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ABSTRACT

We study the topology of the space of positive scalar curvature metrics on high dimensional spheres and other
spin manifolds. Our main result provides elements in higher homotopy and homology groups of these spaces, which, in
contrast to previous approaches, are of infinite order and survive in the (observer) moduli space of such metrics.

Along the way we construct smooth fiber bundles over spheres whose total spaces have non-vanishing Â-genera,
thus establishing the non-multiplicativity of the Â-genus in fiber bundles with simply connected base.

1. Introduction and summary

The classification of positive scalar curvature metrics on closed smooth manifolds
is a central topic in Riemannian geometry. Whereas the existence question has been
resolved in many cases and is governed by the (stable) Gromov-Lawson-Rosenberg con-
jecture (compare e.g. [20, 22]), information on the topological complexity of the space of
positive scalar curvature metrics on a given manifold M has been sparse and only recently
some progress has been made [3, 6].

We denote by Riem+(M) the space of Riemannian metrics of positive scalar curva-
ture, equipped with the C∞-topology, on a closed smooth manifold M. If it is not empty,
we want to give information on the homotopy groups πk(Riem+(M), g0) for g0 in the
different path components of Riem+(M). One method to construct non-zero elements
in these homotopy groups, developed by Hitchin, is to pull back g0 along a family of dif-
feomorphisms of M. In [13, Theorem 4.7] this was used to prove existence of non-zero
classes of order two in π1(Riem+(M), g0) for certain manifolds M. In [6, Corollary 1.5]
this method has been refined to show that there exist non-zero elements of order two
in infinitely many degrees of π∗(Riem+(M), g0), when M is a spin manifold admitting a
metric g0 of positive scalar curvature.

In our paper we construct non-zero elements of infinite order in πk(Riem+(M), g0)

for k ∈ N, among others. Our construction is quite different from Hitchin’s in that it does
not rely on topological properties of the diffeomorphism group of M.

Our first main result reads as follows.

Theorem 1.1. — Let k ≥ 0 be a natural number. Then there is a natural number N(k) with

the following properties:
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(a) For each n ≥ N(k) and each spin manifold M admitting a metric g0 of positive scalar

curvature and of dimension 4n − k − 1, the homotopy group

πk

(
Riem+(M), g0

)

contains elements of infinite order if k ≥ 1, and infinitely many different elements if k = 0.

Their images under the Hurewicz homomorphism in Hk(Riem+(M)) still have infinite

order.

(b) For M = S4n−k−1, the images of these elements in the homotopy and homology groups of the

observer moduli space Riem+(S4n−k−1)/Diffx0(S
4n−k−1), see Definition 1.3, have infinite

order.

For k = 0 these statements are well known with N(k) = 2 and Diff(S4n−1) instead
of Diffx0(S

4n−1), see [17, Theorem IV.7.7] and [11, Theorem 4.47].
Refined versions of part (b) of Theorem 1.1 will be stated in Theorems 1.11 and

1.12 below.
Following a suggestion by one of the referees we remark that Theorem 1.1 implies

the following stable statement for manifolds in arbitrary dimension.

Proposition 1.2. — For each k ≥ 1 and each spin manifold M in dimension (3 − k)mod 4
and admitting a metric of positive scalar curvature, the homotopy group πk(Riem+(M × BN)) contains

elements of infinite order. Here, N is a constant depending on k, B denotes a Bott manifold, an eight

dimensional closed simply connected spin manifold satisfying Â(B) = 1, and BN is the N-fold Cartesian

product.

Note that, as a spin manifold with non-vanishing Â-genus, the manifold B does
not admit a metric of positive scalar curvature. Inspired by the stable Gromov-Lawson-
Rosenberg conjecture, we wonder whether there is a stability pattern in πk(Riem+(M ×
BN)) for growing N.

Remarkably, at the end of [11, Section 5] Gromov and Lawson write: “The construc-

tion above can be greatly generalized using Browder-Novikov Theory. A similar construction detecting

higher homotopy groups of the space of positive scalar curvature metrics can also be made.” We are not
sure what Gromov and Lawson precisely had in mind here. Our paper may be viewed as
an attempt to realize the program hinted at by these remarks.

Recall that the diffeomorphism group Diff(M) acts on Riem+(M) via pull-back of
metrics. The orbit space Riem+(M)/Diff(M) is the moduli space of Riemannian metrics
of positive scalar curvature. Because the action is not free (the isotropy group at g ∈
Riem+(M) is equal to the isometry group of g, which is a compact Lie group by the
Myers-Steenrod theorem) it is convenient to restrict the action to the following subgroup
of Diff(M).
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Definition 1.3. — Let M be a connected smooth manifold and let x0 ∈ M. The diffeomor-
phism group with observer Diffx0(M) is the subgroup of Diff(M) consisting of diffeomorphisms

φ : M → M fixing x0 ∈ M and with Dx0φ = idTx0 M.

This definition first appeared in [1]. It is easy to see that Diffx0(M), unlike Diff(M),
acts freely on the space of Riemannian metrics on M (as long as M is connected). The
orbit space Riem+(M)/Diffx0(M) is called the observer moduli space of positive scalar cur-
vature metrics.

The construction of Theorem 1.1 is based on the following fundamental result,
which we regard of independent interest.

Theorem 1.4. — Given k, l ≥ 0 there is an N = N(k, l) ∈ N≥0 with the following property:

For all n ≥ N, there is a 4n-dimensional smooth closed spin manifold P with non-vanishing Â-genus

and which fits into a smooth fiber bundle

F ↪→ P → Sk.

In addition we can assume that the following conditions are satisfied:

(1) The fiber F is l-connected, and

(2) the bundle P → Sk has a smooth section s : Sk → P with trivial normal bundle.

Recall that in a fiber bundle F → E → B of oriented closed smooth manifolds the
Hirzebruch L-genus is multiplicative if B is simply connected, i.e. L(E) = L(B) · L(F),
see [5]. Theorem 1.4 shows that a corresponding statement for the Â-genus is wrong,
even if B is a sphere.

We remark that our construction, which is based on abstract existence results in
differential topology, does not yield an explicit description of the diffeomorphism type of
the fiber manifold F.

Remark 1.5. — In Theorem 1.4 we can assume in addition that α(F) = 0 by taking
the fiber connected sum of P with the trivial bundle Sk × (−F) → Sk where −F denotes
the manifold F with reversed spin structure (so that −F represents the negative of F in
the spin bordism group). This can be done along a trivialized normal bundle of a smooth
section s : Sk → P as in point (2) of Theorem 1.4.

In this case the fiber F carries a metric of positive scalar curvature by a classical
result of Stolz [21] if l ≥ 1 and dim F ≥ 5. But note that there is no global choice of
such metrics on the fibers of P → Sk depending smoothly on the base point, because
this would imply that P carries a metric of positive scalar curvature by considering a
submersion metric on P whose restriction to the vertical tangent space coincides with the
given family of positive scalar curvature metrics, shrinking the fibers and applying the
O’Neill formulas [2, Chap. 9.D.]. However, this is impossible as P is spin and satisfies
Â(P) �= 0.
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Let us point out an implication pertaining to diffeomorphism groups. For an
oriented closed smooth manifold F and a pointed continuous map φ : (Sk,∗) →
(Diff+(F), id) into the group of orientation preserving diffeomorphisms of F we define

Mφ = (
Sk × F × [0,1])/(x, f ,0) ∼ (

ψ(x, f ),1
)

where ψ : Sk × F → Sk × F is a smooth map homotopic to the adjoint of φ and inducing
diffeomorphisms ψ(x,−) : F → F for each x ∈ Sk (depending on φ there is a canonical
isotopy class of such maps ψ ). We can regard Mφ as the total space of a fiber bundle F →
Mφ → Sk × S1 obtained by a parametrized mapping cylinder construction for ψ(x,−).
The diffeomorphism type of this bundle depends only on the homotopy class of φ.

For each k ≥ 0 this leads to a group homomorphism

ÂDiff : πk

(
Diff+(F), id

) → Q, [φ] 	→ Â(Mφ).

If F admits a spin structure and k ≥ 2, this invariant takes values in Z, as in this case
the manifold Mφ carries a spin structure, ψ : Sk × F → Sk × F admitting a lift to the
spin principal bundle. By Proposition 2.2 below the same conclusion holds in general if F
admits both a spin structure and a metric of positive scalar curvature.

Corollary 1.6. — For each k ≥ 0 there is an oriented closed smooth manifold F such that the

homomorphism ÂDiff : πk(Diff+(F), id) → Q is non-trivial.

To our knowledge, this is new for all k ≥ 0.

Proof. — Take a bundle F → P → Sk+1 from Theorem 1.4. The total space can be
obtained by a clutching construction

P = (
Dk+1 × F

) ∪ψ

(
Dk+1 × F

)

for an appropriate smooth map ψ : Sk × F → Sk × F. Denote by
(
W;Sk × I,Dk+1 × ∂I

) ⊂ Dk+1 × I

the standard bordism relative boundary of an index-zero surgery, as depicted in the upper
part of Figure 1. Using ψ to identify the left with the right end of W × F produces a
bordism between P and the required bundle over Sk ×S1. The result follows from bordism
invariance of the Â-genus. �

The proof of Theorem 1.4 is based on results from classical differential topology:
Surgery theory [7], Casson’s theory of pre-fibrations [4] and Hatcher’s theory of concor-
dance spaces [12]. Theorem 1.1 for M = S4n−k−1 follows from this with the use of Igusa’s
fiberwise Morse theory [15] and Walsh’s generalization of the Gromov-Lawson surgery
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FIG. 1.

method to families of generalized Morse functions with critical points of coindex at least
three [23].

