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ABSTRACT

We consider surfaces with constant mean curvature in certain warped product manifolds. We show that any such
surface is umbilic, provided that the warping factor satisfies certain structure conditions. This theorem can be viewed as
a generalization of the classical Alexandrov theorem in Euclidean space. In particular, our results apply to the deSitter-
Schwarzschild and Reissner-Nordstrom manifolds.

1. Introduction

A classical theorem due to Alexandrov [1] asserts that any closed, embedded hy-
persurface in Rn with constant mean curvature is a round sphere. Alexandrov’s theorem
is remarkable in that it holds in all dimensions; requires no assumptions about the topol-
ogy of the surface; and does not impose any stability assumptions. More generally, it is
known that surfaces of constant mean curvature in the hemisphere and in hyperbolic
space are geodesic spheres (see e.g. [17, 21]). Montiel [20] has obtained a uniqueness
theorem for star-shaped hypersurfaces of constant mean curvature in certain rotationally
symmetric manifolds. The argument in Montiel’s paper [20] applies to various ambient
spaces; the assumption that the surface is star-shaped plays a crucial role in the argument
(see also [2]).

In a different direction, Christodoulou and Yau [8] studied stable surfaces of con-
stant mean curvature in asymptotically flat three-manifolds. Their work was motivated
by considerations in general relativity; in particular, they showed that any such surface
has nonnegative Hawking mass. Later, Bray [5] studied the isoperimetric problem in
the three-dimensional Schwarzschild manifold. A surface is called isoperimetric if it has
minimal area among all surfaces that enclose the same volume. Using an ingenious
comparison argument, Bray [5] was able to show that any isoperimetric surface in the
Schwarzschild manifold must be a coordinate sphere. We note that Bray’s method can be
extended to more general ambient manifolds; see [6] and [10] for details.

In 1996, Huisken and Yau [19] proved that for any asymptotically flat three-
manifold M with positive ADM mass, there exists a compact set K so that the com-
plement M \ K can be foliated by stable surfaces of constant mean curvature. Moreover,
Huisken and Yau proved a uniqueness result for such foliations near infinity under mild
additional assumptions. Qing and Tian [25] have obtained a uniqueness result for stable
surfaces of constant mean curvature that avoid some large compact set K. It was shown
by Eichmair and Metzger [12] that a stable constant mean curvature surface � must
avoid a given compact set K, provided that the area of � is sufficiently large and the
ambient manifold M has positive scalar curvature. Eichmair and Metzger also proved
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that the constant mean curvature spheres constructed by Huisken and Yau are, in fact,
isoperimetric surfaces. This confirmed a conjecture of Bray; see [11] and [13] for details.
Finally, we note that Rigger [27] and Neves and Tian [22] have constructed foliations by
surfaces of constant mean curvature in asymptotically hyperbolic manifolds.

In this paper, we prove an analogue of Alexandrov’s theorem for a class of warped
product manifolds. Let us fix an integer n ≥ 3. Throughout this paper, we assume that N
is a compact Riemannian manifold of dimension n − 1 such that

RicN ≥ (n − 2)ρ gN

for some constant ρ. Moreover, we consider a smooth positive function h : [0, r̄) → R
which satisfies the following conditions:

(H1) h′(0) = 0 and h′′(0) > 0.
(H2) h′(r) > 0 for all r ∈ (0, r̄).
(H3) The function

2
h′′(r)
h(r)

− (n − 2)
ρ − h′(r)2

h(r)2

is non-decreasing for r ∈ (0, r̄).
(H4) We have

h′′(r)
h(r)

+ ρ − h′(r)2

h(r)2
> 0

for all r ∈ (0, r̄).

We now consider the manifold M = N × [0, r̄) equipped with the Riemannian metric

(1) g = dr ⊗ dr + h(r)2 gN.

The following is the main result of this paper:

Theorem 1.1. — Suppose that (M, g) is a warped product manifold satisfying conditions (H1)–
(H3). Moreover, let � be a closed, embedded, orientable hypersurface in (M, g) with constant mean

curvature. Then � is umbilic. If, in addition, the condition (H4) holds, then � is a slice N × {r} for

some r ∈ (0, r̄).

It is interesting to consider the special case when RicN = (n − 2)ρ gN. In this case,
the Ricci and scalar curvature of g are given by

Ric = −
(

h′′(r)
h(r)

− (n − 2)
ρ − h′(r)2

h(r)2

)
g(2)
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− (n − 2)

(
h′′(r)
h(r)

+ ρ − h′(r)2

h(r)2

)
dr ⊗ dr

and

(3) R = −(n − 1)

(
2

h′′(r)
h(r)

− (n − 2)
ρ − h′(r)2

h(r)2

)
.

Hence, in this case, the condition (H3) is equivalent to saying that the scalar curvature
of g is non-increasing in r. Moreover, the condition (H4) says that the Ricci curvature is
smallest in the radial direction.

In particular, condition (H3) is satisfied if N is the standard sphere and (M, g) has
constant scalar curvature. Besides the standard spaces of constant sectional curvature, the
most basic examples of rotationally symmetric manifolds with constant scalar curvature
are the deSitter-Schwarzschild manifolds. We briefly recall their definition. Let us fix real
numbers m and κ . We assume that m is positive. Moreover, we assume that either κ ≤ 0
or

nn

4 (n − 2)n−2
m2 κn−2 < 1.

Let us write {s > 0 : 1 − m s2−n − κ s2 > 0} = (s, s). The deSitter-Schwarzschild manifold
is defined by M = Sn−1 × (s, s) and

g = 1
1 − m s2−n − κ s2

ds ⊗ ds + s2 gSn−1 .

