈{1,...,n}. We assume
that the latter are distributed with a density g > 0 with respect to the Lebesgue measure, supported on an
interval (a; b), −∞ ≤ a < b ≤ +∞. We denote by G the associated cumulative distribution function (c.d.f. in
the sequel), and G−1 its inverse, which exists thanks to the assumption g > 0.

The aim of this paper is twofold: first, taking advantage of warped bases, we want to provide an adaptive
non parametric strategy to recover the regression function f . Secondly, considering a new development of
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model selection theory, we are interested in the comparison of two selection strategies, from both theoretical
and practical points of view: a classical penalization method and a recent selection device in the spirit of
Goldenshluger and Lepski [21] (shortened by “GL method” in the sequel), applied in an original way to a
projection estimator.

1.2. Motivation

Adaptive estimation of the regression function is a well-developed problem, and several procedures have been
set. Historical methods are kernel strategies, initiated by Nadaraya [28] and Watson [31] who proposed kernel-
type estimators, built as the ratio of an estimator of the product fg divided by an estimator of the density g. The
data-driven choice of the bandwidth, leading to adaptive estimators, is studied more accurately for example by
Fan and Gijbels [19] and Härdle and Tsybakov [23], who provide asymptotic results (for methods also involving
local polynomials). Nevertheless, estimators resulting of this strategy have the drawback of involving a ratio,
with a denominator that can be small: this implies difficulties to study the risk and to implement the method.

In a different direction, estimators based on the expansion of the target function into bases, especially
orthogonal-bases, have been proposed: spline bases (Golubev and Nussbaum [22]), wavelet bases (Donoho
et al. [16], Cai and Brown [12] in the fixed design case, Antoniadis et al. [1] in the random-design case),
and also trigonometric bases (Efromovich [18]). Wavelet thresholding strategies offer a degree of localization
leading to almost minimax but asymptotic rate of convergence. To obtain non-asymptotic risk bounds, all these
estimators can be studied from the model selection point of view, initiated among others by Barron et al. [5]. The
problem is to select a “best” estimator among a collection of projection estimators, for example least-squares
estimators, to prove oracle inequalities for the risk. The selection is standardly done by the minimization of a
penalized criterion (see for example Köhler and Krzyzack [26], Wegkamp [32], Birgé [7], and Baraud [4]). But
procedures based on the minimization of a least-squares contrast do not provide explicit estimators without
matrix invertibility requirements (most of the time implicitly).

1.3. Estimation strategy

Adopting this model selection point of view, and using warped bases developed for building wavelet threshold-
ing estimators by Kerkyacharian and Picard [24], we provide in this paper adaptive estimators. These estimates
still satisfy non asymptotic oracle-bounds and reach the exact optimal rate under mild assumptions while being
easier to compute and more stable, even in case the amount of data can vary in the estimation domain. More
precisely, denoting by u ◦ v the composition of functions u and v, we define

h = f ◦G−1 = f
(
G−1

)
. (1.2)

We assume that h is squared integrable, we provide estimators for h of the form

ĥD =
D∑

j=1

âjϕj ,

for a collection of possible D, with (ϕj)j a classical orthonormal family, and âj estimator of scalar product
〈h, ϕj〉. Then we define

f̂D = ĥD ◦G or f̂D = ĥD ◦ Ĝ,
as estimators of f , depending on whether we assume that G is known or not (in this last case, Ĝ is the empirical
distribution function). We get thus a development of the estimator in warped bases, that is,

f̂D =
D∑

j=1

âj (ϕj ◦G) , or f̂D =
D∑

j=1

âj

(
ϕj ◦ Ĝ

)
.
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The warping strategy brings a procedure computationally simple, without any matrix inversion (which are costly
from practical point of view). The selection of “best” index D̂ among all possible D is done in a second time with
two strategies. First, we use a penalized version of a “warped contrast”. Next, recent works of Goldenshluger
and Lepski [21], in case of density estimation can be explored to propose a new selection strategy. Thus we have
at hand two data-driven estimators of the unknown function.

We prove that they both automatically realize the usual squared-bias/variance compromise, provide non
asymptotic oracle-inequalities for each estimator. We give also asymptotic rate of convergence on functional
spaces, of Besov or Sobolev type. We find the classical non-parametric estimation rate, that is n−2α/(2α+1)

where α is the regularity index. Thus, the equivalence between the two adaptive estimators – one based on
penalization, the other on GL method – is obtained from theoretical point of view. However, on our practical
examples, the new GL strategy outperforms the penalization device.

1.4. Organization of the paper

We begin with the case of known design c.d.f in Section 2. In this simpler framework, we can easily explain
how the estimators are built and state their adaptivity, while the general case of unknown design distribution
is the subject of Section 3: it requires further technicalities, but similar results are proved. They are illustrated
via simulations in Section 4. The proofs are gathered in Section 5.

2. Case of known design c.d.f.

To have a better understanding of the definition and properties of the estimators in the general case, we first
focus on the simpler situation of known design distribution. This “toy-case”, used also by other authors (see for
example Pham Ngoc [29]) allows us to derive very simple results, with few assumptions and short proofs.

We deal first with the estimation of the function h defined by (1.2). We consider a family of approximation
spaces. In a first step, we estimate h or more precisely its projection on these spaces. The second step is to ensure
an automatic selection of the space, without any knowledge on f . Finally, we warp the function to estimate f
(and not h).

2.1. Assumptions on the models

The models are linear spaces of functions included in L2([0; 1]), the set of square-integrable real-valued
functions on the interval [0; 1]. We denote the collection {Sm, m ∈ Mn}, where Mn is a finite set of indexes,
with cardinality depending on the number of observations n. The assumptions and notations are the following:

[M1] All the linear spaces Sm are finite-dimensional. For all m ∈ Mn, we denote by Dm the dimension of the
space Sm and assume 1 ≤ Dm ≤ n.

[M2] The models are nested, that is, for all (m1,m2) ∈ M2
n, such that Dm1 ≤ Dm2 , Sm1 ⊂ Sm2 . We denote by

(ϕj)j∈{1,...,Dm} an orthonormal basis which spans Sm (m ∈ Mn), and by mmax the index of the largest
model in the collection.

[M3] There exists a positive constant φ0 such that for all indexes m ∈ Mn and all function t ∈ Sm, ‖t‖∞ ≤
φ0

√
Dm‖t‖. This useful link between the L2 norm and the infinite norm is equivalent to a property of the

basis (ϕj)j∈{1,...,Dm}: ‖
∑Dm

j=1 ϕ
2
j‖∞ ≤ φ2

0Dm. See Birgé and Massart [8] for the proof of the equivalence.

The above assumptions are not too restrictive. Indeed, they are verified by the spaces spanned by usual bases:
trigonometric basis, regular compactly supported wavelet basis, regular histogram basis and regular polyno-
mial basis (with dyadic subdivisions in the last two examples). We refer to Section 3.2.1 for a description of
trigonometric models, and to Barron et al. [5], and Brunel and Comte [10] for the other examples.
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2.2. Estimation on a fixed model

2.2.1. Contrast and estimator on one model

We define the contrast function:

∀t ∈ L2([0; 1]) 
→ γn(t, G) := ‖t‖2 − 2
n

n∑
i=1

Yi (t ◦G(Xi)) , (2.1)

where ‖.‖ is the usual Hilbert norm on the space L2([0; 1]), associated to the scalar-product denoted by 〈., .〉.
Notice that γn(., G) represents an empirical counterpart for the quadratic risk: for all t ∈ L2([0; 1]),

E [γn(t, G)] − E [γn(h,G)] = ‖t‖2 − ‖h‖2 − 2E [f(X1) {(t− h) ◦G} (X1)] ,

= ‖t‖2 − ‖h‖2 − 2
∫

[a;b]

f(x) {(t− h) ◦G} (x)g(x)dx,

= ‖t‖2 − ‖h‖2 − 2
∫

[0;1]

h(u)(t− h)(u)du,

= ‖t‖2 − ‖h‖2 − 2〈h, t− h〉,
= ‖t− h‖2,

so that h minimizes t 
→ E[γn(t, G)] over L2([0; 1]). This explains why a relevant strategy to estimate h consists
in minimizing γn(., G) over each set Sm:

ĥG
m = arg min

t∈Sm

γn(t, G). (2.2)

The unique resulting estimator (for each index m) has a particularly simple expression,

ĥG
m =

Dm∑
j=1

âG
j ϕj , with ∀j ∈ {1, . . . , Dm}, âG

j =
1
n

n∑
i=1

Yiϕj(G(Xi)). (2.3)

Finally, we set
f̂G,G

m = ĥG
m ◦G

as an estimator of f . The explicit formula (2.3) is an unbiased estimator of the orthogonal projection of h
onto Sm. Compare for example to the classical least-squares estimator, which involves a matrix inversion (see
Baraud [4] and Sect. 4 for details). Notice also that our notation for the estimator involves two super-indexes
G to underline the dependence on the c.d.f. G through both the coefficient âG

j and the composition by G.

2.2.2. Risk on one model

In this section, we fix a model Sm and briefly study the quadratic risk of the estimator f̂G,G
m . As for all

the results stated in the sequel, we evaluate the risk with respect to the norm ‖.‖g naturally associated to our
estimation procedure:

‖v‖2
g =

∫
(a;b)

v2(x)g(x)dx, 〈v, w〉g =
∫

(a;b)

v(x)w(x)g(x)dx,

for any functions v, w ∈ L2((a; b), g), the space of squared-integrable functions on (a; b) with respect to the
Lebesgue measure weighted by the density g. However, it is also possible to control the classical L2 norm on
(a; b), under the assumption that g is bounded from below by a strictly positive constant: if, for any x ∈ (a; b),
g(x) > g0 > 0, then

‖v‖2
g ≥ g0

∫
(a;b)

v2(x)dx.
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Notice besides that the following links hold between this weighted norm and the classical norm on L2([0; 1])
previously defined: for t, s ∈ L2([0; 1]), we compute, using G′ = g,

‖t ◦G‖g = ‖t‖, 〈t ◦G, s ◦G〉g = 〈t, s〉.

Thus, the quadratic risk of f̂G,G
m is given by

E

[∥∥∥f̂G,G
m − f

∥∥∥2
g

]
=
∥∥f − fG

m

∥∥2

g
+ E

[∥∥∥fG
m − f̂G,G

m

∥∥∥2

g

]
,

= ‖h− hm‖2 + E

[∥∥∥hm − ĥG
m

∥∥∥2] , (2.4)

where
fG

m = hm ◦G and hm is the orthogonal projection of h onto Sm, with respect to 〈., .〉. (2.5)

Hence, we recover the usual decomposition into two terms: a squared bias term, which decreases when the
dimension of the model Sm grows (roughly, it is at most of order D−2α

m , where α is the index of smoothness of
h), and a variance term, proportional to the dimension of the model Sm:

E

[∥∥∥fG
m − f̂G,G

m

∥∥∥2
g

]
=

Dm∑
j=1

Var
(
âG

j

)
=

Dm∑
j=1

1
n

Var (Y1 (ϕj ◦G) (X1)) ≤ E
[
Y 2

1

]
φ2

0

Dm

n
, (2.6)

where φ2
0 is defined in Assumption [M3] (see Sect. 2.1).

Consequently, the best estimator among the family (f̂G,G
m )m∈Mn (in the sense that it achieves the smallest

risk among the collection) is the one which realizes the trade-off between the two terms, without any knowledge
of the index of smoothness α.

2.3. Selection rules and main results

2.3.1. Selection rules

The aim is to realize a data-driven selection of the space Sm. For that purpose, we give a strategy to choose
an estimator among the collection (f̂G,G

m )m∈Mn . We propose two different strategies and build consequently
two estimators.

First, the selection can be standardly done by

m̂(1),G = arg min
m∈Mn

[
γn(ĥG

m, G) + penG(m)
]
,

with penG(.) a function to be properly chosen. As, γn(ĥG
m, G) = −‖ĥG

m‖2 = −‖f̂G,G
m ‖2

g, and ‖h − hm‖2 =
‖h‖2 − ‖hm‖2, we can say that γn(ĥG

m, G) estimates the bias term, up to an additive constant. This explains
why the order of the penalty can be the upper bound on the variance term, that is

penG : m 
→ c1φ
2
0E[Y 2

1 ]
Dm

n
, (2.7)

with c1 a purely numerical constant. In practice, we use a method inspired by the slope heuristic to find the
value of this constant (see Sect. 4).