We will now formulate part (b) of Theorem 1.1 in a more general context.
In order to express the fact that, contrary to the constructions in [13] and [6], our

families of metrics in Theorem 1.1 are not induced by families of diffeomorphisms of M,
we propose the following definition.

Definition 1.7. — Let M be an oriented closed smooth manifold and let g0 be a positive scalar

curvature metric on M. A class c ∈ πk(Riem+(M), g0) is called not geometrically significant if c

is represented by

Sk → Riem+(M), t 	→ φ(t)∗g0

for some pointed continuous map φ : (Sk,∗) → (Diff+(M), id). Otherwise, c is called geometri-
cally significant.

Note that the homotopy classes of [6, 13] are by their very construction not geo-
metrically significant.

Definition 1.8. — Let F be an oriented closed smooth manifold. We call F

• an Â-multiplicative fiber in degree k if for every oriented fiber bundle F → E → Sk+1

we have Â(E) = 0. (This implies that the map Â : πk(Diff+(F), id) → Q defined before

Corollary 1.6 is zero.)

• a strongly Â-multiplicative fiber in degree k if for every oriented smooth fiber bundle

F → E → B over a closed oriented manifold B of dimension k + 1 we have Â(E) =
Â(B) · Â(F).

Obviously F is a strongly Â-multiplicative fiber in degree k if dim F + k + 1 is not
divisible by four.
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Proposition 1.9.

(a) If F has vanishing rational Pontryagin classes, in particular if it is stably parallelizable or a

rational homology sphere, then F is an Â-multiplicative fiber in any degree.

(b) Every homotopy sphere is a strongly Â-multiplicative fiber in any degree.

Proof. — For (a) we observe that F is framed in E, so that the rational Pontryagin
classes pi(E) restrict to pi(F) = 0. The long exact sequence of the pair (E,F) implies that
all pi(E) pull back from H∗(E,F).

Denote by Dk+1
± the upper and lower hemisphere of Sk+1, respectively. By excision

and the Künneth isomorphism we obtain isomorphisms of rational cohomology rings

H∗(E,F) ∼= H∗(E,E|Dk+1+ ) ∼= H∗(E|Dk+1− ,E|Sk) ∼= H∗(F) ⊗ H∗(Dk+1
− ,Sk

)
.

But in H∗(Dk+1
− ,Sk) all non-trivial products vanish, and hence the same is true for

H∗(E,F).
So there are no non-trivial products of Pontryagin classes in E. It follows that the

Â-genus of E is a multiple of the signature of E, which is known to vanish in fiber bundles
over spheres.

For assertion (b), we note that, given an oriented bundle E → B with fiber Sn

and structure group the orientation preserving homeomorphism group of Sn, we ob-
tain an oriented topological disc bundle W → B with ∂W = E by “fiberwise coning off
the spheres”. More precisely, the Alexander trick defines an embedding Homeo+(Sn) →
Homeo+(Dn+1) by extending homeomorphisms Sn → Sn to homeomorphisms Dn+1 →
Dn+1 radially over the cone over Sn, which is identified with Dn+1 in the standard way.
This embedding splits the restriction homomorphism, and W is obtained by an associ-
ated bundle construction.

Now rational Pontryagin classes are defined for topological manifolds and the ra-
tional Pontryagin numbers are invariants of oriented topological bordism in the usual
way. In particular, Â(E) = 0, as E is a topological boundary. Because Â(Sn) = 0 the claim
follows. �

One of the referees pointed out that strongly Â-multiplicative fibers different from
spheres can be obtained using results of Farrell-Jones on rational homotopy types of au-
tomorphism groups of hyperbolic manifolds.

Proposition 1.10. — Let m ≥ 10 and let F be a connected oriented closed hyperbolic manifold of

dimension m. Then for all 0 ≤ k ≤ m−4
3 the manifold F is a strongly Â-multiplicative fiber in degree k.

Proof. — Let B be a closed smooth oriented manifold of dimension k + 1 and
F → E → B be an oriented smooth fiber bundle classified by a map B → B Diff+(F). We
pass to the underlying topological bundle, which is classified by the composition φ : B →
B Diff+(F) → B Top+(F). In the following we abbreviate Top+(F) by Top.
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By [9, Corollary 10.16.] π0(Top) is a semidirect product of a countable elementary
abelian 2-group and the group Out(π1(F)). The last group is finite by the Mostow rigidity
theorem. Using the fact that the rational homology of finite and of abelian torsion groups
vanishes (as each homology class is carried by a finitely generated subgroup) we get
H̃∗(K(π0(Top),1);Q) = 0. Hence the Leray-Serre spectral sequence for the orientation
fibration ˜B Top → B Top → K(π0(Top),1) shows that H∗(˜B Top;Q) ∼= H∗(B Top;Q).

Now the rational Hurewicz theorem can be applied to the simply connected space
˜B Top. Because πs(˜B Top)⊗Q=πs(B Top)⊗Q=πs−1(Top)⊗Q=0 for 2≤ s ≤ m−4

3 + 1

by [9, Corollary 10.16.], we hence obtain Hs(B Top;Q) = Hs(˜B Top;Q) = 0 for 1 ≤ s ≤
m−4

3 + 1.
With this information we go into the Atiyah-Hirzebruch spectral sequence for ori-

ented bordism with rational coefficients and conclude that rationally the map φ is ori-
ented bordant to the constant map B → B Top. This implies that rationally the topolog-
ical manifold E is oriented bordant to the product B × F. Hence Â(E) = Â(B × F) =
Â(B) · Â(F) as claimed. �

Closed hyperbolic spin manifolds do not admit metrics of positive scalar curvature
[11] and so this construction will not be used further in our discussion.

Theorem 1.11. — In the situation of part (a) of Theorem 1.1 assume in addition that the

manifold M is an Â-multiplicative fiber in degree k ≥ 1. Then πk(Riem+(M), g0) contains elements

all of whose multiples are geometrically significant. The images of these elements under the Hurewicz map

have infinite order.

Theorem 1.12. — In the situation of part (a) of Theorem 1.1,

(a) if in addition M is a connected Â-multiplicative fiber in degree k ≥ 0, then the map

πk

(
Riem+(M), g0

) → πk

(
Riem+(M)/Diffx0(M), [g0]

)

has infinite image. If k ≥ 1, the image contains elements of infinite order.

(b) if in addition M is a simply connected strongly Â-multiplicative fiber in degree k ≥ 0, the

image of the map

πk

(
Riem+(M), g0

) → Hk

(
Riem+(M)/Diffx0(M)

)

contains elements of infinite order.

Part (b) of Theorem 1.1 is the case M = S4n−k−1 of the last result.
The elements in πk(Riem+(M), g0) constructed in [6, 13] can in fact be obtained

by pulling back g0 along families in Diffx0(M). Hence these elements are not only not
geometrically significant, but are even mapped to zero under the map in part (a) of The-
orem 1.12.
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In [3] the authors constructed, for arbitrary k ≥ 1, non-zero elements in the 4k-th
homotopy groups of the full moduli space Riem+(M)/Diff(M) of certain closed non-spin
manifolds M of odd dimension. These elements can be lifted to Riem+(M)/Diffx0(M),
but not to Riem+(M).

It remains an interesting open problem whether there are examples of manifolds
M for which any of the statements of Theorem 1.12 remain valid for the full moduli space
Riem+(M)/Diff(M).

Kreck and Stolz [16] constructed closed 7-manifolds M for which the moduli
spaces Sec+(M)/Diff(M) of positive sectional curvature metrics are not path connected
and closed 7-manifolds for which the moduli spaces Ric+(M)/Diff(M) of positive Ricci
curvature metrics have infinitely many path components. It remains a challenging prob-
lem to construct non-zero elements in higher homotopy groups of (moduli) spaces of
positive sectional and positive Ricci curvature metrics.

2. APS index and families of metrics of positive scalar curvature

If (W, gW) is a compact Riemannian spin manifold with boundary and with posi-
tive scalar curvature on the boundary (the Riemannian metric always assumed to be of
product form near the boundary), then the Dirac operator on W with Atiyah-Patodi-
Singer boundary conditions is a Fredholm operator. Equivalently, if one attaches an infi-
nite half-cylinder ∂W × [0,∞) to the boundary and extends the metric as a product to
obtain W∞, the Dirac operator on L2-sections of the spinor bundle on W∞ is a Fredholm
operator. This uses invertibility of the boundary operator due to the positive scalar curva-
ture condition. Both operators have the same index, the APS index ind(DgW) ∈ Z, which
depends on the Riemannian metric on the boundary.

We collect some well known properties of this index. A detailed discussion can be
found in [18].