A straightforward calculation shows that (M, g) has constant scalar curvature n(n − 1)κ .
We note that the manifold (M, g) can be isometrically embedded as a space-like slice
in the (n + 1)-dimensional deSitter-Schwarzschild space-time. In the special case κ = 0,
(M, g) is the ordinary Schwarzschild manifold.

Corollary 1.2. — Suppose that � is a closed, embedded, orientable hypersurface in the deSitter-

Schwarzschild manifold with constant mean curvature. Then � is a slice Sn−1 × {s}.
In particular, we obtain a uniqueness theorem for surfaces of constant mean cur-

vature in Schwarzschild space. We note, however, that the analogous result fails in the
doubled Schwarzschild manifold. In fact, in a joint work with Michael Eichmair [7],
we have constructed small isoperimetric surfaces in the doubled Schwarzschild mani-
fold which are located near a point on the horizon. These surfaces have constant mean
curvature, but are not umbilic.

The assumptions of Theorem 1.1 are also satisfied for the Reissner-Nordstrom
spaces. The Reissner-Nordstrom manifold is defined by M = Sn−1 × (s,∞) and

g = 1
1 − m s2−n + q2 s4−2n

ds ⊗ ds + s2 gSn−1 .
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Here, m > 2q > 0 are constants, and s is defined as the larger of the two solutions of the
equation 1 − m s2−n + q2 s4−2n = 0.

Corollary 1.3. — Suppose that � is a closed, embedded, orientable hypersurface in the Reissner-

Nordstrom manifold with constant mean curvature. Then � is a slice Sn−1 × {s}.
We next state a variant of Theorem 1.1. To that end, we consider a function h :

[0, r̄) → R which satisfies the following conditions:

(H1′) h(r) = r ϕ(r2), where ϕ : [0,
√

r̄) → R is a smooth positive function satisfying
ϕ(0) = 1.

(H2′) h′(r) > 0 for all r ∈ (0, r̄).
(H3′) The function

2
h′′(r)
h(r)

− (n − 2)
1 − h′(r)2

h(r)2

is non-decreasing for r ∈ (0, r̄).
(H4′) We have

h′′(r)
h(r)

+ 1 − h′(r)2

h(r)2

= 0

for all r ∈ (0, r̄).

Theorem 1.4. — Let h : [0, r̄) → R which satisfies the conditions (H1′)–(H3′). Let us con-

sider the ball Br̄(0) ⊂ Rn equipped with the Riemannian metric g = dr ⊗ dr + h(r)2 gSn−1 . Moreover,

let � be a closed, embedded, orientable hypersurface in (Br̄(0), g) with constant mean curvature. Then

� is umbilic. If, in addition, the condition (H4′) holds, then � is a geodesic sphere centered at the origin.

Note that the conditions (H1′)–(H3′) are satisfied for h(r) = r, for h(r) = sinh(r),
and for h(r) = sin(r). Therefore, Theorem 1.4 generalizes the Alexandrov theorems in
Euclidean space, hyperbolic space, and the hemisphere.

As above, the condition (H3′) is equivalent to saying that the scalar curvature of
g is non-increasing in r. On the other hand, if the scalar curvature is not a monotone
function of r, it is possible to construct small spheres with constant mean curvature which
are not umbilic:

Theorem 1.5 (F. Pacard, X. Xu [23]). — Consider a smooth metric g on the ball Br̄(0) ⊂ Rn

of the form g = dr ⊗ dr + h(r)2 gSn−1 . Assume that the function

2
h′′(r)
h(r)

− (n − 2)
1 − h′(r)2

h(r)2
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has a strict local extremum (either a local minimum or a local maximum) at some point r̂ ∈ (0, r̄).

Moreover, suppose that at each point on ∂Br̂(0), the Ricci tensor of g has two distinct eigenvalues. Then

there exist small spheres with constant mean curvature which are not umbilic.

Theorem 1.5 is a direct consequence of Theorem 1.1 in [23]. To see this, let φ(·, λ)

be the function defined in [23]. Clearly, φ(·, λ) is rotationally symmetric. By assumption,
the scalar curvature (viewed as a function of r) attains a strict local extremum at the
point r̂ ∈ (0, r̄). Hence, if λ is sufficiently small, we can find a number r close to r̂ with
the property that every point on the coordinate sphere ∂Br(0) is a critical point of the
function φ(·, λ). Hence, given any point p ∈ ∂Br(0), we can find an (n − 1)-sphere �

which has constant mean curvature n−1
λ

and is contained in a geodesic ball around p of
radius λ (1 + o(1)). This surface � cannot be umbilic: indeed, if � were umbilic, then
the Codazzi equations would imply that the normal vector to � is an eigenvector of the
Ricci tensor. Consequently, � would be a geodesic sphere centered at the origin, which
is impossible.

The proof of Theorem 1.1 occupies Sections 2–4. In Section 2, we define a poten-
tial function f and a conformal vector field X, and study their basic properties. In partic-
ular, we derive an integral identity, which generalizes the classical Minkowski formula in
Euclidean space. Moreover, using condition (H3), we show that (	f ) g −D2f + f Ric ≥ 0.
This inequality plays a key role in the proof of Theorem 1.1. We note that Riemannian
metrics with the property that (	f ) g − D2f + f Ric = 0 are called static, and have been
studied in connection with questions in general relativity (see e.g. [3, 9, 26]).

In Section 3, we prove a sharp inequality for hypersurfaces of positive mean cur-
vature. This inequality is inspired by a classical inequality due to Heintze and Karcher
[16]. To state this inequality, we consider two cases. If � is the boundary of a domain 
,
we show that

(4) (n − 1)

∫
�

f

H
dμ ≥ n

∫



f d vol.

