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POTENTIALS OF A MARKOV PROCESS ARE EXPECTED SUPREMA ∗
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Abstract. Expected suprema of a function f observed along the paths of a nice Markov process define
an excessive function, and in fact a potential if f vanishes at the boundary. Conversely, we show under
mild regularity conditions that any potential admits a representation in terms of expected suprema.
Moreover, we identify the maximal and the minimal representing function in terms of probabilistic
potential theory. Our results are motivated by the work of El Karoui and Meziou (2006) on the max-
plus decomposition of supermartingales, and they provide a singular analogue to the non-linear Riesz
representation in El Karoui and Föllmer (2005).
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1. Introduction

For a nice Markov process such as Brownian motion on a bounded domain of IRd, we consider the excessive
function u defined by the expected suprema

u(x) := Ex

[
sup

0<t<ζ
f(Xt)

]
(1)

of some function f ≥ 0 observed along the paths of the process up to its life time ζ. The function u is excessive,
and it is in fact a potential if f(Xt) converges to zero as t ↑ ζ. Conversely, we show under mild regularity
conditions that any potential u admits a representation of the form (1) in terms of expected suprema.

In general, the representing function f is not uniquely determined by u. We show that the maximal repre-
senting function is given by

Du(x) := inf
u(x) − PT u(x)

Px[T = ζ]
,

where the infimum is taken over all exit times T from open neighborhoods of x such that Px[T = ζ] > 0. On
the other hand, the minimal representing function is identified as

Du 1Hc ,
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where H is the set of points x such that u is harmonic in some neighborhood of x.

Our discussion of the existence problem is motivated by the work of El Karoui and Meziou [7] and El Karoui [5]
which involves a representation of a given supermartingale as a process of conditional expected suprema of
some other process. Such a representation is of considerable interest, as illustrated by the financial applications
discussed in [7]. Here we translate some of the key arguments in [5] into the setting of probabilistic potential
theory. This is analogous to the non-linear Riesz representation

u(x) = Ex

[∫ ζ

0

sup
0≤s≤t

f(Xs) dt

]
(2)

in El Karoui and Föllmer [6] which can be seen as a special case of a general representation theorem due to
Bank and El Karoui [1]; see also Bank and Föllmer [2] for a survey. In the Markovian setting, both (1) and (2)
may be viewed as special cases of a representation

u(x) = Ex

[∫ ζ

0

sup
0≤s≤t

f(Xs) dAt

]

with respect to a given additive functional (At)t≥0 of the underlying Markov process. Indeed, in (2) the additive
functional is given by At = t ∧ ζ, and in (1) it corresponds to the random measure δζ . So far, representation
results with respect to additive functionals are only available under strong regularity assumptions which exclude
the singular random measure δζ ; cf. Knispel [8] for a discussion in the Markovian setting, where the random
measure dAt satisfies the conditions described in Remark 1.1 of Bank and El Karoui [1]. For this reason it
seems useful to prove the existence of a representation for the case of the random measure δζ in the context
of probabilistic potential theory. Moreover, the present paper contains new results related to the uniqueness
problem which involve the harmonic points of the function u.

2. Preliminaries

Let (Xt)t≥0 be a strong Markov process with locally compact metric state space (S, d), shift operators
(θt)t≥0, and life time ζ, defined on a stochastic base (Ω,F , (Ft)t≥0, (Px)x∈S). As in El Karoui and Föllmer [6]
we introduce an Alexandrov point ∆ and use the following assumptions:

A1) The process (Xt)t≥0 is a Hunt process in the sense of [3] XVI.11 such that limt↑ζ Xt = ∆.
A2) The excessive functions of the process are lower-semicontinuous.

As a typical example, we could consider a Brownian motion on a bounded domain S ⊂ IRd.

Let us denote by T (x) the class of all exit times

TUc := inf{t ≥ 0|Xt �∈ U} ∧ ζ

from open neighborhoods U of x ∈ S, and by T0(x) the subclass of all exit times from open neighborhoods of x
which are relatively compact. Note that ζ = TSc ∈ T (x).

For a measurable function u ≥ 0 on S and a stopping time T we use the notation

PT u(x) = Ex[u(XT ); T < ζ].