(1) If gW is of positive scalar curvature, we have ind(DgW) = 0. This follows from
the usual Weitzenböck-Lichnerowicz-Schrödinger argument.

(2) ind(DgW) is invariant under deformations of the metric gW during which the
metrics on the boundary maintain positive scalar curvature. This follows from
the homotopy invariance of the index of Fredholm operators.

(3) The index can be computed by the APS index theorem

ind(DgW) =
∫

W
Â(W) − 1

2
η(∂W),

which involves the Â-form and the η-invariant of Atiyah-Patodi-Singer.
(4) (Gluing formula) If (V, gV) is another Riemannian spin manifold and there

is a spin preserving isometry ψ : ∂V → −∂W, then ind(DgV) + ind(DgW) =
Â(V ∪ψ W) where Â is the usual Â-genus of the closed spin manifold V ∪ψ W.
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Definition 2.1. — Let M → E → B be a smooth fiber bundle of closed manifolds over a

compact base manifold B, let gB be a Riemannian metric on B, let H be a horizontal distribution on

E and (gb)b∈B be a smooth family of positive scalar curvature metrics on the fibers of E. Combining

these data we obtain a Riemannian metric gE = gB ⊕ (gb) on the total space E, where gB is lifted to

horizontal subspaces of E using the given distribution H. Note that (E, gE) → (B, gB) is a Riemannian

submersion.

Using the O’Neill formulas [2, Chap. 9.D.] there is an ε0 > 0 with the following property: For

each 0 < ε ≤ ε0 the metric gB ⊕ (ε · gb) on E is of positive scalar curvature. We call such an ε0 an

adiabatic constant for the triple (E, gB,H).

Assume that B and M are closed spin manifolds and φ : B → Riem+(M) is a con-
tinuous map. This induces a family (gb)b∈B of positive scalar curvature metrics on M,
which can be assumed to be smooth after a small perturbation. After picking some met-
ric gB on B we can consider both the product metric gB ⊕ g0, and the metric gB ⊕ (gb)b∈B

on B × M.
We now multiply both fiber metrics on B×M → B with adiabatic constants so that

the resulting metrics on B×M are of positive scalar curvature and denote these new met-
rics by the same symbols. Let g = g(B×[0,1])×M be an arbitrary metric on (B × [0,1]) × M
interpolating between the metrics gB ⊕ g0 on (B × 0) × M and gB ⊕ (gb) on (B × 1) × M
(always of product form near the boundaries) and set

Â
(φ) = ind(Dg) ∈ Z,

the APS-index of the Dirac operator Dg for the metric g on the spin manifold (B ×
[0,1])×M. Note that ind(Dg) is equal to the relative index i(gB ⊕g0, gB ⊕(gb)) of Gromov-
Lawson [10, p. 329].

The following facts show that the invariant Â
 is well defined on 

Spin
k (Riem+(M))

and hence defines a group homomorphism

Â
 : 
Spin
k

(
Riem+(M)

) → Z.

• If we choose a different metric on B or scale the metrics g0 and (gb) by other adi-
abatic constants, the index ind(Dg) remains unchanged by property (2) above.

• If we choose another metric g′ on (B × [0,1]) × M interpolating between the
two given metrics on the boundary, the gluing formula implies

ind(Dg) − ind(Dg′) = Â
(
M × B × S1

) = 0

using the fact that the Â-genus is multiplicative in products.
• Now assume that (W, gW) is a compact Riemannian spin manifold of dimension

k + 1 with boundary B and that (gw)w∈W is a smooth family of positive scalar
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curvature metrics on M restricting to a given family (gb)b∈B over B. We also
consider the constant family (g0) on M. With respect to the given metric gW on
W we scale both fiberwise metrics on W × M by adiabatic constants.

By the gluing formula and the fact that the APS-indices of both metrics on
W × M vanish, we obtain (with g = g(B×[0,1])×M as before)

ind(Dg) = ind(DgW⊕g0) + ind(Dg) + ind(DgW⊕(gw)w∈W) = Â(X),

where

X =
(

W
⋃

∂W=B×{0}
B × [0,1]

⋃

B×{1}=∂W

W
)

× M.

Because X is spin and M admits a metric of positive scalar curvature we have
Â(X) = 0 and hence ind(Dg) = 0, as required.

Using composition with the canonical map πk(Riem+(M), g0)→

Spin
k (Riem+(M))

for a base point g0 ∈ Riem+(M) we also define

Âπ : πk

(
Riem+(M), g0

) −→ 

Spin
k

(
Riem+(M)

) Â
−→ Z

for all k ≥ 0. This is a group homomorphism for k > 0 and a map of sets for k = 0.
The action of Diff(M) on Riem+(M) by pull-back induces an action of πk(Diff(M))

on πk(Riem+(M), g0). For a pointed map φ : (Sk,∗) → (Diff(M), id) and a family
c = (gt)t∈Sk based at g0 the pair ([φ], [c]) is mapped to the homotopy class represented
by the family (φ(t)∗gt)t∈Sk , which we denote by φ∗c for short. The neutral element
e ∈ πk(Riem+(M), g0) is given by the constant family with value g0.

Proposition 2.2. — For a closed spin manifold M and [φ] ∈ πk(Diff+(M), id) where k ≥ 1
we have

Âπ

(
φ∗e

) = ÂDiff(φ)

with ÂDiff(φ) as defined before Corollary 1.6. If k = 0, the same equation holds provided [φ] is

represented by a spin-preserving diffeomorphism.

Proof. — In the case that the map Sk ×M → Sk ×M adjoint to φ is spin preserving,
the assertion follows from the gluing formula for the APS index. This shows in particular
the last claim of the proposition.

Moreover we observe that if k ≥ 1, both sides of the asserted equation define group
homomorphisms πk(Diff+(M), id) → Q—for the left hand side we use that it is given by
the composite of group homomorphisms

πk

(
Diff+(M), id

) → πk

(
Riem+(M), g0

) Âπ−→ Z ⊂ Q



THE SPACE OF METRICS OF POSITIVE SCALAR CURVATURE 345

where the first map is induced by the action of the diffeomorphism group on the base-
point g0 ∈ Riem+(M). The proof is concluded by the fact that each diffeomorphism Sk ×
M → Sk × M has a power which is spin preserving. �

We obtain the following corollaries for a closed spin manifold M which is an Â-
multiplicative fiber in degree k.

Corollary 2.3. — If, for k ≥ 1, an element c ∈ πk(Riem+(M), g0) is not geometrically sig-

nificant then Âπ(c) = 0.

By considering the long exact sequence in homotopy associated to the fibration

Riem+(M) ↪→ Riem+(M)/Diffx0(M) → B Diffx0(M)

we also have:

Corollary 2.4. — Let M be connected. Then for k ≥ 1 the map Âπ : πk(Riem+(M),

g0) → Z factors through the image of the projection-induced map

πk

(
Riem+(M), g0

) → πk

(
Riem+(M)/Diffx0(M), [g0]

)
.

In particular, the group πk(Riem+(M)/Diffx0(M), [g0]) contains an element of in-
finite order if the map Âπ is non-zero in degree k ≥ 1. As the isotopy classes of spin-
preserving diffeomorphisms form a finite-index subgroup of π0(Diff(M)), we also de-
duce:

Corollary 2.5. — For k = 0 the set π0(Riem+(M)/Diff(M)) is infinite if the image of Âπ

in degree k = 0 is infinite.

In passing we also note the following consequence.

Corollary 2.6. — Let F be a manifold as in Remark 1.5 admitting a positive scalar curvature

metric g0 and appearing as fiber in F → P → Sk+1. Then πk(Riem+(F), g0) contains elements of

infinite order (and infinitely many elements for k = 0), which are not geometrically significant.

3. Fiberwise Morse theory and metrics of positive scalar curvature

Let B be a closed smooth connected manifold and let W be a smooth (n + 1)-
dimensional compact manifold with two connected boundary components M0 = ∂0W
and M1 = ∂1W. We assume throughout this section that dim W = n + 1 ≥ 6. Let

W ↪→ E
π→ B
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be a smooth fiber bundle with structure group Diff(W;M0,M1) consisting of diffeomor-
phisms W → W mapping Mi to Mi for i = 0,1 and preserving fixed collar coordinates
near the boundary components. Then the total space E has again two boundary compo-
nents ∂iE which are total spaces of fiber bundles Mi ↪→ ∂iE → B.

In the following discussion, the notion fiberwise in connection with a mathematical
object defined on E is a shorthand for the fact that this object is defined or constructed
on each fiber Et = π−1(t) ⊂ E, t ∈ B, but still defines a global object on E. In this termi-
nology, the fiberwise tangent bundle of E is equal to the vertical tangent bundle

TvertE = ker(Tπ : TE → TB) → E

and a fiberwise Morse function is a smooth function E → R which restricts to a Morse func-
tion on each fiber Et .