On the other hand, if we can find a domain 
 such that ∂
 = � ∪ (N × {0}), then we
obtain

(5) (n − 1)

∫
�

f

H
dμ ≥ n

∫



f d vol + h(0)n vol(N, gN).

Moreover, if equality holds in (4) or (5), then � must be umbilic. In order to prove these
inequalities, we consider the Riemannian metric ĝ = 1

f 2 g. This metric is conformal to the
given metric g and has an asymptotically hyperbolic end at N×{0}. We then consider the
level sets of the distance function u(p) = dĝ(p,�), where the distance is computed using
the conformal metric ĝ. We now study the quantity

Q(t) = (n − 1)

∫
�∗

t

f

H
dμ,
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where �∗
t denotes the smooth part of the level set {u = t}, and H denotes the mean

curvature of �∗
t . Using the standard formula for the evolution of the mean curvature, we

obtain a monotonicity formula for Q(t). If � is null-homologous, the inequality (4) is a
direct consequence of our monotonicity formula. On the other hand, if � is homologous
to the boundary N × {0}, we show that

lim inf
t→∞ Q(t) ≥ h(0)n vol(N, gN).

If we combine this inequality with the monotonicity formula for Q(t), the inequality (5)
follows. The analysis of the limit of Q(t) as t → ∞ is a very subtle issue, as the level sets
{u = t} are not smooth in general. To overcome this obstacle, we use the approximation
technique of Greene and Wu [14, 15].

In Section 4, we combine the results from Sections 2 and 3 to conclude that � is
umbilic. This completes the proof of Theorem 1.1.

In Section 5, we explain how Corollary 1.2 and Corollary 1.3 follow from Theo-
rem 1.1.

Finally, in Section 6 we sketch the proof of Theorem 1.4. The proof of this result is
very similar to the proof of Theorem 1.1, and we will indicate the necessary adaptations.

2. Basic properties of (M,g)

Let (M, g) be a warped product manifold which satisfies the conditions (H1)–(H3).
We define a smooth function f : M → R and a vector field X on M by

f = h′(r)

and

X = h(r)
∂

∂r
.

It follows from (H2) that f is a positive function on N × (0, r̄). Moreover, the condition
(H1) implies that the function f vanishes along N × {0}, but the gradient of f is non-zero
along N × {0}.

Proposition 2.1. — The function f satisfies the inequality

(	f ) g − D2f + f Ric ≥ 0.

Proof. — Let {e1, . . . , en−1} be a local orthonormal frame on N, so that gN(ei, ej) = δij .
It follows from Proposition 9.106 in [4] that

Ric(ei, ej) = RicN(ei, ej) − (
h(r) h′′(r) + (n − 2) h′(r)2

)
δij,
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Ric
(

ei,
∂

∂r

)
= 0,

Ric
(

∂

∂r
,

∂

∂r

)
= −(n − 1)

h′′(r)
h(r)

.

In other words, we have

Ric = RicN − (
h(r) h′′(r) + (n − 2) h′(r)2

)
gN

− (n − 1)
h′′(r)
h(r)

dr ⊗ dr.

On the other hand, the Hessian of f is given by

D2f = h(r) h′(r) h′′(r) gN + h′′′(r) dr ⊗ dr.

This implies

(	f ) g − D2f = (
h(r)2 h′′′(r) + (n − 2) h(r) h′(r) h′′(r)

)
gN

+ (n − 1)
h′(r) h′′(r)

h(r)
dr ⊗ dr.

Putting these facts together, we obtain

(	f ) g − D2f + f Ric = h′(r)
(
RicN − (n − 2)ρ gN

)
+ (

h(r)2 h′′′(r) + (n − 3) h(r) h′(r) h′′(r)

+ (n − 2) h′(r)
(
ρ − h′(r)2

))
gN.

By assumption, we have

RicN − (n − 2)ρ gN ≥ 0

and

h(r)2 h′′′(r) + (n − 3) h(r) h′(r) h′′(r) + (n − 2) h′(r)
(
ρ − h′(r)2

)

= 1
2

h(r)3 d

dr

(
2

h′′(r)
h(r)

− (n − 2)
ρ − h′(r)2

h(r)2

)
≥ 0.

Putting these facts together, the assertion follows. �

Lemma 2.2. — The vector field X satisfies DiXj = f gij .
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Proof. — Note that

LX(dr) = d
(
X(r)

) = d
(
h(r)

) = h′(r) dr.

This implies

LXg = LX(dr) ⊗ dr + dr ⊗ LX(dr) + X
(
h(r)2

)
gN

= 2h′(r) dr ⊗ dr + 2h(r)2 h′(r) gN

= 2h′(r) g.

Therefore, LXg = 2f g. Since X is a gradient vector field, the assertion follows. �

We next prove an analogue of the classical Minkowski formula (cf. [20]). Recall
that h′′(0) > 0 by condition (H1). By continuity, we can find a real number r1 ∈ (0, r̄) so
that h′′(r) > 0 for all r ∈ [0, r1].

Proposition 2.3. — Let � be a closed orientable hypersurface in (M, g). Then

(6)
∫

�

H 〈X, ν〉 dμ = (n − 1)

∫
�

f dμ.

Moreover, if � is contained in the region N × (0, r1), then we have the inequality

(7)
∫

�

H
f

〈X, ν〉 dμ ≤ (n − 1)μ(�).