The second method follows the scheme developed by Goldenshluger and Lepski [21] for density estimation.
The adaptive index is also chosen as the value which minimizes a sum of two terms:

m̂(2),G = arg min
m∈Mn

[
AG(m) + V G(m)

]
,
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where V G is also the order of the variance term:

V G : m 
→ c2φ
2
0E[Y 2

1 ]
Dm

n
, (2.8)

where c2 is a purely numerical constant (adjusted in practice by simulations). Here the function AG does not
depend on the contrast: it is rather based on the comparison of the estimators built in the first stage:

AG(m) = max
m′∈Mn

(∥∥∥ĥG
m′ − ĥG

m∧m′

∥∥∥2 − V G(m′)
)

+

,

where x+ = max(x, 0), x ∈ R. We will prove besides that AG(m) has the order of the bias term (see Lem. 5.4).
Thus we get two estimators, explicitly expressed in a warped basis:

f̃G
1 = ĥG

m̂(1),G ◦G, f̃G
2 = ĥG

m̂(2),G ◦G.

We stress out the fact that these estimators are simple to compute: their coefficients âG
j are empirical means,

and even if the “penalties” (penG and V G) contain the unknown expectation E[Y 2
1 ], this term can be easily

replaced in practice or theory by the empirical mean (1/n)
∑n

i=1 Y
2
i (see Brunel and Comte [10], proof of

Theorem 3.4, p. 465).
In addition to the advantage of the warped basis, the comparison of these two estimators, from both theoretical

and practical point of view is new, and is of interest also for other statistical estimation problems.

2.3.2. Oracle-inequality

The first theorem provides non-asymptotic bounds for the risk of each estimator.

Theorem 2.1. We assume that the regression function f is bounded on the interval [a; b]. We consider models
satisfying properties [M1], [M2] and [M3], and finally suppose that there exists a real-number p > 4 such that
E
[|ε1|2+p

]
<∞.

Then, the following inequality holds:

E

[∥∥∥f̃G
i − f

∥∥∥2
g

]
≤ min

m∈Mn

{
ki

∥∥f − fG
m

∥∥2
g

+ k′iφ
2
0E
[
Y 2

1

] Dm

n

}
+
Ci

n
, i = 1, 2, (2.9)

where fG
m is defined by (2.5), ki and k′i, (i = 1, 2) are numerical constants, and Ci i = 1, 2 are constants

independent of n and m, but depending on E[Y 2
1 ], φ2

0, σ
2, E[|ε1|2+p] and ‖f‖∞, where ‖f‖∞ = sup(a;b) |f(x)|.

Let us comment this result.

• These non-asymptotic risk bounds, also called oracle-inequalities prove that both estimators automatically
realize the squared bias/variance trade-off under few weak assumptions, up to some multiplicative constants
(which are precised in the proof). This enhances the interest of warped bases: the risk of the estimators
is smaller (up to the constant) than the risk of the best estimator in the family (f̂G,G

m )m. Moreover, the
two estimators (the one selected by the GL method and the one selected by penalization) are theoretically
equivalent in this context;

• note that the assumptions for this result are particularly weak, compared to usual hypotheses in other
statistical framework (Dm in only supposed bounded by n). Moreover the proof is short, following the
general setting of model selection methods (see for example [8]): it is mainly based on a concentration
inequality due to Talagrand. The details can be found in Section 5. Remark also that the choice of p = 4
for the integrability of ε1 (instead of p > 4) leads to the same inequality with a remainder of order ln4(n)/n
(instead of 1/n). We can still relax this assumption: a moment of order 2 + p, p > 2 for ε1 is enough, if
we suppose in compensation Dm = O(

√
n). These moment conditions may probably be improved, but we
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do not go further in this direction, to avoid additional technicalities. We also point out the fact that other
results in regression model hold under weak conditions on the noise term (in the sense that no exponential
moment for the εi are required, contrary to the conditions in [5]): see for example recent works of Audibert
and Catoni [2, 3], in a prediction framework, and works of Wegkamp [32] or Baraud [4] for model selection
point of view.

2.3.3. Rate of convergence for the risk

Even if the novelty of our results is their non-asymptotic characters (compared to other warped-bases esti-
mators in this framework, see for example Kerkyacharian and Picard [24] and Pham Ngoc [29]), we can also
deduce from Theorem 2.1 the rate of convergence of the risk. For that purpose, assume that h = f ◦G−1 belongs
to the Besov space Bα

2,∞, for α a positive number.
Let us recall the definition of this space. First, for r a positive integer and v a positive number, the r−th

order difference of a real-valued function t on the interval [0; 1] is defined by

Δr
vt(x) =

r∑
k=0

(
r

k

)
(−1)r−kt(x+ kv),

where x is such that the x + kv belongs to [0; 1], k ∈ {0, . . . r}. Next, for u > 0, the modulus of smoothness is
given by ωr(t, u)2 = sup0<v≤u ‖Δr

vt‖. We say that the function t belongs to the Besov space Bα
2,∞ if t belongs to

the space L2([0; 1]) and if, for r = [α] + 1 ([.] is the integer part function), |t|Bα
2,∞ = supu>0 u

−αωr(t, u)2 < ∞.
We refer to DeVore and Lorentz [15] for general definitions and properties of this space. Finally, for all L > 0,
we denote by Bα

2,∞(L) the space of functions t which satisfies: |t|Bα
2,∞ ≤ L.

It is well known that for all collections of models described in Section 2.1 (trigonometric models, regular
polynomial bases, regular and compactly supported wavelet bases), the projection hm of h on the subspace Sm

achieves the rate of approximation for the Besov class of functions Bα
2,∞(L) (see Lem. 12 from Barron et al. [5]):

‖h− hm‖2 ≤ C(α)L2D−2α
m , (2.10)

where C(α) is a constant depending on α and also on the basis. Therefore, the minimization of the left side of
inequality (2.9) leads to the following corollary:

Corollary 2.2. We suppose that the function h = f ◦G−1 belongs to the Besov space Bα
2,∞(L), for some fixed

α > 0 and L > 0. We assume also that h is bounded over the interval [0; 1]. We consider one of the models
defined in Section 2.1: trigonometric model, dyadic piecewise polynomials (with a regularity r such that r ≥ α−1)
or compactly supported regular wavelets. Then, under the assumptions of Theorem 2.1,

E

[∥∥∥f̃G
i − f

∥∥∥2
g

]
≤ C(L,α)n

−2α
2α+1 , i = 1, 2,

with C(L,α) a numerical constant which depends only on L and α.

Thus, the model selection procedure leads not only to a non-asymptotic squared bias/variance trade-off but
also to an adaptive estimator: indeed, it automatically reaches the asymptotic rate of order n−2α/(2α+1), the
minimax rate, in regression setting.

Theorem 2 in Kerkyacharian and Picard [24] states a rate (n/ ln(n))−2α/(2α+1) for an estimator obtained in
the same framework (G known, warped basis) by a thresholding algorithm on wavelet coefficients: thus, the rate
we get does not suffer from a loss of a ln(n) factor. Therefore, our method provides an improvement. Moreover,
Theorem 2.1 and Corollary 2.2 are valid for several models (wavelets models, but also trigonometric models. . . )
and, contrary to [24], for a noise ε1 not necessarily gaussian (only weak integrability assumptions are required).

Notice also that the assumptions in Corollary 2.2 are set on function h = f ◦G−1, like Proposition 2 of [24].
Proper regularity conditions on function f can also be used to get the same asymptotic result, by defining
“weighted” Besov spaces. We refer to Section 4.3 in [24] in which such spaces are precisely described and their
properties stated.
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3. Case of unknown design c.d.f.

3.1. The estimators

The obvious question resulting of Section 2 is: what is to be done if the c.d.f. is not known? To adapt the
previous estimation procedure, we replace G by its empirical counterpart. But instead of estimating G over the
whole sample, we assume that we observe (X−i)i∈{1,...,n}, a sample of random variables distributed as the (Xi)i,
and independent of them, and we define,

Ĝn : x 
→ 1
n

n∑
i=1

1X−i≤x.

The aim is to simplify the proofs. We just set a simple “plug-in” strategy to define the estimators. First, for
each index m ∈ Mn, we set

ĥĜ
m =

Dm∑
j=1

âĜ
j ϕj , with ∀j ∈ {1, . . . , Dm}, âĜ

j =
1
n

n∑
i=1

Yiϕj

(
Ĝn(Xi)

)
, (3.1)

which is the minimizer of the contrast function t 
→ γn(t, Ĝn) on Sm (see (2.1)). Note that the ĥĜ
m, m ∈ Mn,

are still easily available for the statistician, like the estimators of f : f̂ Ĝ,Ĝ
m = ĥĜ

m ◦ Ĝn. Then, the selection rules
follow exactly the same scheme as previously, and allow us to build two estimators. Define, for each m ∈ Mn,

pen : m 
→ c′1φ2
0E[Y 2

1 ]Dm/n,

V : m 
→ c′2φ
2
0E[Y 2

1 ]Dm/n,A(m) = maxm′∈Mn

(∥∥∥ĥĜ
m′ − ĥĜ

m∧m′

∥∥∥2 − V (m′)
)

+

,
(3.2)

with c′1 and c′2 purely numerical constants (adjusted in practice, see Sect. 4), and set

m̂(1) = arg min
m∈Mn

[
γn(ĥĜ

m, Ĝn) + pen(m)
]
, m̂(2) = arg min

m∈Mn

[A(m) + 2V (m)] . (3.3)

Finally, the selected estimators are

f̃ Ĝ
1 = ĥĜ

m̂(1) ◦ Ĝn, f̃ Ĝ
2 = ĥĜ

m̂(2) ◦ Ĝn. (3.4)

3.2. Main results

3.2.1. Framework

The goal of this section is to establish adaptive properties for both estimators f̃ Ĝ
i , i = 1, 2. As already said,

they depend on the empirical c.d.f. Ĝn at two stages, which leads to complexity in the proof. For instance,
it requires control of terms of the form ϕj(Ĝn) − ϕj(G). That is why we select one of the bases only, and
not any of the ones used in Section 2. Following the example of Efromovich [18], we use models based on the
trigonometric basis, that is Sm = Span{ϕ1, . . . , ϕDm}, with Dm = 2m+ 1, m ∈ Mn = {1, . . . , [n/2] − 1}, and
for all j ∈ {1, . . . ,m} and all x ∈ [0; 1],

ϕ1(x) = 1, ϕ2j(x) =
√

2 cos(2πjx), ϕ2j+1(x) =
√

2 sin(2πjx).

Notice that the assumption [M3] is satisfied with φ0 = 1. This choice is guided among other things by the
following property: let h be a function continuously derivable on the interval [0; 1], such that h(0) = h(1). The
orthogonal projection of the derivative h′ of h onto Sm coincides with the derivative of the projection of h onto
Sm. Formally, if we denote by ΠSm the operator of orthogonal projection onto Sm, ΠSm(h′) = (ΠSm(h))′ .

In this framework, we get a similar result to the one obtained when G was supposed to be known.
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Theorem 3.1. We assume that the regression function f and the density g admit both continuous derivative
on [a; b] (respectively [0; 1]). We assume also that ‖f‖g ≤ L (L > 0) and that f(a) = f(b). We consider the
trigonometric models, and suppose that there exists a real-number p > 8/3 such that E

[|ε1|2+p
]
<∞, and that

for any m ∈ Mn, Dm = O(n1/3/ ln(n)).
Then, the following inequality holds: for all n ≥ n0 = exp(‖h′‖2),

E

[∥∥∥f̃ Ĝ
i − f

∥∥∥2
g

]
≤ min

m∈Mn

{
ki

∥∥f − fG
m

∥∥2
g

+ k′iφ
2
0E
[
Y 2

1

] Dm

n

}
+
Ci ln(n)

n
, i = 1, 2, (3.5)

where fG
m is defined by (2.5), ki and k′i, (i = 1, 2) are numerical constants, and Ci (i = 1, 2) are constants

independent on n and m, but depending on ‖ϕ(l)
2 ‖ (l = 1, 3), ‖h‖, ‖h′‖, and E[Y 2

1 ].

The theorem proves that warped-bases selected estimators have exactly the same behaviour as least-squares
estimator (see for instance inequality (15), in Baraud [4]): both estimators realize the squared bias/variance com-
promise. Consequently, a model selection strategy with warped-bases has the advantage of providing estimators
easier to compute than least-squares estimators and with analogous theoretical properties.

Notice that the upper bound we provide for the risk holds for any n ≥ n0 so it can still be considered as
a non-asymptotic result. This is an advantage compared to other procedures based on the thresholding of the
estimated coefficients in wavelet bases, even if the bases are also warped (see for example Kerkyacharian and
Picard [24]).