Theorem 3.7 below states when a fiberwise metric of positive scalar curvature on
∂0E, i.e. a smooth metric on Tvert(∂0E) that restricts to a metric of positive scalar curvature
on each fiber (∂0E)t , can be extended to a fiberwise metric of positive scalar curvature
on E. This is a fibered version of the well known fact, due to Gromov-Lawson, Schoen-
Yau and Gajer, that if M1 ↪→ W is a 2-equivalence (inducing a bijection on π0 and π1

and a surjection on π2), then a positive scalar curvature metric on M0 can be extended
to W, cf. [22, Theorem 3.3]. This uses a handle decomposition of W induced by a Morse
function. In a fibered situation the situation is more complicated, because it is in general
not possible to construct a fiberwise Morse function on E → B. We handle this situation
by combining Igusa’s theory of fiberwise generalized Morse functions [15] with Walsh’s
generalization of the Gromov-Lawson surgery method to a fibered situation [23].

The following discussion summarizes [15, §3] in a form needed for our purpose.
Let M be a compact smooth manifold. Recall that a smooth function

f : M → R

is a generalized Morse function if the gradient of f is transverse to ∂M and if each critical point
p ∈ M of f is either of Morse or birth-death type. By definition, in the first case there are
local coordinates (x1, . . . , xi, y1, . . . , yj) around p so that p has coordinates (x(p), y(p)) =
(0,0) and f can locally be written as

f (x, y) = f (p) − x2
1 − · · · − x2

i + y2
1 + · · · + y2

j .

In the second case there are local coordinates (x, y1, . . . , yk, z1, . . . , zl) around p so that p

has coordinates (x(p), y(p), z(p)) = (0,0,0) and f can locally be written in the form

f (x, y, z) = f (p) + x3 − y2
1 − · · · − y2

k + z2
1 + · · · + z2

l .

The type of the critical point as well as the numbers i and k are uniquely determined by
p and f . In the first case (of a Morse singularity) we say that p is a critical point of index i,
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in the second case (of a birth-death singularity) we say that p is a critical point of index

k + 1/2. This is motivated by the fact that in a parametrized family of Morse functions
birth-death singularities typically arise in the situation when two critical points of index
k and k + 1 cancel each other along a one-parameter sub-family. The normal form for
such a family, parametrized by t ∈ (−ε, ε), is ft(x, y, z) = f0(p) + x3 − tx − y2 + z2 with a
birth-death singularity at t = 0. Note that in [15] the index of a birth-death singularity as
above is defined to be k.

Definition 3.1. — By a generic family of generalized Morse functions on the bundle

E → B we mean a smooth function

F : E → [0,1]
with the following properties:

• ∂0E = F−1(0), ∂1E = F−1(1).

• The function F is fiberwise generalized Morse, i.e. for each t ∈ B the restriction

ft = F|Et
: Et → [0,1]

is a generalized Morse function.

• The birth-death points in each ft are generically unfolded, i.e. they represent a transversal

intersection of the fiberwise 3-jet defined by F and the subspace of fiberwise birth-death 3-jets

inside the bundle of fiberwise 3-jets of smooth functions E → R, compare [15, §2].

This is essentially a global version of [15, Definition 3.1] on a non-trivial (as op-
posed to a product) bundle E. However, we do not require “linear independence of the
birth directions of the different birth-death points of a fixed fiber Et”. Instead we follow
[23, Definition 4.8] at this point.

For a smooth function F : E → [0,1] we denote the subset of fiberwise critical
points in E by �(F). We remark that if F is a generic family of generalized Morse func-
tions then the subsets

A1(F) ⊂ E, A2(F) ⊂ E

of fiberwise Morse and birth-death singularities are smooth submanifolds of E of di-
mension dim B and dim B − 1, respectively. The manifold A2(F) is closed and �(F) =
A1(F) ∪ A2(F). Furthermore, π restricts to an immersion π | : A2(F) → B. For these
statements, compare [15, Lemma 3.3]. The additional property of self-transversality of
π | : A2(F) → B obtained in [15, Lemma 3.3] cannot be assumed in our situation because
we do not insist on linear independence of different birth-directions in a fixed fiber. Also
we remark that in [23] the sets A1(F) and A2(F) are denoted �0 and �1, respectively.

We state the following fundamental existence result.
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Proposition 3.2. — Let dim W > dim B. Then the generic families of generalized Morse

functions F : E → [0,1] form a nonempty open subset of C∞(E, [0,1]) equipped with the C∞-

topology.

Proof. — The main result of [14] implies that the space of smooth functions
E → [0,1] which restrict to generalized Morse functions on each fiber is nonempty in
C∞(E, [0,1]). The assertion now follows from multijet transversality in the same way the
corresponding [15, Lemma 3.2] follows. �

The next proposition shows that we have good control of the index of critical points
(of Morse or birth-death type) of ft , t ∈ B, for a generic family of generalized Morse
functions F : E → [0,1]. Following [23, Section 4] we call such a family admissible if all
critical points are of index ≤ n − 2 for each t. (Recall that dim W = n + 1, which is in
accordance with the convention in [15].)

Proposition 3.3. — Assume that dim W ≥ 2 dim B + 5 and that the inclusion M1 ↪→ W is

2-connected. Then the space of admissible generic families of generalized Morse functions E → [0,1] is

a nonempty open subset of C∞(E, [0,1]).

Proof. — This follows from the proof of Proposition 3.2 by applying a variant of
Hatcher’s two-index theorem, see [15, Corollary VI.1.4] (with i = 0, j = n − 1 and k =
dim B in the notation of loc. cit.) before appealing to multijet transversality. Here we note
that the subset of generalized Morse functions on W whose Morse critical points have
indices at most n − 2 and birth-death critical points have indices at most n − 21

2 (resp.
n − 3 in the notation of [15]) is open in the set of all C∞-maps. �

We note the following addendum which is proved by the same methods.

Addendum 3.4. — If in the situation of Proposition 3.3 the inclusion M0 ↪→ W is also 2-

connected, then the space of generic families of generalized Morse functions f : E → [0,1] with the

property that both f and 1 − f are admissible is a nonempty open subset of C∞(E, [0,1]).

For our later discussion we need convenient coordinates around the fiberwise sin-
gular set �(F) for generic families of generalized Morse functions F, cf. [23, Defini-
tion 4.3]. Because the normal bundles of A1(F) ⊂ E and A2(F) ⊂ E are in general non-
trivial, we need to work in a twisted setting.

Choose a fiberwise Riemannian metric gvert on E, i.e. a smooth section of
(TvertE)∗ ⊗ (TvertE)∗ that defines a Riemannian metric on each Et . At a critical point
p ∈ Et of ft we obtain an orthogonal (with respect to gvert ) splitting V+

p ⊕ V−
p ⊕ V0

p into
positive, negative and null eigenspaces of the (fiberwise) Hessian of ft : Et → R on Tvert

p E.
The space V0

p is zero if p ∈ A1(F) and one-dimensional if p ∈ A2(F). Hence we obtain
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vector bundles

V± → A1(F), V± → A2(F), V0 → A2(F)

so that V+ ⊕V− has structure group O(i)×O(j) on path components of A1(F) and V+ ⊕
V− ⊕ V0 has structure group O(k) × O(l) × SO(1) on path components of A2(F). The
numbers i and k refer to indices of critical points as before and V0 is a one-dimensional
real bundle. These indices can of course vary on different path components of A1(F) and
A2(F). Note that V0 → A2(F) carries a preferred orientation pointing in the direction of
increasing ft for t ∈ A2(F).

In order to describe the behavior of critical points around a birth-death singularity
p ∈ Et in a coordinate-independent way it is useful to choose an additional Riemannian
metric gB on B and a horizontal distribution on TE together with the lift ghor of gB to
this horizontal distribution. Together with the metric gvert we hence obtain a Riemannian
submersion

(
E, gvert ⊕ ghor

) → (B, gB).

Fixing this, for small enough ε > 0 we obtain canonical embeddings

ξ : A2(F) × (−ε, ε) → E

restricting to the inclusion A2(F) ↪→ E on A2(F) × {0} and so that for each p ∈ A2(F) the
restricted map ξ : {p} × (−ε, ε) → E describes the unique horizontal curve of unit speed
which maps to a geodesic in B orthogonal to Dpπ(TpA2(F)) ⊂ Tπ(p)B and points into the
birth direction of the birth-death singularity p.

For such an ε > 0 consider the vector bundle of rank n + 1

Vε = pr∗
1

(
V0 ⊕ V− ⊕ V+) → A2(F) × (−ε, ε)

i.e. the pull-back of TvertE|A2(F) to A2(F) × (−ε, ε) along the projection pr1 : A2(F) ×
(−ε, ε) → A2(F). The vector bundle Vε splits in a canonical way as

Vε = Vε,0 ⊕ Vε,− ⊕ Vε,+.

We equip Vε with the pull-back metric of the induced metric on TvertE|A2(F) and con-
sider for δ > 0 the disc bundle Dδ(Vε) → A2(F) × (−ε, ε). An extended tubular neighborhood

around A2(F) is a smooth embedding

φ : Dδ

(
Vε

)
↪→ E

so that the diagram

Dδ(Vε)
φ

E

π

A2(f ) × (−ε, ε)
π ◦ ξ

B
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commutes. This is exactly the global version (on non-product bundles) of the normal
form defined in [15, Appendix, Lemma 3.5].