Recall that u is excessive if Ptu ≤ u for any t > 0 and limt↓0 Ptu(x) = u(x) for any x ∈ S.
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Definition 2.1. An excessive function u ≥ 0 will be called a potential of class (D) if, for any x ∈ S,

lim
t↑ζ

u(Xt) = 0 Px − a.s., (3)

and the family
{u(XT )|T ∈ T0(x)} is uniformly integrable with respect to Px. (4)

Proposition 2.1. Let f ≥ 0 be an upper-semicontinuous function on S. Then the function u on S defined by
the expected suprema

u(x) := Ex

[
sup

0<t<ζ
f(Xt)

]
is excessive, hence lower-semicontinuous. Moreover, u is a potential of class (D) if and only if f satisfies the
conditions

sup
0<t<ζ

f(Xt) ∈ L1(Px) (5)

and
lim
t↑ζ

f(Xt) = 0 Px − a.s. (6)

for any x ∈ S.

Proof. 1) Upper-semicontinuity of f ensures that sup0<t<ζ f(Xt) is measurable, and so u is well defined as a
measurable function on S. Since

Ptu(x) = Ex

[
EXt

[
sup

0<s<ζ
f(Xs)

]
; t < ζ

]
= Ex

[
Ex

[
sup

t<s<ζ
f(Xs)|Ft

]
; t < ζ

]
= Ex

[
sup

t<s<ζ
f(Xs); t < ζ

]
,

we see that Ptu(x) ≤ u(x) and, by monotone convergence, limt↓0 Ptu(x) = u(x) for any x ∈ S, i.e., u is excessive.

2) Suppose that f satisfies the conditions (5) and (6). Then u is finite on S. Recall that limt↑ζ u(Xt) ex-
ists Px − a.s . for any excessive function u. Take Tn as the exit time from Un, where (Un)n∈IN is a sequence of
relatively compact open neighborhoods of x increasing to S. Since 0 ≤ sup0<t<ζ f(Xt) ∈ L1(Px),

0 ≤ lim
n↑∞

u(XTn) = lim
n↑∞

Ex

[
sup

Tn<s<ζ
f(Xs)|FTn

]
≤ lim

n↑∞
Ex

[
sup

Tn0<s<ζ
f(Xs)|FTn

]
= sup

Tn0<s<ζ
f(Xs) Px − a.s.

for any n0 due to the martingale convergence theorem, hence limt↑ζ u(Xt) = 0 Px − a.s. in view of our assump-
tion (6) on f . Moreover, {u(XT )|T ∈ T0(x)} is uniformly integrable with respect to Px since

0 ≤ u(XT ) = Ex

[
sup

T<t<ζ
f(Xt)|FT

]
≤ Ex

[
sup

0<t<ζ
f(Xt)|FT

]
.

Thus u is a potential of class (D). Conversely, if u is a potential of class (D) then u(x) < ∞ due to condition (4),
since u(x) ≤ limn↑∞ u(XTεn

) for the exit times Tεn ∈ T0(x) from the open balls Uεn(x), where εn ↓ 0. Thus f
satisfies condition (5). Moreover, (6) follows from

lim
t↑ζ

f(Xt) = lim
n↑∞

sup
Tn<s<ζ

f(Xs) = lim
n↑∞

Ex

[
sup

Tn<s<ζ
f(Xs)|FTn

]
= lim

n↑∞
u(XTn) = 0 Px − a.s.,

where the second identity is obtained by a martingale convergence argument. �
Our purpose is to show that, conversely, any potential of class (D) admits a representation of the form (1)

in terms of some upper-semicontinuous function f satisfying the conditions (5) and (6).
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3. Existence of a representing function

Let u be a potential of class (D). In order to avoid additional technical difficulties, we also assume that u is
continuous. For convenience we introduce the notation uc := u ∨ c.

As a first step in our construction of a function f such that u can be represented in the form (1), we con-
sider the family of optimal stopping problems

Ruc(x) := sup
T∈T0(x)

Ex [uc(XT )] (7)

for c ≥ 0 and x ∈ S. Note that

uc(x) ≤ Ruc(x) = sup
T∈T0(x)

(Ex[u(XT ); u(XT ) ≥ c] + cPx[u(XT ) < c]) ≤ u(x) + c < ∞

for any x ∈ S.
It is well known that the value function Ruc of the optimal stopping problem (7) can be characterized

as the smallest excessive function dominating uc; see, for example [9], Theorem III.1. In particular, Ruc is
lower-semicontinuous due to our assumption A2). Moreover,

Ruc(x) ≥ Ex [uc(XT ); T < ζ] + cPx[T = ζ] (8)

for any stopping time T ≤ ζ, and equality holds for the first entrance time Dc
0 into the set {Ruc = uc}; cf. for

example [4], Theorem 2.76, or the proof of Lemma 4.1 in [6]. Redefining Dc
0 as ζ on {Dc

0 < ζ, u(XDc
0
) < c}, we

can rewrite the equality as
Ruc(x) = Ex [uc(XDc); Dc < ζ] + cPx [Dc = ζ] , (9)

where
Dc := inf{t ≥ 0 | Xt ∈ A(c)} ∧ ζ

is the first entrance time into the set
A(c) := {Ruc = u}.