3.2.2. Rate of convergence for the risk

As a consequence of the choice of trigonometric models, it is natural to consider spaces of periodic functions,
that is Sobolev spaces. Following Tsybakov [30], we define first, for α a positive integer and L a positive number,
the space Wα

2 (L) of real-valued functions h on the interval [0; 1] such that h(α−1) is absolutely continuous and

∥∥∥h(α)
∥∥∥2 =

∫ 1

0

(
h(α)(x)

)2

dx ≤ L2.

Then, we say that a function h belongs to the space W 2,α
per (L) if it belongs to Wα

2 (L) and

∀j = 0, 1, . . . , α− 1, h(j)(0) = h(j)(1).

This definition can be extended to positive real-number α (see [30] for details).
The standard rate of convergence is then achieved if smoothness properties are supposed for h. In fact, the

approximation error orders can also be bounded in the case of Sobolev spaces. If h belongs to the space W 2,α
per (L)

for α ≥ 1 and L > 0, and if we denote by hm its orthogonal projection (for the usal sclar product of L2([0; 1]))
on the trigonometric model Sm, then Tsybakov [30] (see Lem. A.3 [30]) proves the following inequality:

‖h− hm‖2 ≤ L2

π2α
D−2α

m .

Consequently, we state the following result, which is similar to Corollary 2.2:

Corollary 3.2. We suppose that the function h = f ◦G−1 belongs to the Sobolev space W 2,α
per (L), for some fixed

α ≥ 1 and L > 0. Then, under the assumptions of Theorem 3.1,

E

[∥∥∥f̃ Ĝ
i − f

∥∥∥2
g

]
≤ C(L,α)n

−2α
2α+1 , i = 1, 2,

where C(L,α) is a constant which depends on L and α.
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Most of the comments following Corollary 2.2 also apply to this result. The order of the rate, n(−2α)/(2α+1)

in place of the rate (n/ ln(n))(−2α)/(2α+1) achieved by the estimator f̂@ in Kerkyacharian and Picard [24] is a
consequence of model selection strategy, by penalization or GL method. But the assumptions for their result
are different of ours. We decide to concentrate on the trigonometric models (instead of the wavelet setting
of [24]). Consequently, the estimators are adaptive for Sobolev regularities. This, and the fact that the index α
of regularity has to be larger than 1 can seem to be a little more restrictive than the assumptions of Theorem 2
in [24]: h is there assumed to belong to a Besov space with index α ≥ 1/2, and to a Hölder space (with regularity
1/2), and these spaces are larger than the one we use. But contrary to them, and in addition to the convergence
rate improvement (no additional ln(n)), our methods allow general noise and not only Gaussian noise. Moreover,
trigonometric basis enables us to consider other regularities, and to get faster rates. For example, if h belongs
to an analytic space, its Fourier’s coefficients decrease with exponential rate: ‖h − hm‖ ≤ C exp(−εDm), for
some ε > 0 and C a positive constant, leading to the rate ln(n)/n.

Finally, let us notice that assumptions can probably be stated with regularity conditions directly on f instead
of h, by defining “weighted” spaces. But, as our main contribution is to provide non asymptotic results which
do not require the control of the bias term (and thus, the regularity assumption), this construction is be beyond
the scope of the paper.

4. Simulations

4.1. Implementation
The simulation study is mainly conducted in order to compare from practical point of view the penalized

estimator f̃ Ĝ
1 and the one defined with the GL method f̃ Ĝ

2 , when using the trigonometric basis (ϕj)j . This
comparison is new and beyond the classical regression setting: the study would be of interest in many other
contexts.

We also compute the adaptive least-squares estimator, denoted by f̃LS, to investigate the difference between
classical orthonormal bases and warped-bases. Let us recall briefly its definition. First, we set, for t ∈ L2([0; 1]),
and m ∈ Mn:

γLS
n (t) =

1
n

n∑
i=1

(Yi − t(Xi))
2 and penLS(m) = Cσ2Dm

n
, (4.1)

with C a numerical constant. We set for each m, f̂LS
m = argmint∈Sm γLS

n (t), and select m̂LS =
argmint∈Sm γLS

n (t) + penLS(m). Then we have f̂LS
m̂LS =

∑D
m̂LS

j=1 âLS
j ϕj , where âLS = (âLS

j )j is computed by
inverting the matrix Mm̂ = (Mm̂,j,k)j,k∈{1,...,Dm̂}, that is âLS = M−1

m̂ b, with

Mm,j,k =
1
n

n∑
i=1

ϕj(Xi)ϕk(Xi), and b = (bj)j∈{1,...,Dm}, bj =
1
n

n∑
i=1

Yiϕj(Xi). (4.2)

We refer to Baraud [4] for theory and to Comte and Rozenholc [14] for practical computation. We have thus
three estimators to compute, from data (Xi, Yi)i∈{1,...,n}. We first notice that their common expression is:

f̂m̂ =
Dm̂∑
j=1

âjψj ,

with, for f̃ Ĝ
1 and f̃ Ĝ

2 , âj = âĜ
j defined by equation (3.1) and ψj = ϕj ◦ Ĝn, and for f̃LS , âj = âLS

j and ψj = ϕj .
In the first case, we generate another sample (X−i)i∈{1,...,n}, to find the empirical c.d.f Ĝn, and to compute the
coefficients âĜ

j . Concretely, choosing mmax = 8, we use the following steps:
• For each m ∈ {1, . . . ,mmax}, compute crit(m), for the three following definitions:

– crit(m) = γn(ĥĜ
m, Ĝn) + pen(m) in the warped-bases case, with penalization. Notice that γn(ĥĜ

m) =
−∑D̂m

j=1(â
Ĝ
j )2;
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– crit(m) = A(m) + 2V (m) in the warped-bases case, with the GL method. Notice that A(m) =
maxm′>m{∑Dm′

j=Dm+1(a
Ĝ
j )2 − V (m′)}+;

– crit(m) = γLS
n (f̂LS

m ) + penLS(m) in the least-squares case. The least-squares contrast is computed like the
warped-bases criterion. The penalty defined by (4.1) is implemented, with σ2 replaced by the unbiased
estimator

σ̂2 =
1

n− (2mm+ 1)

n∑
i=1

(Yi − f̂LS
mm(Xi))2, with mm = [

√
n];

• In the three cases, select m̂ (that is m̂ = m̂(1), m̂(2), m̂LS) such that crit(m) is minimum;
• Compute then the three estimators f̃l =

∑D
m̂(l)

j=1 âĜ
j (ϕj ◦Ĝn), l = 1, 2 and f̃LS =

∑D
m̂LS

j=1 âLS
j ϕj , at a sequence

of equispaced points in [a; b].

Remark: To implement crit(m), the numerical constants c′1 (of pen), C (of penLS), and c′2 (of V ) have to be
calibrated. The constant C is chosen equal to 2.5, which is a value often found in the literature (constants of the
Cp criterion of Mallows, for example). We decide to concentrate on the data-driven calibration of the constants
involved in the definition of the new estimators, that is c′1 and c′2. The constant c′1 is useful for the penalized
warped bases estimator f̃ Ĝ

1 : it can thus be carried out for each simulated sample using a method inspired by
the slope heuristic (developed first by Birgé and Massart [9]). But this data-driven solution can not be used
for the recent method of GL, leading to the estimator f̃ Ĝ

2 . So, to compare in the same way the two estimators,
we choose to experiment it with fixed constants, previously stated. The constant c′1 is adjusted prior to the
comparison, using however the slope heuristic: we use the graphical interface CAPUSHE developed by Baudry
et al. [6], to conduct an experimentation over 100 samples (see our examples, Sect. 4.2), with the so-called
“dimension-jump” method. We choose then the largest constant over all attempts proposed by the software,
that is c′1 = 4 (recall that in penality calibration, it is more secure to overpenalize). For the constant of the GL
method, we looked at the quadratic risk with respect to its value c′2, and chose one of the first values leading
to reasonable risk and complexity of the selected model, c′2 = 0.5 (for the computation of the risk, see Sect. 4.2
below). Notice finally that the specific factor 2 involved in the definition of m̂(2) (see definition (3.3)) could be
also adjusted: it plays a technical role in the proof but might have been replaced by any other constant larger
than 1.

4.2. Examples

The procedure is applied for different regression functions, design and noise. To concentrate on the comparison
of the three methods, we decide to present the estimation results for two very smooth functions, on the interval
[0; 1]: a polynomial function, f1 : x 
→ x(x− 1)(x− 0.6), and an exponential function, f2 : x 
→ − exp(−200(x−
0.1)2)− exp(−200(x−0.9)2). The sensibility of the method to the underlying design is tested with the following
densities, all supported by [0; 1]. In the definitions, c is a constant adjusted to obtain density function in each
case:

– U[0;1], the classical uniform distribution;
– DU [0;1], probability distribution with density x 
→ cx1[0;1];
– Ec(1), a truncated exponential distribution with mean 1 that is with density x 
→ ce−x1[0;1];
– Nc(0.5, 0.01), a truncated Gaussian distribution with density x 
→ c exp(−(x− 0.5)2/0.02)1[0;1](x);
– NBMt, a truncated bimodal Gaussian distribution, with density x 
→ c(exp(−200(x−0.05)2)+exp(−200(x−

0.95)2))1[0;1](x);
– CM, a distribution with piecewise constant density 2.4851[0;0.2] + 0.011]0.1;0.8] + 2.4851]0.8;1].

Finally, the variables εi are generated following either a Gaussian distribution, or a Laplace distribution, with
mean 0. They are denoted respectively by N (0, v) (v the variance) and by L(0, b) (b a positive real such that
the Laplace density is x 
→ 1/(2b) exp(−|x|/b)). The parameters b and v are adjusted for each of the functions
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X ∼ U[0;1], ε ∼ N (0, 0.01) X ∼ U[0;1], ε ∼ L(0,
√

2/20)

X ∼ Et(1), ε ∼ N (0, 0.01) X ∼ NBMt, ε ∼ N (0, 0.01)

Figure 1. Plots of 20 estimators f̃ Ĝ
1 (warped bases 1), f̃ Ĝ

2 (warped bases 2) and f̃LS (least-
squares) of function f1 or f2, built from i.i.d. sample in trigonometric bases. Bold line: true
function, thin lines: estimators.

f1 and f2: it is natural to choose cases in which there is a little more signal than noise. Precisely, the values are
chosen such that the ratio of the variance of the signal (Var(f(X1))) over the variance of the noise (Var(ε1))
belongs to [1.6; 2.4], whatever the design distribution. This ratio, denoted by “s2n”, will be precised in Tables 1
and 2.

We compare first the visual quality of the reconstruction, for the three estimators. Figure 1 shows beams
of estimated functions versus true functions in four cases. Precisely, for each figure, we plot 20 estimators of
each kind, built from i.i.d samples of data of size n = 500. The three first plots show that the results are quite
good for all the estimators. The noise distribution does not seem to affect significantly the results. Notice that
the computation of the estimators f̃LS requires much more time than the others. It is due to the computation
of the inverse of the matrix Mm̂, while the warped-bases methods are simpler. So one can easily use warped
bases for estimation problems with large data samples sizes (see for example domains as fluorescence, physics,
neuronal models. . . ). The last plot of Figure 1 shows that the warped-bases estimators behave still correctly if
the design density is very inhomogeneous (we obtain the same type of plots when the Xi is distributed with
CM). In fact, if we implement the least-squares method without taking additionnal precautions and without
numerical approximation for the computation of M−1

m̂ , the estimator can not adapt to a design density which
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Table 1. Values of MISE ×1000 averaged over 100 samples, for the estimation of f1.∗

ε X n = 100 200 500 1000 1500 2000 Estimator

N (0, 0.0006) U[0;1] 0.238 0.116 0.058 0.029 0.017 0.017 WB1
s2n =2.07 0.462 0.227 0.087 0.045 0.028 0.024 WB2
DU [0;1] 0.407 0.254 0.144 0.09 0.069 0.058 WB1

s2n =1.74 0.55 0.276 0.141 0.084 0.064 0.054 WB2
Et(1) 0.231 0.152 0.052 0.032 0.021 0.018 WB1

s2n =1.9 0.501 0.248 0.09 0.042 0.027 0.024 WB2
Nt(0.5, 0.1) 0.473 0.181 0.089 0.052 0.036 0.028 WB1

s2n =1.98 0.68 0.243 0.097 0.053 0.036 0.027 WB2
NBMt 0.957 0.788 0.561 0.448 0.436 0.395 WB1
s2n =1.94 1.037 0.785 0.537 0.436 0.433 0.393 WB2

CM 1.012 0.943 0.775 0.718 0.692 0.68 WB1
s2n =2.07 1.267 0.968 0.773 0.711 0.688 0.679 WB2

L(0, 0.0173) U[0;1] 0.235 0.102 0.051 0.026 0.02 0.016 WB1
0.44 0.215 0.085 0.04 0.031 0.023 WB2

DU [0;1] 0.352 0.268 0.13 0.084 0.069 0.059 WB1
0.494 0.28 0.122 0.074 0.062 0.054 WB2

Et(1) 0.278 0.133 0.065 0.031 0.024 0.018 WB1
0.576 0.244 0.099 0.043 0.033 0.023 WB2

Nt(0.5, 0.1) 0.338 0.2 0.092 0.05 0.036 0.03 WB1
0.539 0.254 0.101 0.052 0.036 0.028 WB2

NBMt 1.104 0.699 0.562 0.453 0.425 0.412 WB1
1.221 0.662 0.532 0.442 0.418 0.406 WB2

CM 1.078 0.889 0.801 0.716 0.688 0.683 WB1
1.207 0.919 0.797 0.707 0.686 0.682 WB2

∗ (In color online)

nearly vanishes on a long interval. This highlights the interest for warping the bases: this method seems to be
very stable, whatever the design distribution, and even if it is very inhomogeneous: it tends to detect better the
hole which can occur in the design density. Let us notice that specific methods exist, taking into account the
inhomogeneity of the data to obtain upper bounds for the quadratic pointwise risk, see for example Gäıffas [20].

