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ABSTRACT

We show that degenerate complex Monge-Ampère equations in a big cohomology class of a compact Kähler
manifold can be solved using a variational method, without relying on Yau’s theorem. Our formulation yields in particular
a natural pluricomplex analogue of the classical logarithmic energy of a measure. We also investigate Kähler-Einstein
equations on Fano manifolds. Using continuous geodesics in the closure of the space of Kähler metrics and Berndtsson’s
positivity of direct images, we extend Ding-Tian’s variational characterization and Bando-Mabuchi’s uniqueness result to
singular Kähler-Einstein metrics. Finally, using our variational characterization we prove the existence, uniqueness and
convergence as k → ∞ of k-balanced metrics in the sense of Donaldson both in the (anti)canonical case and with respect
to a measure of finite pluricomplex energy.
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Introduction

Solving degenerate complex Monge-Ampère equations has been the subject of
intensive studies in the past decade, in connection with the search for canonical models
and metrics for complex algebraic varieties (see e.g. [Koł98, Tian, Che00, Don05a, Siu08,
BCHM10, EGZ09, SoTi08]).

Many of these results ultimately relied on the seminal work of Yau [Yau78], which
involved a continuity method and difficult a priori estimates to construct smooth solutions
to non-degenerate Monge-Ampère equations. But the final goal and outcome of some
of these results was to produce singular solutions in degenerate situations, and the main
aim of the present paper is to show that one can use the direct methods of the calculus of
variations to obtain such weak solutions.1 Our approach is to some extent a complex
analogue of the method used by Aleksandrov to provide weak solutions to the Minkowski

1 As usual with variational methods, smoothness of the solution does not follow from our approach, and still requires
the techniques of [Yau78].
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problem [Ale38], i.e. the existence of compact convex hypersurfaces of Rn with prescribed
Gaussian curvature.

We obtain in particular more natural proofs of the main results of [GZ07, EGZ09,
BEGZ10], together with several new results to be described below.

Weak solutions to the Calabi conjecture and balanced metrics

Previous results. — Consider for the moment a compact Kähler n-dimensional man-
ifold (X,ω), normalized by

∫
ωn = 1. Denote by MX the set of all probability measures

on X. Given a probability measure μ ∈ MX with smooth positive density, it was proved
in [Yau78] that there exists a unique Kähler form η in the cohomology class of ω such
that ηn = μ . More singular measures μ ∈ MX were later considered in [Koł98]. In that
case, η is to be replaced by an element of the set T (X,ω) of all closed positive (1,1)-
currents T cohomologous to ω, which can thus be written T = ω + ddcϕ where ϕ is an
ω-psh function, the potential of T (defined up to a constant). The positive measure Tn had
been defined by Bedford-Taylor for ϕ bounded [BT82], and Kołodziej showed the exis-
tence of a unique T ∈ T (X,ω) with continuous potential such that Tn = μ, when μ has
L1+ε-density with respect to Lebesgue measure [Koł98].

In order to deal with more singular measures, one first needs to extend the Monge-
Ampère operator T �→ Tn beyond currents with bounded potentials. Even though this
operator cannot be extended in a reasonable way to the whole of T (X,ω), it was shown
in [GZ07, BEGZ10], using a construction of [BT87], that one can in fact define the non-

pluripolar product of arbitrary closed positive (1,1)-currents T1, . . . ,Tp on X. It yields a
closed positive (p, p)-current

〈T1 ∧ · · · ∧ Tp〉
putting no mass on pluripolar sets and whose cohomology class is bounded in terms of
the cohomology classes of the Tj ’s only. In particular, given T ∈ T (X,ω) we get a positive
measure 〈Tn〉 putting no mass on pluripolar sets and of total mass

∫
〈
Tn

〉 ≤
∫

ωn = 1.

Equality holds if T has bounded potential; more generally, currents T ∈ T (X,ω) for
which equality holds are said to have full Monge-Ampère mass, in which case it is licit to
simply write Tn = 〈Tn〉. Now the main result of [GZ07] states that every non-pluripolar
measure μ ∈ MX is of the form μ = Tn for some T ∈ T (X,ω) of full Monge-Ampère
mass, which is furthermore unique, as was later shown in this generality in [Din09].

The proofs of the above results from [Koł98, GZ07] eventually reduce by regular-
ization to the smooth case treated in [Yau78]. Our first goal in the present article is to
solve singular Monge-Ampère equations by the direct method of the calculus of varia-
tions, independently of [Yau78].
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The variational approach. — Denote by T 1(X,ω) the set of all currents T ∈ T (X,ω)

with full Monge-Ampère mass and whose potential is furthermore integrable with re-
spect to Tn. According to [GZ07, BEGZ10], currents T in T 1(X,ω) are character-
ized by the condition J(T) < +∞, where J denotes a natural extension of Aubin’s J-
functional [Aub84] obtained as follows. One first considers the Monge-Ampère energy func-

tional [Aub84, Mab86], defined on smooth ω-psh functions ϕ by

E(ϕ) := 1
n + 1

n∑

j=0

∫
ϕ
(
ω + ddcϕ

)j ∧ ωn−j.

Using integration by parts, it is easy to show that the Gâteaux derivative of E at ϕ is given
by integration against (ω + ddcϕ)n. This implies in particular that E is non-decreasing
on smooth ω-psh functions, and a computation of its second derivative (see (2.3) below)
also shows that E is concave. This functional extends by monotonicity to arbitrary ω-psh
functions by setting

E(ϕ) := inf
{
E(ψ) | ψ smooth ω-psh,ψ ≥ ϕ

} ∈ [−∞,+∞[,
and the J-functional is in turn defined by

J(T) :=
∫

ϕωn − E(ϕ)

for T = ω + ddcϕ. By translation invariance, this is independent of the choice of ϕ, hence
descends to a convex, lower semicontinuous functional

J : T (X,ω) → [0,+∞]
which induces an exhaustion function on T 1(X,ω) = {J < +∞}, in the sense that
{J ≤ C} is compact for each C > 0.

Now observe that the functional ϕ �→ E(ϕ) − ∫
ϕ dμ also descends to a concave

functional

Fμ : T 1(X,ω) →]−∞,+∞]
by translation invariance, and set

E∗(μ) := sup
T 1(X,ω)

Fμ.

This yields a convex lower semicontinuous functional

E∗ : MX → [0,+∞],
which is essentially the Legendre transform of E and will be called the pluricomplex energy.
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Indeed, when (X,ω) is the complex projective line P1 endowed with its Fubiny-
Study metric, E∗(μ) coincides, up to a multiplicative constant, with the logarithmic en-
ergy of the signed measure μ − ω of total mass 0 (cf. Section 5). We shall thus say by
analogy that μ ∈ MX has finite energy when E∗(μ) < +∞.

We can now state our first main result.

Theorem A. — A measure μ ∈ MX has finite energy iff μ = Tn
μ with Tμ ∈ T 1(X,ω),

which is then characterized as the unique maximizer of Fμ on T 1(X,ω). Furthermore, any maximizing

sequence Tj ∈ T 1(X,ω) necessarily converges to Tμ.

As a consequence, we will show in Corollary 4.9 how to recover the case of an arbitrary
non-pluripolar measure μ [GZ07].

The proof of Theorem A splits in two parts. The first one consists in showing that
any maximizer T ∈ T 1(X,ω) of Fμ has to satisfy Tn = μ, i.e. that a maximizer ϕ of
E(ϕ) − ∫

ϕ dμ satisfies the Euler-Lagrange equation (ω + ddcϕ)n = μ. This is actually
non-trivial even when ϕ is smooth, the difficulty being that the set of ω-psh functions has
a boundary, so that a maximum is a priori not a critical point. This difficulty is overcome
by adapting to our case the approach of [Ale38]. The main technical tool here is the
differentiability result of [BB10], which is the complex analogue of the key technical
result of [Ale38].

The next step in the proof of Theorem A is then to show the existence of a maximizer
for Fμ when μ is assumed to satisfy E∗(μ) < +∞. Since J is an exhaustion function on
T 1(X,ω), a maximizer will be obtained by showing that Fμ is proper with respect to J (i.e.
Fμ → −∞ as J → +∞), and that it is upper semi-continuous—the latter property being
actually the most delicate part of the proof.

Conversely, it easily follows from the concavity property of Fμ that E∗(μ) is finite
if μ = Tn

μ with Tμ ∈ T 1(X,ω).

Donaldson’s balanced metrics. — The fact that any maximizing sequence for Fμ nec-
essarily converges to Tμ in Theorem A is one key feature of the variational approach.
As we shall now explain, this fact can for example efficiently be used in the context of
μ-balanced metrics in the sense of [Don09]. Here we assume that the cohomology class of
ω is the first Chern class of an ample line bundle L, and a metric e−φ on L is then said to
be balanced with respect to μ if φ coincides with the Fubiny-Study type metric associated
to the L2-scalar product induced by φ and μ on the space H0(L) of global holomorphic
sections. We will show:

Theorem B. — Let L be an ample line bundle, and let μ and Tμ ∈ c1(L) be as in Theorem A.

Then there exists a μ-balanced metric φk on kL for each k large enough, and the normalized curvature

forms 1
k
ddcφk converge to Tμ in the weak topology of currents.
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The existence of balanced metrics was established in [Don09] under a stronger
regularity condition for μ. The convergence result, suggested in [Don09] as an analogue
of [Don01], was observed to hold for smooth positive measures μ in [Kel09] as a direct
consequence of [Wan05].

The case of a big class. — Up to now, we have assumed that the cohomology class
{ω} ∈ H1,1(X,R) is Kähler, but our variational approach works just as well in the more
general case of big cohomology classes, as considered in [BEGZ10]. Note that the case of
a big class enables in particular to extend our results to the case where X is singular, since
the pull-back of a big class to a resolution of singularities remains big.

The appropriate version of Theorem A will thus be proved in this more general
setting, thereby extending [GZ07, Theorem 4.2] to the case of a big class; we will show
in Corollary 4.9 that it then enables to recover the main result of [BEGZ10].

The variational approach also applies to Kähler-Einstein metrics, i.e. Kähler-
Einstein metrics with constant Ricci curvature. We will discuss the Fano case separately
below, and assume here instead that X is of general type, i.e. KX is a big line bundle. A met-
ric e−φ on KX induces a measure on X, denoted by eφ for convenience, and we can thus
consider the functional

φ �→ E(φ) − log
∫

eφ,

which descends to

F+ : T 1(X,KX) → R

by translation invariance. We will then show:

Theorem C. — Let X be a manifold of general type. Then F+ is upper semicontinuous and

J-proper on T 1(X,KX). It achieves its maximum on T 1(X,KX) at a unique point TKE = ddcφKE,

which satisfies the Kähler-Einstein equation
〈
Tn

KE

〉 = eφKE+c

for some c ∈ R.

The solution φKE therefore coincides with the singular Kähler-Einstein met-
ric of [EGZ09, SoTi08, BEGZ10], which was proved to have minimal singularities

in [BEGZ10]. The ingredients entering the proof of Theorem C are similar to that of
Theorem A, the functional F+ being concave by Hölder’s inequality.

Singular Kähler-Einstein metrics on Fano manifolds. — Assume now that X is a Fano
manifold, i.e. −KX is ample. A psh weight φ on −KX with full Monge-Ampère mass
has zero Lelong numbers. By a result of Skoda [Sko72], e−φ can thus be viewed as a
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measure on X, with Lp density (with respect to Lebesgue measure) for every p < +∞.
The functional

φ �→ E(φ) + log
∫

e−φ

descends to

F− : T 1(X,−KX) → R,

which coincides up to sign with the Ding functional [Ding88]. The critical points of F− in
the space of Kähler forms ω ∈ c1(X) are exactly the Kähler-Einstein metrics. Assuming
that H0(TX) = 0, so that Kähler-Einstein metrics are unique by [BM87], Ding and Tian
showed that the properness of F− implies the existence of a Kähler-Einstein metric, and
that a Kähler-Einstein metric is necessarily a maximizer of F− (see [Tian]).

Even though these results are variational in spirit, their proof by Ding and Tian
relied on the continuity method. Using our variational approach, we reprove these results
independently of the continuity method, and without any assumption on H0(TX).

Theorem D. — Let X be a Fano manifold. Then a current T = ddcφ in T 1(X,−KX) is a

maximizer of F− iff it satisfies the Kähler-Einstein equation Tn = e−φ+c for some c ∈ R.

If F− is furthermore J-proper,2 the supremum of F− is attained.

As we shall see, these Kähler-Einstein currents automatically have continuous po-
tentials by [Koł98]. It is an interesting problem to investigate higher regularity of these
functions.3

A striking feature of the present situation is that F− is not concave. However, E
is affine for the L2-metric on the space of strictly psh weights considered in [Mab87,
Sem92, Don99], and it follows from Berndtsson’s results on psh variation of Bergman ker-
nels [Bern09a] that φ �→ − log

∫
e−φ is convex with respect to the L2-metric. We thus see

that F− is concave with respect to the L2-metric, which morally explains Ding and Tian’s
result (compare Donaldson’s analogous result for the Mabuchi functional [Don05a]).

But a main issue is of course that smooth geodesics do not exist in general [LV11].
The proof of Theorem D will instead rely on continuous geodesics φt , whose existence is
easily obtained.

Using similar ideas we give a new proof of Bando-Mabuchi’s uniqueness result
[BM87] and extend it to the case of singular Kähler-Einstein currents:

2 This condition implies that H0(TX) = 0, see for instance [BBEGZ11, Theorem 5.4].
3 The smoothness of such currents has subsequently been established in [SzTo11], building on the regularizing

properties of parabolic Monge-Ampère equations proved in [SoTi09]. An alternative argument relying on the usual max-
imum principle was later given in [BBEGZ11].
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Theorem E. — Let X be a Fano manifold. Assume that X admits a smooth Kähler-Einstein

metric ωKE and that H0(TX) = 0. Then ωKE is the unique maximizer of F− over the whole of

T 1(X,−KX).

An important step in the proof is to show that each φt in the geodesic connecting
two Kähler-Einstein metrics satisfies the Kähler-Einstein equation for all t if φ0 and φ1

do. Even though the geodesic φt is actually known to be (almost) C 1,1 [Che00, Bło09], a
main technical point is that φt is in general not strictly psh, and one has to resort again to
the differentiability result of [BB10] to infer that φt is Kähler-Einstein from the fact that
it maximizes F−.

Finally, we establish in Theorem 7.1 an analogue of Theorem B for Kähler-
Einstein metrics. More specifically, let X be Fano with H0(TX) = 0 and assume that ωKE

is a Kähler-Einstein metric. We will show that there exists a unique k-anticanonically
balanced metric ωk ∈ c1(X) in the sense of [Don09] for each k � 1 and that ωk → ωKE

weakly. The proof of the existence of such anticanonically balanced metrics relies in a
crucial way on the linear growth estimate for F− established in [PSSW08], strengthen-
ing a deep result of Tian [Tia97]. A proof of the existence and convergence of anti-
canonically balanced metrics was announced in [Kel09, Theorem 5]. The existence and
uniform convergence of canonically balanced metrics has also been obtained indepen-
dently by B. Berndtsson (personal communication).

Organization of the article. — The structure of the paper is as follows.

– Section 1 is devoted to preliminary results in the big case that are extracted
from [BEGZ10] and [BD12]. The only new result here is the outer regularity of
the Monge-Ampère capacity in the big case.

– Section 2 is similarly a refresher on energy functionals, whose goal is to recall
results from [GZ07, BEGZ10] and to extend to the singular case a number of
basic properties that are probably well-known in the smooth case.

– Section 3 investigates the continuity and growth properties of the functionals
defined by integrating quasi-psh functions against a given Borel measure.

– Section 4 is devoted to the proof of Theorem A in the general case of big classes.
Theorem 4.1 and Theorem 4.7 are the main statements.

– Section 5 connects our pluricomplex energy of measures to more classical no-
tions of capacity and to some results from [BB10].

– Section 6 is devoted to singular Kähler-Einstein metrics. It contains the proof of
Theorems C, D and E.

– Finally, Section 7 contains our results on balanced metrics. The main result is
Theorem 7.1 which treats in parallel the (anti)canonically balanced case and
balanced metrics, with respect to a singular measure (Theorem B).
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1. Preliminary results on big cohomology classes

In this whole section, θ denotes a smooth closed (1,1)-form on a compact Kähler
manifold X.

1.1. Quasi-psh functions. — Recall that a function

ϕ : X → [−∞,+∞[
is said to be θ -psh iff ϕ + ψ is psh for every local potential ψ of θ . In particular, ϕ is usc,
integrable, and satisfies θ + ddcϕ ≥ 0 in the sense of currents, where dc is normalized so
that

ddc = i

2π
∂∂.

By the ddc-Lemma, any closed positive (1,1)-current T on X cohomologous to θ

can conversely be written as T = θ + ddcϕ, for some θ -psh function ϕ which is further-
more unique up to an additive constant.

The set of all θ -psh functions ϕ on X will be denoted by PSH(X, θ) and endowed
with the weak topology of distributions, which coincides with the L1(X)-topology. By
Hartogs’ lemma, the map ϕ �→ supX ϕ is continuous in the weak topology. Since the set
of closed positive currents in a fixed cohomology class is compact (in the weak topology),
it follows that the set of ϕ ∈ PSH(X, θ) normalized by supX ϕ = 0 is also compact.

We introduce the extremal function Vθ : X → R, defined at x ∈ X by

(1.1) Vθ (x) := sup
{
ϕ(x) | ϕ ∈ PSH(X, θ), sup

X
ϕ ≤ 0

}
.