Note that A(c) is closed since Ruc is lower-semicontinuous and u is assumed to be continuous.

We are now going to study the dependence of Ruc(x) and of Dc on the parameter c, in analogy to the discussion
in El Karoui and Föllmer [6].

Lemma 3.1. For any x ∈ S, Ruc(x) is increasing, convex and Lipschitz-continuous in c, and

lim
c↑∞

(Ruc(x) − c) = 0. (10)

Moreover, the map c �→ Dc is increasing and Px − a.s. left-continuous.

Proof. 1) Since c �→ uc(x) = u(x)∨c is an increasing and convex function which satisfies uc(x) ≤ ua(x)+|c−a| for
a, c ≥ 0, monotonicity, convexity and Lipschitz-continuity of c �→ Ruc(x) follow immediately from definition (7).
Moreover,

0 ≤ lim
c↑∞

(Ruc(x) − c) ≤ lim
c↑∞

sup
T∈T0(x)

Ex [u(XT ); u(XT ) > c] = 0

due to our assumption (4) on u.
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2) By monotonicity of the mapping c �→ Ruc the sets A(c) decrease in c, and so the stopping times Dc are
increasing in c. In order to prove the left-continuity of c �→ Dc, we fix an arbitrary c > 0 and a strictly increasing
sequence (cn)n∈IN converging to c. Clearly,

D∗ := lim
n↑∞

Dcn ≤ Dc ≤ ζ.

Let us verify the converse inequality Dc ≤ D∗ Px − a.s. By monotonicity of Ruc(x) in c we obtain the estimate

0 ≤ (Rucn − u)(x) ≤ (Rucn+m − u)(x)

for any x ∈ S, hence

0 ≤ (Rucn − u)(XDcn+m ) ≤ (Rucn+m − u)(XDcn+m ) = 0 on {D∗ < ζ}

since A(cn+m) is closed. By quasi-left-continuity of our Hunt process (Xt)t≥0 and by lower-semicontinuity of
Rucn we get

0 ≤ (Rucn − u)(XD∗) ≤ lim
m↑∞

(Rucn − u)(XDcn+m ) = 0 Px − a.s. on {D∗ < ζ},

hence
(Ruc − u)(XD∗) = lim

n↑∞
(Rucn − u)(XD∗) = 0 Px − a.s. on {D∗ < ζ}

by continuity of Ruc in c. This shows Dc ≤ D∗ Px − a.s. on {D∗ < ζ}, and clearly we have D∗ = Dc on
{D∗ = ζ}. �
The function c �→ Ruc(x) is convex, hence almost everywhere differentiable. The properties of the optimal
stopping times Dc allow us to determine the derivatives explicitly.

Lemma 3.2. The derivative ∂−Ruc(x) from the left-hand side of Ruc(x) with respect to c > 0 is given by

∂−Ruc(x) = Px [Dc = ζ] .

Proof. For any 0 ≤ a < c, the representation (9) for the parameter c combined with the inequality (8) for the
parameter a and for the stopping time T = Dc implies

Ruc(x) − Rua(x) ≤ Ex [uc(XDc) − ua(XDc); Dc < ζ] + (c − a)Px [Dc = ζ] .

Since
u(XDc) = Ruc(XDc) ≥ c > a on {Dc < ζ},

the previous estimate simplifies to

Ruc(x) − Rua(x) ≤ (c − a)Px [Dc = ζ] .

This shows ∂−Ruc(x) ≤ Px[Dc = ζ]. In order to prove the converse inequality, we use the estimate

Ruc(x) − Rua(x) ≥ (c − a)Px [Da = ζ]

obtained by reversing the role of a and c in the preceding argument. Moreover, Lipschitz-continuity of c →
Ruc(x) yields ∪a<c{Da = ζ} = {Dc = ζ} and this implies

∂−Ruc(x) ≥ lim
a↑c

Px[Da = ζ] = Px[Dc = ζ]. �
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Let us now introduce the function f∗ defined by

f∗(x) := sup{c|x ∈ A(c)} (11)

for any x ∈ S. Note that f∗(x) ≥ c is equivalent to Ruc(x) = u(x) due to the continuity of Ruc(x) in c.