After choosing some local isometric trivialization

Evert|U ∼= U × R × Rk × Rl

over an open subset U ⊂ A2(F), where the isomorphism on the R-factor is orientation
preserving, we obtain a corresponding local isometric trivialization

Vε|U×(−ε,ε)
∼= (

U × (−ε, ε)
) × R × Rk × Rl

so that we can work with local coordinates (p, s, x, y, z) ∈ A2(F)× (−ε, ε)×R×Rk ×Rl .
For the following definition compare [15, Appendix, Definition 3.9].

Definition 3.5. — Let gvert be a fiberwise Riemannian metric on E. We call a generic family of

generalized Morse functions F : E → [0,1] in normal form with respect to gvert , if there are numbers

σ, τ > 0, δ > 3σ and ε > σ 2 and an extended tubular neighborhood

φ : Dδ

(
Vε

)
↪→ E

(with respect to some horizontal metric ghor as before) so that

• φ is fiberwise isometric,

• for all {(p, s, x, y, z) ∈ D3σ (Vε) | |s| ≤ σ 2} the function F ◦ φ is given by

(s, x, y, z) 	→ F(p) + gs(x) − ‖y‖2 + ‖z‖2

where

gs : R → R, s ∈ [−σ 2, σ 2
]

is the smooth family of functions of [15, Appendix, Lemma 3.7] (with the chosen σ and τ ),

• for each critical point

q ∈ A1(F) \ φ

({
(p, s, x, y, z) ∈ D3σ

(
Vε

) ∣∣ |s| ≤ 2
3
σ 2

})

there is a gvert
π(q) isometric embedding μ : Dn+1

τ → Eπ(p) mapping the midpoint of the disc

Dn+1
τ ⊂ Rn+1 of radius τ (which is equipped with the standard metric) to q and so that F is

given by

F
(
μ(z1, . . . , zn+1)

) = F(q) +
n+1∑

i=1

± z2
i ,

where (z1, . . . , zn+1) are the standard coordinates of Rn+1. Furthermore, the embedding μ

can be assumed to vary smoothly on a contractible neighborhood of q in A1(F).
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We obtain the following existence result.

Proposition 3.6. — Assume that dim W ≥ 2 dim B + 5 and that the inclusion M1 ↪→ W is

2-connected. Then there is a fiberwise Riemannian metric gvert on E and a generic family of generalized

Morse functions F : E → [0,1] which is admissible and in normal form with respect to gvert .

Proof. — The proof is along the lines of the proof of [15, Appendix, Theorem 3.10].
Here we notice that in Igusa’s work this proof is given for the case when the bundle E =
B × W → B is trivial, but under the general assumption that Evert|A1(F) and Evert|A2(F) are
non-trivial. Because the deformations of f and gvert are carried out loc. cit. in a coordinate-
independent way, the same proof can be used to treat the general case of the nontrivial
bundle W ↪→ E → B appearing in our discussion. �

Combining this result with [23, Theorem 1.4] we obtain

Theorem 3.7. — Assume that dim W ≥ 2 dim B + 5 and that the inclusion M1 ↪→ W is

2-connected. Also assume that there exists a fiberwise metric of positive scalar curvature on a fiberwise

collar neighborhood of ∂0E ⊂ E which is fiberwise of product form on this collar neighborhood. Then this

metric can be extended to a fiberwise metric of positive scalar curvature on E → B which is fiberwise of

product form on a fiberwise collar neighborhood of ∂1E in W.

4. Homotopy classes of positive scalar curvature metrics

Using the invariant Â
 from Section 2 it is now rather straightforward to prove
Theorems 1.1, 1.11 and 1.12, assuming Theorem 1.4.

We fix k ≥ 0 and pick a bundle P → Sk whose total space is of non-zero Â-genus
and of dimension 4n, where we also fix l = 2 and require 4n ≥ 3k + 5 (i.e. the fiber
dimension satisfies 4n − k ≥ 2k + 5). Note that this and Theorem 1.4 determines the
lower bound N(k) on n for our main theorems. We assume conditions (1) and (2) of
Theorem 1.4.

Let s : Sk → P be a smooth section with trivialized normal bundle. Inside the re-
sulting embedding of Sk × D4n−k we construct an embedding

ρ : Sk ×
(

D4n−k
⋃

D4n−k−1×0

D4n−k−1 × [0,1]
⋃

D4n−k−1×1

D4n−k

)
↪→ P.

Removing the interiors of the two copies of Sk × D4n−k yields a fibration

W ↪→ E → Sk

where E has two boundary components ∂0E and ∂1E each of which may be identified (by
the map ρ) with the total space of the trivial fibration Sk × S4n−k−1 → Sk . Furthermore
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FIG. 2.

the bundle E comes with a fiberwise embedding of Sk ×D4n−k−1 ×[0,1] meeting ∂0E and
∂1E in Sk × D4n−k−1 × 0 and Sk × D4n−k−1 × 1, respectively. A typical fiber W is displayed
in Figure 2.

We use this embedding to form the fiberwise connected sum of E → Sk with the
trivial bundle Sk × (M × [0,1]) → Sk (the interval [0,1] being embedded vertically in
each fiber of E) to obtain a new fiber bundle

WM ↪→ EM → Sk

where each fiber WM is a bordism from M to M. Figure 2 illustrates how a typical fiber
of this bundle emerges from the connected sum of W and M × [0,1].

To keep our notation short we drop the index M from now on and call this new
bundle W → E → Sk again.

If l = 2 and the fiber dimension satisfies 4n−k ≥ 2k+5, we can apply Theorem 3.7
so as to extend the constant fiberwise positive scalar curvature metric g0 on ∂0E to a
fiberwise positive scalar curvature metric on E which is fiberwise of product form near
∂1E.

In view of the fact that ∂1W is identified with the trivial bundle Sk × M → Sk we
obtain a new family

φ : Sk → Riem+(M)

of positive scalar curvature metrics on M.
Unfortunately this need not be in the path component of g0 so that we modify our

construction as follows.
Let F : E → [0,1] be the generic family of generalized Morse functions in normal

form that was used for the construction of the fiberwise metric of positive scalar curvature
on E. Then the image of the set of birth-death singularities

π
(
A2(F)

) ⊂ Sk

is an immersed submanifold of dimension k − 1 and hence not equal to Sk . Let t ∈ Sk be
a point not lying in this image. The singularities of the restriction ft : Et → [0,1] are only
of Morse type. In view of Addendum 3.4 we can assume that they have not only coindex
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at least 3 but also index at least 3. We set W = Et , consider the constant family of Morse
functions

Fconst : Sk × W → [1,2], (c,w) 	→ 2 − ft(w)

and the resulting family of Morse functions

F ∪ Fconst : E
⋃

∂1E=Sk×∂1W

Sk × W → [0,2]

on the bundle E together with an upside down copy of the trivial bundle Sk × W → Sk .
Using [23, Theorem 1.4], we can extend the family of positive scalar curvature metrics
on E to the new fiber bundle

E′ = E
⋃

∂1E=Sk×∂1W

Sk × W → Sk.

Note that the restriction of the Morse function F ∪ Fconst to the fiber E′
t over t is the

smooth function

W
⋃

∂1W=∂1W

W → [0,2]

given by ft on the first and by 2− ft on the second copy of W. It therefore induces a handle
decomposition in which each handle of index i in the first copy of W corresponds to a
handle of coindex i in the second copy (in a canonical way). By the results of Walsh the
positive scalar curvature metric obtained on E′

t by the method from [23], which on the
single fiber E′

t restricts to the classical construction from [10], can be assumed to coincide
on the two copies of W (glued together at ∂1W). In particular we can assume that the
resulting metric on E′

t restricts to g0 on both ends.
This means that the family of positive scalar curvature metrics

φ′ : Sk → Riem+(M)

on the upper boundary component ∂1E′ is in the path component of g0.

Proposition 4.1. — For this family of metrics φ′ we get

Âπ

(
φ′) = Â(P) �= 0,

where P is the total space of the bundle from Theorem 1.4.

Proof. — By definition

Âπ

(
φ′) = ind(Dg),
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FIG. 3.

where g is a metric on (Sk × [0,1]) × M interpolating between the constant family (g0)

on (Sk × 0) × M and the family φ on (Sk × 1) × M, both families being scaled by an
adiabatic constant with respect to some metric on Sk .

We can isometrically glue (Sk ×[0,1])× M along top and bottom to E′ to obtain a
new spin manifold P′. Because E′ carries a metric of positive scalar curvature, the gluing
formula for the APS index yields

ind(Dg) = Â
(
P′).

Notice that the underlying smooth manifold P′ is just obtained from E′ by identi-
fying the two boundary components. A fiber P′

x over x ∈ Sk is depicted in Figure 3.
Let us now write P′ = P′

M to denote the dependency on M. By construction P′
M

is obtained as the fibered connected sum of P′
S4n−k−1 and the trivial bundle Sk × M × S1,

which has trivial Â-genus. By bordism invariance we conclude that Â(P′
M) is independent

of M, so we may assume that M = S4n−k−1, i.e. that no connected sum construction has
been performed.