It is a θ -psh function with minimal singularities in the sense of Demailly, i.e. we have ϕ ≤
Vθ + O(1) for any θ -psh function ϕ. In fact, it is straightforward to see that the following
‘tautological maximum principle’ holds:

(1.2) sup
X

ϕ = sup
X

(ϕ − Vθ )

for any ϕ ∈ PSH(X, θ).

1.2. Ample locus and non-pluripolar products. — The cohomology class {θ} ∈
H1,1(X,R) is said to be big iff there exists a closed (1,1)-current

T+ = θ + ddcϕ+

cohomologous to θ and such that T+ is strictly positive (i.e. T+ ≥ ω for some (small) Käh-
ler form ω). By Demailly’s regularization theorem [Dem92], one can then furthermore
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assume that T+ has analytic singularities, i.e. there exists c > 0 such that locally on X we
have

ϕ+ = c log
N∑

j=1

|fj|2 mod C∞,

where f1, . . . , fN are local holomorphic functions. Such a current T is then C∞ (hence
a Kähler form) on a Zariski open subset � of X, and the ample locus Amp(θ) of θ (in
fact, of its class {θ}) is defined as the largest such Zariski open subset (which exists by the
Noetherian property of closed analytic subsets, see [Bou04]).

Note that any θ -psh function ϕ with minimal singularities is locally bounded on the
ample locus Amp(θ), since it has to satisfy ϕ+ ≤ ϕ + O(1).

In [BEGZ10] the (multilinear) non-pluripolar product

(T1, . . . ,Tp) �→ 〈T1 ∧ · · · ∧ Tp〉
of closed positive (1,1)-currents is shown to be well-defined as a closed positive (p, p)-
current putting no mass on pluripolar sets. In particular, given ϕ1, . . . , ϕn ∈ PSH(X, θ)

we define their mixed Monge-Ampère measure as

MA(ϕ1, . . . , ϕn) = 〈(
θ + ddcϕ1

) ∧ · · · ∧ (
θ + ddcϕn

)〉
.

It is a non-pluripolar positive measure whose total mass satisfies
∫

MA(ϕ1, . . . , ϕn) ≤ vol(θ),

where the right-hand side denotes the volume of the cohomology class of θ . If ϕ1, . . . , ϕn

have minimal singularities, then they are locally bounded on Amp(θ), and the product
(
θ + ddcϕ1

) ∧ · · · ∧ (
θ + ddcϕn

)

is thus well-defined by Bedford-Taylor [BT82]. Its trivial extension to X coincides with
MA(ϕ1, . . . , ϕn), and we have

∫
MA(ϕ1, . . . , ϕn) = vol(θ).

In case ϕ1 = · · · = ϕn = ϕ, we simply set

MA(ϕ) = MA(ϕ, . . . , ϕ),

and we say that ϕ has full Monge-Ampère mass iff
∫

MA(ϕ) = vol(θ). We thus see that θ -psh
functions with minimal singularities have full Monge-Ampère mass, but the converse is
not true.

A crucial point is that the non-pluripolar Monge-Ampère operator is continuous
along monotonic sequences of functions with full Monge-Ampère mass. In fact we have
(cf. [BEGZ10, Theorem 2.17]):



188 ROBERT BERMAN, SÉBASTIEN BOUCKSOM, VINCENT GUEDJ, AHMED ZERIAHI

Proposition 1.1. — The operator

(ϕ1, . . . , ϕn) �→ MA(ϕ1, . . . , ϕn)

is continuous along monotonic sequences of functions with full Monge-Ampère mass. If ϕ has full Monge-

Ampère mass and
∫
(ϕ − Vθ )MA(ϕ) is finite, then

lim
j→∞

(ϕj − Vθ )MA(ϕj) = (ϕ − Vθ )MA(ϕ)

for any monotonic sequence ϕj → ϕ.

1.3. Regularity of envelopes. — In case {θ} ∈ H1,1(X,R) is a Kähler class, smooth θ -psh
functions are abundant. On the other hand, for a general big class, the existence of even a
single θ -psh function with minimal singularities that is also C∞ on the ample locus Amp(θ)

is unknown. At any rate, it follows from [Bou04] that no θ -psh function with minimal sin-
gularities will have analytic singularities unless {θ} admits a Zariski decomposition (on some
birational model of X). Examples of big line bundles without a Zariski decomposition
have been constructed by Nakayama (see [Nak04, p. 136, Theorem 2.10]).

On the other hand, using Demailly’s regularization theorem one can easily show
that the extremal function Vθ introduced above satisfies

Vθ (x) = sup
{
ϕ(x) | ϕ ∈ PSH(X, θ) with analytic singularities, sup

X
ϕ ≤ 0

}

for x ∈ Amp(θ), which implies in particular that Vθ is in fact continuous on Amp(α). But
we actually have the following much stronger regularity result on the ample locus. It was
first obtained by the first named author in [Berm09] in case α = c1(L) for a big line
bundle L, and the general case is proved in [BD12].

Theorem 1.2. — The function Vθ has locally bounded Laplacian on Amp(θ).

Since Vθ is quasi-psh, this result is equivalent to the fact that the current θ + ddcVθ has
L∞

loc coefficients on Amp(α), and implies in particular by Schauder’s elliptic estimates that
Vθ is in fact C2−ε on Amp(α) for each ε > 0.

As was observed in [Berm09], we also get as a consequence the following nice
description of the Monge-Ampère measure of Vθ .

Corollary 1.3. — The Monge-Ampère measure MA(Vθ ) has L∞-density with respect to

Lebesgue measure. More specifically, we have θ ≥ 0 pointwise on {Vθ = 0} and

MA(Vθ ) = 1{Vθ=0}θ n.
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1.4. Monge-Ampère capacity. — As in [BEGZ10] we define the Monge-Ampère

(pre)capacity with respect to the big class {θ} as the upper envelope of all measures MA(ϕ)

with ϕ ∈ PSH(X, θ) such that Vθ − 1 ≤ ϕ ≤ Vθ , i.e.

(1.3) Cap(B) := sup
{∫

B
MA(ϕ) | ϕ ∈ PSH(X, θ), Vθ − 1 ≤ ϕ ≤ Vθ on X

}

for every Borel subset B of X. In what follows, we adapt to our setting some arguments
of [GZ05, Theorem 3.2] (which dealt with the case where θ is a Kähler form).

Lemma 1.4. — If K is compact, the supremum in the definition of Cap(K) is achieved by the

usc regularization of

hK := sup
{
ϕ ∈ PSH(X, θ) | ϕ ≤ Vθ on X, ϕ ≤ Vθ − 1 on K

}
.

Proof. — It is clear that h∗
K is a candidate in the supremum defining Cap(K). Con-

versely pick ϕ ∈ PSH(X, θ) such that Vθ − 1 ≤ ϕ ≤ Vθ on X. We have to show that
∫

K
MA(ϕ) ≤

∫

K
MA

(
h∗

K

)
.

Upon replacing ϕ by (1 − ε)ϕ + εVθ and then letting ε > 0 go to 0, we may assume that
Vθ − 1 < ϕ ≤ Vθ everywhere on X. Noting that K ⊂ {h∗

K < ϕ} we get
∫

K
MA(ϕ) ≤

∫

{h∗
K<ϕ+1}

MA(ϕ)

≤
∫

{h∗
K<ϕ+1}

MA
(
h∗

K

)

≤
∫

{h∗
K<Vθ }

MA
(
h∗

K

) =
∫

K
MA

(
h∗

K

)

by the comparison principle (cf. [BEGZ10, Corollary 2.3] for a proof in our setting) and
Lemma 1.5 below; the result follows. �

Lemma 1.5. — Let K be a compact subset. Then we have h∗
K = Vθ − 1 a.e. on K and

h∗
K = Vθ a.e. on X \ K with respect to the measure MA(h∗

K).

Proof. — We have

hK ≤ Vθ − 1 ≤ h∗
K on K.

But the set {hK < h∗
K} is pluripolar by Bedford-Taylor’s theorem [BT82], so it has zero

measure with respect to the non-pluripolar measure MA(h∗
K), and the first point follows.
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On the other hand, by Choquet’s lemma there exists a sequence of θ -psh functions
ϕj increasing a.e. to h∗

K such that ϕj ≤ Vθ on X and ϕj ≤ Vθ − 1 on K. If B is a small open
ball centered at a point

x0 ∈ Amp(θ) ∩ {
h∗

K < Vθ

} ∩ (X \ K),

then we get

hK ≤ Vθ (x0) − δ ≤ Vθ on B

for some δ > 0, by continuity of Vθ on Amp(θ) (cf. Theorem 1.2); it follows that the
function ϕ̂j , which coincides with ϕj outside B and satisfies MA(ϕ̂j) = 0 on B, also satisfies

ϕ̂j ≤ Vθ (x0) ≤ Vθ on B.

We infer that ϕ̂j increases a.e. to h∗
K and the result follows by Beford-Taylor’s continuity

theorem for the Monge-Ampère along non-decreasing sequences of locally bounded psh
functions. �

By definition, a positive measure μ is absolutely continuous with respect the ca-
pacity Cap iff Cap(B) = 0 implies μ(B) = 0. This means exactly that μ is non-pluripolar
in the sense that μ puts no mass on pluripolar sets. Since μ is subadditive, it is in turn
equivalent to the existence of a non-decreasing, right-continuous function F : R+ → R+
such that

μ(B) ≤ F
(
Cap(B)

)

for all Borel sets B. Roughly speaking, the speed at which F(t) → 0 as t → 0 measures
“how non-pluripolar” μ is.

Proposition 1.6. — Let F : R+ → R+ be non-decreasing and right-continuous. Then the

convex set of all positive measures μ on X with μ(B) ≤ F(Cap(B)) for all Borel subsets B is closed

in the weak topology.

Proof. — Since X is compact, the positive measure μ is inner regular, i.e.

μ(B) = sup
K⊂B

μ(K)

where K ranges over all compact subsets of B. It follows that μ(B) ≤ F(Cap(B)) holds
for every Borel subset B iff μ(K) ≤ F(Cap(K)) holds for every compact subset K. This
is however not enough to conclude since μ �→ μ(K) is upper semi-continuous in the weak
topology. We are going to show in turn that

μ(K) ≤ F
(
Cap(K)

)
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holds for every compact subset K iff

μ(U) ≤ F
(
Cap(U)

)

for every open subset U by showing that

(1.4) Cap(K) = inf
U⊃K

Cap(U)

where U ranges over all open neighbourhoods of K. Indeed since F is right-continuous
this yields F(Cap(K)) = infU⊃K F(Cap(U)). But μ �→ μ(U) is now lower semi-continuous
in the weak topology, so this will conclude the proof of Proposition 1.6.

By Lemma 1.4 and 1.5

(1.5) Cap(K) =
∫

K
MA

(
h∗

K

) =
∫

(
Vθ − h∗

K

)
MA

(
h∗

K

)

holds for every compact subset K. Now let Kj be a decreasing sequence of compact neigh-
bourhoods of a given compact subset K. It is straightforward to check that h∗

Kj
increases

a.e. to h∗
K, and Proposition 1.1 thus yields

inf
U⊃K

Cap(U) ≥ Cap(K) = lim
j→∞

Cap(Kj) ≥ inf
U⊃K

Cap(U)

as desired. �

Remark 1.7. — Since the Monge-Ampère precapacity is defined as the upper en-
velope of a family of Radon measures, it is automatically inner regular, i.e. we have for each
Borel subset B ⊂ X

Cap(B) = sup
K⊂B

Cap(K)

where K ranges over all compact subsets of B. We claim that Cap is also outer regular, in
the sense that

Cap(B) = inf
U⊃B

Cap(U)

with U ranging over all open sets containing B. To see this, let Cap∗ be the outer regu-
larization of Cap, defined on an arbitrary subset E ⊂ X by

Cap∗(E) := inf
U⊃E

Cap(U).

The above argument shows that

Cap∗(K) = Cap(K)



192 ROBERT BERMAN, SÉBASTIEN BOUCKSOM, VINCENT GUEDJ, AHMED ZERIAHI

holds for every compact subset K. Using (1.5) and following word for word the second
half of the proof of [GZ05, Theorem 5.2], one can further show that Cap∗ is in fact an
(outer regular) Choquet capacity, and it then follows from Choquet’s capacitability theorem
that Cap∗ is also inner regular on Borel sets. We thus get

Cap(B) ≤ Cap∗(B) = sup
K⊂B

Cap∗(K)

= sup
K⊂B

Cap(K) ≤ Cap(B),

which proves the claim above.

2. Finite energy classes

We let again θ be a closed smooth (1,1)-form with big cohomology class. It will
be convenient (and harmless by homogeneity) to assume that the volume of the class is
normalized by

vol(θ) = 1.

For any ϕ1, . . . , ϕn ∈ PSH(X, θ) with full Monge-Ampère mass, the mixed Monge-
Ampère measure MA(ϕ1, . . . , ϕn) is thus a probability measure. We will denote by � :=
Amp(θ) the ample locus of θ .

2.1. Monge-Ampère energy functional. — We define the Monge-Ampère energy of a func-
tion ϕ ∈ PSH(X, θ) with minimal singularities by

(2.1) E(ϕ) := 1
n + 1

n∑

j=0

∫
(ϕ − Vθ )MA

(
ϕ(j),V(n−j)

θ

)
.

Note that its restriction t �→ E(tϕ + (1 − t)ψ) to line segments is a polynomial map of
degree n + 1.

Let ϕ,ψ ∈ PSH(X, θ) with minimal singularities. It is easy to show by integration
by parts (cf. [BEGZ10, BB10]) that the Gâteaux derivative of E at ψ is given by

(2.2) E′(ψ) · (ϕ − ψ) =
∫

(ϕ − ψ)MA(ψ),

while

(2.3) E′′(ψ) · (ϕ − ψ,ϕ − ψ) = −n

∫

�

d(ϕ − ψ) ∧ dc(ϕ − ψ) ∧ (
θ + ddcψ

)n−1
,

which shows in particular that E is concave. Integration by parts also yields the following
properties proved in [BEGZ10, BB10].
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Proposition 2.1. — E is concave and non-decreasing. For any ϕ,ψ ∈ PSH(X, θ) with mini-

mal singularities we have

(2.4) E(ϕ) − E(ψ) = 1
n + 1

n∑

j=0

∫
(ϕ − ψ)MA

(
ϕ(j),ψ(n−j)

)

and
∫

(ϕ − ψ)MA(ϕ) ≤ · · · ≤
∫

(ϕ − ψ)MA
(
ϕ(j),ψ(n−j)

)
(2.5)

≤ · · · ≤
∫

(ϕ − ψ)MA(ψ)

for j = 0, . . . , n.

We also remark that E(Vθ ) = 0, and note the scaling property

(2.6) E(ϕ + c) = E(ϕ) + c

for any constant c ∈ R.
We now introduce the analogue of Aubin’s I and J-functionals (cf. [Aub84, p. 145],

[Tian, p. 67]). We introduce the symmetric expression

I(ϕ,ψ) :=
∫

(ϕ −ψ)
(
MA(ψ)−MA(ϕ)

) = −(
E′(ϕ)−E′(ψ)

) · (ϕ −ψ),

and also set

Jψ(ϕ) := E(ψ) − E(ϕ) +
∫

(ϕ − ψ)MA(ψ),

so that Jψ is convex and non-negative by concavity of E. For ψ = Vθ we simply write
J := JVθ

. Proposition 2.1 shows that E(ψ) − E(ϕ) is the mean value of a non-decreasing
sequence whose extreme values are

∫
(ψ −ϕ)MA(ψ) and

∫
(ψ −ϕ)MA(ϕ), and it follows

for elementary reasons that

(2.7)
1

n + 1
I(ϕ,ψ) ≤ Jψ(ϕ) ≤ I(ϕ,ψ).

Simple algebraic identities involving integration by parts actually show as in [Tian,
p. 58] that

Jψ(ϕ) =
n−1∑

j=0

j + 1
n + 1

∫

�

d(ϕ − ψ) ∧ dc(ϕ − ψ) ∧ (
θ + ddcψ

)j
(2.8)

∧ (
θ + ddcϕ

)n−1−j
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and

(2.9) I(ϕ,ψ) =
n−1∑

j=0

∫

�

d(ϕ − ψ) ∧ dc(ϕ − ψ) ∧ (
θ + ddcψ

)j ∧ (
θ + ddcϕ

)n−1−j
.

As opposed to I(ϕ,ψ), the expression Jψ(ϕ) is not symmetric in (ϕ,ψ). However,
we have:

Lemma 2.2. — For any two ϕ,ψ ∈ PSH(X, θ) with minimal singularities we have

n−1Jψ(ϕ) ≤ Jϕ(ψ) ≤ nJψ(ϕ).

Proof. — By Proposition 2.1 we have

n

∫
(ϕ − ψ)MA(ϕ) +

∫
(ϕ − ψ)MA(ψ)

≤ (n + 1)
(
E(ϕ) − E(ψ)

)

≤
∫

(ϕ − ψ)MA(ϕ) + n

∫
(ϕ − ψ)MA(ψ)

and the result follows immediately. �

Proposition 2.3. — For any ϕ,ψ ∈ PSH(X, θ) with minimal singularities and any 0 ≤ t ≤
1 we have

I
(
tϕ + (1 − t)ψ,ψ

) ≤ nt2I(ϕ,ψ).