Lemma 3.3. The function f∗ is upper-semicontinuous and satisfies 0 ≤ f∗ ≤ u. Moreover, limt↑ζ f∗(Xt) = 0
Px − a.s. for any x ∈ S.

Proof. In order to show that f∗ is upper-semicontinuous, we consider a sequence (xn)n∈IN converging to x such
that limn↑∞ f∗(xn) = c > 0. Then xn ∈ A(cn) for some sequence (cn)n∈IN such that cn ↑ c. Since the decreasing
sets A(cn) are closed, we obtain x ∈ A(cn) for any n, hence f∗(x) ≥ c. The estimate 0 ≤ f∗(x) ≤ u(x) follows
from Ru0 = u and Ruc(x) ≥ uc(x) > u(x) for any c > u(x). Moreover, f∗(Xt) converges to zero as t ↑ ζ since
f∗ ≤ u, due to our assumption (3) on u. �

We are now ready to derive a representation of the value functions Ruc in terms of the function f∗.

Theorem 3.1. For any c ≥ 0 and any x ∈ S,

Ruc(x) = Ex

[
sup

0≤t<ζ
f∗(Xt) ∨ c

]
= Ex

[
sup

0<t<ζ
f∗(Xt) ∨ c

]
. (12)

Proof. By Lemma 3.2 and (10) we get

Ruc(x) − c =
∫ ∞

c

− ∂
∂α (Ruα(x) − α) dα =

∫ ∞

c

Px [Dα < ζ] dα.

Since
{Dc+ε < ζ} ⊆ { sup

0≤t<ζ
f∗(Xt) > c} ⊆ {Dc < ζ}

for any c ≥ 0 and for any ε > 0,

Ruc(x) − c =
∫ ∞

c

Px [Dα < ζ] dα ≥
∫ ∞

c

Px

[
sup

0≤t<ζ
f∗(Xt) > α

]
dα

≥
∫ ∞

c

Px

[
Dα+ε < ζ

]
dα = Ruc+ε(x) − (c + ε).

By continuity of c �→ Ruc we obtain

Ruc(x) − c ≥
∫ ∞

c

Px

[
sup

0≤t<ζ
f∗(Xt) > α

]
dα ≥ lim

ε↓0
(Ruc+ε(x) − (c + ε)) = Ruc(x) − c,

hence

Ruc(x) =
∫ ∞

c

Px

[
sup

0≤t<ζ
f∗(Xt) > α

]
dα + c = Ex

[
sup

0≤t<ζ
f∗(Xt) − sup

0≤t<ζ
f∗(Xt) ∧ c + c

]

= Ex

[
sup

0≤t<ζ
f∗(Xt) ∨ c

]
.
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Moreover, we can conclude that

Ruc(x) = lim
t↓0

Pt(Ruc)(x) = lim
t↓0

Ex

[
sup

t≤s<ζ
f∗(Xs) ∨ c; t < ζ

]
= Ex

[
sup

0<s<ζ
f∗(Xs) ∨ c

]

since Ruc is excessive, i.e., Ruc(x) also admits the second representation in equation (12). �
As a corollary we see that f∗ is a representing function for u.

Corollary 3.1. The potential u admits the representations

u(x) = Ex

[
sup

0≤t<ζ
f∗(Xt)

]
= Ex

[
sup

0<t<ζ
f∗(Xt)

]
(13)

in terms of the upper-semicontinuous function f∗ ≥ 0 defined by (11). Moreover,

f∗(x) ≤ sup
0<t<ζ

f∗(Xt) Px − a.s.

for any x ∈ S.

Proof. Note that u = Ru0 since u is excessive. Applying Theorem 3.1 with c = 0 we obtain

u(x) = Ru0(x) = Ex

[
sup

0≤t<ζ
f∗(Xt)

]
= Ex

[
sup

0<t<ζ
f∗(Xt)

]
.