Proof. — Let us write X = ∇ψ for some real-valued function ψ . By Lemma 2.2,
the Hessian of ψ is given by D2ψ = f g. Hence, the Laplacian of the function ψ |� is
given by

	�ψ =
n−1∑
k=1

(
D2ψ

)
(ek, ek) − H 〈∇ψ,ν〉 = (n − 1)f − H 〈X, ν〉,

where {e1, . . . , en−1} is an orthonormal basis of the tangent space to �. Therefore, we
have

(n − 1)

∫
�

f dμ −
∫

�

H 〈X, ν〉 dμ =
∫

�

	�ψ dμ = 0

by the divergence theorem. This proves (6). In order to prove the inequality (7), we ob-
serve that

(n−1)μ(�)−
∫

�

H
f

〈X, ν〉 dμ =
∫

�

1
f

	�ψ dμ =
∫

�

1
f 2

〈∇�f ,∇�ψ
〉
dμ.

At each point in N × (0, r1), the vector ∇f is a positive multiple of ∇ψ . Hence, if � is
contained in the region N × (0, r1), then we have 〈∇�f ,∇�ψ〉 ≥ 0 at each point on �.
From this, the assertion follows. �
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3. A geometric inequality for mean-convex hypersurfaces

We now consider a closed, embedded, orientable hypersurface � in (M, g). It is
easy to see that the intersection number of � with any closed loop is zero. Since � is
connected, the complement M \� has exactly two connected components. In particular,
there is a unique connected component 
 of M \ � with the property that 
 ⊂ N ×
(0, r̄ − δ) for some δ > 0. We either have ∂
 = � or ∂
 = � ∪ (N × {0}). Let ν denote
the outward-pointing unit normal to �. We will assume throughout this section that �

has positive mean curvature with respect to this choice of unit normal.
It will be convenient to consider the conformally modified metric ĝ = 1

f 2 g. The
manifold (M, ĝ) has an asymptotically hyperbolic end, which corresponds to the bound-
ary N × {0}.

For each point p ∈ 
̄, we denote by u(p) = dĝ(p,�) the distance of p from � with
respect to the metric ĝ. Moreover, we denote by � : � × [0,∞) → 
̄ the normal expo-
nential map with respect to ĝ. More precisely, for each point x ∈ �, the curve t �→ �(x, t)

is a geodesic with respect to ĝ, and we have

�(x,0) = x,
∂

∂ t
�(x, t)

∣∣∣∣
t=0

= −f (x) ν(x).

Note that the geodesic t �→ �(x, t) has unit speed with respect to ĝ.
We next define

A = {
(x, t) ∈ � × [0,∞) : u

(
�(x, t)

) = t
}

and

A∗ = {
(x, t) ∈ � × [0,∞) : (x, t + δ) ∈ A for some δ > 0

}
.

The definition of A is analogous to the definition of the segment domain of a Riemannian
manifold. Our next result follows from standard arguments (see e.g. [24], pp. 139–141):

Proposition 3.1. — The sets A and A∗ have the following properties:

(i) If (x, t0) ∈ A, then (x, t) ∈ A for all t ∈ [0, t0].
(ii) The set A is closed, and we have �(A) = 
̄.

(iii) The set A∗ is an open subset of � ×[0,∞), and the restriction �|A∗ is a diffeomorphism.

For each t ∈ [0,∞), we define

�∗
t = �

(
A∗ ∩ (

� × {t})).
Note that �∗

t is a smooth hypersurface which is contained in the level set {u = t}. To fix
notation, we denote by H and II the mean curvature and second fundamental form of
�∗

t with respect to the metric g.
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Proposition 3.2. — The mean curvature of �∗
t is positive and satisfies the differential inequality

∂

∂ t

(
f

H

)
≤ − 1

n − 1
f 2.

Proof. — It is easy to see that ∂

∂ t
�(x, t) = −f (�(x, t)) ν, where ν = − ∇u

|∇u| denotes
the outward-pointing unit normal vector to �∗

t with respect to the metric g. Hence, the
mean curvature of �∗

t satisfies the evolution equation

∂

∂ t
H = 	�∗

t
f + (

Ric(ν, ν) + |II|2) f

(cf. [18], equation (1.2)). Using Proposition 2.1, we obtain

	�∗
t
f =

n−1∑
k=1

(
D2f

)
(ek, ek) − H 〈∇f , ν〉

= 	f − (
D2f

)
(ν, ν) − H 〈∇f , ν〉

≥ −Ric(ν, ν) f − H 〈∇f , ν〉,
where {e1, . . . , en−1} is an orthonormal basis of the tangent space to �∗

t . Putting these
facts together, we conclude that

∂

∂ t
H ≥ −H 〈∇f , ν〉 + |II|2 f .

Moreover, we have

∂

∂ t
f = −f 〈∇f , ν〉.

This implies

∂

∂ t

(
H
f

)
= 1

f

∂

∂ t
H − H

f 2

∂

∂ t
f ≥ |II|2 ≥ 1

n − 1
H2

at each point on �∗
t . Since the initial hypersurface � has positive mean curvature, we

conclude that the hypersurface �∗
t has positive mean curvature for each t ∈ [0,∞). From

this, the assertion follows. �

Corollary 3.3. — The function t �→ μ(�∗
t ) is monotone decreasing.

Proof. — Since �∗
t has positive mean curvature, the area form on �∗

t is monotone
decreasing in t. Moreover, the sets {x ∈ � : (x, t) ∈ A∗} become smaller as t increases.
From this, the assertion follows. �
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We next consider the quantity

Q(t) = (n − 1)

∫
�∗

t

f

H
dμ.

It follows from Proposition 3.2 that the function t �→ Q(t) is non-increasing. Moreover,
we have the following estimate:1

Proposition 3.4. — We have

Q(0) − Q(τ ) ≥ n

∫
{u≤τ }

f d vol

for all τ ∈ [0,∞).