Proof. — We expand out
∫

(ϕ − ψ)MA
(
tϕ + (1 − t)ψ

)

= (1 − t)n

∫
(ϕ − ψ)MA(ψ)

+
n∑

j=1

(
n

j

)

tj(1 − t)n−j

∫
(ϕ − ψ)MA

(
ϕ(j),ψ(n−j)

)

≥ (1 − t)n

∫
(ϕ − ψ)MA(ψ) + (

1 − (1 − t)n
)
∫

(ϕ − ψ)MA(ϕ)

by (2.5). This yields

I
(
tϕ + (1 − t)ψ,ψ

) ≤ t
(
1 − (1 − t)n

)
I(ϕ,ψ),

and the result follows by convexity of (1 − t)n. �
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Note that by definition of I and J we have

lim
t→0+

2
t2

Jψ

(
tϕ + (1 − t)ψ

) = lim
t→0+

1
t2

I
(
tϕ + (1 − t)ψ,ψ

)

= −E′′(ψ) · (ϕ − ψ,ϕ − ψ).

2.2. Finite energy classes. — As in [BEGZ10, Definition 2.9], it is natural to extend
E(ϕ) by monotonicity to an arbitrary ϕ ∈ PSH(X, θ) by setting

(2.10) E(ϕ) := inf
{
E(ψ) | ψ ∈ PSH(X, θ) with minimal singularities, ψ ≥ ϕ

}
.

By [BEGZ10, Proposition 2.10] we have

Proposition 2.4. — The extension

E : PSH(X, θ) → [−∞,+∞[
so defined is concave, non-decreasing and usc.

As a consequence, E is continuous along decreasing sequences, and E(ϕ) can thus
be more concretely obtained as the limit of E(ϕj) for any sequence of ϕj ∈ PSH(X, θ)

with minimal singularities such that ϕj decreases to ϕ pointwise. One can for instance
take ϕj = max{ϕ,Vθ − j}.

Following [Ceg98] and [GZ07] we introduce

Definition 2.5. — The domain of E is denoted by

E 1(X, θ) := {
ϕ ∈ PSH(X, θ),E(ϕ) > −∞}

,

and its image in the set T (X, θ) of all positive currents cohomologous to θ will be denoted by T 1(X, θ).

For each C > 0 we also set

EC :=
{
ϕ ∈ E 1(X, θ) | sup

X
ϕ ≤ 0,E(ϕ) ≥ −C

}
.

Lemma 2.6. — For each C > 0 EC is compact and convex.

Proof. — Convexity follows from concavity of E. Pick ϕ ∈ PSH(X, θ) with supX ϕ ≤
0. We then have ϕ ≤ Vθ by (1.2) and it follows from the definition (2.1) of E that

E(ϕ) ≤
∫

(ϕ − Vθ )MA(Vθ ) ≤ sup
X

(ϕ − Vθ ) = sup
X

ϕ,

using (1.2) again. Since E is usc, we thus see that EC is a closed subset of the compact set
{
ϕ ∈ PSH(X, θ) | −C ≤ sup

X
ϕ ≤ 0

}
,

and the result follows. �
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Lemma 2.7. — The integral
∫

(ϕ0 − Vθ )MA(ϕ1, . . . , ϕn)

is finite for every ϕ0, . . . , ϕn ∈ E 1(X, θ); it is furthermore uniformly bounded in terms of C for

ϕ0, . . . , ϕn ∈ EC.

Proof. — Upon passing to the canonical approximants, we may assume that
ϕ0, . . . , ϕn have minimal singularities. Set ψ := 1

n+1(ϕ0 + · · · + ϕn) and observe that
Vθ − ϕ0 ≤ (n + 1)(Vθ − ψ). Using the convexity of −E it follows that

∫
(Vθ − ϕ0)MA(ψ) ≤ (n + 1)

∫
(Vθ − ψ)MA(ψ)

≤ (n + 1)2
∣
∣E(ψ)

∣
∣

≤ (n + 1)
(∣∣E(ϕ0)

∣
∣ + · · · + ∣

∣E(ϕn)
∣
∣).

On the other hand, we easily get by expanding out

MA(ψ) ≥ cnMA(ϕ1, . . . , ϕn)

with cn > 0 only depending on n and the result follows. �

The following characterization of functions in E 1(X, θ) follows from [BEGZ10,
Proposition 2.11].

Proposition 2.8. — Let ϕ ∈ PSH(X, θ). The following properties are equivalent:

– ϕ ∈ E 1(X, θ).

– ϕ has full Monge-Ampère mass and
∫
(ϕ − Vθ )MA(ϕ) is finite.

– We have
∫ +∞

t=0
dt

∫

{ϕ=Vθ−t}
MA

(
max{ϕ,Vθ − t}) < +∞.

Functions in E 1(X, θ) can almost be characterized in terms of the capacity decay
of sublevel sets:

Lemma 2.9. — Let ϕ ∈ PSH(X, θ). If
∫ +∞

t=0
tn Cap{ϕ < Vθ − t}dt < +∞

then ϕ ∈ E 1(X, θ). Conversely, for each ϕ ∈ E 1(X, θ)
∫ +∞

t=0
t Cap{ϕ < Vθ − t}dt

is finite, and uniformly bounded in terms of C for ϕ ∈ EC.
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Note that if ϕ is an arbitrary θ -psh function then Cap{ϕ < Vθ − t} usually de-
creases no faster that 1/t as t → +∞.

Proof. — The proof is adapted from [GZ07, Lemma 5.1]. Observe that for each
t ≥ 1 the function ϕt := max{ϕ,Vθ − t} satisfies Vθ − t ≤ ϕt ≤ Vθ . It follows that

t−1ϕt +
(
1 − t−1

)
Vθ

is a candidate in the supremum defining Cap, and hence

MA(ϕt) ≤ tn Cap .

Now the first assertion follows from Proposition 2.8.
In order to prove the converse we apply the comparison principle. Pick a candidate

ψ ∈ PSH(X, θ), Vθ − 1 ≤ ψ ≤ Vθ

in the supremum defining Cap. For t ≥ 1 we have

{ϕ < Vθ − 2t} ⊂ {
t−1ϕ + (

1 − t−1
)
Vθ < ψ − 1

} ⊂ {ϕ < Vθ − t}
thus the comparison principle (cf. [BEGZ10, Corollary 2.3]) implies

∫

{ϕ<Vθ−2t}
MA(ψ)

≤
∫

{ϕ<Vθ−t}
MA

(
t−1ϕ + (

1 − t−1
)
Vθ

)

≤
∫

{ϕ<Vθ−t}
MA(Vθ ) +

n∑

j=1

(
n

j

)

t−j

∫

{ϕ<Vθ−t}
MA

(
ϕ(j),V(n−j)

θ

)

≤
∫

{ϕ<Vθ−t}
MA(Vθ ) + C1t−1

n∑

j=1

∫

{ϕ<Vθ−t}
MA

(
ϕ(j),V(n−j)

θ

)

since t ≥ 1, and it follows that
∫ +∞

t=0
t Cap{ϕ < Vθ − t} ≤ C2 + C3

∫
(Vθ − ϕ)2MA(Vθ )

since E(ϕ) ≥ −C and Cap ≤ 1. But MA(Vθ ) has L∞-density with respect to Lebesgue
measure by Corollary 1.3, and it follows from the uniform version of Skoda’s theo-
rem [Zer01] that there exists ε > 0 and C1 > 0 such that

∫
e−εϕMA(Vθ ) ≤ C1

for all ϕ in the compact subset EC of PSH(X, θ). This implies in turn that
∫
(Vθ −

ϕ)2MA(Vθ ) is uniformly bounded for ϕ ∈ EC, and the result follows. �
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Remark 2.10. — It is not true in general that
∫ +∞

t=0 tn Cap{ϕ < Vθ − t}dt < +∞
for all ϕ ∈ E 1(X, θ). Indeed, [CGZ08, Example 3.4] exhibits a function ϕ ∈ E 1(X, θ)

(with X = P1 × P1 and θ the product of the Fubini-Study metrics) such that ϕ|B is
not in E 1(B) for some open ball B ⊂ X. By [BGZ09, Proposition B], we thus have∫ +∞

t=0 tn CapB{ϕ < −t}dt = +∞, hence also
∫ +∞

t=0 tn Cap{ϕ < −t}dt = +∞ since the local
and global capacities are comparable (see [GZ05, Proposition 3.10]).

Corollary 2.11. — If A ⊂ X is a (locally) pluripolar subset, then there exists ϕ ∈ E 1(X, θ)

such that A ⊂ {ϕ = −∞}.
Proof. — Since {θ} is big, there exists a proper modification μ : X′ → X and an

effective R-divisor E on X′ such that μ∗θ − [E] is cohomologous to a Kähler form ω

on X′. By the Kähler version of Josefson’s theorem [GZ05, Theorem 6.2], we may thus
find a positive current T in the class of ω whose polar set contains A. The push-forward
μ∗(T + [E]) is then a positive current in the class of θ , and its potential ϕ ∈ PSH(X, θ)

therefore satisfies A ⊂ {ϕ = −∞}. Now let χ : R → R be a smooth, convex and non-
decreasing function such that χ(−∞) = −∞ and χ(s) = s for all s ≥ 0. If ϕ is θ -psh,
then so is

ϕχ := χ ◦ (ϕ − Vθ ) + Vθ ,

and A is contained in the poles of ϕχ . On the other hand, we can clearly make
Cap{ϕχ < Vθ − t} tend to 0 as fast as we like when t → ∞ by choosing χ with a suf-
ficiently slow decay at −∞. It thus follows from Lemma 2.9 that ϕχ ∈ E 1(X, θ) for an
appropriate choice of χ , and the result follows. Actually χ(t) = − log(1 − t) is enough
(compare [GZ07, Example 5.2]). �

3. Action of a measure on psh functions

3.1. Finiteness. — Given a probability measure μ on X and ϕ ∈ PSH(X, θ) we set

(3.1) Lμ(ϕ) :=
∫

�

(ϕ − Vθ )dμ

where � := Amp(θ) denotes the ample locus. Note that Lμ(ϕ) = ∫
X(ϕ − Vθ )dμ when μ

is non-pluripolar, since X \ � is in particular pluripolar.
The functional Lμ : PSH(X, θ) → [−∞,+∞[ so defined is obviously affine, and

it satisfies the scaling property

Lμ(ϕ + c) = Lμ(ϕ) + c

for any c ∈ R.



A VARIATIONAL APPROACH TO COMPLEX MONGE-AMPÈRE EQUATIONS 199

In the special case where μ = MA(Vθ ) we will simply write

(3.2) L0(ϕ) := LMA(Vθ )(ϕ) =
∫

(ϕ − Vθ )MA(Vθ ),

so that

J = L0 − E

holds by definition.

Lemma 3.1. — Lμ is usc on PSH(X, θ). For each ϕ ∈ PSH(X, θ), the map μ �→ Lμ(ϕ)

is also usc.

Proof. — Let ϕj → ϕ be a convergent sequence of functions in PSH(X, θ). Hartogs’
lemma implies that ϕj is uniformly bounded from above, hence so is ϕj − Vθ . Since we
have

ϕ =
(

lim sup
j→∞

ϕj

)∗ ≥ lim sup
j→∞

ϕj

everywhere on X we get as desired

Lμ(ϕ) ≥ lim sup
j→∞

Lμ(ϕj)

by Fatou’s lemma. The second assertion follows directly from the fact that ϕ − Vθ is usc
on �, which is true since Vθ is continuous on �. �

Lemma 3.2. — Let ϕ ∈ PSH(X, θ) and set μ := MA(ϕ).

(i) If ϕ has minimal singularities then Lμ is finite on PSH(X, θ).

(ii) If ϕ ∈ E 1(X, θ) then Lμ is finite on E 1(X, θ).

Proof. — (ii) follows directly from Lemma 2.7. We prove (i). Let ψ ∈ PSH(X, θ). We
can assume that ψ ≤ 0, or equivalently ψ ≤ Vθ . Assume first that ψ also has minimal
singularities. If we set � := Amp(θ), then we can integrate by parts using [BEGZ10,
Theorem 1.14] to get

∫

�

(Vθ − ψ)
(
θ + ddcϕ

)n =
∫

�

(Vθ − ψ)
(
θ + ddcVθ

) ∧ (
θ + ddcϕ

)n−1

+
∫

�

(ϕ − Vθ )ddc(Vθ − ψ) ∧ (
θ + ddcϕ

)n−1
.

The second term is equal to
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∫

�

(ϕ − Vθ )
(
θ + ddcVθ

) ∧ (
θ + ddcϕ

)n−1

−
∫

�

(ϕ − Vθ )
(
θ + ddcψ

) ∧ (
θ + ddcϕ

)n−1
,

and each of these integrals is controled by supX |ϕ −Vθ |. By iterating integration by parts
as above we thus get

∫
(Vθ − ψ)MA(ϕ) ≤ n sup

X
|ϕ − Vθ | +

∫
(Vθ − ψ)MA(Vθ ).

This inequality remains valid for any ψ ∈ PSH(X, θ), as we see by applying it to the
canonical approximants max{ψ,Vθ − j} and letting j → ∞. Since MA(Vθ ) has L∞ den-
sity with respect to Lebesgue measure by Corollary 1.3,

∫
(Vθ − ψ)MA(Vθ ) is finite for

any θ -psh function ψ , hence so is
∫
(Vθ − ψ)MA(ϕ). �

3.2. Properness and coercivity. — The J-functional is translation invariant, hence de-
scends to a non-negative, convex and lower semicontinuous function J : T (X, θ) →
[0,+∞] which is finite precisely on T 1(X, θ). It actually defines an exhaustion function of
T 1(X, θ):

Lemma 3.3. — The function J : T 1(X, θ) → [0,+∞[ is an exhaustion of T 1(X, θ) in

the sense that each sublevel set {J ≤ C} ⊂ T 1(X, θ) is compact.

Proof. — By Lemma 3.2 there exists A > 0 such that

sup
X

ϕ − A ≤
∫

ϕMA(Vθ ) ≤ sup
X

ϕ.

Now pick T ∈ {J ≤ C} and write it as T = θ + ddcϕ with supX ϕ = 0. We then have

J(T) =
∫

ϕMA(Vθ ) − E(ϕ) ≤ C

thus E(ϕ) ≥ −C − A. This means that the closed set {J ≤ C} is contained in the image of
EC+A by the quotient map

PSH(X, θ) → T (X, θ).

The result now follows since EC+A is compact by Lemma 2.6. �

The next result extends part of [GZ07, Lemma 2.11].

Proposition 3.4. — Let L : PSH(X, θ) → [−∞,+∞[ be a convex and non-decreasing

function satisfying the scaling property L(ϕ + c) = L(ϕ) + c for c ∈ R.
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(i) If L is finite valued on a given compact convex subset K of PSH(X, θ), then L is automat-

ically bounded on K.

(ii) If L is finite valued on E 1(X, θ), then

(3.3) sup
EC

|L| = O
(
C1/2

)

as C → +∞.

Proof. — (i) There exists C > 0 such that

sup
X

(ϕ − Vθ ) = sup
X

ϕ ≤ C

for all ϕ ∈ K, thus L is uniformly bounded above by L(Vθ )+C. Assume by contradiction
that L(ϕj) ≤ −2j for some sequence ϕj ∈ K. We then consider ϕ := ∑

j≥1 2−jϕj , which
belongs to K by Lemma 3.5 below. By (1.2) we have

ϕ ≤
N∑

j=1

2−jϕj + 2−N(Vθ + C)

for each N, and the right-hand side is a (finite) convex combination of elements in
PSH(X, θ). The properties of L thus imply

−∞ < L(ϕ) ≤
N∑

j=1

2−jL(ϕj)+ 2−N(L(Vθ )+ C) = −N + 2−N(L(Vθ )+ C)

and we reach a contradiction by letting N → +∞.
(ii) By (i) we have supEC

|L| < +∞ for all C > 0. Note also that L(ϕ) ≤ L(Vθ )

for ϕ ∈ EC. If supEC
|L| = O(C1/2) fails as C → +∞, then there exists a sequence ϕj ∈

E 1(X, θ) with supX ϕj = 0 such that

tj :=
∣
∣E(ϕj)

∣
∣−1/2 → 0

and

(3.4) tjL(ϕj) → −∞.

We claim that there exists C > 0 such that for any ϕ ∈ PSH(X, θ) with supX ϕ = 0
and t := |E(ϕ)|−1/2 ≤ 1 we have

E
(
tϕ + (1 − t)Vθ

) ≥ −C.

Indeed,
∫
(ϕ − Vθ )MA(Vθ ) is uniformly bounded when supX ϕ = 0 (for instance by (i)),

and the claim follows from Proposition 2.3 applied to ψ = Vθ .
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The claim implies that tjϕj + (1 − tj)Vθ ∈ EC for all j � 1, hence

tjL(ϕj) + (1 − tj)L(Vθ ) ≥ L
(
tjϕj + (1 − tj)Vθ

) ≥ inf
EC

L > −∞

by convexity of E, which contradicts (3.4). �

Lemma 3.5. — Let ϕj ∈ K be a sequence in a compact convex subset K of PSH(X, θ). Then

ϕ := ∑
j≥1 2−jϕj belongs to K.

Proof. — By Hartogs’ lemma supX ϕ is uniformly bounded for ϕ ∈ K, thus we may
assume upon translating by a constant that supX ϕ ≤ 0 for each ϕ ∈ K. Let μ be a smooth
volume form on X. Then

∫
ϕj dμ is uniformly bounded since K is a compact subset of

L1(X). It thus follows that
∫

ϕ dμ is finite by Fatou’s lemma. But since ϕ is a decreasing
limit of functions in PSH(X, θ) we either have ϕ ∈ PSH(X, θ) or ϕ ≡ −∞, and the latter
case is excluded by

∫
ϕ dμ > −∞. �

We will now interpret Proposition 3.4 as a coercivity condition. Since our convention
is to maximize certain functionals in our variational approach, we shall use the following
terminology.