In particular we get
sup

0≤t<ζ
f∗(Xt) = sup

0<t<ζ
f∗(Xt) Px − a.s.,

and this implies f∗(x) ≤ sup0<t<ζ f∗(Xt) Px − a.s. for any x ∈ S. �
We have thus shown that u admits a representing function which is regular in the following sense:

Definition 3.1. Let us say that a nonnegative function f on S is regular if it is upper-semicontinuous and
satisfies the conditions

lim
t↑ζ

f(Xt) = 0 Px − a.s.

and
f(x) ≤ sup

0<t<ζ
f(Xt) Px − a.s. (14)

for any x ∈ S.

Note that a regular function f also satisfies the inequality

f(XT ) ≤ sup
T<t<ζ

f(Xt) Px − a.s. on {T < ζ} (15)

for any stopping time T , due to the strong Markov property.

Let us now derive an alternative description of the representing function f∗ in terms of the given excessive
function u. To this end, we introduce the superadditive operator

Du(x) := inf
u(x) − PT u(x)

Px[T = ζ]
,

where the infimum is taken over all exit times T from open neighborhoods of x such that Px[T = ζ] > 0.
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Proposition 3.1. The functions f∗ and Du coincide. In particular x �→ Du(x) is regular on S.

Proof. If f∗(x) > c then Ruc(x) = u(x), and in view of (8) this implies

u(x) − PT u(x) = Ruc(x) − Ex[u(XT ); T < ζ]
≥ cPx[T = ζ] + Ex [uc(XT ); T < ζ] − Ex[u(XT ); T < ζ]
≥ cPx[T = ζ]

for any T ∈ T (x). Thus Du(x) ≥ c, and this yields f∗(x) ≤ Du(x). In order to prove the converse inequality,
we take c > 0 such that f∗(x) < c and define Tc ∈ T (x) as the first exit time from the open neighborhood
{f∗ < c} of x. Then

u(x) < Ruc(x) = Ex

[
sup

0≤t<ζ
f∗(Xt) ∨ c

]
= cPx[Tc = ζ] + Ex

[
sup

Tc≤t<ζ
f∗(Xt); Tc < ζ

]
= cPx[Tc = ζ] + PTcu(x).

Since u is excessive, this yields
0 ≤ u(x) − PTcu(x) < cPx[Tc = ζ]

and in particular Px[Tc = ζ] > 0, hence Du(x) < c. This shows Du(x) ≤ f∗(x). �

4. The minimal and the maximal representing function

In this section we discuss the question to which extent a representing function f is determined by the given
excessive function u. For this purpose we introduce the notation

P̃T g(x) := Ex[g(XT ); T < ζ] + Ex[lim
t↑ζ

g(Xt); T = ζ].

Note that
P̃T uc(x) := Ex [uc(XT ); T < ζ] + cPx[T = ζ]

for any c ≥ 0 due to condition (4).

Theorem 4.1. Suppose that u admits the representation

u(x) = Ex[ sup
0<t<ζ

f(Xt)]

for any x ∈ S, where f is regular on S. Then f satisfies the bounds

f∗ ≤ f ≤ f∗ = Du,

where the function f∗ is defined by

f∗(x) := inf{c ≥ 0|∃ T ∈ T (x) : P̃T uc(x) ≥ u(x)}

for any x ∈ S.

Proof. For any T ∈ T (x) we get

u(x) − PT u(x) = Ex

[
sup

0<t<ζ
f(Xt)

]
− Ex

[
sup

T<t<ζ
f(Xt); T < ζ

]
≥ Ex[ sup

0<t<ζ
f(Xt); T = ζ] ≥ f(x)Px[T = ζ]
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due to our assumption (14) on f , hence f(x) ≤ Du(x). In order to verify the lower bound, take c > f(x) and
let Tc ∈ T (x) denote the first exit time from {f < c}. Since

c ≤ sup
Tc<t<ζ

f(Xt) = sup
0<t<ζ

f(Xt) Px − a.s. on {Tc < ζ}

due to property (15) of f , we obtain

P̃Tcu
c(x) = Ex

[
uc(XTc)1{Tc<ζ} + c1{Tc=ζ}

]
= Ex

[
sup

Tc<t<ζ
f(Xt)1{Tc<ζ} + c1{Tc=ζ}

]

≥ Ex

[
sup

0<t<ζ
f(Xt)

]
= u(x),

hence c ≥ f∗(x). This yields f∗(x) ≤ f(x). �

The following example shows that the two bounds for the representing function f in Theorem 4.1 may both be
strict. In particular, the representing function may not be unique.