In this case we carry out fiberwise two coindex-zero surgeries on the two copies
of M = S4n−k−1 inside the fibers of P′

S4n−k−1 as shown in Figure 3. We get a bordism from
P′

S4n−k−1 to the disjoint union of the manifolds P and Sk × F, where F is the fiber of the
bundle F → P → Sk we started with. The claim follows since the manifold Sk × F has
again vanishing Â-genus. �

Because Âπ is a homomorphism we can conclude that πk(Riem+(M), g0) contains
elements of infinite order if k > 0. For k = 0 we use the fact that Â(P) can assume infinitely
many integer values for different bundles F → P → S0 so that π0(Riem+(M)) is infinite.

Now consider the chain of group homomorphisms (for k = 0 the first map is just a
map of sets)

πk

(
Riem+(M), g0

) → 
fr
k

(
Riem+(M)

) → 

Spin
k

(
Riem+(M)

)

→ Hk

(
Riem+(M)

)

where the superscript “fr” stands for framed bordism. Because the invariant Â is integer-
valued and defined on Spin bordism, it follows that the images of our non-trivial homo-
topy classes remain non-zero in rational framed bordism. The composed map between
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rational framed bordism and rational singular homology being an isomorphism we con-
clude the proof of part (a) of Theorem 1.1.

Together with Corollary 2.3 we also obtain Theorem 1.11. Part (a) of Theo-
rem 1.12 follows with Corollaries 2.4 and 2.5 and part (b) of Theorem 1.12 is a con-
sequence of the following result.

Proposition 4.2. — Let M be a simply connected spin manifold which is a strongly Â-multipli-

cative fiber in degree k and admits a metric of positive scalar curvature g0. Then the invariant Â
 factors

through the image of the canonical map


fr
k

(
Riem+(M)

) → 
fr
k

(
Riem+(M)/Diffx0(M)

)
.

Proof. — Precomposing the canonical map from framed to spin bordism yields a
map

Âfr : 
fr
k

(
Riem+(M)

) → Z.

We note that each diffeomorphism in Diffx0(M) canonically lifts to a spin diffeomor-
phism, because M is simply connected by assumption and the differential is the identity
at x0.

Let B be a closed stably parallelizable manifold of dimension k, let φ : B →
Riem+(M) be a continuous map and assume that there is a compact stably paralleliz-
able manifold Y with boundary B together with a map � : Y → Riem+(M)/Diffx0(M)

so that

�|∂Y = π ◦ φ

where π : Riem+(M) → Riem+(M)/Diffx0(M) is the canonical projection. We need to
show that Âfr(φ) = 0.

On the one hand, because Riem+(M) → Riem+(M)/Diffx0(M) is a fiber bundle
projection, the map � gives rise to a (non-trivial) smooth bundle E → Y with fiber M and
structure group Diffx0(M) equipped with a fiberwise metric of positive scalar curvature.
As the map � restricts to π ◦ φ on the boundary, the bundle E|∂Y admits a trivialization
E|∂Y

∼= Sk × M such that the family of metrics coincides with the one given by φ.
On the other hand we consider the trivial bundle Y × M → Y equipped with the

constant fiberwise metric g0 of positive scalar curvature.
After choosing a Riemannian metric on Y, a horizontal distribution on the bundle

E → Y and scaling the fiberwise metrics on E → Y and Y × M → Y by an adiabatic
constant, we get positive scalar curvature metrics gE and gY×M on the total spaces E and
Y×M. Both of these total spaces admit canonical spin structures, so that the APS indices
of E and Y × M equipped with these metrics vanish.

Choose a metric g on (B × [0,1]) × M inducing the restriction of gY×M on (B ×
0) × M and the restriction of gE on (B × 1) × M.



356 BERNHARD HANKE, THOMAS SCHICK, AND WOLFGANG STEIMLE

From this we obtain a fiber bundle with fiber M, total space

X = Y × M
⋃

∂Y×M=B×0×M

B × [0,1] × M
⋃

B×1×M=∂E

E

and base

Y
⋃

∂Y=B×0

B × [0,1]
⋃

B×1=∂Y

Y.

We have Â(X) = 0, because M is assumed to be a strongly Â-multiplicative fiber in degree
k and the base manifold of this bundle is parallelizable. Hence

Âfr(φ) = ind(DgY×M) + ind(Dg) + ind(DgE) = Â(X) = 0

as required. �

5. Proof of Theorem 1.4

Let us first assume k ≥ 1, the case k = 0 being postponed to the end of the proof.
We construct P is in several steps. Let α ≥ k/4 + 2 be a natural number, let either β =
α + 1 or β = α + 2 and n = α + β . We consider the trivial fibration

φ0 : P0 = Sk × S4α−k × S4β → Sk

with (path connected) total space of dimension 4n. By choosing α appropriately we can
assume in addition that the fiber S4α−k × S4β of φ0 is l-connected.

We first apply the following result of surgery theory, in which τ : P0 → Bπ1(P0)

denotes the classifying map of the universal covering.

Theorem 5.1 ([7, Theorem 6.5]). — Let L ∈ ⊕
j>1 H4j(P0;Q) be a class such that

τ∗
(
L∩ [P0]

) = 0 ∈ H4n−4∗
(
Bπ1(P0);Q

)
.

Then there is some non-zero integer R and a homotopy equivalence f : P1 → P0 of closed smooth

manifolds such that the L-polynomials of P0 and P1 satisfy the equation

L(P1) = f ∗(L(P0) + RL
)
.

Sketch of proof. — As we need a slight modification of the argument later, we sketch
the proof. For more details, proofs or references concerning some of the statements below
we refer the reader to [7].
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At first we identify the set of topological normal invariants on P0 with [P0,G/Top],
which we equip with the Abelian group structure so that the surgery obstruction is a
group homomorphism. There is an isomorphism

� : [P0,G/Top] ⊗ Q
∼=−→

⊕

j>0

H4j(P0,Q)

sending the class of a degree one normal map f : (P1,TP1) → (P0, ξ) to the class �(f ) =
1
8(L(ξ)L(P0)

−1 − 1). Thus there exists a non-zero integer R1 and a normal invariant
f ∈ [P0,G/Top] such that �(f ) = R1LL(P0)

−1. We note that for this normal invariant
the desired equation of L-polynomials for L(P1) = f ∗L(ξ) holds with 8R1 instead of R.

We need to compute the surgery obstruction for this normal invariant f . The
surgery obstruction

[P0,G/Top] ⊗ Q → L4n

(
Z

[
π1(P0)

]) ⊗ Q

factors along

[P0,G/Top] ⊗ Q
∼=−→
�

⊕

k>0

H4k(P0;Q)

(−∪L(P0))∩[P0]−−−−−−−→ H4n−4∗(P0;Q)
τ∗−→ H4n−4∗

(
Bπ1(P0);Q

)
.

Hence by assumption the surgery obstruction of f is zero in L4n(Z[π1(P0)]) ⊗ Q.
This implies that there is a non-zero integer R2 and a normal invariant f ∈ [P0,G/Top]
so that �(f ) = R2R1LL(P0)

−1 and so that the surgery obstruction of this f vanishes.
Because π1(P0) is either trivial or equal to Z in our case, we have L4n(Z[π1(P0)]) ∼= Z by
the Bass-Heller-Swan splitting theorem, so that we can in fact choose R2 = 1.

Finally it follows from [24] that for each normal invariant f ∈ [P0,G/Top] some
multiple of f lies in the image of the canonical map [P0,G/O] → [P0,G/Top]. Hence
we find a non-zero multiple R3 of R2R1 and a smooth normal invariant f ∈ [P0,G/O]
which satisfies �(f ) = R3LL(P0)

−1 and whose surgery obstruction vanishes. Performing
surgery along this normal invariant yields a homotopy equivalence f : P1 → P0 so that
the stated equation holds with R = 8R3. �

We apply this result to the following situation: Let

ek ∈ Hk
(
Sk;Z

)
, e4α−k ∈ H4α−k

(
S4α−k;Z

)
, e4β ∈ H4β

(
S4β;Z

)

be generators. As P0 is stably parallelizable, L(P0) = 1. Moreover, π1(P0) is trivial if k ≥ 2
or infinite cyclic if k = 1. We conclude from Theorem 5.1 that we can find R �= 0 and a
homotopy equivalence

f : P1 → P0
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of smooth closed manifolds so that all homogeneous components of the Hirzebruch
L-class of P1 vanish except

Lα = R · (ek × e4α−k), Lβ = R · e4β.

Here we use the identification

f ∗ : H∗(Sk × S4α−k × S4β;Q
) ∼= H∗(P1;Q).

We will show that a manifold with the above properties automatically has non-
zero Â-genus. For j ≥ 1 we denote by λL

j ∈ Q the coefficient of the degree 4j Pontryagin

class pj in Lj(p1, . . . , pj), and by λA
j the corresponding coefficient of the Â-polynomial

Âj(p1, . . . , pj).

Lemma 5.2. — We have

λL
j = 22j(22j−1 − 1)

(2j)! · Bj,

λA
j = − 1

2(2j)! · Bj

where Bj denotes the j-th Bernoulli number, defined by the relation (cf. [19, p. 281])

x

tanh x
= 1 +

∞∑

j=1

(−1)j−1 Bj

(2j)!(2x)2j.