Proof. — Using Proposition 3.2, we obtain

lim sup
h↘0

1
h

(
Q(t) − Q(t − h)

)

≤ (n − 1)

∫
�∗

t

∂

∂ t

(
f

H

)
dμ − (n − 1)

∫
�∗

t

f

H
· f H dμ

≤ −n

∫
�∗

t

f 2 dμ.

Thus, we conclude that

Q(0) − Q(τ ) ≥ n

∫ τ

0

(∫
�∗

t

f 2 dμ

)
dt

= n

∫
�(A∗∩(�×[0,τ ]))

f d vol

= n

∫
{u≤τ }

f d vol

for all τ ∈ [0,∞). �

Theorem 3.5. — Assume that � is null-homologous, so that ∂
 = �. Moreover, suppose that

� has positive mean curvature. Then

(n − 1)

∫
�

f

H
dμ ≥ n

∫



f d vol.

Moreover, if equality holds, then � is umbilic.

1 We note that Proposition 3.4 can be extended to a more general setting. In fact, Michael Eichmair has pointed
out that Proposition 3.4 holds for any ambient manifold (M, g) which satisfies the inequality (	f ) g − D2f + f Ric ≥ 0.
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Proof. — By Proposition 3.4, we have

Q(0) ≥ n

∫
{u≤τ }

f d vol

for all τ ∈ [0,∞). Passing to the limit as τ → ∞, we obtain

Q(0) ≥ n

∫



f d vol,

as claimed. �

In the remainder of this section, we consider the case that � is homologous to the
boundary N × {0}, so that ∂
 = � ∪ (N × {0}). Our goal is to analyze the asymptotics
of Q(τ ) when τ is very large. The key result is Proposition 3.9. The proof of this result is
quite subtle, and relies on several lemmata:

Lemma 3.6. — Given any real number λ ∈ (0,1), there exists a number τ0 > 0 with the

following property: if p is a point in {u ≥ τ0} and α is a unit-speed geodesic with respect to ĝ such that

α(0) = p and α(u(p)) ∈ �, then |α′(0)| = f (p) and

〈
∂

∂r
, α′(0)

〉
≥ λ f (p).

Proof. — For abbreviation, let c := h′′(0) > 0, so that |df | = c along N × {0}. By
continuity, we can find a small number r0 ∈ (0, r1) such that � ⊂ N × (r0, r̄) and

−f D2f + |df |2 g ≥ λc2 g

on the set N × (0, r0]. Hence, the Hessian of the function 1
f

with respect to ĝ satisfies

D̂2

(
1
f

)
= D2

(
1
f

)
− 2

f 3
df ⊗ df + 1

f 3
|df |2 g

= − 1
f 2

D2f + 1
f 3

|df |2 g

≥ λc2 1
f

ĝ

on the set N × (0, r0].
Let us choose τ0 sufficiently large so that {u ≥ τ0 − 1} ⊂ N × (0, r0] and

c

(
1 − f (p)

h′(r0) sinh(
√

λ c)

)
≥ √

λ
∣∣∇f (p)

∣∣
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for all points p ∈ {u ≥ τ0}. We claim that τ0 has the desired property. To verify this, we
consider a point p ∈ {u ≥ τ0} and a unit-speed geodesic α with respect to ĝ such that
α(0) = p and α(u(p)) ∈ �. Clearly, α(t) ∈ {u ≥ τ0 − 1} for all t ∈ [0,1]. This implies
α(t) ∈ N×(0, r0] for all t ∈ [0,1]. We now define t0 = inf{t ∈ [0, u(p)] : α(t) /∈ N×(0, r0]}.
Clearly, t0 ≥ 1. Moreover, we have

d2

dt2

(
1

f (α(t))

)
≥ λc2 1

f (α(t))

for all t ∈ [0, t0]. Integrating this differential inequality, we obtain

1
f (α(t))

≥ 1
f (p)

cosh(
√

λ c t) − 1√
λ c f (p)2

〈∇f (p), α′(0)
〉

sinh(
√

λ c t)

for all t ∈ [0, t0]. Putting t = t0 and rearranging terms gives

〈∇f (p), α′(0)
〉 ≥ √

λ c f (p)

(
cosh(

√
λ c t0)

sinh(
√

λ c t0)
− f (p)

h′(r0) sinh(
√

λ c t0)

)
.

Here, we have used the fact that α(t0) ∈ N × {r0} and f (α(t0)) = h′(r0). On the other
hand, we have

c

(
cosh(

√
λ c t0)

sinh(
√

λ c t0)
− f (p)

h′(r0) sinh(
√

λ c t0)

)
≥ c

(
1 − f (p)

h′(r0) sinh(
√

λ c)

)

≥ √
λ

∣∣∇f (p)
∣∣

by our choice of τ0. Putting these facts together, we obtain〈∇f (p), α′(0)
〉 ≥ λ f (p)

∣∣∇f (p)
∣∣.

Since ∇f (p) = |∇f (p)| ∂

∂r
, we conclude that

〈
∂

∂r
, α′(0)

〉
≥ λ f (p).

This completes the proof of Lemma 3.6. �

In the following, we fix a real number τ1 > 0 so that the conclusion of Lemma 3.6
holds for λ = 1

2 .