The beams of estimators seem to enhance the equivalence we found in the theory between the GL method
and the penalization method. For more precise results concerning these selection rules, we compare L2 risk, in
the different models (the two functions estimated, the possible design and noise). The ISE (Integrated Squared
Error) for one estimator f̃ is ISE =

∫ b

a
(f(x) − f̃(x))2dx. It is computed as follows:

ISE =
b− a

K

K∑
k=0

[
f̃

(
a+ k

b− a

K

)
− f

(
a+ k

b− a

K

)]2
,

where K is an integer (we choose K = 1000). The mean ISE (MISE) is the mean of those values over N = 100
independent simulated samples.

The risks (multiplied by 1000) displayed in Table 1 (estimation of f1) and 2 (estimation of f2) for the
estimators f̃ Ĝ

1 (WB1) and f̃ Ĝ
2 (WB2) are computed for different sample sizes going from n = 100 to 2000.

Notice first that the difference of order of size between the values of the two tabulars is explained by the
difference of amplitude between the two functions (f1 takes its values in the interval [−0.04; 0.07] and f2 in
[−1; 0]). As expected, the values of MISE get smaller when the sample size increases, and they are similar for
both estimators, in most cases. The GL method gives slightly smaller risks in 59% of the cases (in bold-blue in
the tables). But it seems that the values are better than those of the penalized estimator in 76% of the cases for
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Table 2. Values of MISE ×1000 averaged over 100 samples, for the estimation of f2.∗

ε X n = 100 200 500 1000 1500 2000 Estimator

N (0, 0.05) U[0;1] 73.979 37.574 13.557 6.606 4.088 3.126 WB1
s2n =2.33 72.02 34.761 13.32 6.506 3.975 3.109 WB2
DU [0;1] 65.367 54.668 43.972 36.923 32.499 29.707 WB1

s2n =2.33 73.101 53.149 39.232 32.683 29.873 28.252 WB2
Et(1) 74.224 41.907 17.365 9.384 6.925 5.187 WB1

s2n =2.37 76.55 37.431 16.401 9.074 6.842 5.307 WB2
Nt(0.5, 0.1) 75.906 53.158 30.022 16.046 13.3 12.119 WB1

s2n =1.76 88.46 54.046 27.695 15.861 13.21 12.119 WB2
NBMt 86.712 29.374 14.892 6.949 4.368 3.502 WB1
s2n =2.06 73.514 32.237 12.609 6.529 4.054 2.935 WB2

CM 125.098 47.224 29.851 20.533 20.016 17.296 WB1
s2n =1.69 111.872 53.719 31.766 20.593 18.595 16.1 WB2

L(0, 0.1581) U[0;1] 77.489 35.98 13.657 6.47 3.808 3.032 WB1
73.596 32.823 13.667 6.392 3.772 3.026 WB2

DU [0;1] 70.605 55.9 43.65 37.967 33.642 30.021 WB1
80.886 54.544 38.695 32.008 29.473 27.925 WB2

Et(1) 64.881 44.879 17.774 10.31 6.987 5.856 WB1
71.622 38.003 16.928 9.897 6.761 5.689 WB1

Nt(0.5, 0.1) 82.315 50.384 27.537 15.931 13.474 12.523 WB1
90.932 48.743 25.119 16.24 13.403 12.523 WB2

NBMt 98.027 33.034 13.593 7.472 4.697 3.604 WB1
83.533 32.761 12.162 6.437 4.484 3.119 WB2

CM 113.635 48.175 25.483 21.765 18.833 18.229 WB1
95.868 49.138 24.812 18.662 16.717 16.011 WB2

∗ (In color online)

the large sample sizes (n = 500 to 2000). We have to put this result into perspective: larger classes of functions
and models would have to be studied to confirm this and we keep in mind that the methods are equivalent from
the theoretical point of view.

5. Proofs of the main results

5.1. A key result

One of the main argument of the Proof of Theorems 2.1 and 3.1 is the control of the centered empirical
process defined by

νn(t) =
1
n

n∑
i=1

Yi (t ◦G) (Xi) − 〈(t ◦G) , f〉g, t ∈ L2([0; 1]), (5.1)

on the unit sphere
S(m) = {t ∈ Sm, ‖t‖ = 1}

of a fixed model Sm. Let us first state the following result, which we use for both theorems.

Proposition 5.1. Under the assumptions of Theorem 2.1, with p(m′) = 6(1+2δ)φ2
0E[Y 2

1 ]Dm′
n , (δ > 0) for any

m′ ∈ Mn, there exists a constant C depending on φ2
0, ‖f‖∞, E[f2(X1)], σ2, E[|ε1|2+p] and δ such that,

E

[ ∑
m′∈Mn

(
sup

t∈S(m′)
(νn(t))2 − p(m′)

)
+

]
≤ C

n
·
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Proof of Proposition 5.1. We split the process νn into three parts, writing νn = ν
(1)
n + ν

(2,1)
n + ν

(2,2)
n , with

ν(1)
n (t) =

1
n

n∑
i=1

f(Xi) (t ◦G) (Xi) − 〈(t ◦G) , f〉g,

ν(2,1)
n (t) =

1
n

n∑
i=1

εi1|εi|≤κn
(t ◦G) (Xi) − E

[
εi1|εi|≤κn

(t ◦G) (Xi)
]
,

ν(2,2)
n (t) =

1
n

n∑
i=1

εi1|εi|>κn
(t ◦G) (Xi) − E

[
εi1|εi|>κn

(t ◦G) (Xi)
]
,

with c a constant depending on the collection of models and where we define

κn = c

√
n

ln(n)
· (5.2)

We obtain,(
sup

t∈S(m′)
νn(t)2 − p(m′)

)
+

≤3

{(
sup

t∈S(m′)

(
ν(1)

n (t)
)2

− p1(m′)
3

)
+

+

(
sup

t∈S(m′)

(
ν(2,1)

n (t)
)2

− p2(m′)
3

)
+

+ sup
t∈S(m′)

(
ν(2,2)

n (t)
)2
}

(5.3)

with p1(.) + p2(.) = p(.).
We upper bound the first two terms by applying the following concentration inequality:

Lemma 5.2. Let ξ1, . . . , ξn be i.i.d. random variables, and define νn(r) = 1
n

∑n
i=1 r(ξi)−E[r(ξi)], for r belonging

to a countable class R of real-valued measurable functions. Then, for ε > 0,

E

[(
sup
r∈R

(νn (r))2 − 2(1 + 2ε)H2

)
+

]
≤ 4
K1

{
v

n
exp
(
−K1ε

nH2

v

)
+

49M2
1

K1C2(ε)n2
exp

(
−
√

2K1C(ε)
√
ε

7
nH

M1

)}
,

(5.4)
with C(ε) = (

√
1 + ε− 1) ∧ 1, K1 = 1/6, and

sup
r∈R

‖r‖∞ ≤M1, E

[
sup
r∈R

|νn(r)|
]
≤ H, and sup

r∈R
Var (r (ξ1)) ≤ v.

Inequality (5.4) is a classical consequence of Talagrand’s inequality given in Klein and Rio [25], see for example
Lemma 5 (p. 812) in Lacour [27]. Standard density arguments allow to apply it to the unit sphere of a finite
dimensional linear space.

We apply inequality (5.4) to the first term of equation (5.3), with function r replaced by rt : x 
→ f(x)(t◦G)(x),
t ∈ R = Sm′ , and ξi = Xi. Let us first compute the constants M (1)

1 , H(1), and v(1). We observe first that
‖rt‖∞ ≤ ‖f‖∞‖t‖∞ and we use assumption [M3] to get ‖rt‖∞ ≤ φ0

√
Dm′‖t‖‖f‖∞ = φ0

√
Dm′‖f‖∞ := M

(1)
1 .

Then, noting that t ∈ S(m′) can be written t =
∑Dm′

j=1 bjϕj with
∑

j b
2
j = 1, we apply Cauchy−Schwarz’s

inequality to get supt∈S(m′) ν
(1)
n (t)2 ≤∑Dm′

j=1 ν
(1)
n (ϕj)2. Since assumptions [M2] and [M3] hold, we obtain

E

[
sup

t∈S(m′)
ν(1)

n (t)2
]
≤

Dm′∑
j=1

1
n

Var(f(X1) (ϕj ◦G) (X1)) ≤ φ2
0E
[
f2(X1)

] Dm′

n
:=
(
H(1)

)2

.
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Finally, Var(rt(X1)) ≤ E[f2
t (X1)] ≤ ‖f‖2

∞ := v(1). Replacing the quantities M (1)
1 , H(1) and v(1) by the values

derived above, inequality (5.4) becomes

∑
m′∈Mn

E

[(
sup

t∈S(m′)

(
ν(1)

n (t)
)2

− p1(m′)
3

)
+

]

≤ 4
K1

‖f‖∞
{

1
n

∑
m′∈Mn

exp
(−k̄Dm′

)
+

49φ2
0‖f‖∞

K1C2(δ)
1
n2

∑
m′∈Mn

Dm′ exp
(
−¯̄k

√
n
)}

,

with k̄ and ¯̄k two constants (independent of m′ and n) and p1(m′) = 3 × 2(1 + 2δ)
(
H(1)

)2
. Therefore, using

that the cardinality of Mn is bounded by n and also that Dm′ ≤ n , the following upper bound holds, for C1 a
constant, ∑

m′∈Mn

E

[(
sup

t∈S(m′)

(
ν(1)

n (t)
)2

− p1(m′)
3

)
+

]
≤ C1

n
· (5.5)

Similarly, we apply inequality (5.4) to the second process ν(2,1)
n . We replace r by rt : (ε, x) 
→ ε1ε≤κnt ◦ G(x),

and ξi = (εi, Xi). Thus we compute

M
(2)
1 = κnφ0

√
Dm′ , H(2) = φ0σ

√
Dm′

n
, v(2) = σ2.

With p2(m′) = 3 × 2(1 + 2δ)
(
H(2)

)2
, we get

E

[(
sup

t∈S(m′)

(
ν(2,1)

n (t)
)2

− p2(m′)
3

)
+

]
≤ C2

n
, (5.6)

for C2 a constant.
Finally, we look for an upper bound for the process ν(2,2)

n . We can not apply the concentration inequality,
because it is not bounded. However, following the same line as in computations above, we write

E

[
sup

t∈S(m′)

(
ν(2,2)

n (t)
)2
]
≤

Dm′∑
j=1

E

[(
ν(2,2)

n (ϕj)2
)]

≤ 1
n

E

[
|ε1|2+p 1|ε1|>κn

]
φ2

0

κ−p
n Dm′

n
≤ C3

n
, (5.7)

since κn is defined by (5.2) and p > 4.
We conclude the Proof of Proposition 5.1 by gathering in equation (5.3) the three inequalities (5.5)–(5.7). �

We also set the following technical lemma, which will be useful several times, with ν an empirical process.

Lemma 5.3. Let ν : L2([0; 1]) 
→ R be a linear functional. Let also m be an index of the collection Mn. Then,

sup
t∈S(m)

ν2(t) =
Dm∑
j=1

ν2(ϕj).