Definition 3.6. — A function F : T 1(X, θ) → R will be said to be

(i) J-proper if F → −∞ as J → +∞.

(ii) J-coercive if there exists ε > 0 and A > 0 such that

F ≤ −εJ + A

on T 1(X, θ).

Any function F on T 1(X, θ) is induced by a function on E 1(X, θ) of the form E−L
where L satisfies as above the scaling property. The J-coercivity of F reads

E − L ≤ −ε(L0 − E) + A

where ε > 0 can of course be assumed to satisfy ε < 1 since J ≥ 0. Since we have

L0(ϕ) = sup
X

ϕ + O(1)

uniformly for ϕ ∈ PSH(X, θ) the J-coercivity of F is then easily seen to be equivalent to
the growth condition

(3.5) sup
EC

|L| ≤ (1 − ε)C + O(1)

as C → +∞.
As a consequence of Proposition 3.4 we get
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Corollary 3.7. — Let L : E 1(X, θ) → R be a convex, non-decreasing function satisfying the

scaling property. Then the function F on T 1(X, θ) induced by E − L is J-coercive.

Let us finally record the following useful elementary fact.

Proposition 3.8. — Let F be a J-proper and usc function on T 1(X, θ). Then F achieves its

supremum on T 1(X, θ). Moreover any asymptotically maximizing sequence Tj ∈ T 1(X, θ) (i.e. such

that limj→∞ F(Tj) = sup F) stays in a compact subset of T 1(X, θ), and any accumulation point T
of the Tj ’s is an F-maximizer.

Proof. — Let us recall the standard argument. It is clearly enough to settle the
second part. Let thus Tj be a maximizing sequence. It follows in particular that F(Tj) is
bounded from below, and the J-properness of F thus yields C > 0 such that Tj ∈ {J ≤ C}
for all j. Since {J ≤ C} is compact there exists an accumulation point T of the Tj ’s, and
F(Tj) → sup F implies F(T) ≥ sup F since F is usc. �

3.3. Continuity. — In the sequel, we will be interested in the upper semi-continuity
of Fμ = E − Lμ on E 1(X, θ). We start with the following simple observation:

Lemma 3.9. — Let L : E 1(X, θ) → R be a function satisfying the scaling property, and

assume that F := E − L is J-proper. If L is lsc on EC for all C > 0, then F is usc on E 1(X, θ).

Proof. — For each A ∈ R we are to show that {F ≥ A} is closed in E 1(X, θ). But
properness of F yields C > 0 such that {F ≥ A} ⊂ EC, and the result follows since E is usc
while L is lsc on EC by assumption. �

For each μ ∈ MX, Lμ is usc on PSH(X, θ) by Lemma 3.1, and we are thus reduced
to understanding the continuity of Lμ on each EC. The next result provides a general
criterion in this direction:

Theorem 3.10. — Let μ be a non-pluripolar measure and let K ⊂ PSH(X, θ) be a compact

convex subset such that Lμ is finite on K. The following properties are equivalent.

(i) Lμ is continuous on K.

(ii) The map τ : K → L1(μ) defined by τ(ϕ) := ϕ − Vθ is continuous.

(iii) The set τ(K) ⊂ L1(μ) is uniformly integrable, i.e.

∫ +∞

t=m

μ{ϕ ≤ Vθ − t}dt → 0

as m → +∞, uniformly for ϕ ∈ K.
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Proof. — By the Dunford-Pettis theorem, assumption (iii) means that τ(K) is rela-
tively compact in the weak topology (induced by L∞(μ) = L1(μ)∗).

As a first general remark, we claim that graph of τ is closed. Indeed let ϕj → ϕ be
a convergent sequence in K and assume that τ(ϕj) → f in L1(μ). We have to show that
f = τ(ϕ). But ϕj → ϕ implies that

ϕ =
(

lim sup
j→∞

ϕj

)∗

everywhere on X by general properties of psh functions. On the other hand the set of
points where (lim supj→∞ ϕj)

∗ > lim supj→∞ ϕj is negligible hence pluripolar by a theorem
of Bedford-Taylor [BT87], thus has μ-measure 0 by assumption on μ. We thus see that
ϕ = lim supj ϕj μ-a.e, hence τ(ϕ) = lim supj τ(ϕj) μ-a.e. Since τ(ϕj) → f in L1(μ) there
exists a subsequence such that τ(ϕj) → f μ-a.e., and it follows that f = τ(ϕ) μ-a.e. as
desired.

This closed graph property implies that the convex set τ(K) is closed in the norm
topology (hence also in the weak topology by the Hahn-Banach theorem). Indeed if
τ(ϕj) → f holds in L1(μ), then we may assume that ϕj → ϕ in K by compactness of
the latter space, hence f = τ(ϕ) belongs to τ(K) by the closed graph property.

We now prove the equivalence between (i) and (ii). Observe that there exists C > 0
such that τ(ϕ) = ϕ − Vθ ≤ C for all ϕ ∈ K, since supX ϕ = supX(ϕ − Vθ ) is bounded
on the compact set K by Hartogs’ lemma. Given a convergent sequence ϕj → ϕ in K we
have τ(ϕ) ≥ lim supj→∞ τ(ϕj) μ-a.e. as was explained above, thus Fatou’s lemma (applied
to the sequence of non-negative functions C − τ(ϕj)) yields the asymptotic upper bound

lim sup
j→∞

∫
τ(ϕj)dμ ≤

∫
τ(ϕ)dμ,

and the asymptotic equality case
∫

τ(ϕ)dμ = lim
j→∞

∫
τ(ϕj)dμ

holds iff τ(ϕj) → τ(ϕ) in L1(μ). This follows from a basic lemma in integration theory,
which proves the desired equivalence.

If (ii) holds, then the closed convex subset τ(K) is compact in the norm topology,
hence also weakly compact, and (iii) holds by the Dunford-Pettis theorem recalled above.

Conversely assume that (iii) holds. We will prove (i). Let ϕj → ϕ be a convergent
sequence in K. We are to prove that

∫
τ(ϕj)dμ → ∫

τ(ϕ)dμ in L1(μ). We may assume
that

∫
τ(ϕj)dμ → L for some L ∈ R since τ(K) is bounded, and we have to show that

L = ∫
τ(ϕ)dμ. For each k consider the closed convex envelope

Ck := Conv
{
τ(ϕj) | j ≥ k

}
.
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Each Ck is weakly closed by the Hahn-Banach theorem, hence weakly compact since it is
contained in τ(K). Since (Ck)k is a decreasing sequence of non-empty compact subsets,
there exists f ∈ ⋂

k Ck . For each k we may thus find a finite convex combination

ψk ∈ Conv{ϕj | j ≥ k}
such that τ(ψk) → f in the norm topology. Since ϕj → ϕ in K we also have ψk → ϕ

in K, hence f = τ(ϕ) by the closed graph property. On the other hand,
∫

τ(ψk)dμ is a
convex combination of elements of the form

∫
τ(ϕj)dμ, j ≥ k, thus

∫
τ(ψk)dμ → L, and

we finally get
∫

τ(ϕ)dμ = ∫
fdμ = L as desired. �

By Hölder’s inequality, a bounded subset of L2(μ) is uniformly integrable in L1(μ),
hence the previous result applies to yield:

Corollary 3.11. — Let μ be a probability measure such that

μ ≤ A Cap

for some A > 0. Then Lμ is continuous on EC for each C > 0, and Fμ = E−Lμ is usc on E 1(X, θ).

Proof. — By (ii) of Lemma 2.9 we have
∫ +∞

t=0
tμ{ϕ < Vθ − t}dt ≤ A

∫ +∞

t=0
t Cap{ϕ < Vθ − t}dt ≤ C1

uniformly for ϕ ∈ EC, and the result follows by Theorem 3.10 and Lemma 3.9. �

Theorem 3.12. — Let ϕ ∈ E 1(X, θ) and set μ := MA(ϕ). Then Lμ is continuous on EC

for each C > 0, and Fμ = E − Lμ is usc on E 1(X, θ).

Proof. — If ϕ has minimal singularities, the result follows from Corollary 3.11, since
we have MA(ψ) ≤ A Cap for some A > 0. To see this, pick t ≥ 1 such that ψ ≥ Vθ − t.
Then t−1ϕ + (1 − t−1)Vθ is a candidate in the definition of Cap, and we get the estimate
since

MA(ϕ) ≤ tn MA
(
t−1ϕ + (

1 − t−1
)
Vθ

)
.

In the general case, we write ϕ as the decreasing limit of its canonical approximants ϕj :=
max{ϕ,Vθ − j}. By Proposition 1.1 we have I(ϕj, ϕ) → 0 as k → ∞ and Lemma 3.13
below therefore shows that LMA(ϕj ) converges to Lμ uniformly on EC. The result follows
since for each j LMA(ϕj ) is continuous on EC by the first part of the proof. �

Lemma 3.13. — We have

sup
EC

|LMA(ψ1) − LMA(ψ2)| = O
(
I(ψ1,ψ2)

1/2
)
,

uniformly for ψ1,ψ2 ∈ EC.
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Proof. — Pick ϕ,ψ1,ψ2 ∈ EC and set for p = 0, . . . , n

ap :=
∫

(ϕ − Vθ )MA
(
ψ

(p)

1 ,ψ
(n−p)

2

)
.

Our goal is to find C1 > 0 only depending on C such that

|an − a0| ≤ C1I(ψ1,ψ2)
1/2.

It is enough to consider the case where ϕ,ψ1,ψ2 furthermore have minimal singularities.
Indeed in the general case one can apply the result to the canonical approximants with
minimal singularities, and we conclude by continuity of mixed Monge-Ampère opera-
tors along monotonic sequences. By integration by parts ([BEGZ10, Theorem 1.14]) we
have

ap+1 − ap

=
∫

�

(ϕ − Vθ )ddc(ψ1 − ψ2) ∧ (
θ + ddcψ1

)p ∧ (
θ + ddcψ2

)n−p−1

= −
∫

�

d(ϕ − Vθ ) ∧ dc(ψ1 − ψ2) ∧ (
θ + ddcψ1

)p ∧ (
θ + ddcψ2

)n−p−1
,

and the Cauchy-Schwarz inequality yields

|ap+1 − ap|2 ≤ ApBp

with

Ap :=
∫

�

d(ϕ − Vθ ) ∧ dc(ϕ − Vθ ) ∧ (
θ + ddcψ1

)p ∧ (
θ + ddcψ2

)n−p−1

and

Bp :=
∫

�

d(ψ1 − ψ2) ∧ dc(ψ1 − ψ2) ∧ (
θ + ddcψ1

)p ∧ (
θ + ddcψ2

)n−p−1

≤ I(ψ1,ψ2)

by (2.9). By integration by parts again we get

Ap = −
∫

�

(ϕ − Vθ )ddc(ϕ − Vθ ) ∧ (
θ + ddcψ1

)p ∧ (
θ + ddcψ2

)n−p−1

=
∫

(ϕ − Vθ )MA
(
Vθ ,ψ

(p)

1 ,ψ
(n−p−1)

2

)

−
∫

(ϕ − Vθ )MA
(
ϕ,ψ

(p)

1 ,ψ
(n−p−1)

2

)
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which is uniformly bounded in terms of C only by Lemma 2.7. We thus conclude
that

|an − a0| ≤ |an − an−1| + · · · + |a1 − a0| ≤ C1I(ψ1,ψ2)
1/2

for some C1 > 0 only depending on C as desired. �

4. Variational resolution of Monge-Ampère equations

4.1. Variational formulation. — In this section we prove the following key step in our
approach, which extends Theorem A of the introduction to the case of a big class. Recall
that we have normalized the big cohomology class {θ} by requiring that its volume is
equal to 1. We let MX denote the set of all probability measures on X. For any μ ∈ MX,
E − Lμ descends to a concave functional

Fμ : T 1(X, θ) →]−∞,+∞].
Theorem 4.1. — Given T ∈ T 1(X, θ) and μ ∈ MX we have

Fμ(T) = sup
T 1(X,θ)

Fμ ⇐⇒ μ = 〈
Tn

〉
.

Proof. — Write T = θ + ddcϕ and suppose that μ = 〈Tn〉, i.e. μ = MA(ϕ). Since E
is concave we have for any ψ ∈ E 1(X, θ)

E(ϕ) +
∫

(ψ − Vθ )MA(ϕ) ≥ E(ψ) +
∫

(ϕ − Vθ )MA(ϕ).

Indeed the inequality holds when ϕ,ψ have minimal singularities by (2.2), and the gen-
eral case follows by approximating ϕ by max{ϕ,Vθ − j}, and similarly for ψ . It follows
that

Fμ(T) = sup
T 1(X,θ)

Fμ.

In order to prove the converse, we will rely on the differentiability result obtained by the
first two authors in [BB10, Theorem B]. Given a usc function u : X → [−∞,+∞[, we
define its θ -psh envelope as

P(u) = sup
{
ϕ ∈ PSH(X, θ) | ϕ ≤ u on X

}

(or P(u) :≡ −∞ if u does not dominate any θ -psh function). Note that P(u) is automati-
cally usc. Indeed, its usc majorant P(u)∗ ≥ P(u) is θ -psh and satisfies P(u)∗ ≤ u since u is
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usc, and it follows that P(u) = P(u)∗ by definition. Note also that

Vθ = P(0).

Now let v be a continuous function on X. Since v is in particular bounded, we see that
P(ϕ + tv) ≥ ϕ − O(1) belongs to E 1(X, θ) for every t ∈ R. We claim that the function
g : R → R

g(t) := E
(
P(ϕ + tv)

) − Lμ(ϕ) − t

∫
vdμ

achieves its maximum at t = 0. Indeed, by monotonicity of Lμ, P(ϕ+ tv) ≤ ϕ+ tv implies

g(t) ≤ E
(
P(ϕ + tv)

) − Lμ

(
P(ϕ + tv)

)
,

which is in turn less than E(ϕ)−Lμ(ϕ) = g(0) since ϕ maximizes E−Lμ. By Lemma 4.2
below it follows that

0 = g′(0) =
∫

v MA(ϕ) −
∫

v dμ,

and hence MA(ϕ) = μ, since this is valid for any v ∈ C0(X). �

Lemma 4.2. — Given ϕ ∈ E 1(X, θ) and a continuous function v on X we have

d

dt

∣
∣
∣
∣

t=0

E
(
P(ϕ + tv)

) =
∫

v MA(ϕ).

Proof. — By dominated convergence we get the following equivalent integral for-
mulation

(4.1) E
(
P(ϕ + v)

) − E(ϕ) =
∫ 1

0
dt

∫
v MA

(
P(ϕ + tv)

)
.

Since ϕ is usc, we can write it as the decreasing limit of a sequence of continuous functions
uj on X. It is then straightforward to check that, for each t ∈ R, P(ϕ+ tv) is the decreasing
limit of P(uj + tv). By [BB10, Theorem B] we have

E
(
P(uj + v)

) − E
(
P(uj)

) =
∫ 1

0
dt

∫
v MA

(
P(uj + tv)

)

for each j. By Proposition 2.4 the energy E is continuous along decreasing sequences,
hence

E
(
P(ϕ + tv)

) = lim
j→∞

E
(
P(uj + tv)

)
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and
∫

v MA
(
P(ϕ + tv)

) = lim
j→∞

∫
v MA

(
P(uj + tv)

)

by Proposition 1.1, since P(ϕ + tv) has full Monge-Ampère mass. We thus obtain (4.1) by
dominated convergence, which applies since the total mass of MA(P(uj + tv)) is equal to
1 for each j and t. �

Definition 4.3. — The pluricomplex energy of a probability measure μ ∈ MX is defined

as

E∗(μ) := sup
T 1(X,θ)

Fμ ∈ [0,+∞].

We will say that μ has finite energy if E∗(μ) < +∞.

By definition, we thus have

E∗(μ) = sup
ϕ∈PSH(X,θ)

(

E(ϕ) −
∫

(ϕ − Vθ )dμ

)

,

which plays the role of the Legendre-Fenchel transform of E.
Since E(Vθ ) = Lμ(Vθ ) = 0, E∗ takes non-negative values, hence defines a convex

functional

E∗ : MX → [0,+∞],
which is furthermore lower semi-continuous (in the weak topology of measures) by
Lemma 3.1.

Here is a first characterization of measures μ with finite energy.

Lemma 4.4. — A probability measure μ has finite energy iff Lμ is finite on E 1(X, θ). In that

case, μ is necessarily non-pluripolar.

Proof. — By Corollary 3.7, if Lμ is finite on E 1(X, θ) then Fμ := E − Lμ is J-proper
on T 1(X, θ), and bounded on each J-sublevel set; the result follows. �

The next result shows that E is in turn the Legendre transform of E∗.

Proposition 4.5. — For any ϕ ∈ E 1(X, θ) we have

E(ϕ) = inf
μ∈MX

(
E∗(μ) + Lμ(ϕ)

)
.
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Proof. — We have E∗(μ) ≥ E(ϕ) − Lμ(ϕ) and equality holds for μ = MA(ϕ) by
Theorem 4.1. The result follows immediately. �

We can alternatively relate E∗ and J as follows. If μ is a probability measure on X
we define an affine functional Hμ on T (X, θ) by setting

Hμ(T) :=
∫

(ϕ − Vθ )
(
MA(Vθ ) − μ

)

with T = θ + ddcϕ. Then we have

E∗(μ) = sup
T∈T 1(X,ω)

(
Hμ(T) − J(T)

)
,

and Theorem 4.1 combined with the uniqueness result of [BEGZ10] says that the supre-
mum is attained (exactly) at T iff μ = 〈Tn〉.