Lemma 3.7. — Suppose that γ : [a, b] → {u ≥ τ1} is a smooth path satisfying |γ ′(s) +
f (γ (s)) ∂

∂r
|ĝ ≤ 1

4 for all s ∈ [a, b]. Then

u
(
γ (b)

) − u
(
γ (a)

) ≥ 1
4

(b − a).
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Proof. — It suffices to show that

(8) lim inf
h↘0

1
h

(
u
(
γ (s)

) − u
(
γ (s − h)

)) ≥ 1
4

for all s ∈ (a, b]. In order to verify (8), we fix a real number s0 ∈ (a, b]. For abbreviation, let
p = γ (s0). Moreover, let α be a unit-speed geodesic with respect to ĝ such that α(0) = p

and α′(u(p)) ∈ �. Then

f (p)

〈
∂

∂r
, α′(0)

〉
ĝ

= 1
f (p)

〈
∂

∂r
, α′(0)

〉
g

≥ 1
2

by our choice of τ1. Using the Cauchy-Schwarz inequality, we obtain

−〈
γ ′(s0), α

′(0)
〉
ĝ
≥ f (p)

〈
∂

∂r
, α′(0)

〉
ĝ

−
∣∣∣∣γ ′(s0) + f (p)

∂

∂r

∣∣∣∣
ĝ

≥ 1
4
.

Hence, it follows from the formula for the first variation of arclength that

lim inf
h↘0

1
h

(
u
(
γ (s0)

) − u
(
γ (s0 − h)

)) ≥ −〈
γ ′(s0), α

′(0)
〉
ĝ
≥ 1

4
.

This proves (8), thereby completing the proof of Lemma 3.7. �

In the next step, we approximate the function u by smooth functions.

Lemma 3.8. — Given any real number τ ≥ τ1 + 2, there exists a sequence of smooth functions

uj : {τ − 1 < u < τ + 1} → R with the following properties:

(i) The functions uj converge smoothly to u away from the cut locus. More precisely, uj → u in

C∞
loc(W), where W = �(A∗ ∩ (� × (τ − 1, τ + 1))).

(ii) For each point p ∈ {τ − 1 < u < τ + 1}, we have |uj(p) − u(p)| ≤ 1
j2

.

(iii) For all points p, q ∈ {τ − 1 < u < τ + 1}, we have |uj(p)− uj(q)| ≤ (1 + 1
j
) dĝ(p, q).

(iv) If γ : [a, b] → {τ − 1 < u < τ + 1} is an integral curve of the vector field −f ∂

∂r
, then

uj(γ (b)) − uj(γ (a)) ≥ 1
4 (b − a).

(v) We have D̂2uj ≤ K(τ ) ĝ at each point p ∈ {τ − 1 < u < τ + 1}. Here, K(τ ) is a

positive constant which may depend on τ , but not on j.

Proof. — We employ the Riemannian convolution method of Greene and Wu (see
[15], p. 57). More precisely, we define

uj(p) =
∫

(TpM,ĝ)

G
(|ξ |2) u

(
expp(εj ξ)

)
dξ.
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Here, expp denotes the exponential map with respect to the metric ĝ and G : [0,∞) →
[0,∞) is a smooth function with compact support satisfying

∫
Rn G(|ξ |2) dξ = 1. More-

over, εj is a sequence of positive real numbers which are chosen sufficiently small.
We claim that the sequence uj has the required properties. Properties (i) and (ii)

are obvious. Property (iii) follows from the fact that |u(p) − u(q)| ≤ dĝ(p, q) for all points
p, q ∈ 
̄. Similarly, property (iv) is a consequence of Lemma 3.7.

It remains to prove (v). We can find a positive real number K(τ ) such that D̂2u ≤
1
2 K(τ ) ĝ at each point p ∈ {τ − 2 < u < τ + 2}, where the inequality is understood in
the barrier sense. Results of Greene and Wu then imply that D̂2uj ≤ K(τ ) ĝ at each point
p ∈ {τ − 1 < u < τ + 1} (see [14], p. 644, and [15], p. 60). This completes the proof of
Lemma 3.8. �

Proposition 3.9. — For τ ≥ τ1 + 2 we have

(9) μ
(
�∗

τ

) ≥ h(0)n−1 vol(N, gN)

and

(10)
∫

�∗
τ

H
f

〈X, ν〉 dμ ≤ (n − 1)μ
(
�∗

τ

)
.

Proof. — Let us fix a real number τ ≥ τ1 + 2, and let uj be a sequence of smooth
functions satisfying properties (i)–(v) in Lemma 3.8. The statement (iii) implies that

f |duj|g = |duj|ĝ ≤ 1 + 1
j
.

Moreover, it follows from (iv) that

−f
∂

∂r
uj ≥ 1

4
.

In particular, we have

f |duj|g ≥ 1
4

and 〈X,−∇uj〉 > 0.

Using the co-area formula, we obtain
∫ τ+ 1

j − 1
j2

τ+ 1
j2

μ
({uj = t}) dt =

∫
{τ+ 1

j2
≤uj≤τ+ 1

j − 1
j2

}
|∇uj| d vol

≤
(

1 + 1
j

)∫
{τ≤u≤τ+ 1

j
}

1
f

d vol,

where the volume form is taken with respect to the metric g. Moreover, using Corol-
lary 3.3, we obtain
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{τ≤u≤τ+ 1

j }

1
f

d vol =
∫

�(A∗∩(�×[τ,τ+ 1
j ]))

1
f

d vol

=
∫ τ+ 1

j

τ

μ
(
�∗

t

)
dt

≤ 1
j
μ

(
�∗

τ

)
.

Putting these facts together, we conclude that

∫ τ+ 1
j
− 1

j2

τ+ 1
j2

μ
({uj = t}) dt ≤ 1

j

(
1 + 1

j

)
μ

(
�∗

τ

)
.