Proof of Lemma 5.3. If t belongs to S(m), it can be written t =
∑Dm

j=1 bjϕj , with
∑Dm

j=1 b
2
j = 1. Thus, by the

linearity of ν and the Cauchy−Schwarz inequality,

ν2(t) =

⎛
⎝Dm∑

j=1

bjν(ϕj)

⎞
⎠

2

≤
Dm∑
j=1

ν2(ϕj).

This leads to supt∈S(m) ν
2(t) ≤∑Dm

j=1 ν
2(ϕj). The equality is obtained by choosing t =

∑Dm

j=1 bjϕj ∈ L2([0; 1]),
with bj = ν(ϕj)/(

∑Dm

k=1 ν
2(ϕk)). �
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5.2. Proof of Theorem 2.1

We only study the estimator selected with the new GL method, that is f̃G
2 . However, the following proof

gives all the ingredients to deal with the other estimator, f̃G
1 (see a typical sketch in Brunel et al. [11], proof of

Thm. 3.1 p. 185). Moreover, one can refer to [13] to get all the details.

5.2.1. Main part of the proof

In all the proofs, the letter C denotes a nonnegative real that may change from line to line. For the sake of
simplicity, we denote in this section by V = V G, A = AG, m̂ = m̂(2),G. Let Sm be a fixed model in the collection
indexed by Mn. We decompose the loss of the estimator as follows:

∥∥∥f̃G
2 − f

∥∥∥2
g

=
∥∥∥ĥG

m̂ − h
∥∥∥2 ,

≤ 3
∥∥∥ĥG

m̂ − ĥG
m∧m̂

∥∥∥2 + 3
∥∥∥ĥG

m∧m̂ − ĥG
m

∥∥∥2 + 3
∥∥∥ĥG

m − h
∥∥∥2 .

By definition of A and m̂,

∥∥∥f̃G
2 − f

∥∥∥2
g
≤ 3 (A(m) + V (m̂)) + 3 (A(m̂) + V (m)) + 3

∥∥∥ĥG
m − h

∥∥∥2 ,
≤ 6 (A(m) + V (m)) + 3

∥∥∥ĥG
m − h

∥∥∥2 .
We have already bounded the risk of the estimator on a fixed model (see Sect. 2.2.2, inequalities (2.4) and (2.6)):
E[‖ĥG

m − h‖2] ≤ φ2
0E[Y 2

1 ]Dm/n+ ‖hm − h‖2. Therefore we get

E

[∥∥∥f̃G
2 − f

∥∥∥2
g

]
≤ 6E [A(m)] + 6V (m) + 3φ2

0E
[
Y 2

1

] Dm

n
+ 3 ‖hm − h‖2

.

Next, we have to control the term A(m): we use the following lemma, proved just below, to conclude.

Lemma 5.4. Under the assumptions of Theorem 2.1, there exists a constant C > 0 depending on φ2
0, ‖f‖∞,

E[f2(X1)], σ2, E[|ε1|2+p] such that, for each index m ∈ Mn,

E [A(m)] ≤ C

n
+ 12 ‖hm − h‖2

.

5.2.2. Proof of Lemma 5.4

For each index m ∈ Mn, we decompose,

∥∥∥ĥG
m′ − ĥG

m∧m′

∥∥∥2 ≤ 3
∥∥∥ĥG

m′ − hm′

∥∥∥2 + 3 ‖hm′ − hm∧m′‖2 + 3
∥∥∥hm∧m′ − ĥG

m∧m′

∥∥∥2 .
Thus we have

A(m) ≤ 3 max
m′∈Mn

[∥∥∥ĥG
m′ − hm′

∥∥∥2 − V (m′)
6

]
+

+ 3 max
m′∈Mn

[∥∥∥hm∧m′ − ĥG
m∧m′

∥∥∥2 − V (m′)
6

]
+

+3 max
m′∈Mn

‖hm′ − hm∧m′‖2
,

:= 3 (Ta + Tm
b + Tm

c ) , (5.8)

and study the terms of the above decomposition.
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Upper-bound for Ta

We simplify roughly the problem by writing first

E [Ta] ≤
∑

m′∈Mn

E

[{∥∥∥ĥG
m′ − hm′

∥∥∥2 − V (m′)
6

}
+

]
·

Let us notice that

‖ĥG
m′ − hm′‖2 =

Dm′∑
j=1

(âG
j − aj)2 =

Dm′∑
j=1

ν2
n(ϕj), (5.9)

with νn the empirical process defined by (5.1). By Lemma 5.3, this last quantity is equal to supt∈S(m′) ν
2
n(t).

Consequently, E[Ta] ≤ ∑
m′∈Mn

E[{supt∈S(m′) ν
2
n(t) − V (m′)

6 }+]. We apply then Proposition 5.1: the latter
is bounded by C/n, for the choice V (m′) = 6 × p(m′), which means the choice of c2 = 36(1 + 2δ) in the
definition (2.8).

Upper-bound for Tm
b

To study this term, we write, distinguish whether m′ ≤ m or m′ > m,

Tm
b = max

⎛
⎜⎝ max

m′∈Mn

m′≤m

{∥∥∥hm′ − ĥG
m′

∥∥∥2 − V (m′)
6

}
+

, max
m′∈Mn

m′>m

{∥∥∥hm − ĥG
m

∥∥∥2 − V (m′)
6

}
+

⎞
⎟⎠ ,

≤ max

(
Ta,

{∥∥∥hm − ĥG
m

∥∥∥2 − V (m)
6

}
+

)
≤ Ta +

{∥∥∥hm − ĥG
m

∥∥∥2 − V (m)
6

}
+

,

using −V (m′) ≤ −V (m) for m′ > m. The last computation proves that E[Ta] ≤ C/n and the same bound
holds for the second term, as a consequence of Proposition 5.1. Finally, E[Tm

b ] ≤ C/n.

Upper-bound for Tm
c

This term is a bias term. We notice that

Tm
c = max

m′∈Mn

m≤m′

‖hm′ − hm‖2 ≤ 2 max
m′∈Mn

m≤m′

‖hm′ − h‖2 + 2 ‖h− hm‖2
.

But assuming m ≤ m′, we have Sm ⊂ Sm′ , thus, the orthogonal projections hm and hm′ of h onto Sm and Sm′

satisfy ‖hm′ − h‖2 ≤ ‖hm − h‖2
. So we have Tm

c ≤ 4‖hm − h‖2, which conclude the proof.

5.3. Proof of Theorem 3.1

5.3.1. Notations, and properties of the empirical distribution function

Let us introduce some useful tools for the sequel. Denoting by U−i = G(X−i) the uniform variable associated
to X−i, for any i ∈ {1, . . . , n}, we define the empirical distribution function

Ûn : u 
→ 1
n

n∑
i=1

1U−i≤u. (5.10)

The following equality holds for any coefficient âĜ
j of our estimator (see Eq. (2.3)):

E

[
âĜ

j |(X−l)l

]
=
∫ 1

0

(
f ◦G−1

)
(u)
(
ϕj ◦ Ûn

)
(u)du. (5.11)
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Moreover, we will use several inequalities to control the deviations of the empirical c.d.f. Ûn or Ĝn. Recall
that the random variable ‖Ĝn −G‖∞ has the same probability distribution as the norm ‖Ûn − id‖∞ where we
denote by ‖Ûn − id‖∞ = supu∈R

|Ûn(u) − u|. The first inequality is the one of Dvoretzky−Kiefer−Wolfowitz
(see Dvoretzky et al. [17]):

P

(∥∥∥Ûn − id
∥∥∥
∞

≥ λ
)
≤ K exp

(−2nλ2
)
, (5.12)

for any λ > 0 and a constant K.
By integration, we deduce the following bounds:

• for any integer p > 0, there exists a constant Cp > 0 such that

E

[∥∥∥Ûn − id
∥∥∥p

∞

]
≤ Cp

np/2
; (5.13)

• for any κ > 0, for any integer p ≥ 2, there exists a constant C such that

E

[(∥∥∥Ûn − id
∥∥∥p

∞
− κ

lnp/2(n)
np/2

)
+

]
≤ Cn−c(p,κ), with c(p, κ) = 2

2−p
p κ2/p. (5.14)

Moreover,

E

[(∥∥∥Ûn − id
∥∥∥2
∞

− κ
ln(n)
n

)2
]
≤ Cn−2−2κ. (5.15)

5.3.2. Preliminary lemmas

As we have done for Theorem 2.1, we prove the result for the most original estimator, that is f̃2 (the proof
for the other estimator can be found in [13]). The proof follows almost the same line as the one of Theorem 2.1.
However, further technicalities are required, consequence of the replacement of G by Ĝn. Let us introduce some
useful notations. We denote by C a numerical constant, which may vary from line to line. In this section, we
denote also the estimator by f̂ Ĝ,Ĝ

m̂ = ĥĜ
m̂ ◦ Ĝn (with shortened m̂(2) in m̂), and coherently:

f̂ Ĝ,G
m̂ = ĥĜ

m̂ ◦G,

which is an intermediate between the two estimators f̂ Ĝ,Ĝ
m̂ and f̂G,G

m̂ . We will also use this notation for fixed
index m ∈ Mn. To bound the risk of the target estimator, the following quantities are useful, for any index m:

Tm
0 = ‖f − fG

m‖2
g + ‖fG

m − f̂G,G
m ‖2

g,

Tm
1 =

∥∥∥f̂G,G
m − f̂ Ĝ,G

m − E

[
f̂G,G

m − f̂ Ĝ,G
m |(X−l)l

]∥∥∥2
g
,

Tm
2 =

∥∥∥f̂ Ĝ,G
m − f̂ Ĝ,Ĝ

m − E

[
f̂ Ĝ,G

m − f̂ Ĝ,Ĝ
m |(X−l)l

]∥∥∥2
g
,

Tm
3 =

∥∥∥E [f̂G,G
m − f̂ Ĝ,G

m |(X−l)l

]∥∥∥2
g
, Tm

4 =
∥∥∥E [f̂ Ĝ,G

m − f̂ Ĝ,Ĝ
m |(X−l)l

]∥∥∥2
g
.

(5.16)

They are such that E[‖f̂ Ĝ,Ĝ
m −f‖2

g] ≤
∑4

l=0 T
m
l . Let us remark that Tm

0 is the bias-variance decomposition for the
risk of an estimator f̂G,G

m (on the fixed model Sm). The bound for its expectation is given by inequalities (2.4)
and (2.6). The lemmas below give bounds for the other terms.

Lemma 5.5. Assuming that the models are trigonometric, there exists a constant C > 0 (depending on ‖ϕ′
2‖∞

and E[Y 2
1 ]) such that

E

[
max

m′∈Mn

Tm′
1

]
≤ C

D3
mmax

n2
·
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If Dmmax = O(n1/2) in particular,

E

[
max

m′∈Mn

Tm′
1

]
≤ C

Dmmax

n
·

Lemma 5.6. Assuming that the models are trigonometric, that Dmmax = O(n1/3) and that there exists a real-
number p > 8/3 such that E

[|ε1|2+p
]
< ∞, there exists a constant C > 0 (depending on ‖ϕ′

2‖∞ and E[Y 2
1 ])

such that

E

[
max

m′∈Mn

(
Tm′

2 − V2(m′)
)

+

]
≤ C

ln(n)
n

,

with V2(m′) = κκ′D4
m′ ln2(n)/n2, and κ′ = 7/3, κ = 96φ2

0E[Y 2
1 ]‖ϕ′

2‖2
∞.

Assuming that Dm′ = O((n/ ln(n)2)1/3), we get

V2(m′) ≤ κκ′
Dm′

n
:= V bis

2 (m′).

The result of Lemma 5.6 holds with V bis
2 in place of V2.

Lemma 5.7. Assuming that the models are trigonometric, that Dmmax = O(n1/3/ ln(n)), and that h ∈ C1([0; 1]),
there exists a constant C > 0 (depending on ‖ϕ′

2‖∞, ‖ϕ(3)
2 ‖∞, ‖h‖, ‖h′‖, E[Y 2

1 ]) such that, for all m ∈ Mn,

E[Tm
3 ] ≤ C

(
Dm

n
+
D4

m

n2
+
D7

m

n3

)
·

Moreover, the following inequality holds, for pm′ = m′ or pm′ = m ∧m′:

E

[
max

m′∈Mn

(
T

pm′ ,b
3 − V3(m′)

)
+

]
≤ C

n
,

with V3(m′) = k3Dm′/n, and k3 a numerical constant depending only (and linearly) on E[Y 2
1 ].

In particular, if Dm = O(n1/3), the first inequality leads to E[Tm
3 ] ≤ CDm/n.