4.2. The direct method of the calculus of variations. — We will need the following tech-
nical result.

Lemma 4.6. — Let ν be a measure with finite energy and let A > 0. Then E∗ is bounded on

{μ ∈ MX | μ ≤ Aν}.
Proof. — By Proposition 3.4 there exists B > 0 such that

sup
EC

|Lν| ≤ B
(
1 + C1/2

)

for all C > 0, hence

sup
EC

|Lμ| ≤ AB
(
1 + C1/2

)

for all μ ∈ MX such that μ ≤ Aν. It follows that E∗(μ) = supE 1(X,θ)(E − Lμ) is bounded
above by supC>0(AB(1 + C1/2) − C) < +∞. �

We are now in a position to state one of our main results (see Theorem A of the
introduction).

Theorem 4.7. — A probability measure μ on X has finite energy iff there exists T ∈ T 1(X, θ)

such that μ = 〈Tn〉. In that case T = Tμ is unique and satisfies

n−1E∗(μ) ≤ J(Tμ) ≤ nE∗(μ).

Furthermore any maximizing sequence Tj ∈ T 1(X, θ) for Fμ converges to Tμ.
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Proof. — Suppose first that μ = 〈Tn〉 for some T ∈ E 1(X, θ). Then μ has finite
energy by Lemma 2.7 and Lemma 4.4. Uniqueness follows from [BEGZ10], where it
was more generally proved that a current T ∈ T (X, θ) with full Monge-Ampère mass is
determined by 〈Tn〉 by adapting Dinew’s proof [Din09] in the Kähler case.

Write T = θ + ddcϕ. By the easy part of Theorem 4.1 we have

E∗(μ) = E(ϕ) −
∫

(ϕ − Vθ )MA(ϕ) = Jϕ(Vθ )

and the second assertion follows from Lemma 2.2.
Now let Tj ∈ T 1(X, θ) be a maximizing sequence for Fμ. Since Fμ is J-proper the

Tj ’s stay in a compact set, so we may assume that they converge towards S ∈ T 1(X, θ),
and we are to show that S = T. Now Fμ is usc by Theorem 3.12, thus Fμ(S) has to be
equal to supT 1(X,θ) Fμ. By Theorem 4.1 we thus get

〈
Sn

〉 = μ = 〈
Tn

〉

hence S = T as desired by uniqueness.
We now come to the main point. Assume that μ has finite energy in the above

sense that E∗(μ) < +∞. In order to find T ∈ T 1(X, θ) such that 〈Tn〉 = μ, it is enough
to show by Theorem 4.1 that Fμ achieves its supremum on T 1(X, θ). Since Fμ is J-
proper it is even enough to show that Fμ is usc, which we know holds true a posteriori by
Theorem 3.12.

We are unfortunately unable to establish this a priori, thus we resort to a more
indirect argument. Assume first that μ ≤ A Cap for some A > 0. Corollary 3.11 then
implies that Lμ is continuous on EC for each C, hence Fμ is usc in that case, and we infer
that μ = 〈Tn〉 for some T ∈ T 1(X, θ) as desired.

In the general case, we rely on the following result already used in [GZ07,
BEGZ10] and which basically goes back to Cegrell [Ceg98].

Lemma 4.8. — Let μ be a probability measure that puts no mass on pluripolar subsets. Then

there exists a probability measure ν with ν ≤ Cap and such that μ is absolutely continuous with respect

to ν.

Proof. — As in [Ceg98], we apply Rainwater’s generalized Radon-Nikodym theo-
rem to the compact convex set of measures

C := {ν ∈ MX | ν ≤ Cap}.
By Proposition 1.6 this is indeed a closed subset of MX, hence compact. By [Rai69] there
exists ν ∈ C , ν ′ ⊥ C and f ∈ L1(ν) such that

μ = f ν + ν ′.
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Since μ puts no mass on pluripolar sets and C characterizes such sets, it follows that
ν ′ = 0. �

Since μ is non-pluripolar by Lemma 4.4, we can use Lemma 4.8 and write μ = f ν

with ν ≤ Cap and f ∈ L1(ν). Now set

μk := (1 + εk)min{f , k}ν
where εk ≥ 0 is chosen so that μk has total mass 1. We thus have μk ≤ 2k Cap, and the
first part of the proof yields μk = 〈Tn

k〉 for some Tk ∈ T 1(X, θ). On the other hand, we
have μk ≤ 2μ for all k, thus E∗(μk) is uniformly bounded by Lemma 4.6. By the first part
of the proof, it follows that all Tk stay in a sublevel set {J ≤ C}. Since the latter is compact,
we may assume after passing to a subsequence that Tk → T for some T ∈ T 1(X, θ). In
particular, T has full Monge-Ampère mass, and [BEGZ10, Corollary 2.21] thus yields

〈
Tn

〉 ≥
(

lim inf
k→∞

(1 + εk)min(f , k)
)
ν = μ,

hence 〈Tn〉 = μ since both measures have total mass 1. �

Using a similar argument, we can now recover the main result of [BEGZ10].

Corollary 4.9. — Let μ be a non-pluripolar probability measure on X. Then there exists

T ∈ T (X, θ) such that μ = 〈Tn〉.
Proof. — Using Lemma 4.8 we can write μ = f ν with ν ≤ Cap and f ∈ L1(ν), and

we set μk = (1 + εk)min{f , k}ν as above. By Theorem 4.7 there exists Tk ∈ T 1(X, θ)

such that μk = 〈Tn
k〉. We may assume that Tk converges to some T ∈ T (X, θ).

We claim that T has full Monge-Ampère mass, which will imply 〈Tn〉 = μ

by [BEGZ10, Corollary 2.21], just as above. Write T = θ + ddcϕ and Tk = θ + ddcϕk

with supX ϕ = supX ϕk = 0 for all k. By general Orlicz space theory [BEGZ10, Lemma
3.3], there exists a convex non-decreasing function χ : R− → R− with a sufficiently slow
decay at −∞ and C > 0 such that

∫
(−χ)(ψ − Vθ )dμ ≤

∫
(ψ − Vθ )dν + C

for all ψ ∈ PSH(X, θ) normalized by supX ψ = 0. Now
∫
(ϕk − Vθ )dν = Lμ(ϕk) is uni-

formly bounded by Corollary 3.11, and we infer that
∫

(−χ)(ϕk − Vθ )MA(ϕk) ≤ 2
∫

(−χ)(ϕk − Vθ )dμ

is uniformly bounded. This means that the χ -weighted energy (cf. [BEGZ10]) of ϕk is
uniformly bounded (since ϕk has full Monge-Ampère mass) and we conclude that ϕ has
finite χ -energy by semi-continuity of the χ -energy. This implies in turn that ϕ has full
Monge-Ampère. �
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5. Pluricomplex electrostatics

We assume until further notice that θ = ω is a Kähler form (still normalized by∫
ωn = 1). We then have Vω = 0.

5.1. Pluricomplex energy of measures. — We first record the following useful explicit
formulas.

Lemma 5.1. — Let μ be a probability measure with finite energy, and write μ = (ω + ddcϕ)n

with ϕ ∈ E 1(X,ω). Then we have

E∗(μ) = 1
n + 1

n−1∑

j=0

∫
ϕ
((

ω + ddcϕ
)j ∧ ωn−j − μ

)

=
n−1∑

j=0

j + 1
n + 1

∫
dϕ ∧ dcϕ ∧ (

ω + ddcϕ
)j ∧ ωn−j.(5.1)

Proof. — By the easy part of Theorem 4.1 we have

E∗(μ) = E(ϕ) −
∫

ϕ dμ = Jϕ(0)

and the formulas follow from the explicit formulas for E and Jϕ(ψ) given in Section 2. �

When X is a compact Riemann surface (n = 1), any probability measure μ may be
written μ = ω + ddcϕ by solving Laplace’s equation. Then E∗(μ) < +∞ iff ϕ belongs to
the Sobolev space L2

1(X), and in that case

2E∗(μ) =
∫

ϕ(ω − μ) =
∫

dϕ ∧ dcϕ

is nothing but the classical Dirichlet functional applied to the potential ϕ.
We now indicate the relation with the classical logarithmic energy (cf. [ST, Chap-

ter 1]). Recall that a signed measure λ on C is said to have finite logarithmic energy if
(z,w) �→ log |z − w| belongs to L1(|λ| ⊗ |λ|); its logarithmic energy is then defined as

D(λ) =
∫ ∫

log |z − w|−2λ(dz)λ(dw)

(here D stands for Dirichlet, since the more standard notation I is already being used).
When λ has finite energy, its logarithmic potential

Uλ(z) =
∫

log |z − w|2λ(dw)
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belongs to L1(|λ|), and we have

D(λ) = −
∫

Uλ(z)λ(dz).

The Fubiny-Study form ω on X := P1 (normalized to mass 1) has finite energy, and a
simple computation in polar coordinates yields I(ω) = −1/2. We also have

Uω(z) = log
(
1 + |z|2).

The logarithmic energy D can be polarized into a quadratic form

D(λ,μ) :=
∫ ∫

log |z − w|−2λ(dz)μ(dw)

on the vector space of signed measures with finite energy, which then splits into the
D-orthogonal sum of Rω and of the space of signed measures with total mass 0. The
quadratic form D is positive definite on the latter space [ST, Lemma I.1.8].

Lemma 5.2. — Let X = P1 and ω the Fubini-Study form, normalized to mass 1. If μ is a

probability measure on C ⊂ P1 then E∗(μ) < +∞ iff μ has finite logarithmic energy; in that case we

have

E∗(μ) = 1
2

I(μ,ω) = 1
2

D(μ − ω).

Proof. — We have μ = ω + ddc(Uμ − Uω), so the first assertion means that μ has
finite logarithmic energy iff Uμ − Uω belongs to the Sobolev space L2

1(P
1), which is a

classical fact. The second assertion follows from (5.1), which yields

2E∗(μ) = −
∫

(Uμ − Uω)(μ − ω) = D(μ − ω). �

5.2. A pluricomplex electrostatic capacity. — As in [BB10] we consider a weighted subset

consisting of a compact subset K of X together with a continuous function v ∈ C0(K),
and we define the equilibrium weight of (K, v) as the extremal function

PKv := sup∗{ϕ ∈ PSH(X,ω) | ϕ ≤ v on K
}
.

The function PKv belongs to PSH(X,ω) if K is non-pluripolar, and satisfies PKv ≡
+∞ otherwise (cf. [Sic81, GZ05]).

If K is a compact subset of Cn and

ϕFS := log
(
1 + |z|2)
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denotes the potential on Cn of the Fubiny-Study metric, then PK(−ϕFS) + ϕFS coincides
with Siciak’s extremal function, i.e. the usc upper envelope of the family of all psh func-
tions u on Cn with logarithmic growth such that u ≤ 0 on K.

The equilibrium measure of a non-pluripolar weighted compact set (K, v) is defined
as

μeq(K, v) := MA(PKv),

and its energy at equilibrium is

Eeq(K, v) := E(PKv).

The functional v �→ Eeq(K, v) is concave and Gâteaux differentiable on C0(K),
with directional derivative at v given by integration against μeq(K, v) by [BB10, Theo-
rem B]. As a consequence of Theorem 4.1 we get the following related variational char-
acterization of μeq(K, v).

Denote by MK the set of probability measures on K.

Theorem 5.3. — If (K, v) is a non-pluripolar weighted compact subset, then we have

Eeq(K, v) = inf
μ∈MK

(

E∗(μ) +
∫

v dμ

)

and the infimum is achieved precisely for μ = μeq(K, v).

If K is pluripolar then E∗(μ) = +∞ for each μ ∈ MK.

Proof. — Assume first that K is non-pluripolar. The concave functional F :=
Eeq(K, ·) is non-decreasing on C0(K) and satisfies the scaling property F(v + c) =
F(v) + c, so its Legendre transform

F∗(μ) := sup
v∈C0(K)

(
F(v) − 〈v,μ〉)

is necessarily infinite outside MK ⊂ C0(K)∗. The basic theory of convex functions thus
yields

F(v) = inf
μ∈MK

(

F∗(μ) +
∫

v dμ

)

,

and the infimum is achieved exactly at μ = F′(v) = μeq(K, v). What we have to show is
thus F∗(μ) = E∗(μ) for any μ ∈ MK. But on the one hand PK(v) ≤ v on K implies
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F∗(μ) ≤ sup
v∈C0(K)

(

E(PKv) −
∫

PKv dμ

)

≤ sup
ϕ∈E 1(X,ω)

(

E(ϕ) −
∫

ϕ dμ

)

= E∗(μ).

On the other hand, since ω is a Kähler form, every ϕ ∈ E 1(X,ω) can be written as a
decreasing limit of smooth ω-psh functions ϕj by [Dem92] (see also [BK07]). For each j,
the function vj := ϕj|K ∈ C0(K) satisfies ϕj ≤ PK(vj) hence

E(ϕj) −
∫

ϕj dμ ≤ E(PKvj) −
∫

vj dμ ≤ F∗(μ),

and we infer E∗(μ) ≤ F∗(μ) as desired since

E(ϕ) −
∫

ϕ dμ = lim
j→∞

(

E(ϕj) −
∫

ϕj dμ

)

by Proposition 2.1 and monotone convergence respectively.
Now assume that K is pluripolar. If there exists μ ∈ MK with E∗(μ) < +∞, then

Theorem A implies in particular that μ puts no mass on pluripolar sets, which contradicts
μ(K) = 1. �

One can interpret Theorem 5.3 as a pluricomplex version of weighted electro-
statics where K is a condenser, μ describes a charge distribution on K, E∗(μ) is its in-
ternal pluricomplex energy and

∫
v dμ is the external energy induced by the field v.

The equilibrium distribution μeq(K, v) is then the unique minimizer of the total energy
E∗(μ) + ∫

v dμ of the system.
In view of Theorem 5.3, it is natural to define the electrostatic capacity Ce(K, v) of a

weighted compact subset (K, v) by

− log Ce(K, v) = n + 1
n

inf
{

E∗(μ) +
∫

v dμ | μ ∈ MK

}

.

We then have Ce(K, v) = 0 iff K is pluripolar, and

Ce(K, v) = exp
(

−n + 1
n

Eeq(K, v)

)

when K is non-pluripolar.
Our choice of constants is guided by [BB10, Corollary A], which shows that

Ce(K, v) coincides (up to a multiplicative constant) with the natural generalization of
Leja-Zaharjuta’s transfinite diameter when ω is the curvature form of a metric on an ample
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line bundle L over X. In particular, this result shows that the Leja-Zaharjuta transfinite
diameter d∞(K) of a compact subset K ⊂ Cn, normalized so that

d∞(tK) = td∞(K)

for each t > 0, is proportional to Ce(K,−ϕFS).
By the continuity properties of extremal functions and of the energy functional

along monotone sequences, it follows that the capacity Ce(·, v) can be extended in the
usual way as an outer Choquet capacity on X which vanishes exactly on pluripolar sets. In
view of Lemma 5.2, this electrostatic capacity extends the classical logarithmic capacity
of a compact subset K ⊂ C, which is equal to

exp
(
− inf

μ∈MK

D(μ)
)
.

On the other hand, the Alexander-Taylor capacity of a weighted compact subset (K, v) may
be defined by

T(K, v) := exp
(
− sup

X
PKv

)
,

compare [AT84, GZ05]. We thus have T(K, v) = 0 iff K is pluripolar. We have for in-
stance

T(BR,0) = R
(1 + R2)1/2

when X = Pn and BR ⊂ Cn is the closed ball of radius R (cf. [GZ05, Example 4.11]). In
particular, this implies T(BR, v) � R as R → 0.

The two capacities compare as follows.

Proposition 5.4. — There exists C > 0 such that

T(K, v)
1+ 1

n ≤ Ce(K, v) ≤ Ce− infK vT(K, v)
1
n

for each weighted compact subset (K, v).

Proof. — The definition of E immediately implies that

Eeq(K, v) = E(PKv) ≤ sup
X

PKv,

hence the left-hand inequality. Conversely, set M := − infK v. Then v ≥ −M implies
PKv ≥ −M, and Proposition 2.1 yields

∫
(PKv)ωn − nM ≤ (n + 1)Eeq(K, v).
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But there exists a constant C > 0 such that

sup
X

ϕ ≤
∫

ϕ ωn + C

for all ϕ ∈ PSH(X,ω) by compactness of T (X,ω), and we get

1
n

sup
X

PKv ≤ n + 1
n

Eeq(K, v) + M + C′.

�

When K lies in the unit ball of Cn ⊂ Pn and

v(z) = −1
2

log
(
1 + |z|2),

then − infK v ≤ log
√

2, so that the above results improve on [LT83].

5.3. Convergence in energy. — In what follows, θ denotes again any smooth
(1,1)-form with big cohomology class. The symmetric functional I(ϕ,ψ) introduced
in Section 2 is invariant by translation in each variable, hence descends to T 1(X, θ). In
dimension n = 1 the formulas of Section 5.1 show that I(T1,T2) is equal to the squared
norm of T1 −T2 with respect to the Dirichlet quadratic form D (which is positive definite
on measures of zero total mass such as T1 − T2). In higher dimensions I1/2 no longer sat-
isfies the triangle inequality,4 but as we shall see it is nevertheless convenient to introduce
the following convergence notion.

Definition 5.5. — A sequence Tj ∈ T 1(X, θ) is said to converge in energy to T ∈
T 1(X, θ) if I(Tj,T) → 0 as j → ∞.