Therefore, we can find a real number tj ∈ [τ + 1
j2
, τ + 1

j
− 1

j2
] such that

(11) μ
({uj = tj}

) ≤ j + 1
j − 2

μ
(
�∗

τ

)
.

Let us denote the level set {uj = tj} by Sj . Clearly, Sj is a smooth (possibly disconnected)
hypersurface without boundary. Using (11), we obtain

(12) lim sup
j→∞

μ(Sj) ≤ μ
(
�∗

τ

)
.

It follows from the intermediate value theorem that every integral curve of the vector
field ∂

∂r
intersects Sj at least once. Therefore, we have μ(Sj) ≥ h(0)n−1 vol(N, gN). Passing

to the limit as j → ∞, we conclude that μ(�∗
τ ) ≥ h(0)n−1 vol(N, gN). This proves (9).

It remains to verify the inequality (10). The outward-pointing unit normal vector
to the hypersurface Sj is given by − ∇uj

|∇uj | . Moreover, the mean curvature of Sj is given by

HSj
= − 1

|∇uj|
(

	uj − (D2uj)(∇uj,∇uj)

|∇uj|2
)

.

We will denote by S+
j the set of all points on Sj where the mean curvature HSj

is positive.
In view of property (i) above, the surfaces Sj converge to �∗

τ in C∞
loc away from the

cut locus. Since �∗
τ has positive mean curvature, we have

(13) lim inf
j→∞

μ
(
S+

j

) ≥ μ
(
�∗

τ

)

and

(14) lim inf
j→∞

∫
S+

j

HSj

f

〈
X,− ∇uj

|∇uj|
〉

dμ ≥
∫

�∗
τ

H
f

〈X, ν〉 dμ.



CONSTANT MEAN CURVATURE SURFACES IN WARPED PRODUCT MANIFOLDS 263

Combining (12) and (13), we obtain

(15) lim sup
j→∞

μ
(
Sj \ S+

j

) = 0.

On the other hand, it follows from property (v) above that D2uj ≤ L(τ ) g for some posi-
tive constant L(τ ). Since f |∇uj| ≥ 1

4 , we conclude that HSj
≥ −�(τ) for some positive

constant �(τ). Note that the constants L(τ ) and �(τ) may depend on τ , but not on j.
Using (15), we obtain

lim inf
j→∞

∫
Sj\S+

j

HSj

f

〈
X,− ∇uj

|∇uj|
〉

dμ(16)

= lim inf
j→∞

∫
Sj\S+

j

HSj
+ �(τ)

f

〈
X,− ∇uj

|∇uj|
〉

dμ ≥ 0.

Adding (14) and (16) gives

lim inf
j→∞

∫
Sj

HSj

f

〈
X,− ∇uj

|∇uj|
〉

dμ ≥
∫

�∗
τ

H
f

〈X, ν〉 dμ.

On the other hand, applying Proposition 2.3 to the hypersurface Sj yields

lim sup
j→∞

∫
Sj

HSj

f

〈
X,− ∇uj

|∇uj|
〉

dμ ≤ (n − 1) lim sup
j→∞

μ(Sj)

≤ (n − 1)μ
(
�∗

τ

)
.

Thus, we conclude that∫
�∗

τ

H
f

〈X, ν〉 dμ ≤ (n − 1)μ
(
�∗

τ

)
.

This completes the proof of Proposition 3.9. �

Corollary 3.10. — Let λ ∈ (0,1) be given. Then we have

(n − 1)

∫
�∗

τ

f

H
dμ ≥ λ h(0)n vol(N, gN)

if τ is sufficiently large.

Proof. — It follows from Lemma 3.6 that inf�∗
τ
〈 ∂

∂r
, ν〉 ≥ λ if τ is sufficiently large.

This implies that inf�∗
τ
〈X, ν〉 ≥ λ h(0) if τ is sufficiently large. Using Proposition 3.9, we

obtain

λ h(0)

∫
�∗

τ

H
f

dμ ≤
∫

�∗
τ

H
f

〈X, ν〉 dμ ≤ (n − 1)μ
(
�∗

τ

)
.
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This implies

(n − 1)

∫
�∗

τ

f

H
dμ ≥ (n − 1)μ

(
�∗

τ

)2
(∫

�∗
τ

H
f

dμ

)−1

≥ λ h(0)μ
(
�∗

τ

)
≥ λ h(0)n vol(N, gN).

This completes the proof of Corollary 3.10. �

Theorem 3.11. — Assume that � is homologous to the boundary N × {0}, so that ∂
 =
� ∪ (N × {0}). Moreover, suppose that � has positive mean curvature. Then

(n − 1)

∫
�

f

H
dμ ≥ n

∫



f d vol + h(0)n vol(N, gN).

Moreover, if equality holds, then � is umbilic.

Proof. — By Proposition 3.4, we have

Q(0) − Q(τ ) ≥
∫

{u≤τ }
f d vol

for all τ ∈ [0,∞). Moreover, we have

lim inf
τ→∞ Q(τ ) ≥ h(0)n vol(N, gN)

by Corollary 3.10. Putting these facts together, we conclude that

Q(0) ≥ n

∫



f d vol + h(0)n vol(N, gN),

as claimed. �

4. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. As above, we assume that (M, g)

is a warped product manifold satisfying conditions (H1)–(H3). Let � be a closed, em-
bedded, orientable hypersurface in (M, g) with constant mean curvature. It follows from
(H2) that the slice N × {r} has positive mean curvature for each r ∈ (0, r̄). Using the
maximum principle, we conclude that the mean curvature of � is strictly positive. By
Proposition 2.3, we have

(n − 1)

∫
�

f dμ =
∫

�

H 〈X, ν〉 dμ.
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Since H is constant, we obtain

(n − 1)

∫
�

f

H
dμ =

∫
�

〈X, ν〉 dμ.