Lemma 5.8. Assuming that the models are trigonometric, that Dmmax = O(n1/3/ ln(n)), and that h ∈W 2,1
per(L)

(L > 0), there exists a constant C > 0 (depending on ‖ϕ′
2‖∞, ‖ϕ(3)

2 ‖∞, ‖h‖, ‖h′‖, E[Y 2
1 ]) such that, for all

m ∈ Mn, n ≥ n0 = exp
(‖h′‖2

)
,

E

[
max

m′∈Mn

(
Tm′

4 − V4(m′)
)

+

]
≤ C

ln(n)
n

,

with V4(m′) = k4Dm′/n, and k4 a numerical constant depending only (and linearly) on E[Y 2
1 ].

Notice that it is also possible to obtain the result for any n ∈ N. But the price to pay is a penalty V4 depending
on ‖h′‖2.

5.3.3. Main part of the proof

Let Sm be a fixed model in the collection indexed by Mn. To recover the framework of the Proof of
Theorem 2.1, we begin with the decomposition∥∥∥f̂ Ĝ,Ĝ

m̂ − f
∥∥∥2

g
≤ 3

∥∥∥f̂ Ĝ,Ĝ
m̂ − f̂ Ĝ,G

m̂ − E

[
f̂ Ĝ,Ĝ

m̂ − f̂ Ĝ,G
m̂ |(X−l)l

]∥∥∥2

g

+ 3
∥∥∥E [f̂ Ĝ,Ĝ

m̂ − f̂ Ĝ,G
m̂ |(X−l)l

]∥∥∥2
g

+ 3
∥∥∥f̂ Ĝ,G

m̂ − f
∥∥∥2

g
,

= 3T m̂
2 + 3T m̂

4 + 3
∥∥∥ĥĜ

m̂ − h
∥∥∥2 .
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Thus, we can introduce A and V , in the last term, in a similar way as previously:

∥∥∥ĥĜ
m̂ − h

∥∥∥2 ≤ 3
∥∥∥ĥĜ

m̂ − ĥĜ
m∧m̂

∥∥∥2

+ 3
∥∥∥ĥĜ

m∧m̂ − ĥĜ
m

∥∥∥2 + 3
∥∥∥ĥĜ

m − h
∥∥∥2 ,

≤ 3 (A(m) + V (m̂)) + 3 (A (m̂) + V (m̂)) + 3
∥∥∥ĥĜ

m − h
∥∥∥2 ,

= 3 (A(m) + 2V (m)) + 3 (A (m̂) + 2V (m̂)) + 3
∥∥∥ĥĜ

m − h
∥∥∥2 − 3V (m̂) − 3V (m) ,

≤ 6 (A(m) + 2V (m)) − 2V (m̂) + 3
∥∥∥ĥĜ

m − h
∥∥∥2 ,

using the definition of m̂. The last term of this decomposition is bounded by:∥∥∥ĥĜ
m − h

∥∥∥2 =
∥∥∥f̂ Ĝ,G

m − f
∥∥∥2

g
≤ 3Tm

1 + 3Tm
3 + 3Tm

0 ,

where Tm
l (l = 0, 1, 3) are defined by (5.16). As a result, we get∥∥∥f̂ Ĝ,Ĝ
m̂ − f

∥∥∥2
g
≤ 3T m̂

2 + 3T m̂
4 − 3 × 2V (m̂) + 3 × 6 (A(m) + V (m)) + 3 × 3 × (3Tm

1 + 3Tm
3 + 3Tm

0 ) .

Therefore, it follows from inequalities (2.4) and (2.6) that

E

[∥∥∥f̂ Ĝ,Ĝ
m̂ − f

∥∥∥2
g

]
≤ 18 (E [A(m)] + V (m)) + 3E

[(
T m̂

2 − V (m̂)
)
+

]
+ 3E

[(
T m̂

4 − V (m̂)
)
+

]

+ E [Tm
1 ] + E [Tm

3 ] + 27φ2
0E
[
Y 2

1

] Dm

n
+ 27

∥∥f − fG
m

∥∥2
g
.

A bound for A(m) is given by the following lemma, whose proof is deferred to Section 5.3.4.

Lemma 5.9. Under the assumptions of Theorem 2.1, there exists a constant C > 0 depending on ‖ϕ(l)
2 ‖ (l =

1, 3), ‖h‖, ‖h′‖, and E[Y 2
1 ], such that, for each index m ∈ Mn,

E [A(m)] ≤ 12E

[
max

m′∈Mn

(
Tm′

3 − V (m′)
48

)
+

]
+ 12E

[
max

m′∈Mn

(
Tm∧m′

3 − V (m′)
48

)
+

]

+ 12E

[
max

m′∈Mn

Tm′
1

]
+ 12E

[
max

m′∈Mn

Tm∧m′
1

]
+ 12

∥∥fG
m − f

∥∥2
g

+
C

n
·

Then we get

E

[∥∥∥f̂ Ĝ,Ĝ
m̂ − f

∥∥∥2
g

]
≤ C

(
E

[
max

m′∈Mn

Tm′
1

]
+ E

[
max

m′∈Mn

Tm∧m′
1

]
+ E [Tm

1 ]

+ E

[
max

m′∈Mn

(
Tm′

3 − V (m′)
48

)
+

]
+ E

[
max

m′∈Mn

(
Tm∧m′

3 − V (m′)
48

)
+

]

+ E [Tm
3 ] + E

[(
T m̂

2 − V (m̂)
)
+

]
+ E

[(
T m̂

4 − V (m̂)
)
+

])
+C

(
φ2

0E
[
Y 2

1

] Dm

n
+
∥∥f − fG

m

∥∥2
g

+
1
n

)
·

It remains to study the terms Tm
l , l = 1, . . . , 4. Bounding (T m̂

l − V (m̂))+ ≤ maxm′(Tm′
l − V (m′))+ (l = 2, 4),

it is enough to apply Lemmas 5.5 to 5.8 to conclude: we have just to choose the constant in the definition of V
larger than the ones of Vl (l = 2, 3, 4).
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5.3.4. Proof of Lemma 5.9

The following proof is close to the Proof of Lemma 5.4. Fix an index m′ ∈ Mn. We split∥∥∥ĥĜ
m′ − ĥĜ

m∧m′

∥∥∥2 ≤ 3
∥∥∥ĥĜ

m′ − hm′

∥∥∥2 + 3 ‖hm′ − hm∧m′‖2 + 3
∥∥∥hm∧m′ − ĥĜ

m∧m′

∥∥∥2 .
Relation (5.9) still holds for an other empirical process, and by applying Lemma 5.3, we have, for p = m′ or
p = m ∧m′ ‖hp − ĥĜ

p ‖2 = supt∈S(p) ν̃n(t)2, with, for t ∈ L2([0; 1]),

ν̃n(t) =
1
n

n∑
i=1

Yi

(
t ◦ Ĝn

)
(Xi) − E [Yi (t ◦G) (Xi)] .

We split ν̃n into ν̃n = νn +Rn, with

Rn(t) =
1
n

n∑
i=1

Yit(Ĝn(Xi) −G(Xi)).

This yields to ν̃2
n ≤ 2ν2

n + 2R2
n. If t belongs to S(p), t =

∑Dp

j=1 θjϕj with
∑Dp

j=1 θ
2
j = 1, so that

sup
t∈S(p)

R2
n(t) = sup

θ∈Rp∑
j θ2

j =1

⎛
⎝Dp∑

j=1

θj
1
n

n∑
i=1

Yiϕj(Ĝn(Xi) −G(Xi))

⎞
⎠

2

,

= sup
θ∈Rp∑
j θ2

j =1

⎛
⎝Dp∑

j=1

θj

(
âĜ

j − âG
j

)⎞⎠
2

=
Dp∑
j=1

(
âĜ

j − âG
j

)2

,

by using the same arguments as in the Proof of Lemma 5.3. Introducing the conditional expectation of âĜ
j − âG

j ,
we note that supt∈S(p)R

2
n(t) ≤ 2T p

1 + 2T p
3 . We obtain,∥∥∥hp − ĥĜ
p

∥∥∥2 ≤ 2 sup
t∈S(p)

(νn(t))2 + 4T p
1 + 4T p

3 ,

and thus, substracting V (m′) and taking expectation, this yields

E [A(m)] ≤ 6E

[
max

m′∈Mn

(
sup

t∈S(m′)
(νn(t))2 − V (m′)

24

)
+

]
+ 6E

[
max

m′∈Mn

(
sup

t∈S(m∧m′)
(νn(t))2 − V (m′)

24

)
+

]

+ 12E

[
max

m′∈Mn

(
Tm′

3 − V (m′)
48

)
+

]
+ 12E

[
max

m′∈Mn

(
Tm∧m′

3 − V (m′)
48

)
+

]

+ 12E

[
max

m′∈Mn

Tm′
1

]
+ 12E

[
max

m′∈Mn

Tm∧m′
1

]
+ 3 max

m′∈Mn

‖hm′ − hm∧m′‖2
.

The last term is denoted by Tm
c in (5.8) and proved to be bounded by 4 ‖hm − h‖2 (see the Proof of Lem. 5.4).

Moreover, applying Proposition 5.1 yields to

E

[
max

m′∈Mn

(
sup

t∈S(m′)
(νn(t))2 − p(m′)

)
+

]
≤ C

n
,

E

[
max

m′∈Mn

(
sup

t∈S(m∧m′)
(νn(t))2 − p(m′)

)
+

]
≤ C

n
,
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using −p(m′) ≤ −p(m ∧m′) (remember that p(m′) = Cφ2
0E
[
Y 2

1

]
Dm′/n). By gathering the last bounds, and

noting that the constant c′v (in the definition of V (m′)) can be chosen larger than the one of p(m′), we obtain
the result of Lemma 5.9.

5.3.5. Proof of Lemmas 5.5 to 5.8

In this section we state upper bounds for Tm
l , l = 1, . . . , 4 (see (5.16)). Recall that mmax is the index of the

largest model in the collection. Notice that Dmmax ≥ mmax, since we work with the trigonometric model. Recall
also that we denote by aj the Fourier coefficients of the function h, that is, hm =

∑Dm

j=1 ajϕj , where hm is the
orthogonal projection on the space Sm, m ∈ Mn.

The sketch of all the proof can be described by the following cases:

(A) some of the terms are less than CDm/n, under the constraint Dm ≤ Cn1/3/ ln(n), and so we do not need to
center them. For example, they involve expectations of form E[

∑Dm

j=1(ϕj(G(X1))−ϕj(Ĝn(X1)))2]. By using

a Taylor formula, we come down to terms of form
∑Dm

j=1(ϕ
(k)
j )2E[‖Ûn − id‖2k∞] (k an integer), and bound

them with inequality (5.13). This is the case for Tm
1 (Lem. 5.5), Tm

3 , first inequality (first part of Lem. 5.7),
and for some terms of the decomposition of Tm

4 (see Proof of Lem. 5.8);
(B) the other terms have to be centered to be negligible. There are then two possibilities:
(B1) the first one is to make emerge the supremum of an empirical process (with Lem. 5.3) and the to use

the Talagrand inequality (5.4). This is the case for a part of Tm
2 and Tm

3 (Lems. 5.6 and 5.7, second
inequality);

(B2) the second is to bound these terms by quantity of form C(Dm)‖Ûn − id‖k
∞ (k an integer, C(Dm) a

constant depending on Dm), and to use inequality (5.14) or (5.15).This is the case for the other parts of
Tm

2 and Tm
3 (Lems. 5.6 and 5.7, second inequality).

For sake of conciseness, we do not detail all of the proofs, especially the ones which follow a line already
described. However, the lector can find all the details in [13].

Proof of Lemma 5.5. Let us note that we can write

Tm′
1 =

∥∥∥∥∥∥
Dm′∑
j=1

(
âG

j − âĜ
j − E[âG

j − âĜ
j |(X−l)l]

)
(ϕj ◦G)

∥∥∥∥∥∥
2

g

.

As the functions ϕj are orthonormal, it becomes

Tm′
1 =

D′
m∑

j=1

(
âG

j − âĜ
j − E

[
âG

j − âĜ
j |(X−l)l

])2

.