Proof. — According to [19, Problem 19-C] we have equations

L(t)
d(t/L(t))

dt
= 1 +

∞∑

j=1

(−1)jλL
j · tj

Â(t)
d(t/Â(t))

dt
= 1 +

∞∑

j=1

(−1)jλÂ
j · tj

where

L(t) =
√

t

tanh(
√

t)
, Â(t) =

1
2

√
t

sinh( 1
2

√
t)

are the formal power series for the multiplicative sequences {Ln} and {Ân}.
For the Â-polynomial we compute

Â(t)
d(t/Â(t))

dt
= 1

2
+ 1

2

1
2

√
t

tanh( 1
2

√
t)

.
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This gives (setting x = 1
2

√
t in the relation defining the Bernoulli numbers)

Â(t)
d(t/Â(t))

dt
= 1 + 1

2
·

∞∑

j=1

(−1)j−1 Bj

(2j)! t
j .

This implies the second equation. The first equation appears explicitly in [19, Prob-
lem 19-C] or can be obtained by similar methods. �

This lemma implies that all λL
j and λA

j are different from zero. By our choice of
β = α + 1 or β = α + 2, it follows recursively that all the Pontryagin classes of P1 vanish
except possibly pα , pβ , and pn, and that pα and pβ as well as pα · pβ are non-zero.

Let us write the degree 4n-components of the L- and the Â-polynomial of an arbi-
trary vector bundle with vanishing pj for j �= α,β, n as

Ln(pα, pβ, pn) = λL
n · pn + μL · pαpβ

Ân(pα, pβ, pn) = λA
n · pn + μA · pαpβ

with rational numbers μL,μA.

Proposition 5.3. — We have

μL

λL
n

�= μA

λA
n

and hence the following implication for a 4n-dimensional connected oriented manifold M with pj(M) = 0
for j �= α,β, n:

If pα(M) · pβ(M) �= 0 and L(M) = 0, then Â(M) �= 0.

Proof. — This is a calculation in universal characteristic classes. To keep the no-
tation transparent, assume that Eα,Eβ are vector bundles with total Pontryagin classes
1 + pα and 1 + pβ , in particular Ln(Eα) = 0 = Ln(Eβ). By the multiplicativity of the total
Pontryagin class and the universal L- and Â-polynomials we obtain

pn(Eα ⊕ Eβ) = pα · pβ, pα(Eα ⊕ Eβ) = pα, pβ(Eα ⊕ Eβ) = pβ.

This implies
(
λL

n + μL
) · (pα · pβ) = Ln(Eα ⊕ Eβ)

= Ln(Eα) + Ln(Eβ) + Lα(Eα) · Lβ(Eβ)

= λL
α · λL

β · (pα · pβ),
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and hence

λL
n + μL = λL

αλ
L
β.

An analogous computation shows

λA
n + μA = λA

αλA
β ,

so that altogether we obtain

1 + μL

λL
n

= λL
αλ

L
β

λL
n

, 1 + μA

λA
n

= λA
αλA

β

λA
n

.

From Lemma 5.2 it follows that

1 + μL

λL
n

= −2(22α−1 − 1)(22β−1 − 1)

22n−1 − 1

λA
αλA

β

λA
n

= −2(22α−1 − 1)(22β−1 − 1)

22n−1 − 1

(
μA

λA
n

+ 1
)

.

Because − 2(22α−1−1)(22β−1−1)

22n−1−1 �= 1 the conclusion follows. �

If k = 1 then the map

φ0 ◦ f : P1 → S1

is homotopic to the projection map of a smooth fiber bundle. This follows from Far-
rell’s obstruction theory over the circle [8, Theorem 6.4]. Note that in the case at hand
φ0 ◦ f induces an isomorphism of fundamental groups, so that the kernel of the π1-ho-
momorphism is the trivial group. By [8, Remarks on p. 316], the fibering obstructions
vanish and one only has to check that the universal covering of P1 is homotopy equiva-
lent to a finite CW-complex. But it is homotopy equivalent to the universal covering of P0

and therefore has this property.
If k ≥ 2 the map φ0 ◦ f will usually not be homotopic to a fiber bundle projection

and a more complicated construction is needed. The theory which is relevant for the
following discussion was developed by Casson [4] and Hatcher [12].

Recall that for any continuous map f : X → Y of topological spaces, the homotopy

fiber L of f is the fiber of the map

Ef → Y

(x, γ ) 	→ γ (1)

where

Ef = {
(x, γ ) | x ∈ X, γ : [0,1] → Y, γ (0) = f (x)

}
.
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Let b ∈ Sm be the north pole, viewed as base point in Sm. Let V be a closed smooth
manifold V equipped with a smooth map f : V → Sm such that the homotopy fiber is
simply-connected. Casson [4, Section 1] defines such a map to be a pre-fibration if the point
b ∈ Sm is a regular value, V \ f −1(b) is simply-connected and the canonical inclusion

f −1(b) → L, v 	→ (
v, γ : t 	→ f (v)

)

of the point-preimage into the homotopy fiber of f is a weak homotopy equivalence. In
this case the smooth manifold F = f −1(b) is called the fiber of (V, f ).

Proposition 5.4. — Let R �= 0 be the number appearing in the construction of f : P1 → P0

after the proof of Theorem 5.1. If we construct the homotopy equivalence f : P1 → P0 using the number

2R instead of R, then the map φ0 ◦ f : P1 → Sk constructed above is homotopic to a pre-fibration

φ1 : P1 → Sk .

Proof. — After applying a homotopy to φ0 ◦ f we obtain a map g for which the
value b ∈ S4k is regular with some fiber F. By [4, Lemma 4] we can assume that F and
P1 \ F are simply connected. By [4, Lemma 2 and the proof of Theorem 1] the inclusion
from F into the homotopy fiber of g is a degree one normal map. From [4, Theorem 1 and
p. 497] we know that the obstruction for g to be homotopic to a pre-fibration is given by
the (simply-connected) surgery obstruction of this degree one normal map. The surgery
obstruction groups in odd dimensions being trivial, we have to distinguish between the
cases where k is divisible by 4 and where k is congruent 2 modulo 4.

In the case where k is divisible by 4, the surgery obstruction is an integer which
(up to a multiple) is given by the difference of signatures. The homotopy fiber L′ of g is
homotopy equivalent to S4α−k × S4β , so that its signature is zero. On the other hand, by
Hirzebruch’s signature formula we obtain the signature of F (which is framed in P1) by

σ(F) = 〈
L(P1), [F]〉,

which is zero since by our choices of α and β there is no L-class in the relevant degree.
In the case where k is congruent 2 modulo 4, the surgery obstruction group is cyclic

of order 2. In the notation of the proof of Theorem 5.1, this surgery obstruction is given
by the composite group homomorphism

[P0,G/Top] → [
S4α−k × S4β,G/Top

] → L4n−k(Z) ∼= Z/2

where the first map is given by restriction. It follows that this obstruction becomes zero if
the number R appearing in Theorem 5.1 is multiplied by 2. �

In general the map φ1 is not homotopic to an actual (smooth) fiber bundle: By the
theory developed in [4] there is an obstruction lying in a homotopy group of a certain
concordance space. Our goal is to show that (P1, φ1) can be replaced by some (P2, φ2)

which fibers over Sk .
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Casson [4, Section 4] calls two pre-fibrations f : V → Sm and f ′ : V′ → Sm equiva-

lent if there is a diffeomorphism V → V′ compatible with f and f ′ in a neighborhood of
f −1(b). This implies that the fibers of f and f ′ are diffeomorphic. Let F denote this com-
mon fiber. Following Casson, equivalence classes of pre-fibrations are classified as follows:
Let Ã(F) be the simplicial group of block diffeomorphisms of F. Recall from [12, p. 5]
that the k-simplices in Ã(F) are given by diffeomorphisms of F × �k restricting to diffeo-
morphisms of F × τ for each face of �k . An element in πk(Ã(F), id) is represented by a
self-diffeomorphism of F × Dk which is the identity in a neighborhood of F × Sk−1, and
two elements agree if and only if they are concordant by a concordance which keeps a
neighborhood of F × Sk−1 fixed. Thinking of Dk as the northern hemisphere Dk

+ ⊂ Sk ,
such an f extends by the identity map to a self-diffeomorphism f ′ of F × Sk . We may use
f ′ to glue two copies of F×Dk+1 along their common boundaries to obtain a closed man-
ifold V which comes with a canonical projection to Sk+1, collapsing F × Dk

+ to a point,
which is easily seen to be a pre-fibration which we call V(x).

In the following we will suppress the obvious base point id in the notation of ho-
motopy groups.

Proposition 5.5. — Let F be simply connected and of dimension at least 6, and let k ≥ 2. Then

the rule x 	→ V(x) defines a one-to-one correspondence between πk−1(Ã(F)) and equivalence classes of

pre-fibrations over Sk with fiber F.