We now distinguish two cases:

Case 1. — Suppose first that � is null-homologous, so that ∂
 = �. Using
Lemma 2.2 and the divergence theorem, we obtain

(n − 1)

∫
�

f

H
dμ =

∫
�

〈X, ν〉 dμ

=
∫




div X d vol

= n

∫



f d vol.

Therefore, it follows from Theorem 3.5 that � is umbilic.

Case 2. — We now assume that � is homologous to the boundary N × {0}, so that
∂
 = � ∪ (N × {0}). In this case, we have

(n − 1)

∫
�

f

H
dμ =

∫
�

〈X, ν〉 dμ

=
∫




div X d vol + h(0)n vol(N, gN)

= n

∫



f d vol + h(0)n vol(N, gN).

Thus, Theorem 3.11 implies that � is umbilic.

Finally, let us assume that the condition (H4) is satisfied. In this case, we claim
that � is a slice N × {r}. We have already shown that the second fundamental form
of � is a constant multiple of the metric. Using the Codazzi equations, we deduce that
R(ei, ej, ek, ν) = 0, where {e1, . . . , en−1} is an orthonormal basis for the tangent space of �.
In particular, Ric(ej, ν) = ∑n−1

i=1 R(ei, ej, ei, ν) = 0. Therefore, ν must be an eigenvector of
the Ricci tensor of (M, g). On the other hand, the condition (H4) implies that the smallest
eigenvalue of the Ricci tensor is equal to −(n − 1) h′′(r)

h(r)
; moreover, the corresponding

eigenspace is one-dimensional and is spanned by the vector ∂

∂r
. Hence, at each point on

�, the unit normal vector ν is either parallel or orthogonal to the vector ∂

∂r
. However,

there is at least one point on � where ν is parallel to ∂

∂r
. Thus, ν is parallel to ∂

∂r
at each

point on �, and � is a slice N × {r}.
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5. Application to the deSitter-Schwarzschild and Reissner-Nordstrom
manifolds

In this section, we describe how Corollary 1.2 and Corollary 1.3 follow from The-
orem 1.1. Let us consider the product M = N × (s, s) equipped with a metric of the
form

g = 1
ω(s)

ds ⊗ ds + s2 gN.

Here, s > s > 0, and ω is a smooth function defined on the interval [s, s).
To bring the metric into the form (1), we define a continuous function F : [s, s) →

R by F′(s) = 1√
ω(s)

and F(s) = 0. Using the substitution r = F(s), the metric can be rewrit-
ten as

g = dr ⊗ dr + h(r)2 gN,

where h : [0,F(s)) → [s, s) denotes the inverse of the function F. A straightforward cal-
culation gives

h′(r) = √
ω(s)

and

h′′(r) = 1
2

ω′(s)

where s = h(r). Hence, the conditions (H1)–(H4) are equivalent to the following set of
conditions:

• ω(s) = 0 and ω′(s) > 0.
• The function

ω′(s)
s

− (n − 2)
ρ − ω(s)

s2

is non-decreasing for s ∈ (s, s).
• We have

ω′(s)
2s

+ ρ − ω(s)

s2
> 0

for all s ∈ (s, s).

Note that ω(s) = 1 − m s2−n − κ s2 for the deSitter-Schwarzschild manifold, and ω(s) =
1 − m s2−n + q2 s4−2n for the Reissner-Nordstrom manifold. Moreover, we have N = Sn−1

and ρ = 1 in both cases. It is straightforward to verify that the conditions above are
satisfied. Thus, we can apply Theorem 1.1 to these manifolds.
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6. Proof of Theorem 1.4

In this final section, we sketch the proof of Theorem 1.4. Let h : [0, r̄) → R be
a smooth function which satisfies the conditions (H1′)–(H3′). We define a Riemannian
metric g on the ball Br̄(0) ⊂ Rn by g = dr ⊗ dr + h(r)2 gSn−1 . The condition (H1′) implies
that g is smooth. As above, we define f = h′(r) and X = h(r) ∂

∂r
. Note that f is a smooth

positive function defined on Br̄(0) ⊂ Rn, and X is a smooth vector field.
We now assume that � is a closed, embedded, orientable hypersurface in (Br̄(0), g)

with constant mean curvature. Moreover, let 
 ⊂ Br̄(0) denote the domain enclosed
by �. By assumption, the coordinate spheres ∂Br(0) have positive mean curvature for
each r ∈ (0, r̄). This implies that the mean curvature of � is strictly positive.

For each point p ∈ 
̄, we denote by u(p) the distance of p from � with respect to
the metric ĝ = 1

f 2 g. It follows from Proposition 3.4 that

(n − 1)

∫
�

f

H
dμ ≥ n

∫
{u≤τ }

f d vol

for each τ ∈ [0,∞). Passing to the limit as τ → ∞, we obtain

(17) (n − 1)

∫
�

f

H
dμ ≥ n

∫



f d vol.

Moreover, if equality holds, then � is umbilic.
On the other hand, it follows from Proposition 2.3 that

(n − 1)

∫
�

f dμ =
∫

�

H 〈X, ν〉 dμ.

Since H is constant, we conclude that

(n − 1)

∫
�

f

H
dμ =

∫
�

〈X, ν〉 dμ =
∫




div X d vol = n

∫



f d vol.

Therefore, equality holds in (17). Thus, � is umbilic. If the condition (H4′) holds, then
the Ricci tensor of g has two distinct eigenvalues. Hence, we can argue as in Section 4 to
conclude that � is a geodesic sphere centered at the origin.
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