This shows that Tm′
1 ≤ Tmmax

1 and E[maxm′ Tm′
1 ] ≤ E[Tmmax

1 ]. Thus it is sufficient to bound E[Tmmax
1 ]. Now,

E[Tmmax
1 |(X−l)l] =

∑Dmmax
j=1 Var(âG

j − âĜ
j |(X−l)l), where Var(.|(X−l)l) is the conditional variance with respect

to the sample (X−l)l∈{1,...,n} (we denote by a similar notation the conditional expectation in the sequel). We
work out it, for any index j ∈ {1, . . . , Dmmax},

Var
(
âG

j − âĜ
j |(X−l)l

)
=

1
n

Var
(
Y1

(
ϕj (G(X1)) − ϕj

(
Ĝn(X1)

))
|(X−l)l

)
,

≤ 1
n

E

[
f(X1)2

(
ϕj (G(X1)) − ϕj

(
Ĝn(X1)

))2

|(X−l)l

]

+
σ2

n
E

[(
ϕj (G(X1)) − ϕj

(
Ĝn(X1)

))2

|(X−l)l

]
.
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We use the mean value theorem: (ϕj(G(X1)) − ϕj(Ĝn(X1)))2 ≤ ‖ϕ′
j‖2∞‖G− Ĝn‖2∞. This leads to

E [Tmmax
1 |(X−l)l ] ≤

1
n

(
E
[
f2(X1)

]
+ σ2

)Dmmax∑
j=1

∥∥ϕ′
j

∥∥2
∞

∥∥∥G− Ĝn

∥∥∥2
∞
,

=
1
n

E
[
Y 2

1

]Dmmax∑
j=1

∥∥ϕ′
j

∥∥2

∞

∥∥∥Ûn − id
∥∥∥2
∞
.

The sum is bounded by Dmmax × (Dmmax‖ϕ′
2‖∞)2, and we apply inequality (5.13) with p = 2, to conclude

E[Tmmax
1 ] ≤ C2‖ϕ′

2‖2
∞E[Y 2

1 ]D3
mmax

/n2. �

Proof of Lemma 5.6. Begining with E[maxm′∈Mn(Tm′
2 − V2(m′))+] ≤ ∑m′∈Mn

E[(Tm′
2 − V2(m′))+], we have

just to study this quantity for each index m′. We write

Tm′
2 =

∫
[a;b]

(
ĥĜ

m′ (G(x)) − ĥĜ
m′

(
Ĝn(x)

)
− E

[
ĥĜ

m′ (G(x)) − ĥĜ
m′

(
Ĝn(x)

)
|(X−l)l

])2

g(x)dx,

=
∫

[0;1]

⎧⎨
⎩

Dm′∑
j=1

(
âĜ

j − E

[
âĜ

j |(X−l)l

])(
ϕj(u) − ϕj

(
Ûn(u)

))⎫⎬
⎭

2

du.

We use the Cauchy−Schwarz inequality, and by computations analogous of those of Lemma 5.5, we get

Tm′
2 ≤ ‖ϕ′

2‖2
∞D3

m′

∥∥∥Ûn − id
∥∥∥2
∞

Dm′∑
j=1

(
âĜ

j − E

[
âĜ

j |(X−l)l

])2

.

Thus, we have

E

[(
Tm′

2 − V2(m′)
)

+

]
≤ D3

m′ ‖ϕ′
2‖2

∞ E

⎡
⎣
⎛
⎝Dm′∑

j=1

(
âĜ

j − E

[
âĜ

j |(X−l)l

])2 ∥∥∥Ûn − id
∥∥∥2
∞

− κκ′

‖ϕ′
2‖2∞

Dm′

n2
ln2(n)

⎞
⎠

+

⎤
⎦ ,

≤ Tm′
2,a + Tm′

2,b ,

denoting by

Tm′
2,a = D3

m′ ‖ϕ′
2‖2

∞ E

⎡
⎣Dm′∑

j=1

(
âĜ

j − E

[
âĜ

j |(X−l)l

])2
(∥∥∥Ûn − id

∥∥∥2
∞

− κ′
ln(n)
n

)
+

⎤
⎦ ,

Tm′
2,b = D3

m′ ‖ϕ′
2‖2

∞ κ′
ln(n)
n

E

⎡
⎣
⎛
⎝Dm′∑

j=1

(
âĜ

j − E

[
âĜ

j |(X−l)l

])2

− κ

‖ϕ′
2‖2∞

Dm′

n
ln(n)

⎞
⎠

+

⎤
⎦ .

For the term Tm′
2,a , we obtain first

Tm′
2,a = D3

m′ ‖ϕ′
2‖2

∞

Dm′∑
j=1

E

[(
âĜ

j − E

[
âĜ

j |(X−l)l

])4
]1/2

E

[(∥∥∥Ûn − id
∥∥∥2
∞

− κ′
ln(n)
n

)2
]1/2

,

and bound roughly

Dm′∑
j=1

E

[(
âĜ

j − E

[
âĜ

j |(X−l)l

])4
]
≤ 16φ4

0E
[
Y 4

1

]
Dm′ .
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Gathering this bound with inequality (5.14) leads to,∑
m′∈Mn

Tm′
2,a ≤ C

∑
m′∈Mn

D4
m′n−1−κ′ ≤ Cn4/3−κ′ ≤ Cn−1

as soon as Dm′ ≤ Cn1/3 and for κ′ = 7/3. For the second term Tm′
2,b , thanks to Lemma 5.3, we notice first that∑Dm′

j=1

(
âĜ

j − E

[
âĜ

j |(X−l)l

])2

= supt∈S(m′) ν̄
2
n(t), with, for t ∈ L2([0; 1]),

ν̄n(t) =
1
n

n∑
i=1

Yit
(
Ĝn(Xi)

)
− E

[
Yit
(
Ĝn(Xi)

)
|(X−l)l

]
,

a process which is centered conditionally to the sample (X−l)l. We must now bound its deviations, exactly as we
bound the one of the process νn, in the Proof of Proposition 5.1, but conditionally to the variablesX−l. Let us just
recall the sketch of the proof: we split ν̄n in three parts, taking into account that Yi = f(Xi)+εi(1|ε|≤κn

+1|ε|>κn
).

We get thus three terms: the two main are bounded, and are hence controled with the Talagrand inequality (5.4).
We obtain finally, ∑

m′∈Mn

Tm′
2,b ≤ C

ln(n)
n

,

which completes the proof. �

Proof of Lemma 5.7, first inequality. The term E[Tm
3 ] requires more computations. Let us first notice that Tm

3 =∑Dm

j=1{
∫ 1

0 f(G−1(u))(ϕj(u) − ϕj(Ûn(u)))du}2. We apply Taylor formula with Lagrange form for the remainder
rest: there exists a random number depending on j, α̂j,n,u, such that the following splitting holds:

Tm
3 ≤ 3Tm

3,1 + 3Tm
3,2 + 3Tm

3,3, (5.17)

with notations

Tm
3,1 =

Dm∑
j=1

{∫ 1

0

h(u)
(
Ûn(u) − u

)
ϕ′

j(u)du
}2

,

Tm
3,2 = (1/4)

Dm∑
j=1

{∫ 1

0

h(u)
(
Ûn(u) − u

)2

ϕ′′
j (u)du

}2

,

Tm
3,3 = (1/6)

Dm∑
j=1

{∫ 1

0

h(u)
(
Ûn(u) − u

)3

ϕ
(3)
j (α̂j,n,u)du

}2

.

Writing the definition of Ûn(u), and noting that u = E[1Ui≤u] (i = 1, . . . , n), we get for the first term

Tm
3,1 =

Dm∑
j=1

(
1
n

n∑
i=1

Ai,j − E[Ai,j ]

)2

, with Ai,j =
∫ 1

Ui

h(u)ϕ′
j(u)du.

An integration by parts so as to compute Ai,j leads to

Tm
3,1 ≤ 2Tm

3,1,1 + 2Tm
3,1,2, (5.18)

with notations

Tm
3,1,1 =

Dm∑
j=1

{
1
n

n∑
i=1

h(Ui)ϕj(Ui) − E [h(Ui)ϕj(Ui)]

}2

,

Tm
3,1,2 =

Dm∑
j=1

{∫ 1

0

h′(u)
(
Ûn(u) − u

)
ϕj(u)du

}2

.

(5.19)
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The same study as the one done for Tm
1 gives

E
[
Tm

3,1,1

] ≤ 1
n

Dm∑
j=1

E

[
(h(U1)ϕj(U1))

2
]
≤ 1
n

∥∥∥∥∥∥
Dm∑
j=1

ϕ2
j

∥∥∥∥∥∥
∞

∫ 1

0

h(u)2du,

=
∫ 1

0

h(u)2duφ2
0

Dm

n
= φ2

0E[f(X1)2]
Dm

n
≤ φ2

0E[Y 2
1 ]
Dm

n
·

Besides, using definition and properties of the orthogonal projection on Sm,

Tm
3,1,2 =

Dm∑
j=1

(
〈h′(Ûn − id), ϕj〉

)2

=
∥∥∥ΠSm(h′(Ûn − id))

∥∥∥2 ≤ ‖h′‖2‖Ûn − id‖2
∞.

Concluding with inequality (5.13), p = 2, we obtain E[Tm
3,1,2] ≤ C2‖h′‖2/n. Hence,

E
[
Tm

3,1

] ≤ 2
(
C2‖h′‖2 1

n
+ φ2

0E[Y 2
1 ]
Dm

n

)
≤ C

Dm

n
·

Let us deal with Tm
3,2. We notice that for any j ≥ 2, ϕ′′

j = −(πμj)2ϕj , with μj = j for even j, and μj = j − 1
for odd j. Consequently,

E
[
Tm

3,2

]
= (π4/4)E

⎡
⎣Dm∑

j=1

{∫ 1

0

h(u)
(
Ûn(u) − u

)2

μ2
jϕj(u)du

}2
⎤
⎦ ,

≤ (π4/4)D4
mE

⎡
⎣Dm∑

j=1

{∫ 1

0

h(u)
(
Ûn(u) − u

)2

ϕj(u)du
}2
⎤
⎦ ,

= (π4/4)D4
mE

⎡
⎣Dm∑

j=1

{〈
h
(
Ûn − id

)2

, ϕj

〉}2
⎤
⎦ .

Proceeding as in the term T3,1,2, we get E[Tm
3,2] ≤ C4(π4/4)‖h‖2D4

m/n
2. Last, we bound roughly

E
[
Tm

3,3

] ≤ (1/6)
Dm∑
j=1

∥∥∥ϕ(3)
j

∥∥∥2
∞

‖h‖2
E

[∥∥∥Ûn − id
∥∥∥6
∞

]
≤ C6

6

∥∥∥ϕ(3)
2

∥∥∥2
∞

‖h‖2D
7
m

n3
·

Finally, we gather the three bounds for E[T3,l], l = 1, 2, 3, to end the proof of the inequality. �

Proof of Lemma 5.7, second inequality. Let us begin with V3(pm′) ≤ V3(m′). Therefore E[maxm′∈Mn(T pm′ ,b
3 −

V3(m′))+] ≤ E[maxm′∈Mn(T pm′ ,b
3 − V3(pm′))+]. In the sequel, we simplify the notations by setting p = pm′ . As

previously, we get T p,b
3 ≤ 6T p

3,1,1 + 6T p
3,1,2 + 3T p

3,2 + 3T p
3,3. Thus

E

[
max

m′∈Mn

(
T p,b

3 − V3(p)
)

+

]
≤ E

[
max

m′∈Mn

(
6T p

3,1,1 − V3(p)/3
)
+

]
+ E

[
max

m′∈Mn

6T p
3,1,2

]
(5.20)

+ E

[
max

m′∈Mn

(
3T p

3,2 − V3(p)/3
)
+

]

+ E

[
max

m′∈Mn

(
3T p

3,3 − V3(p)/3
)
+

]
.
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The term that we have not centered is directly negligible: its definition (see (5.19)) proves that T p
3,1,2 ≤ Tmmax

3,1,2 ,
thus we obtain

E

[
max

m′∈Mn

6T p
3,1,2

]
≤ C

n
· (5.21)

It remains to bound the three other terms. Let us distinguish T p
3,1,1 of the two others: Equality (5.9) and

Lemma 5.3 lead to T p
3,1,1 = supt∈S(p)(ν

(1)
n (t))2, for the process defined by

ν(1)
n (t) =

1
n

n∑
i=1

f(Xi) (t ◦G) (Xi) − E [f(Xi) (t ◦G) (Xi)] .

Thus we apply Talagrand inequality (5.4), as in the Proof of Proposition 5.1. The useful quantities are the
following:

M
(1)
1 = φ0‖f‖∞

√
Dp,

(
H(1)

)2

=
Dp

n
E
[
f2(X1)

]
φ2

0, v
(1) = ‖f‖2

∞.