Using (2.7) and Lemma 2.2 it is immediate to see that Tj converges to T in energy
iff Tj is a maximizing sequence for Fμ with μ := 〈Tn〉. By Theorem 4.7 and Lemma 3.13
we thus get:

Proposition 5.6. — Let Tj converge to T in energy. Then J(Tj) is uniformly bounded, Tj → T
weakly and L〈Tn

j 〉 → L〈Tn〉 uniformly on EC for each C. In particular 〈Tn
j 〉 → 〈Tn〉 weakly.

We are now going to show that convergence in energy implies convergence in
capacity.

4 See however [BBEGZ11, Theorem 1.8].
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Theorem 5.7. — Let Tj → T in energy. Then Tj → T in capacity in the following sense:

if we write Tj = θ + ddcϕj (resp. T = θ + ddcϕ) normalized by
∫
(ϕj − Vθ )MA(Vθ ) = 0 (resp.∫

(ϕj − Vθ )MA(Vθ )), then for each ε > 0 we have

lim
j→∞

Cap
{|ϕj − ϕ| ≥ ε

} = 0.

Proof. — Let ψ ∈ PSH(X, θ) such that

−1 ≤ ψ − Vθ ≤ 0.

Since Cap is the upper envelope of all measures MA(ψ) with ψ as above, the Chebyshev
inequality shows that it is enough to prove

(5.2)
∫

|ϕj − ϕ|MA(ψ) → 0

uniformly with respect to ψ as above. We set

ϕ̃j := max(ϕj, ϕ)

and μ := MA(ϕ). We then have

(5.3)
∫

|ϕj − ϕ|MA(ψ) =
∫

(ϕ̃j − ϕ)MA(ψ) − 2
∫

(ϕj − ϕ)MA(ψ).

Now the convergence Tj → T means that ϕj is a maximizing sequence for Fμ, and it
implies that E(ϕj) is uniformly bounded by Proposition 5.6. We claim that ϕ̃j is then also
a maximizing sequence. Indeed we have

Fμ(ϕ̃j) − Fμ(ϕj) = E(ϕ̃j) − E(ϕj) + Lμ(ϕj) − Lμ(ϕ̃j).

Since E is non-decreasing we have E(ϕ̃j) ≥ E(ϕj), which shows that there exists C > 0
such that ϕ̃j ∈ EC for all j. Since Lμ is continuous on EC by Theorem 3.12, it follows that

lim inf
j→∞

(
Fμ(ϕ̃j) − Fμ(ϕj)

) ≥ 0

and ϕ̃j is maximizing as desired. By Lemma 5.8 below we thus see that each term in the
right-hand side of (5.3) tends to 0 uniformly with respect to ψ (note that all ψ as above
lie in E1), and we are done. �

Lemma 5.8. — Let C > 0. Then we have
∫

(ϕ1 − ϕ2)
(
MA(ψ1) − MA(ψ2)

) → 0

as I(ϕ1, ϕ2) → 0 with ϕ1, ϕ2,ψ1,ψ2 ∈ EC, uniformly with respect to ψ1,ψ2.
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Proof. — We will use several times that I(·, ·) is bounded on EC × EC by Lemma 2.7.
Let first ϕ1, ϕ2,ψ ∈ EC and set u := ϕ1 − ϕ2 and v := (ϕ1 + ϕ2)/2. For each p = 0, . . . , n

let

ap :=
∫

u θ p
ϕ1

∧ θ
n−p

ψ

and

bp :=
∫

du ∧ dcu ∧ θ p
v ∧ θ

n−p−1
ψ .

For p = 0, . . . , n − 1 we have

ap = ap+1 +
∫

uddc(ψ − ϕ1) ∧ θ p
ϕ1

∧ θ
n−p−1
ψ

= ap+1 −
∫

du ∧ dc(ψ − ϕ1) ∧ θ p
ϕ1

∧ θ
n−p−1
ψ

by integration by parts. The Cauchy-Schwarz inequality yields
(∫

du ∧ dc(ψ − ϕ1) ∧ θ p
ϕ1

∧ θ
n−p+1
ψ

)2

≤
(∫

du ∧ dcu ∧ θ p
ϕ1

∧ θ
n−p+1
ψ

)

I(ψ,ϕ1)

by (2.9). Since I is bounded we thus get B > 0 such that

|ap − ap+1| ≤ Bb1/2
p ,

for p = 0, . . . , n − 1, which yields

(5.4)

∣
∣
∣
∣

∫
(ϕ1 − ϕ2)

(
MA(ϕ1) − MA(ψ)

)
∣
∣
∣
∣ ≤ B

n−1∑

p=0

b1/2
p .

On the other hand integration by parts yields

bp =
∫

du ∧ dcu ∧ θ p+1
v ∧ θ

n−p−1
ψ +

∫
du ∧ dcu ∧ ddc(ψ − v) ∧ θ p

v ∧ θ
n−p−1
ψ

= bp+1 −
∫

du ∧ dc(ψ − v) ∧ ddcu ∧ θ p
v ∧ θ

n−p−1
ψ

= bp+1 −
∫

du ∧ dc(ψ − v) ∧ θϕ1 ∧ θ p
v ∧ θ

n−p−1
ψ

+
∫

du ∧ dc(ψ − v) ∧ θϕ2 ∧ θ p
v ∧ θ

n−p−1
ψ .

For i = 1,2 we have θϕi
≤ 2θv thus
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∣
∣
∣
∣

∫
du ∧ dc(ψ − v) ∧ θϕi

∧ θ p
v ∧ θ

n−p−1
ψ

∣
∣
∣
∣

≤ 2

∣
∣
∣
∣

∫
du ∧ dc(ψ − v) ∧ θ p+1

v ∧ θ
n−p−1
ψ

∣
∣
∣
∣

≤ 2b
1/2
p+1I(ψ, v)1/2

by Cauchy-Schwarz and (2.9). Using again that I is bounded on EC × EC it follows upon
possibly enlarging B that

(5.5) bp ≤ bp+1 + Bb
1/2
p+1.

Now there exists a numerical constant Cn such that bn ≤ CnI(ϕ1, ϕ2) by (2.9) and we
thus see that there exists a continuous function f : R+ → R+ with f (0) = 0 and only
depending on C such that

n−1∑

p=0

b1/2
p ≤ f

(
I(ϕ1, ϕ2)

)
.

In view of (5.4) we have thus shown that
∣
∣
∣
∣

∫
(ϕ1 − ϕ2)

(
MA(ϕ1) − MA(ψ)

)
∣
∣
∣
∣ ≤ f

(
I(ϕ1, ϕ2)

)

for all ϕ1, ϕ2,ψ ∈ EC. But we have
∫

(ϕ1 − ϕ2)
(
MA(ϕ2) − MA(ϕ1)

) = I(ϕ1, ϕ2)

by definition of I, so we get
∣
∣
∣
∣

∫
(ϕ1 − ϕ2)

(
MA(ψ1) − MA(ψ2)

)
∣
∣
∣
∣ ≤ I(ϕ1, ϕ2) + 2f

(
I(ϕ1, ϕ2)

)
,

which concludes the proof. �

6. Variational principles for Kähler-Einstein metrics

In this section, we use the variational approach to study the existence of Kähler-
Einstein metrics on manifolds with definite first Chern class. The Ricci-flat case is an
easy consequence of Theorem A. In Section 6.1 we treat the case of manifolds of gen-
eral type and prove Theorem C. The more delicate case of Fano manifolds occupies
the remaining sections: in Section 6.2 we construct continuous geodesics in the space of
positive closed currents with prescribed cohomology class, we then prove Theorem D in
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Section 6.3, while uniqueness of (singular) Kähler-Einstein metrics with positive curva-
ture (Theorem E) is established in Section 6.4. We will use throughout the convenient
language of weights, i.e. view metrics additively. We refer for instance to [BB10] for ex-
planations.

6.1. Manifolds of general type. — Let X be a smooth projective variety of general type,
i.e. such that KX is big. A weight φ on KX induces a volume form eφ . By a singular

Kähler-Einstein weight we mean a psh weight on KX such that MA(φ) = eφ and such that∫
eφ = vol(KX) =: V, or equivalently such that MA(φ) has full Monge-Ampère mass.

In [EGZ09] a singular Kähler-Einstein weight was constructed using the existence
of the canonical model

Xcan := Proj
(⊕

m≥0

H0(X,mKX)

)

provided by the fundamental result of [BCHM10]. In [Tsu10] a direct proof of the ex-
istence of a singular Kähler-Einstein weight was sketched, and the argument was ex-
panded in [SoTi08]. In [BEGZ10], existence and uniqueness of singular Kähler-Einstein
weights was established using a generalized comparison principle, and the unique singu-
lar Kähler-Einstein weight was furthermore shown to have minimal singularities in the sense
of Demailly.

We propose here to give a direct variational proof of the existence of a singular
Kähler-Einstein weight in E 1(X,KX) (we therefore don’t recover the full force of the
result in [BEGZ10]). We proceed as before, replacing the functional Fμ = E − Lμ with
F+ := E − L+, where we have set

L+(φ) := log
∫

eφ.

Proof of Theorem C. — Note that eφ has L∞-density with respect to Lebesgue mea-
sure. Indeed, if φ0 is a given smooth weight on KX, then eφ = eφ−φ0eφ0 , where eφ0 is a
smooth positive volume form and the function φ −φ0 is bounded from above on X. Given
φ,ψ ∈ PSH(X,KX), we can in particular consider the integral

∫
(φ − ψ)eψ,

since φ − ψ is integrable on X. �

Lemma 6.1. — The directional derivatives of L+ on PSH(X,KX) are given by

d

dt

∣
∣
∣
∣

t=0+
L+

(
tφ + (1 − t)ψ

) =
∫
(φ − ψ)eψ

∫
eψ

.
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Proof. — By the chain rule, it is enough to show that

d

dt

∣
∣
∣
∣

t=0+

∫
etφ+(1−t)ψ =

∫
(φ − ψ)eψ.

One has to be a little bit careful since φ − ψ is not bounded on X. But we have
∫

(
etφ+(1−t)ψ − eψ

) =
∫

(
et(φ−ψ) − 1

)
eψ.

Now (et(φ−ψ) − 1)/t decreases pointwise to φ − ψ as t decreases to 0 by convexity of the
exponential, and the result indeed follows by monotone convergence. �

Using this fact and arguing exactly as in Theorem 4.1 proves that

(6.1) F+(φ) = sup
E 1(X,KX)

F+

implies

(6.2) MA(φ) = eφ+c

for some c ∈ R. Indeed apart from [BB10] the main point of the proof of Theorem 4.1 is
that E(P(φ + v)) − Lμ(φ + v) is maximum for v = 0 if E − Lμ is maximal at φ, and this
only relied on the fact that Lμ is non-decreasing, which is also the case for L+.

Conversely, E is concave while L+ is convex by Hölder’s inequality, thus F+ is
concave and (6.2) implies (6.1) as in Theorem 4.1.

In order to conclude the proof of Theorem C, we need to prove that F+ achieves
its supremum on E 1(X,KX), or equivalently on T 1(X,KX). Now Corollary 3.7 applies
to F+ = E − L+ since L+ is non-decreasing, convex and satisfies the scaling property,
and we conclude that F+ is J-proper as before. It thus remains to check that F+ is upper
semicontinuous.

In the present case, it is even true that L+ is continuous on the whole of
PSH(X,KX). To see this, let φj → φ be a convergent sequence in PSH(X,KX). Upon
extracting a subsequence, we may assume that φj → φ a.e. Given a reference weight φ0,
supX(φj −φ0) is uniformly bounded by Hartogs’ lemma, thus eφj−φ0 is uniformly bounded,
and we get

∫
eφj → ∫

eφ as desired by dominated convergence applied to the fixed mea-
sure eφ0 .

6.2. Continuous geodesics. — Let ω be a semi-positive (1,1)-form on X. If Y is a
complex manifold, then a map � : Y → PSH(X,ω) will be said to be psh (resp. locally
bounded, continuous, smooth) iff the induced function �(x, y) := �(y)(x) on X × Y is
π∗

Xω-psh (resp. locally bounded, continuous, smooth). We shall also say that � is maximal

if it is psh, locally bounded and
(
π∗

Xω + ddc
(x,y)�

)n+m = 0
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where m := dim Y and ddc
(x,y) acts on both variables (x, y). If Y is a radially symmetric

domain in C and � is smooth on X × Y such that ω + ddc
x�(·, y) > 0 for each y ∈ Y then

� is maximal iff �(et) is a geodesic for the Riemannian metric on Kähler potentials

{
ϕ ∈ C∞(X) | ω + ddcϕ > 0

}

defined in [Mab87, Sem92, Don99].

Proposition 6.2. — If � : Y → PSH(X,ω) is a psh map, then E ◦ � is a psh function on

Y (or is indentically −∞ on some component of Y). When � is furthermore locally bounded we have

(6.3) ddc
y(E ◦ �) = (πY)∗

((
π∗

Xω + ddc
(x,y)�

)n+1)
.

In particular, if dim Y = 1 and � is maximal then E ◦ � is harmonic on Y.

Proof. — Assume first that � is smooth. Then we can consider

(6.4) E ◦ � := 1
n + 1

(πY)∗

(

�

n∑

j=0

(
π∗

Xω + ddc
x�

)j ∧ π∗
Xωn−j

)

.

The formula

ddc
y(E ◦ �) = (πY)∗

((
π∗

Xω + ddc
(x,y)�

)n+1)

follows from an easy but tedious computation relying on integration by parts and will be
left to the reader.

When �(x, y) is bounded and π∗
Xω-psh the same argument works. Indeed inte-

gration by parts is a consequence of Stokes formula applied to a local relation of the
form u = dv, and the corresponding relation in the smooth case can be extended to the
bounded case by a local regularization argument.

Finally let �(x, y) be an arbitrary π∗
Xω-psh function. We may then write � as the

decreasing limit of max{�,−k} as k → ∞, and by Proposition 2.4 E ◦ � is then the
pointwise decreasing limit of E ◦ �k , whereas

(
π∗

Xω + ddc
(x,y)�k

)n+1 → (
π∗

Xω + ddc
(x,y)�

)n+1

by Bedford-Taylor’s monotonic continuity theorem. �

Proposition 6.3. — Let � � Cm be a smooth strictly pseudoconvex domain and let ϕ :
∂� → PSH(X,ω) be a continuous map. Then there exists a unique continuous extension � : � →
PSH(X,ω) of ϕ which is maximal on �.
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The proof is a simple adaptation of Bedford-Taylor’s techniques to the present
situation. Although it has recently appeared in [BD12] we include a proof as a courtesy
to the reader.

Proof. — Uniqueness follows from the maximum principle. Let F be the set of all
continuous psh maps � : � → PSH(X,ω) such that � ≤ ϕ on ∂�. Note that F is non-
empty since it contains all sufficiently negative constant functions of (x, y). Let � be the
upper envelope of F . We are going to show that � = ϕ on ∂� and that � is continuous.
The latter property will imply that � is π∗

Xω-psh, and it is then standard to show that �

is maximal on � by using local solutions to the homogeneous Monge-Ampère equation
(compare. [Dem91, p. 17], [BB10, Proposition 1.10]).

Assume first that ϕ is a smooth. We claim that ϕ admits a smooth psh extension
ϕ̃ : � → PSH(X,ω). Indeed we first cover � by two open subsets U1,U2 such that U1

retracts smoothly to ∂�. We can then extend ϕ to a smooth map ϕ1 : U1 → PSH(X,ω)

using the retraction and pick any constant map ϕ2 : U2 → PSH(X,ω). Since PSH(X,ω)

is convex θ1ϕ1 + θ2ϕ2 defines a smooth extension � → PSH(X,ω) (where θ1, θ2 is a
partition of unity adapted to U1,U2). Now let χ be a smooth strictly psh function on �

vanishing on the boundary of �. Then ϕ̃ := θ1ϕ1 + θ2ϕ2 + Cχ yields the desired smooth
psh extension of ϕ for C � 1.

Since ϕ̃ belongs to F we get in particular ϕ̃ ≤ � hence � = ϕ on ∂�. Still assum-
ing that ϕ is smooth, we now take care of the continuity of �, basically following [Dem91,
p. 13]. By [Dem92] the exists a sequence �k of smooth functions on X × � decreasing
pointwise to the usc regularization �∗ and such that

ddc�k ≥ −εk

(
π∗

Xω + ddcχ
)
,

with ε → 0. Note that �k := (1 − εk)(�k + εkχ) is thus π∗
Xω-psh. Given ε > 0 we have

�∗ < ϕ̃ + ε on a compact neighbourhood U of X × ∂� thus �k < ϕ̃ + ε on U for k � 1.
It follows that max(�k − ε, ϕ̃) belongs to F , so that �k − ε ≤ �, and we get

� ≤ �∗ ≤ �k ≤ (1 − εk)
−1(� + ε) − εkχ,

which in turn implies that �k converges to � uniformly on X × �. We conclude that �

is continuous in that case as desired.
Let now ϕ : ∂� → PSH(X,ω) be an arbitrary continuous map. By Richberg’s

approximation theorem (cf. e.g. [Dem92]) we may find a sequence of smooth functions
ϕk : ∂� → PSH(X,ω) such that supX×∂� |ϕ − ϕk| =: εk tends to 0. The corresponding
envelopes �k are continuous by the first part of the proof, and satisfy �k − εk ≤ � ≤
�k + εk ; this shows that �k → � uniformly on X × �, and continuity of � follows. �

6.3. Fano manifolds. — Let X be a Fano manifold. Our goal in this section is to
prove that singular Kähler-Einstein weights, i.e. weights φ ∈ E 1(X,−KX) such that
MA(φ) = e−φ , can be characterized by a variational principle.
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Lemma 6.4. — For any compact Kähler manifold (X,ω), the map E 1(X,ω) → L1(X)

ϕ �→ e−ϕ is continuous.