Proof. — This is [4, Lemma 6], once one has identified πk(Ã(F)) with what Casson
calls Dk(F). The latter group is given by the diffeomorphisms of F × Sk keeping a neigh-
borhood of F × Dk

− pointwise fixed, modulo concordance keeping F × Dk
− pointwise

fixed. (Here Dk
− is the lower hemisphere.) There is a canonical map Dk(F) → πk(Ã(F))

given by restriction of a diffeomorphism to F × Dk
+. Its inverse is given by extending a

diffeomorphism of F × Dk
+ by the identity. �

For a pre-fibration f : V → Sk with fiber F, which we assume to be simply con-
nected and of dimension at least 6, we denote by h(V, f ) ∈ πk−1(Ã(F)) the corresponding
element. We call this the characteristic element of the pre-fibration. We now formulate a
condition when a pre-fibration is equivalent to a fiber bundle.

Let A(F) be the simplicial group of diffeomorphisms of F, where the k-simplices
are given by diffeomorphisms of F × �k which are compatible with the projection to �k .
Note that A(F) is a simplicial subgroup of Ã(F), which is in general not normal.

If x ∈ πk(Ã(F)) lies in the image of πk(A(F)), then V(x) is obtained (up to equiv-
alence) by gluing two copies of V × Dk along a diffeomorphism V × Sk−1 which acts
fiberwise over Sk−1. It follows that the projection V(x) → Sk is a smooth fiber bundle.
Using the exact sequence

πk

(
A(F)

) → πk

(
Ã(F)

) ψ−→ πk

(
Ã(F),A(F)

)

we obtain:
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Proposition 5.6. — Let f : V → Sk be a pre-fibration with simply connected fiber F of dimen-

sion at least 6 with characteristic element h(V, f ) ∈ πk−1(Ã(F)). If ψ(h) = 0 ∈ πk−1(Ã(F),A(F)),

then f : V → Sk is (as a pre-fibration) equivalent to a smooth fiber bundle.

For a closed smooth manifold K we consider the pre-fibration

φ1 ◦ pr1 : P1 × K → Sk (p, x) 	→ φ1(p)

with fiber F × K. Then ψ(h(φ1 ◦ pr1)) is the image of ψ(h(φ1)) under the map of homo-
topy groups induced by the map

(
Ã(F),A(F)

) → (
Ã(F × K),A(F × K)

)

which sends a diffeomorphism ω : F×�k → F×�k to ω× id : F×�k ×K → F×�k ×K.

Proposition 5.7. — For a closed smooth manifold K with vanishing Euler characteristic χ(K)

and r > 0, the induced map

πr

(
Ã(F),A(F)

) → πr

(
Ã

(
F × Kr

)
,A

(
F × Kr

))

is equal to 0. Here Kr denotes the r-fold Cartesian product of K with itself.

Proof. — We consider the Hatcher spectral sequence [12, Proposition 2.1]

E1
pq = πq

(
C

(
F × Ip

)) =⇒ πp+q+1

(
Ã(F),A(F)

)
.

By [12, Proposition in Appendix I on p. 18], multiplication with K induces the zero map

πj

(
C

(
F × Ip

)) → πj

(
C

(
F × Ip × K

))

for each j, because χ(K) = 0. It follows that in the filtration of πr(Ã(F),A(F)) induced
by the E∞-term of the Hatcher spectral sequence the map induced by the product with
K reduces the filtration degree of each element by one. This implies the assertion of
Proposition 5.7. �

Thus let K be a closed max(l,1)-connected smooth manifold with Â(K) �= 0 and
χ(K) = 0. (For instance, we may use the construction at the beginning of this section for
appropriate values of k, α and β .) Applying Lemma 5.7 to our previous construction we
conclude that the pre-fibration

φ1 ◦ pr1 : P1 × Kk−1 → Sk

is equivalent to a smooth fiber bundle φ2 : P2 → Sk . Because Â(K) �= 0 we still have
Â(P2) �= 0.
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It remains to prove that we can assume that we have a smooth section s : Sk → P2

with trivial normal bundle. First notice that by choosing α and l large enough, there is
a smooth section s : Sk → P2, of which we would like to show that its normal bundle is
trivial.

Again the case k = 1 is the simplest one. In fact a real bundle over the circle is
trivial if and only if its first Stiefel-Whitney class vanishes, and the first Stiefel-Whitney
class of the normal bundle agrees with w1(P0) = 0.

In the case where k ≥ 2 we argue as follows. Since we are in the stable range,
the normal bundle is classified by an element in πk(BO). If k ≡ 3,5,6,7 modulo 8, the
group πk(BO) is zero, so that the normal bundle is automatically trivial. In the cases
where k = 4l is divisible by 4, we have πk(BO) = Z and non-trivial bundles over Sk may
be detected by their l-th rational Pontryagin classes. The l-th rational Pontryagin class of
the normal bundle is equal to s∗(pl(P2)) ∈ H4l(S4l;Q). But by the above construction of
P2 this class is equal to 0, so that the normal bundle is trivial in this case, too.

The remaining cases are k ≡ 1 or 2 modulo 8, in which case πk(BO) = Z/2. We
do not see a general reason why the normal bundle should be trivial in this case, but we
describe a procedure how to change the pre-fibration φ1 : P1 → Sk so that the normal
bundle of the embedded Sk in P1 becomes trivial. Since P2 is diffeomorphic to P1 × Kk−1,
this will imply that the normal bundle of the embedding Sk → P2 is also trivial.

Recall that by Casson’s classification result, if dim F ≥ 6 and F is simply con-
nected any pre-fibration over Sk with fiber F is equivalent to one of the form V(x), with
x ∈ πk−1(Ã(F)). If F is k-connected and at least (k + 2)-dimensional, then there is an em-
bedding Sk → V(x) such that the composite map Sk → V(x) → Sk is homotopic to the
identity, and any two such embeddings are isotopic. We call such an embedding simply
the embedding of Sk into V(x) and denote by νx : Sk → BO the classifying map of its
normal bundle.

Lemma 5.8. — Suppose that F is k-connected and at least (k +2)-dimensional (where k ≥ 2),

and let x, y ∈ πk−1(Ã(F)). Then the normal bundle of the embedding of Sk into V(x + y) is classified

by νx + νy. Moreover

Â
(
V(x + y)

) = Â
(
V(x)

) + Â
(
V(y)

)
.

Proof. — Let x and y be represented by automorphisms α and β of F × Dk−1, fixing
a neighborhood of F × Sk−2, and denote by α′ and β ′ the corresponding automorphisms
of F × Sk−1. Because the element x + y is represented by the composition β ◦ α, the space
V(x + y) can be written as a “fibered connected sum”

V(x + y) ∼= (
F × Dk

+
) ∪α′

(
F × Sk−1 × [0,1]) ∪β ′

(
F × Dk

−
)
.

We use this identification to describe the embedding of Sk into V(x + y). To do
that, let us first describe the embedding ix of Sk into V(x). Choose a base point ∗ ∈ F. On
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the lower hemisphere Dk
− the embedding ix is given by the inclusion i− : Dk

− → Dk
− × F

at the base point. The composite

Sk−1 i−−→ Sk−1 × F
α′−→ Sk × F

extends continuously to a map Dk
+ → Dk

+×F (coning off and using a null homotopy of the
map prF ◦α′ ◦ i− : Sk → F). The extension may be approximated by a smooth embedding
i+ in such a way that i+ and i− together define the embedding of Sk into V(x).

Similarly one obtains a choice of the embedding iy of Sk into V(y) which is the
inclusion at the base point on the upper hemisphere. Denoting the embedding at the
base point by j : Sk−1 × [0,1] → F × Sk−1 × [0,1], it follows that

ix|Dk+ ∪ j ∪ iy|Dk− : Dk
+ ∪ (

Sk−1 × [0,1]) ∪ Dk
−

→ (
F × Dk

+
) ∪α′

(
F × Sk−1 × [0,1]) ∪β ′

(
F × Dk

−
)

defines the embedding of Sk into V(x + y).
The normal bundle of this embedding is given by νx|Dk+ on Dk

+ and by νy|Dk− on Dk
−,

while on Sk−1 × [0,1] the normal bundle is trivialized. It follows that the classifying map
νx+y factors as

Sk → Sk ∨ Sk
νx∨νy−−→ BO

where the first map is the pinch map. But this composite defines the sum νx + νy in the
homotopy group πk(BO) so that the first statement follows.

Finally notice that V(x + y) is obtained from V(x)� V(y) by cutting out two copies
of F × Dk and gluing along the resulting F × Sk−1 boundaries, defining a parametrized
connected sum. Hence there is a standard bordism between these V(x + y) and the dis-
joint union V(x) ∪ V(y). This implies the second statement. �

Suppose now that in our situation, the normal bundle of Sk in P1 = V(x) is non-
trivial. As πk(BO) has order 2, replacing P1 by P′

1 = V(2x) yields a pre-fibration with the
same fiber F, whose section has trivial normal bundle and such that 2Â(P1) = Â(P′

1) �= 0.
This completes the proof of Theorem 1.4 in the case k ≥ 1.

If k = 0 we can use the same construction as for case k ≥ 1, but starting with
P0 = S4α ×S4β . With Theorem 5.1, Lemma 5.2 and Proposition 5.3 we find an N(0, l) so
that for all n ≥ N(0, l) there is a 4n-dimensional l-connected closed spin manifold F with
Â(F) �= 0. Now we define E as the disjoint union of two copies of the spin manifold F.
The surjective map to S0 is constant on each component.
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