We have again

E

[
max

m′∈Mn

(
6T p

3,1,1 − V3,1,1(p)
)
+

]
≤ C

n
, (5.22)

with V3,1,1(p) = 6 × 2(1 + 2δ)E
[
f2(X1)

]
φ2

0Dp/n. But as

V3,1,1(p) ≤ 12(1 + 2δ)E
[
Y 2

1

]
φ2

0

Dp

n
:= V bis

3,1,1(p),

the result holds with V bis
3,1,1.

For the two other terms, the strategy is the one described in (B2) (beginning of this section).

For example, using T p
3,2 ≤ (π4/4)‖h‖2D4

p

∥∥∥Ûn − id
∥∥∥4
∞

implies, for V3,2(p) = κD4
p ln2(n)/n2,

E

[(
3T p

3,2 − V3,2(p)
)
+

]
≤ (3π4/4)‖h‖2D4

pE

[(∥∥∥Ûn − id
∥∥∥4
∞

− κ

(3π4/4)‖h‖2

ln2(n)
n2

)
+

]
,

≤ CD4
pn

−κ
1/2
b

2−1/2
, (5.23)

for κb = κ/(3π4/4)‖h‖2. Thus, if Dp ≤ Cn1/3,

E

[
max

m′∈Mn

(
3T p

3,2 − V3,2(p)
)
+

]
≤ Cn× n4/3 × n−κ

1/2
b

2−1/2
.

The choice of κ = 50π4/3‖h‖2 leads successively to κb ≥ 200/9, and to 7/3 −√κb/2 ≤ −1, so that the last
upper-bound is O(1/n). If Dp ≤ Cn1/3/ ln(n), we have

V3,2(p) ≤ 50π4/3E
[
Y 2

1

] Dp

n
:= V bis

3,2 (p),

which can also be used. We do not detail the control for the term Tm
3,3. Similarly, we get

E

[
max

m′∈Mn

(
3T p

3,3 − V bis
3,3 (p)

)
+

]
≤ C/n, (5.24)

with V bis
3,3 (p) = (133 × 2/27)‖ϕ(3)

2 ‖2
∞E
[
Y 2

1

]
Dp/n. We conclude the Proof of Lemma 5.7 by gathering inequal-

ities (5.21)–(5.24), in the bound (5.20), and choosing the constant k3 such that V3 ≥ 3V bis
3,1,1, V3 ≥ 3V bis

3,2 , and
V3 ≥ 3V bis

3,3 . �
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Proof of Lemma 5.8. The sketch of the proof is the same as the proof of the second inequality of Lemma 5.7.
We split

Tm′
4 ≤ 4Tm′

4,1,1 + 4Tm′
4,1,2 + 2Tm′

4,2,1 + 2Tm′
4,2,2 + 2Tm′

4,2,3, (5.25)

where the different terms are defined below, and thus,

E

[
max

m′∈Mn

(
Tm′

4 − V4(m′)
)

+

]
≤ E

[
max

m′∈Mn

(
4Tm′

4,1,1 − V4(m′)/3
)

+

]
+ E

[
max

m′∈Mn

(
4Tm′

4,1,2 − V4(m′)/3
)

+

]

+ E

[
max

m′∈Mn

(
2Tm′

4,2,3 − V4(m′)/3
)

+

]
+ E

[
max

m′∈Mn

2Tm′
4,2,1

]
+ E

[
max

m′∈Mn

2Tm′
4,2,2

]
.

We show that the two terms which we have not centered are negligible (less than C ln(n)/n) if Dmmax = O(n1/3).
For the three others we apply the strategy (B2). Let us only detail how Tm′

4 is split, and the bounds for each
T4,l. First,

Tm′
4 =

∥∥∥∥∥∥E
⎡
⎣Dm′∑

j=1

âĜ
j

(
(ϕj ◦G) − (ϕj ◦ Ĝn)

)
|(X−l)l

⎤
⎦
∥∥∥∥∥∥

2

g

,

≤ 2

∥∥∥∥∥∥E
⎡
⎣Dm′∑

j=1

(âĜ
j − aj)

(
(ϕj ◦G) − (ϕj ◦ Ĝn)

)
|(X−l)l

⎤
⎦
∥∥∥∥∥∥

2

g

+ 2

∥∥∥∥∥∥E
⎡
⎣Dm′∑

j=1

aj

(
(ϕj ◦G) − (ϕj ◦ Ĝn)

)
|(X−l)l |

⎤
⎦
∥∥∥∥∥∥

2

g

:= 2Tm′
4,1 + 2Tm′

4,2 .

Then,

Tm′
4,1 ≤

∫
[a;b]

E

⎡
⎣Dm′∑

j=1

(
âĜ

j − aj

)2
Dm′∑
j=1

(
ϕj(G(x)) − ϕj(Ĝn(x))

)2

|(X−l)l

⎤
⎦ g(x)dx,

= E

⎡
⎣Dm′∑

j=1

(
âĜ

j − aj

)2
Dm′∑
j=1

∫
[0;1]

(
ϕj(u) − ϕj(Ûn(u))

)2

du |(X−l)l

⎤
⎦ ,

≤ 2Tm′
4,1,1 + 2Tm′

4,1,2,

with

Tm′
4,1,1 =

∫
[0;1]

E

⎡
⎣
⎧⎨
⎩

Dm′∑
j=1

(
âĜ

j − E

[
âĜ

j |(X−l)l

])2

⎫⎬
⎭
⎧⎨
⎩

Dm′∑
j=1

(
ϕj(u) − ϕj(Ûn(u))

)2

⎫⎬
⎭ |(X−l)l

⎤
⎦ du,

Tm′
4,1,2 =

∫
[0;1]

E

⎡
⎣
⎧⎨
⎩

Dm′∑
j=1

(
E

[
âĜ

j |(X−l)l

]
− aj

)2

⎫⎬
⎭
⎧⎨
⎩

Dm′∑
j=1

(
ϕj(u) − ϕj(Ûn(u))

)2

⎫⎬
⎭ |(X−l)l

⎤
⎦ du.
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Moreover, Tm′
4,2 = ‖∑Dm′

j=1 aj((ϕj ◦G) − (ϕj ◦ Ĝn))‖2
g, so

E

[
Tm′

4,2

]
≤ E

⎡
⎢⎣
∥∥∥∥∥∥

Dm′∑
j=1

aj

(
(ϕj ◦G) − (ϕj ◦ Ĝn)

)∥∥∥∥∥∥
2

g

⎤
⎥⎦ , (5.26)

= E

⎡
⎣ Dm′∑

j,k=1

ajak

∫ 1

0

(ϕj(u) − ϕj ◦ Ûn(u))(ϕk(u) − ϕk ◦ Ûn(u))du

⎤
⎦ .

This yields, with Taylor formula, E[Tm′
4,2 ] ≤ E[Tm′

4,2,1 + Tm′
4,2,2 + Tm′

4,2,3], with

Tm′
4,2,1 =

Dm′∑
j,k=1

ajak

∫ 1

0

(u − Ûn(u))2ϕ′
j(u)ϕ′

k(u)du,

Tm′
4,2,2 = (1/4)

Dm′∑
j,k=1

ajak

∫ 1

0

(u − Ûn(u))4ϕ′′
j (α̂j,n,u)ϕ′′

k(α̂k,n,u)du,

Tm′
4,2,3 =

Dm′∑
j,k=1

ajak

∫ 1

0

(u − Ûn(u))3ϕ′′
j (α̂j,n,u)ϕ′

k(u)du,

recalling that al = 〈h, ϕl〉. This explains the decomposition (5.25). Let us now bound each term. The first one
is

Tm′
4,1,1 =

Dm′∑
j=1

Var
(
âĜ

j |(X−l)l

) ∫
[0;1]

Dm′∑
j=1

(
ϕj(u) − ϕj(Ûn(u))

)2

du,

which is bounded using the mean value theorem:

Tm′
4,1,1 ≤

Dm′∑
j=1

Var
(
âĜ

j |(X−l)l

)
D3

m‖ϕ′
2‖2

∞
∥∥∥Ûn − id

∥∥∥2
∞
.

As

Var
(
âĜ

j | (X−l)l

)
=

1
n

Var
{
Y1ϕj

(
Ĝn(X1)

)
| (X−l)l

}
,

≤ 1
n
‖ϕj‖2

∞
(
E
[
f2(X1)

]
+ σ2

)
=

1
n
‖ϕj‖2

∞ E
[
Y 2

1

]
,

we obtain
Tm′

4,1,1 ≤ φ2
0E
[
Y 2

1

] Dm′

n
×D3

m′‖ϕ′
2‖2

∞
∥∥∥Ûn − id

∥∥∥2
∞
, (5.27)

which allows us to conclude that as announced, E[maxm′∈Mn

(
4Tm′

4,1,1 − V4(m′)/3
)

+
] ≤ C/n, by inequal-

ity (5.14). The second term can be written

Tm′
4,1,2 = Tm′

3

∫
[0;1]

Dm′∑
j=1

(
ϕj(u) − ϕj(Ûn(u))

)2

du,

and again by the mean value theorem Tm′
4,1,2 ≤ Tm′

3 D3
m′‖ϕ′

2‖2∞‖Ûn− id‖2∞. We replace Tm′
3 by its detailed bound

which we obtain by gathering inequalities (5.17) and (5.18):

Tm′
3 ≤ 6Tm′

3,1,1 + 6Tm′
3,1,2 + 3Tm′

3,2 + 3Tm′
3,3 .
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This leads to Tm′
4,1,2 ≤ ∑4

l=1 T
m′
4,1,2,l, and then Tm′

4,1,2,l ≤ C‖Ûn − id‖pl∞ (pl an integer), so that we can use the
method (B2), for each of this four terms. As announced, the terms Tm′

4,2,1 and Tm′
4,2,2 do not require to be centered:

first,

Tm′
4,2,1 =

∫ 1

0

(u− Ûn(u))2
{(
ΠSm′ (h)

)′ (u)
}2

du,

=
∫ 1

0

(u− Ûn(u))2
{
ΠSm′ (h′)(u)

}2 du,

≤
∥∥∥Ûn − id

∥∥∥2
∞

∥∥ΠSm′ (h′)
∥∥2 ≤

∥∥∥Ûn − id
∥∥∥2
∞

‖h′‖2
,

so that E[maxm′∈Mn T
m′
4,2,1] ≤ C2‖h′‖2/n. Then, notice that Tm′

4,2,2 = (1/4)E[
∫ 1

0
(u − Ûn(u))4(

∑Dm′
j=1 ajϕ

′′
j

(α̂j,n,u))2du], we bound the Fourier’s coefficients of the function h. To that end, we introduce the real numbers
μj , for j ∈ {1, . . . , Dm}, defined by μj = j if j is even, μj = j − 1 otherwise. We obtain:

⎛
⎝Dm′∑

j=1

ajϕ
′′
j (α̂j,n,u)

⎞
⎠

2

= ‖ϕ′′
2‖2

∞

⎛
⎝Dm′∑

j=1

ajμ
2
j

⎞
⎠

2

≤ ‖ϕ′′
2‖2

∞

⎛
⎝Dm′∑

j=1

a2
jμ

2
j

⎞
⎠Dm′∑

j=1

μ2
j .

The function h belongs to the Sobolev space W 2,1
per(L), because h(0) = h(1), h belongs to C1([0; 1]), and ‖h‖2 =

‖f‖2
g ≤ L2. Thus we use Lemma A.3 (p. 162) from Tsybakov [30]: the sequence (aj)j belongs to the ellipsoid

Θ(1, L2/π2), so

Tm′
4,2,2 ≤ CE

[∥∥∥Ûn − id
∥∥∥4
∞
D3

m′

]
≤ CE

[∥∥∥Ûn − id
∥∥∥2
∞
D3

mmax

]
≤ C

D3
mmax

n2
·

Following the same line of computations, we write,

Tm′
4,2,3 = E

⎡
⎣∫ 1

0

(u − Ûn(u))3

⎛
⎝Dm′∑

j=1

ajϕ
′′
j (α̂j,n,u)

⎞
⎠
⎛
⎝Dm′∑

k=1

akϕ
′
k(u)

⎞
⎠du

⎤
⎦ ,

and bound as follows, for u ∈ [0; 1]∣∣∣∣∣∣
Dm′∑
j=1

ajϕ
′′
j (α̂j,n,u)

∣∣∣∣∣∣ ≤ ‖ϕ′′
2‖∞

L

π
D

3/2
m′ ,

∣∣∣∣∣∣
Dm′∑
k=1

akϕ
′
k(u)

∣∣∣∣∣∣ ≤ ‖ϕ′
2‖∞

L

π
D

1/2
m′ .

Consequently, Tm′
4,2,3 ≤ E[‖Ûn − id‖3

∞D
2
m′ ], and we apply again the usual tools to end the proof. �
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