Proof. — As already mentioned, every ϕ ∈ PSH(X,ω) with full Monge-Ampère
mass has identically zero Lelong numbers [GZ07, Corollary 1.8], which amounts to say-
ing that e−ϕ belongs to Lp(X) for all p < +∞ by Skoda’s integrability criterion [Sko72].
Now let ϕj → ϕ be a convergent sequence in E 1(X,ω). After passing to a subsequence
we may assume that e−ϕj → e−ϕ a.e. Since supX ϕj is uniformly bounded, it follows from
the uniform version of Skoda’s theorem [Zer01] that e−ϕj stays in a bounded subset of
L2(X). In particular, the sequence e−ϕj is uniformly integrable, and hence e−ϕj → e−ϕ in
L1(X). �

Set

L−(φ) := − log
∫

e−φ, F− := E − L−.

Note that L− is now concave on E 1(X,−KX) by Hölder’s inequality, so that E − L− is
merely the difference of two concave functions. However, we have the following psh ana-
logue of Prekopa’s theorem, which follows from Berndtsson’s results on the psh variation
of Bergman kernels and implies in particular that L− is geodesically convex:

Lemma 6.5. — Let � : Y → PSH(X,−KX) be a psh map. Then L− ◦ � is psh on Y.

Proof. — Consider the product family πY : Z := X × Y → Y and the line bun-
dle M := π∗

X(−KX), which coincides with relative anticanonical bundle of Z/Y. Then
y �→ log(

∫
e−�(·,y))−1 is the weight of the L2 metric induced on the direct image bundle

(πY)∗OZ(KZ/Y + M). The result thus follows from [Bern09a]. �

We are now ready to prove the main part of Theorem D.

Theorem 6.6. — Let X be a Fano manifold and let φ ∈ E 1(X,−KX). The following prop-

erties are equivalent.

(i) F−(φ) = supE 1(X,−KX) F−.

(ii) MA(φ) = e−φ+c for some c ∈ R.

Furthermore, these properties imply that φ is continuous.

As mentioned in the introduction, this result extends a theorem of Ding-Tian
(cf. [Tian, Corollary 6.26]) to singular weights while relaxing the assumption that
H0(TX) = 0 in their theorem.
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Proof. — The proof of (i)⇒(ii) is similar to that of Theorem 4.1: given u ∈ C0(X)

we have

E
(
P(φ + u)

) + log
∫

e−(φ+u) ≤ E
(
P(φ + u)

) + log
∫

e−P(φ+u)

≤ E(φ) + log
∫

e−φ

thus u �→ E(P(φ + u)) + log
∫

e−(φ+u) achieves its maximum at 0. By Lemma 4.2 MA(φ)

is thus equal to the differential of u �→ − log
∫

e−(φ+u) at 0 and we get MA(φ) = e−φ+c for
some c ∈ R as desired.

The equation MA(φ) = e−φ+c shows in particular that MA(φ) has L1+ε density
and we infer from [Koł98] that φ is continuous.

Conversely, let φ ∈ E 1(X,−KX) be such that MA(φ) = e−φ+c and let ψ ∈
E 1(X,−KX). We are to show that F−(φ) ≥ F−(ψ). By scaling invariance of F− we may
assume that c = 0, and by continuity of F− along decreasing sequences we may assume
that ψ is continuous. Since φ is continuous, Proposition 6.3 yields a radially symmetric
continuous map � : A → PSH(X,ω) where A denotes the annulus {z ∈ C,0 < log |z| <
1}, such that � is maximal on A and coincides with φ (resp. with ψ ) for log |z| = 0
(resp. 1). The path φt := �(et) is thus a “continuous geodesic” in PSH(X,ω), and E(φt)

is an affine function of t on the segment [0,1] by Proposition 6.2. On the other hand,
Lemma 6.5 implies that L−(φt) is a convex function of t, thus F−(φt) is concave, with
F−(φ0) = F−(φ) and F−(φ1) = F−(ψ). In order to show that F−(φ) ≥ F−(ψ), it will thus
be enough to show

(6.5)
d

dt

∣
∣
∣
∣

t=0+
F−(φt) ≤ 0.

Note that φt(x) is a convex function of t for each x fixed, thus

ut := φt − φ0

t

decreases pointwise as t → 0+ to a function v on X that is bounded from above (by
u1 = φ0 − φ1). The concavity of E implies

E(φt) − E(φ0)

t
≤

∫
utMA(φ0),

hence

(6.6)
d

dt

∣
∣
∣
∣

t=0+
E(φt) ≤

∫
vMA(φ0) =

∫
ve−φ0
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by the monotone convergence theorem (applied to −ut , which is uniformly bounded
below and increases to −v). Note that this implies in particular that v ∈ L1(X). On the
other hand we have

∫
e−φt − ∫

e−φ0

t
= −

∫
utf (φt − φ0)e

−φ0

with f (x) := (1 − e−x)/x, and f (φt − φ0) is uniformly bounded on X since φt − φ0 is
uniformly bounded. It follows that |utf (φt − φ0)| is dominated by an integrable function,
hence

(6.7)
d

dt

∣
∣
∣
∣

t=0+

∫
e−φt = −

∫
ve−φ0

since f (φt − φ0) → 1. The combination of (6.6) and (6.7) now yields (6.5) as desired. �

Remark 6.7. — Suppose that φ,ψ ∈ PSH(X,−KX) are smooth, with φ Kähler-
Einstein. We would like to briefly sketch Ding-Tian’s argument for comparison. Since F−
is translation invariant we may assume that they are normalized so that

∫
e−φ = ∫

e−ψ =
1, and our goal is to show that E(φ) ≥ E(ψ). By the normalization we get MA(φ) = Ve−φ

with V := vol(−KX) = c1(X)n, and there exists a smooth weight τ ∈ PSH(X,−KX) such
that MA(τ ) = Ve−ψ by [Yau78]. If we further assume that H0(TX) = 0 then [BM87]
yields the existence of a smooth path φt ∈ PSH(X,−KX) ∩ C∞ with φ0 = τ , φ1 = φ and

(6.8) MA(φt) = Ve−(tφt+(1−t)ψ)

for each t ∈ [0,1]. The argument of Ding-Tian can then be formulated as follows. The
claim is that t(E(φt) − E(ψ)) is a non-decreasing function of t, which implies E(φ) −
E(ψ) ≥ 0 as desired. Indeed we have

(6.9)
d

dt

(
t
(
E(φt) − E(ψ)

)) = E(φt) − E(ψ) + t

∫
φ̇tMA(φt).

On the other hand differentiating
∫

e−(tφt+(1−t)ψ) = 1 yields

0 = d

dt

∫
e−(tφt+(1−t)ψ) = −

∫
(φt + tφ̇t − ψ)e−(tφt+(1−t)ψ)

thus
∫

(φt + tφ̇t − ψ)MA(φt)

by (6.8), and (6.9) becomes

d

dt

(
t
(
E(φt) − E(ψ)

)) = E(φt) − E(ψ)

∫
(ψ − φt)MA(φt) = Jφt

(ψ),

which is non-negative as desired by concavity of E.
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Proof of Theorem D. — The first part of the proof of Theorem D follows from The-
orem 6.6. By Lemma 6.4 F− is usc. If it is J-proper, then its supremum is attained on a
compact convex set of weights with energy uniformly bounded from below by some large
constant −C. The conclusion thus follows from Theorem 6.6. �

As opposed to F+, let us recall for emphasis that F− is not necessarily J-proper
(see [Tian]).

6.4. Uniqueness of Kähler-Einstein metrics. — This section is devoted to the proof of
Theorem E, which extends in particular [BM87] in case H0(TX) = 0.

Theorem 6.8. — Let X be a Kähler-Einstein Fano manifold without non-trivial holomorphic

vector field. Then F achieves its maximum on T 1(X,−KX) at a unique point.

Proof. — Let φ be a smooth Kähler-Einstein weight on −KX, which exists by
assumption. We may assume that φ is normalized so that MA(φ) = e−φ . Now let
ψ ∈ E 1(X,−KX) be such that MA(ψ) = e−ψ . We are going to show that φ = ψ .
By Kolodziej’s theorem ψ is continuous, and we consider as before the continuous
geodesic φt connecting φ0 = φ to φ1 = ψ . Theorem 6.6 implies that the concave func-
tion F−(φt) achieves its maximum at t = 0 and t = 1, thus F−(φt) is constant on [0,1].
Since E(φt) is affine, it follows that L−(φt) is also affine on [0,1], hence L−(φt) ≡ 0 since
L−(φ0) = L−(φ1) = 0 by assumption. This implies in turn that E(φt) is constant. Theo-
rem 6.6 therefore yields MA(φt) = e−φt for all t ∈ [0,1].

Set vt := ∂

∂ t
φt , which is non-decreasing in t by convexity. One sees as in the proof

of Theorem 6.6 that vt ∈ L1(X) and

(6.10)
∫

vt e
−φt = 0

for all t. We claim that v0 = 0, which will imply vt ≥ v0 = 0 for all t, hence vt = 0 a.e. for
all t by (6.10), and the proof will be complete.

We are going to show by differentiating the equation (ddcφt)
n = e−φt that

(6.11) nddcv0 ∧ (
ddcφ0

)n−1 = −v0e−φ0

in the sense of distributions, i.e.

n

∫
v0

(
ddcφ0

)n−1 ∧ ddcw = −
∫

wv0

(
ddcφ0

)n

for every smooth function w on X. Using (ddcφ0)
n = e−φ0 (6.11) means that v0 is an

eigendistribution with eigenvalue −1 of the Laplacian � of the (smooth) Kähler-Einstein
metric ddcφ0, and thus v0 = 0 since H0(TX) = 0 (cf. [Tian, Lemma 6.12]).
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We claim that

(6.12)
d

dt

∣
∣
∣
∣

t=0+

∫
we−φt = −

∫
wv0e−φ0

and

(6.13)
d

dt

∣
∣
∣
∣

t=0+

∫
w

(
ddcφt

)n = n

∫
v0

(
ddcφ0

)n−1 ∧ ddcw,

which will imply (6.11). The proof of (6.12) is handled as before: we write
∫

w
e−φt − e−φ0

t
= −

∫
wutf (φt − φ0)e

−φ0

with f (x) := (1 − e−x)/x and use the monotone convergence theorem.
On the other hand, writing ddcw as the difference of two positive (1,1)-forms

shows by monotone convergence that (6.13) is equivalent to
∫

w
((

ddcφt

)n − (
ddcφ0

)n) = n

∫
(φt − φ0)

(
ddcφ0

)n ∧ ddcw + o(t),

where the left-hand side can be rewritten as

∫
(φt − φ0)

⎛

⎝
n−1∑

j=0

(
ddcφt

)j ∧ (
ddcφ0

)n−j−1

⎞

⎠ ∧ ddcw

after integration by parts. (6.13) will thus follow if we can show that
∫

(φt − φ0)
((

ddcφt

)j ∧ (
ddcφ0

)n−j−1 − (
ddcφ0

)n−1) ∧ ddcw = o(t)

for j = 0, . . . , n − 1, which will in turn follow from

(6.14)
∫

(φt − φ0)ddc(φt − φ0) ∧ (
ddcφt

)j ∧ (
ddcφ0

)n−j−2 ∧ ddcw = o(t)

for j = 0, . . . , n − 2. Now we have
∫

(φt − φ0)ddc(φt − φ0) ∧ (
ddcφt

)j ∧ (
ddcφ0

)n−j−2 ∧ ddcw

=
∫

d(φt − φ0) ∧ dc(φt − φ0) ∧ (
ddcφt

)j ∧ (
ddcφ0

)n−j−2 ∧ ddcw.

Since w is smooth and ddcφ0 is a Kähler form we have

−Cddcφ0 ≤ ddcw ≤ Cddcφ0
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for C � 1, and we see that (6.14) will follow from
∫

d(φt − φ0) ∧ dc(φt − φ0) ∧ (
ddcφt

)j ∧ (
ddcφ0

)n−j−1 = o(t)

for j = 0, . . . , n − 1 since d(φt − φ0) ∧ dc(φt − φ0) ∧ (ddcφt)
j ∧ (ddcφ0)

n−j−2 is a positive
current. Now consider

Jφ0(φt) := E(φ0) − E(φt) +
∫

(φt − φ0)MA(φ0).

Since E(φt) is constant, the monotone convergence theorem yields

d

dt

∣
∣
∣
∣

t=0+
Jφ0(φt) =

∫
v0MA(φ0) =

∫
v0e−φ0 = 0.

By (2.8) this implies that
∫

d(φt − φ0) ∧ dc(φt − φ0) ∧ (
ddcφt

)j ∧ (
ddcφ0

)n−j−1 = o(t)

for j = 0, . . . , n − 1 as desired. �

7. Balanced metrics

Let A be an ample line bundle on a projective manifold X, and denote by Hk

the space of all positive Hermitian products on the space H0(kA) of global sections of
kA = A⊗k , which is isomorphic to the Riemannian symmetric space

Hk � GL(Nk,C)/U(Nk)

with Nk := h0(kA). We will always assume that k is taken large enough to ensure that kA
is very ample. There is a natural injection

fk : Hk ↪→ PSH(X,A) ∩ C∞

sending H ∈ Hk to the Fubiny-Study type weight

fk(H) := 1
k

log

⎛

⎝ 1
Nk

Nk∑

j=1

|sj|2
⎞

⎠

where (sj) is an H-orthonormal basis of H0(kA).
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On the other hand, every measure μ on X yields a map

hk(μ, ·) : PSH(X,A) → Hk

by letting hk(μ,φ) be the L2-scalar product on H0(kA) induced by μ and kφ.
Consider the following three settings (compare [Don09]).

(Sμ) Let μ be a probability measure with finite energy on X, and let φ0 be a reference
smooth strictly psh weight on A. We set

hk(φ) := hk(μ,φ)

and

L(φ) := Lμ(φ) =
∫

(φ − φ0)dμ.

We also let T ∈ c1(A) be the unique closed positive current with finite energy such that
V−1Tn = μ where V := (An).

(S+) A = KX is ample. A weight φ ∈ PSH(X,KX) induces a measure eφ with L∞ density
on X, and we set

hk(φ) := hk

(
eφ,φ

)

and

L(φ) := L+(φ) = log
∫

eφ.

We let T := ωKE be the unique Kähler-Einstein metric.

(S−) A = −KX is ample. A weight φ ∈ E 1(X,−KX) induces a measure e−φ on X with Lp

density for all p < +∞, and we set

hk(φ) := hk

(
e−φ,φ

)

and

L(φ) := L−(φ) = − log
∫

e−φ.

In that case we also assume that H0(TX) = 0 and that T := ωKE is a Kähler-Einstein
metric, which is therefore unique by [BM87] (or Theorem 6.8 above).

As in [Don09], we shall say in each case that H ∈ Hk is k-balanced if it is a fixed
point of hk ◦ fk . The maps hk and fk induce a bijective correspondence between the k-
balanced points in Hk and the k-balanced weights φ ∈ PSH(X,A), i.e. the fixed points of
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fk ◦ hk . The k-balanced points H ∈ Hk admit the following variational characterization
(cf. [Don09] and Corollary 7.5 below). Consider the function Dk on Hk defined by

(7.1) Dk := − 1
2kNk

log det,

where the determinant is computed with respect to a fixed base point in Hk . Then H ∈ Hk

is k-balanced iff it maximizes the function

(7.2) Fk := Dk − L ◦ fk

on Hk . Further, there exists at most one such maximizer, up to scaling (Corollary 7.3).
Our main result in this section is the following.

Theorem 7.1. — In each of the three settings (Sμ), (S+) and (S−) above, there exists for each

k � 1 a k-balanced metric φk ∈ PSH(X,A), unique up to a constant. Moreover in each case ddcφk

converges weakly to T as k → ∞.

This type of result has its roots in the seminal work of Donaldson [Don01], and
the present statement was inspired by [Don09]. In fact, the existence of k-balanced met-
rics in case (Sμ) was established in [Don09, Proposition 3] assuming that μ integrates
log |s| for every section s ∈ H0(mA). In [Don09, p. 12], Donaldson conjectured the con-
vergence statement in the case where μ is a smooth positive volume form, by analogy
with [Don01]. The result was indeed observed to hold for such measures in [Kel09], as a
special case of [Wan05] (which in turn relied on the techniques introduced in [Don01]).
The settings (S±) were introduced and briefly discussed in [Don09, §2.2.2].

The main idea of our argument goes as follows. In each case, the functional F :=
E − L is usc and J-coercive on E 1(X,A) (by Corollary 3.7 in case (Sμ) and (S+), and
by [PSSW08] in case (S−)), and T is characterized as the unique maximizer of F on
T 1(X,A) = E 1(X,A)/R, by our variational results.

The crux of the proof is Lemma 7.7 below, which compares the restriction J ◦ fk of
the exhaustion function of E 1(X,A) to Hk to a natural exhaustion function Jk on Hk . This
result enables us to carry over the J-coercivity of F to a Jk-coercivity property of Fk that is
furthermore uniform with respect to k (Lemma 7.9). This shows on the one hand that Fk

achieves its maximum on Hk , which yields the existence of a k-balanced weight φk . On
the other hand it provides a lower bound

F(φk) ≥ sup
Hk

Fk + o(1)

which allows us to show that φk is a maximizing sequence for F. We can then use Propo-
sition 3.8 to conclude that ddcφk converges to T.
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7.1. Convexity properties. — Any geodesic t �→ Ht in Hk is the image of a 1-para-
meter subgroup of GL(H0(kA)), which means that there exists a basis S = (sj) of H0(kA)

and

(λ1, . . . , λNk
) ∈ RNk

such that eλj t sj is Ht-orthonormal for each t. We will say that Ht is isotropic if

λ1 = · · · = λNk
.