Example 4.1. Consider a Brownian motion on the interval S = (0, 3) and an upper-semicontinuous function f
on S with f(1) = f(2) = 1 which equals zero in (0, 1) ∪ (2, 3) and takes values in (0, 1) for x ∈ (1, 2). Denoting
by Tb := inf{t ≥ 0|Xt = b} the first passage time at level b, we can write

sup
0<t<ζ

f(Xt) = 1(0,1)(x)1{T1<T0} + 1[1,2](x) + 1(2,3)(x)1{T2<T3}Px − a.s.

This shows that the excessive function u defined by (1) is given by

u(x) =

⎧⎨⎩
x , x ∈ (0, 1)
1 , x ∈ [1, 2]

3 − x , x ∈ (2, 3)
.

In this one-dimensional situation Ruc coincides with the concave envelope of uc = u ∨ c on S. Thus we obtain
f∗(x) = 1[1,2](x) due to (11). Moreover, f∗(x) = 1{1,2}(x) by inspection, hence f∗(x) < f(x) < f∗(x) for
x ∈ (1, 2). Note also that f is regular since f(x) ≤ sup0<t<ζ f(Xt) Px − a.s. for any x ∈ S.

We are now going to derive an alternative description of f∗ which will allow us to identify f∗ as the minimal
representing function for u.

Definition 4.1. Let us say that a point x0 ∈ S is harmonic for u if the mean-value property

u(x0) = Ex0 [u(XTε)] (16)

holds for x0 and for some ε > 0, where Tε denotes the first exit time from the ball Uε(x0). We denote by H the
set of all points in S which are harmonic with respect to u.

From now on we assume that balls are regular in the following sense:

The exit laws from balls, defined as µU
x := Px ◦ T−1

ε for x ∈ U := Uε(x0), have the following properties:
A3) µU

x ≈ µU
y for all x, y ∈ U .

A4) If Un := Uεn(x0) and εn ↓ d(x0, x1) then µUn
x1

converges weakly to δx1 as n ↑ ∞.
Note that both assumptions are satisfied for d-dimensional Brownian motion.



98 H. FÖLLMER AND T. KNISPEL

Lemma 4.1. H coincides with the set of all points x0 ∈ S such that u is harmonic in some open neighborhood
G of x0, i.e., the mean-value property

u(x) = Ex[u(XTε)]

holds for all x ∈ G and all ε > 0 such that Uε(x) ⊂ G. In particular H is an open set.

Proof. If u is harmonic in some open neighborhood G of x0 then the mean-value property (16) holds for x0

and for ε small enough, and this shows x0 ∈ H . In order to prove the converse inclusion, we fix x0 ∈ H and
a corresponding ε > 0 such that u(x0) = Ex0 [u(XTε)]. Then the function h defined by h(x) := Ex[u(XTε)] is
harmonic on Uε(x0) and satisfies h ≤ u on Uε(x0) since u is excessive. It remains to show that u ≥ h on Uε(x0).
To this end, take x1 ∈ Uε(x0) and choose a sequence 0 < εn < ε, n ∈ IN, decreasing to d(x0, x1). Denoting by
Tεn the exit time from Un := Uεn(x0), we obtain

u(x0) ≥ Ex0 [u(XTεn
)] ≥ Ex0 [h(XTεn

)] = Ex0 [EXTεn
[u(XTε)]] = Ex0 [u(XTε)] = u(x0).

This implies u(XTεn
) = h(XTεn

) Px0 − a.s., hence Px1 − a.s. due to our assumption A3). Thus

h(x1) = Ex1 [h(XTεn
)] = Ex1 [u(XTεn

)].

Using (4) and A4) we can conclude

h(x1) = lim
n↑∞

Ex1 [u(XTεn
)] = lim

n↑∞

∫
u dµUn

x1
= u(x1),

since u is continuous and bounded on U1. �

Proposition 4.1. For any x ∈ S,
f∗(x) = f∗(x)1Hc (x). (17)

In particular f∗ is upper-semicontinuous. Moreover,

f∗(x) = f∗(x) = Du(x) = 0 (18)

for any x ∈ H\H0, where
H0 := {x ∈ H |Px [THc < ζ] = 1}.

Proof. 1) For x ∈ H there exists ε > 0 such that Uε(x) ⊂ S and u(x) = Ex[u(XTε)] = P̃Tεu
0(x), and this implies

f∗(x) = 0. Now suppose that x ∈ Hc, i.e., u is not harmonic in x. Note first that

u(x) > Ex[u(XT ); T < ζ] (19)

for any T ∈ T (x). Indeed, if T is the first exit time from some open neighborhood G of x then

Ex[u(XT ); T < ζ] = Ex

[
EXTε

[u(XT ); T < ζ]
]
≤ Ex[u(XTε)] < u(x)

for any ε > 0 such that Uε(x) ⊆ G. In view of Theorem 4.1 we have to show f∗(x) ≥ f∗(x), and we may assume
f∗(x) > 0. Choose c > 0 such that f∗(x) > c. Then there exists ε > 0 such that Ruc+ε(x) = u(x), i.e.,

P̃T uc+ε(x) ≤ u(x) (20)

for any T ∈ T (x) in view of (8). Fix δ ∈ (0, ε) and T ∈ T (x). If T < ζ and u(XT ) ≥ c + δ Px − a.s. then

P̃T uc+δ(x) = Ex[u(XT ); T < ζ] < u(x)
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due to (19). On the other hand, if Px[T = ζ] + Px[u(XT ) < c + δ; T < ζ] > 0 then

P̃T uc+δ(x) < P̃T uc+ε(x) ≤ u(x)

due to (20). Thus we obtain u(x) > P̃T uc+δ(x) for any T ∈ T (x), hence f∗(x) ≥ c + δ. This concludes the
proof of (17). Upper-semicontinuity of f∗ follows immediately since f∗ is upper-semicontinuous and Hc is closed.

2) Take x ∈ H\H0 and consider a sequence Gn, n ∈ IN, of relatively compact open neighborhoods of x
such that Gn ↗ H as n ↑ ∞. Let Tn := TGc

n
denote the first exit time from Gn. Then Tn ↗ THc , hence XTn

converges to XTHc Px − a.s. on {THc < ζ} due to the quasi-left-continuity of our Hunt process (Xt)t≥0. But
this shows

u(x) = lim
n↑∞

Ex[u(XTn)] = Ex[ lim
n↑∞

u(XTn)] = Ex[u(XTHc ); THc < ζ] = PTHc u(x)

in view of our assumptions (3) and (4) on u. Since THc ∈ T (x) satisfies Px[THc = ζ] > 0 for x ∈ H\H0, we
obtain

0 ≤ f∗(x) ≤ f∗(x) = Du(x) ≤ u(x) − PTHc u(x)
Px [THc = ζ]

= 0. �

Our next goal is to show that u admits a representation in terms of f∗.

Lemma 4.2. For any stopping time T0 the following conditions are satisfied Px−a.s. on {T0 < ζ}∩{XT0 ∈ H0}:
i) T1 := T0 + THc ◦ θT0 < ζ.
ii) f∗(XT1) = sup

T0<t≤T1

f∗(Xt).

Proof. Since the exit time T := THc from H satisfies Py[THc < ζ] = 1 for any y ∈ H0, the first assertion follows
from

Px[{T1 < ζ} ∩ {T0 < ζ, XT0 ∈ H0}] = Ex[PXT0
[T < ζ]; T0 < ζ, XT0 ∈ H0].

In order to verify property ii), note that

Px

[
f∗(XT1) = sup

T0<t≤T1

f∗(Xt); T0 < ζ, XT0 ∈ H0

]
= Ex

[
PXT0

[f∗(XT ) = sup
0<t≤T

f∗(Xt)]; T0 < ζ, XT0 ∈ H0

]
.

It is therefore enough to show that

Λ∗
T := sup

0<t≤T
f∗(Xt) = f∗(XT ) Py−a.s.

for any y ∈ H0. Clearly, we have f∗(XT ) ≤ Λ∗
T . Since T < ζ Py − a.s., the representation (12) allows us to

conclude

u(y) = Ey

[
sup

0<t<ζ
f∗(Xt)

]
= Ey

[
EXT

[
Λ∗

T ∨ sup
0<t<ζ

f∗(Xt)

]]
= Ey

[
RuΛ∗

T (XT )
]
≥ Ey[u(XT )] = u(y),

i.e., Ey [RuΛ∗
T (XT )] = Ey[u(XT )]. In view of RuΛ∗

T (XT ) ≥ u(XT ) this implies RuΛ∗
T (XT ) = u(XT ) Py − a.s.

or, equivalently, f∗(XT ) ≥ Λ∗
T Py − a.s. �

We are now ready to prove that f∗ is the minimal representing function for u.