The isotropic geodesics are thus the orbits of the action of R+ on Hk by scaling. With this
notation, there exists c ∈ R such that

(7.3) Dk(Ht) = t

kNk

∑

j

λj + c

for all t, and we have

(7.4) fk(Ht) = 1
k

log
(

1
Nk

∑

j

etλj |sj|2
)

.

Observe that z �→ fk(H�z) defines a psh map C → PSH(X,A), i.e. fk(H�z) is psh in all
variables over C × X. We also record the formula

(7.5)
∂

∂ t
fk(Ht) = 1

k

∑
j λj e

tλj |sj|2
∑

j etλj |sj|2 .

The next convexity properties will be crucial to the proof of Theorem 7.1. Recall
that k is assumed to be large enough to guarantee that kA is very ample.

Lemma 7.2. — The function Dk is affine on Hk , and E ◦ fk is convex. Moreover, in each

of the three settings (Sμ), (S+) and (S−) above L ◦ fk is convex on Hk , and strictly convex along

non-isotropic geodesics.

Proof. — The first property follows from (7.3). Let Ht be a geodesic in Hk and set

φt := fk(Ht).

The convexity of t �→ E(φt) follows from Proposition 6.2, since z �→ φ�z is a psh map as
was observed above.

Let us now first consider the cases (Sμ) and (S+). Since t �→ φt(x) is convex for
each x ∈ X, the convexity of L(φt) directly follows since φ �→ L(φ) is convex and non-
decreasing in these cases. In order to get the strict convexity along non-isotropic geodesics
one however has to be slightly more precise. By (7.5) we have

k
∂

∂ t
φt =

∑

j

λjσj(t)
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with

σj(t) := etλj |sj|2∑
i etλi |si|2 ,

and a computation yields

k

2
∂2

∂ t2
φt =

(∑

j

λ2
j σj(t)

)

−
(∑

j

λjσj(t)

)2

.

Now the Cauchy-Schwarz inequality implies that
(∑

j

λjσj(t)

)2

≤
(∑

j

λ2
j σj(t)

)(∑

j

σj(t)

)

,

which shows that ∂2

∂ t2
φt ≥ 0 (which we already knew) since

∑

j

σj(t) = 1.

Furthermore the equality case ∂2

∂ t2
φt(x) = 0 holds for a given t ∈ R and a given x ∈ X iff

there exists c ∈ R such that for all j we have

λjσj(t)
1/2 = cσj(t)

1/2

at the point x. If x belongs to the complement of the zero divisors Z1, . . . ,ZNk
of the sj ’s

we therefore conclude that ∂2

∂ t2
φt(x) > 0 for all t unless Ht is isotropic.

Now in both cases (Sμ) and (S+) the map φ �→ L(φ) is convex and non-decreasing
on PSH(X,A) as we already noticed. We thus have

d2

dt2
L(φt) ≥

∫ (
∂2

∂ t2
φt

)

L′(φt)

where L′(φt) is viewed as a positive measure on X. This measure is in both cases non-
pluripolar, thus the union of the zero divisors Zj has zero measure with respect to L′(φt),
and it follows as desired from the above considerations that t �→ L(φt) is strictly convex
when Ht is non-isotropic.

We finally consider case (S−). Since z �→ φ�z is a psh map, the convexity of t �→
L(φt) follows from Lemma 6.5, which was itself a direct consequence of [Bern09a]. Now
if we assume that Ht is non-isotropic then the strict convexity follows from [Bern09b]. In-
deed if t �→ L−(φt) is affine on a non-empty open interval I then [Bern09b, Theorem 2.4]
implies that c(φt) = 0 on I and that the vector field Vt that is dual to the (0,1)-form

∂

(
∂

∂ t
φt

)
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with respect to the metric ddcφt is holomorphic for each t ∈ I. Since we assume that
H0(TX) = 0 we thus get Vt = 0. But we have by definition

c(φt) = ∂2

∂ t2
φt − |Vt|2

where the norm of Vt is computed with respect to ddcφt , and we conclude that ∂2

∂ t2
φt = 0

on I. This however implies that Ht is isotropic by the first part of the proof, and we have
reached a contradiction. �

Corollary 7.3. — The function Fk := Dk − L ◦ fk is concave on Hk , and all its critical points

are proportional.

Proof. — The first assertion follows directly from Lemma 7.2. As a consequence
H ∈ Hk is a criticical point of Fk iff it is a maximizer. Now let H0,H1 be two critical
points and let Ht be the geodesic through H0,H1. If Ht is non-isotropic then t �→ Fk(Ht)

is strictly concave, which contradicts the fact that it is maximized at t = 0 and t = 1. So
we conclude that Ht must be isotropic, which means that H0 and H1 are proportional. �

7.2. Variational characterization of balanced metrics. — Recall that a k-balanced weight
φ is by definition a fixed point of fk ◦ hk . The maps fk and hk induce a bijective correspon-
dence between the fixed points of fk ◦ hk and those of

tk := hk ◦ fk

in Hk . The following result is implicit in [Don09].

Lemma 7.4. — Let H ∈ Hk . Then H is a fixed point of tk iff it is a critical point of

Fk = Dk − L ◦ fk.

Proof. — Recall that for each geodesic Ht with H0 = H there exists λ ∈ RNk and an
H-orthonormal basis (sj) such that etλj sj is Ht-orthonormal. We claim that

(7.6) k
d

dt

∣
∣
∣
∣

t=0

L ◦ fk(Ht) =
(∑

j

λj‖sj‖2
tk(H)

)(∑

j

‖sj‖2
tk(H)

)−1

.

In case (Sμ) we have by (7.5)

k
d

dt

∣
∣
∣
∣

t=0

L ◦ fk(Ht) =
∫ ∑

j λj|sj|2
∑

j |sj|2 dμ

=
∑

j

λj

∫
|sj|2e−kfk(H)dμ =

∑

j

λj‖sj‖2
hk◦fk(H),
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and (7.6) follows since
∑

j

‖sj‖2
hk◦fk(H) = 1

in that case. In case (S±) we find instead

k
d

dt

∣
∣
∣
∣
t=0

L ◦ fk(Ht) =
(∫ ∑

j λj|sj|2
∑

j |sj|2 e±fk(H)

)(∫
e±fk(H)

)−1

and (7.6) again follows by writing
∫

e±fk(H) =
∑

j

∫ |sj|2∑
i |si|2 e±fk(H) =

∑

j

‖sj‖2
tk(H).

As a consequence of (7.6) we see that H is a critical point of Fk = Dk − L ◦ fk iff

(7.7)
1

Nk

∑

j

λj =
(∑

j

λj‖sj‖2
tk(H)

)(∑

j

‖sj‖2
tk(H)

)−1

holds for all H-orthonormal basis (sj) and all λ ∈ RNk . If we choose in particular (sj) to
be also tk(H)-orthogonal then (7.7) holds for all λ ∈ RNk iff ‖sj‖2

tk(H) = 1 for all j, which
means that tk(H) = H. Conversely tk(H) = H certainly implies (7.7) since (sj) is then
tk(H)-orthonormal, and the proof is complete. �

As a consequence of Corollary 7.3 and Lemma 7.4 we get

Corollary 7.5. — Up to an additive constant, there exists at most one k-balanced weight φ ∈
PSH(X,A), and φ exists iff Fk = Dk − L ◦ fk admits a maximizer H ∈ Hk , in which case we have

φ = fk(H).

7.3. Asymptotic comparison of exhaustion functions. — Recall that we have fixed a ref-
erence smooth strictly psh weight φ0 on A. We set μ0 := MA(φ0) and normalize the
determinant (and thus the function Dk ) by taking

Bk := hk(μ0, φ0)

as a base point in Hk and setting det Bk = 1.
We now introduce a natural exhaustion function on Hk/R+.

Lemma 7.6. — The scale-invariant function Jk := L0 ◦ fk − Dk induces a convex exhaustion

function of Hk/R+.
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Proof. — Convexity follows from Lemma 7.2. The fact that Jk → +∞ at infinity on
Hk/R+ is easily seen and is a special case of [Don09, Proposition 3]. �

The next key estimate shows that the restriction J ◦ fk of the exhaustion function J
of E 1(X,A) to Hk is asymptotically bounded from above by the exhaustion function Jk .
In other words the injection

fk : Hk ↪→ E 1(X,A)

sends each Jk-sublevel set {Jk ≤ C} into a J-sublevel set {J ≤ Ck} where Ck is only slightly
larger than C.

Lemma 7.7. — There exists εk → 0 such that

(7.8) J ◦ fk ≤ (1 + εk)Jk + εk on Hk

for all k.

Before proving this result we need some preliminaries. Given any weight φ on A
recall that the distortion function of (μ0, kφ) is defined by

ρk(μ0, φ) :=
∑

j

|sj|2kφ

where (sj) is an arbitrary hk(μ0, φ)-orthonormal basis of H0(kA), and the Bergman measure

of (μ0, kφ) is then the probability measure

βk(μ0, φ) := 1
Nk

ρk(μ0, φ)μ0.

When φ is smooth and strictly psh, the Bouche-Catlin-Tian-Zelditch theorem [Bou90,
Cat99, Tia90, Zel98] gives

(7.9) lim
k→∞

βk(μ0, φ) = MA(φ)

in C∞-topology. The operator

Pk := fk ◦ hk(μ0, ·)
satisfies by definition

Pk(φ) − φ = 1
k

log
(
N−1

k ρk(μ0, φ)
)
.

As a consequence, any smooth strictly psh weight φ is the C∞ limit of Pk(φ).
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Now pick H ∈ Hk , and let t �→ Ht be the (unique) geodesic in Hk such that H0 = Bk

and H1 = H. We denote by

v(H) := ∂

∂ t

∣
∣
∣
∣

t=0

fk(Ht)

the tangent vector at t = 0 to the corresponding path t �→ fk(Ht). As before there exists
(λ1, . . . , λNk

) ∈ RNk and a basis (sj) that is both Bk-orthonormal and H-orthogonal such
that

(7.10) v(H) = 1
k

∑
j λj|sj|2

∑
j |sj|2 .

By convexity in the t-variable we note that

(7.11) v(H) ≤ fk(H1) − fk(H0) = fk(H) − Pk(φ0)

holds pointwise on X.

Lemma 7.8. — We have

Dk(H) =
∫

v(H)βk(μ0, φ0).

Proof. — Let Ht be the geodesic through Bk and H as above. On the one hand we
have

Dk(Ht) = t

kNk

∑

j

λj .

On the other hand (7.10) yields
∫

v(H)βk(μ0, φ0) = 1
kNk

∑

j

λj

∫
|sj|2kφ0

dμ0

and the result follows since (sj) is Bk-orthonormal. �

We are now in a position to prove Lemma 7.7.

Proof of Lemma 7.7. — Let H ∈ Hk . In what follows all O and o are meant to hold
as k → ∞ uniformly with respect to H ∈ Hk . By scaling invariance of both sides of (7.8)
we may assume that H is normalized by

L0

(
fk(H)

) = 0,
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so that

sup
X

(
fk(H) − φ0

) ≤ O(1)

and (7.11) yields

(7.12) sup
X

v(H) ≤ O(1)

since Pk(φ0) = φ0 + O(1).
On the other hand Lemma 7.8 gives

(7.13) Dk(H) =
∫

v(H)μ0 + o
(∥∥v(H)

∥
∥

L1

)

since βk(μ0, φ0) → MA(φ0) = μ0 in L∞ by Bouche-Catlin-Tian-Zelditch. Now we have

∥
∥v(H)

∥
∥

L1 ≤ 2 sup
X

v(H) −
∫

v(H)dμ0

= −Dk(H) + o
(∥∥v(H)

∥
∥

L1

) + O(1)

(by (7.12) and (7.13)) and it follows that

(7.14)
(
1 + o(1)

)∥∥v(H)
∥
∥

L1 ≤ −Dk(H) + O(1).

On the other hand, the convexity of E ◦ fk (Lemma 7.2) shows that

E ◦ fk(H) − E
(
Pk(φ0)

) ≥ 〈
E′(Pk(φ0)

)
, v(H)

〉 =
∫

v(H)MA
(
Pk(φ0)

)
.

Now we have E(Pk(φ0)) = o(1) since Pk(φ0) = φ0 + o(1) uniformly on X and

∫
v(H)MA

(
Pk(φ0)

) =
∫

v(H)μ0 + o
(∥∥v(H)

∥
∥

L1

)

by L∞ convergence of MA(Pk(φ0)) to MA(φ0) = μ0. By (7.13) we thus get

E ◦ fk(H) ≥ Dk(H) + o
(∥∥v(H)

∥
∥

L1

) + o(1)

≥ (
1 + o(1)

)
Dk(H) + o(1)

by (7.14) and the result follows. �
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7.4. Coercivity. — Recall that F = E − L is J-coercive, i.e. there exists 0 < δ < 1
and C > 0 such that

(7.15) F ≤ −δJ + C

on E 1(X,A). The next result uses the key estimate (7.8) to show that the J-coercivity of F
carries over to a uniform Jk-coercivity estimate for Fk = Dk − L ◦ fk for all k � 1.

Lemma 7.9. — There exists ε > 0 and B > 0 such that

Fk ≤ −εJk + B

holds on Hk for all k � 1.

Proof. — As discussed after Definition 3.6 (7.15) is equivalent to the linear upper
bound

(7.16) L0 − L ≤ (1 − δ)J + C

which implies

L0 ◦ fk − L ◦ fk ≤ (1 − δ)J ◦ fk + C.

On the other hand we have

J ◦ fk ≤ (1 + εk)Jk + εk

by (7.8) hence

L0 ◦ fk − L ◦ fk ≤ (1 − δ)(1 + εk)Jk + C + εk.

Since J ≥ 0 (7.8) shows in particular that Jk bounded below on Hk uniformly with respect
to k. For k � 1 we have (1 − δ)(1 + εk) < (1 − ε) and C + εk < B for some ε > 0 and
B > 0 and we thus infer

L0 ◦ fk − L ◦ fk ≤ (1 − ε)Jk + B.

It is then immediate to see that this is equivalent to the desired inequality by using Jk =
L0 ◦ fk − Dk . �

Note that the coercivity constants ε and B of Fk can even be taken arbitrarily close
to those δ and C of F, as the proof shows.

Combining Lemma 7.9 with Lemma 7.6 yields

Corollary 7.10. — For each k � 1 the scale-invariant functional Fk tends to −∞ at infinity

on Hk/R+, hence it achieves its maximum on Hk .
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7.5. Proof of Theorem 7.1. — The existence and uniqueness of a k-balanced metric
φk for k � 1 follows by combining Corollary 7.5 and Corollary 7.10. Recall that φk =
fk(Hk) where Hk ∈ Hk is the unique maximizer of Fk = Dk − L ◦ fk on Hk .

In order to prove the convergence of ddcφk to T we will rely on Proposition 3.8.
Since T is characterized as the unique maximizer of F = E − L, we will be done if we can
show that

(7.17) lim inf
k→∞

F(φk) ≥ F(ψ)

for each ψ ∈ E 1(X,A). As a first observation, we note that it is enough to prove (7.17)
when ψ is smooth and strictly psh. Indeed, by [Dem92, BK07] we can write an arbitrary
element of E 1(X,A) as a decreasing sequence of smooth strictly psh weights, and the
monotone continuity properties of E and L therefore show that supE 1(E − L) is equal to
the sup of E − L over all smooth strictly psh weights.

Let us now establish (7.17) for a smooth strictly psh ψ . Since Fk = Dk − L ◦ fk is
maximized at Hk we have in particular

(7.18) Fk(Hk) ≥ Dk

(
hk(μ0,ψ)

) − L
(
Pk(ψ)

)
.

Since Dk(hk(μ0, φ0)) = 0 the first term on the right-hand side of (7.18) writes

Dk

(
hk(μ0,ψ)

) =
∫ 1

t=0

(
d

dt
Dk

(
hk

(
μ0, tψ + (1 − t)φ0

))
)

dt.

By [BB10, Lemma 4.1] we have

d

dt
Dk

(
hk

(
μ0, tψ + (1 − t)φ0

)) =
∫

(ψ − φ0)βk

(
φ0, tψ + (1 − t)φ0

)

and the Bouche-Catlin-Tian-Zelditch theorem yields

Dk

(
hk(μ0,ψ)

) →
∫ 1

t=0

∫
(ψ − φ0)MA

(
tψ + (1 − t)φ0

)
dt = E(ψ)

(this argument being actually an easy special case of [BB10, Theorem A]). The second
term on the right-hand side of (7.18) satisfies L(Pk(ψ)) → L(ψ) since Pk(ψ) → ψ uni-
formly. It follows that

(7.19) Fk(Hk) ≥ F(ψ) + o(1)

(where o(1) depends on ψ ) and we will thus be done if we can show that

F(φk) − Fk(Hk) ≥ o(1).

Now we have

F(φk) − Fk(Hk) = (Jk − J ◦ fk)(Hk) ≥ −εkJk(Hk) + o(1)
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by (7.8) so it is enough to show that Jk(Hk) is bounded from above. But we can apply the
uniform coercivity estimate of Lemma 7.9 to get

Fk(Hk) ≤ −εJk(Hk) + O(1)

for some ε > 0. Since the left-hand side is bounded from below in view of (7.19) we are
finally done.
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