100 H. FÖLLMER AND T. KNISPEL

Proposition 4.2. For any x ∈ S and any upper-semicontinuous function f such that f∗ ≤ f ≤ f∗,

sup
0<t<ζ

f∗(Xs) = sup
0<t<ζ

f(Xt) = sup
0<t<ζ

f∗(Xt) Px − a.s., (21)

and so f is a regular representing function for u. In particular we obtain the representation

u(x) = Ex

[
sup

0<t<ζ
f∗(Xt)

]
,

and f∗ is the minimal regular function yielding a representation of u.

Proof. Let us first prove (21) for x ∈ H . Since 0 ≤ f∗ ≤ f ≤ f∗, it is enough to show that sup0<t<ζ f∗(Xt) ≥ c
Px − a.s. on {Tc < ζ} for fixed c > 0, where Tc denotes the exit time from the open set {f∗ < c}. Note first
that

sup
0<t<ζ

f∗(Xt) ≥ f∗(XTc) = f∗(XTc) ≥ c Px − a.s. on {Tc < ζ} ∩ {XTc ∈ Hc},

due to (17). On {Tc < ζ} ∩ {XTc ∈ H} we have XTc ∈ H0 Px − a.s. due to (18) since f∗(XTc) ≥ c > 0. Lemma
4.2 allows us to conclude that T1 := Tc + THc ◦ θTc satisfies T1 < ζ Px − a.s. and

sup
0<t<ζ

f∗(Xt) ≥ f∗(XT1) = f∗(XT1)

= sup
Tc<t≤T1

f∗(Xt) ≥ f∗(XTc) ≥ c Px − a.s. on {Tc < ζ} ∩ {XTc ∈ H}

due to (17). This concludes the proof of (21) for x ∈ H . In particular, we obtain

sup
T̃<t<ζ

f∗(Xt) = sup
T̃<t<ζ

f(Xt) = sup
T̃<t<ζ

f∗(Xt) Px − a.s. on {T̃ < ζ, XT̃ ∈ H} (22)

for any stopping time T̃ , due to the strong Markov property.
It remains to prove (21) for x ∈ Hc. To this end, we denote by T̂ the first exit time from Hc. Since, by

Proposition 4.1, f∗ and f∗ coincide on Hc, the identity (21) holds on the set {T̂ = ζ}. On the other hand, using
again Proposition 4.1, we have

sup
0<t<ζ

f∗(Xt) ∨ uζ = sup
0<t≤T̂

f∗(Xt) ∨ sup
T̂<t<ζ

f∗(Xt) ∨ uζ

= sup
0<t≤T̂

f∗(Xt) ∨ sup
T̂<t<ζ

f∗(Xt) ∨ uζ on {T̂ < ζ}. (23)

By definition of T̂ , on {T̂ < ζ} there exists a sequence of stopping times T̂ < Tn < ζ, n ∈ IN, decreasing to T̂
such that XTn ∈ H , and so we can conclude that

sup
T̂ <t<ζ

f∗(Xt) ∨ uζ = lim
n↑∞

sup
Tn<t<ζ

f∗(Xt) ∨ uζ

= lim
n↑∞

sup
Tn<t<ζ

f∗(Xt) ∨ uζ

= sup
T̂<t<ζ

f∗(Xt) ∨ uζ Px−a. s. on {T̂ < ζ}

due to (22). Combined with (23) this yields (21) on {T̂ < ζ}. Thus we have shown that (21) holds as well for
any x ∈ Hc.
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In particular f is a representing function for u. Moreover,

f(x) ≤ f∗(x) ≤ sup
0<t<ζ

f∗(Xt) = sup
0<t<ζ

f(Xt) Px − a.s.

for any x ∈ S due to (21), and so f is a regular function on S. �
Corollary 4.1. Let f be any regular representing function for u. Then

Ruc(x) = Ex

[
sup

0<t<ζ
f(Xt) ∨ c

]
(24)

for any x ∈ S and for any c ≥ 0.

Proof. In view of (21) the claim follows immediately from the representation (12) of Ruc. �
Remark 4.1. Let us go back to the simple Example 4.1 in order to illustrate the preceding results. Here the
set H of harmonic points for u is given by (0, 1) ∪ (1, 2) ∪ (2, 3). Our observation above that f∗ = 0 on H
and f∗ = f∗ on Hc = {1, 2} is explained by the general Proposition 4.1. Moreover, we have H0 = (1, 2) and
f∗ = f∗ = 0 on H\H0 = (0, 1) ∪ (2, 3), in accordance with equation (18).
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