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ABSTRACT

Let K � 1 be a parameter. A K-approximate group is a finite set A in a (local) group which contains the identity,
is symmetric, and such that A · A is covered by K left translates of A.

The main result of this paper is a qualitative description of approximate groups as being essentially finite-by-
nilpotent, answering a conjecture of H. Helfgott and E. Lindenstrauss. This may be viewed as a generalisation of the
Freiman-Ruzsa theorem on sets of small doubling in the integers to arbitrary groups.

We begin by establishing a correspondence principle between approximate groups and locally compact (local)
groups that allows us to recover many results recently established in a fundamental paper of Hrushovski. In particular we
establish that approximate groups can be approximately modeled by Lie groups.

To prove our main theorem we apply some additional arguments essentially due to Gleason. These arose in the
solution of Hilbert’s fifth problem in the 1950s.

Applications of our main theorem include a finitary refinement of Gromov’s theorem, as well as a generalized
Margulis lemma conjectured by Gromov and a result on the virtual nilpotence of the fundamental group of Ricci almost
nonnegatively curved manifolds.
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1. Introduction

Approximate groups. — A fair proportion of the subject of additive combinatorics is
concerned with approximate analogues of exact algebraic properties, and the extent to
which they resemble those algebraic properties. In this paper we are concerned with sets
that are approximately closed under multiplication, which we do not necessarily assume
to be commutative, and more specifically with approximate groups. These are finite non-
empty sets A with group-like properties which we shall state precisely later. First we will
motivate the definition of an approximate group with some discussion and examples.

Suppose first of all that A is a finite subset of some ambient group G = (G, ·).
This is the setting considered in essentially all of the existing literature, and the one of
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importance in applications. However, as we shall see later, our method of proof is in fact
more naturally adapted to a more general setting, in which A lies in a local group rather
than a global one.

It is easy to see that a finite non-empty subset A of G is a genuine subgroup if, and
only if, we have xy−1 ∈ A whenever x, y ∈ A. Perhaps the most natural way in which a
set A may be approximately a subgroup, then, is if the set A · A−1 := {xy−1 : x, y ∈ A} has
cardinality not much bigger than the cardinality of A: for example, we might ask that
|A · A−1|� K|A| for some constant K.

Sets with this property or with the closely related property |A2| � K|A|, where
A2 := A ·A = {xy : x, y ∈ A}, are said to have small doubling, and this is indeed a commonly
encountered condition in various fields of mathematics, in particular in additive combi-
natorics. It is a perfectly workable notion of approximate group in the abelian setting and
the celebrated Freiman-Ruzsa theorem, Theorem 2.1 below, describes subsets of Z with
this property. However in [52] it was noted that in non-commutative settings a somewhat
different, though closely related, notion of approximate group is more natural: A is an
approximate group if it is symmetric in the sense that the identity id lies in A, if a−1 ∈ A
whenever a ∈ A, and if A · A is covered by K left-translates of A.

As suggested above we consider in this paper a slightly more general (and perhaps
more natural, in retrospect) “local” definition of approximate group in which there is no
ambient global group G. It will be convenient to introduce the following definition. This
requires the concept of a local group, which is discussed at some length in Appendix B.

Definition 1.1 (Multiplicative set). — A multiplicative set is a finite non-empty set A con-

tained in a (symmetric) local group G = (G, ·), such that the product set (A∪A−1)200 is well-defined,

where A−1 := {a−1 : a ∈ A} is the inverse of A. Strictly speaking, one should refer to the pair (A,G)

as the multiplicative set rather than just A, but we will usually abuse notation and omit the ambient local

group G.

In some (abelian) examples, we will use additive group notation G = (G,+) rather than mul-

tiplicative notation G = (G, ·). In such cases, we will refer to multiplicative sets as additive sets
instead.

Clearly, any finite non-empty subset of a (global) group G is a multiplicative set.
The reader should probably keep this model case in mind throughout a first reading of
this paper. Indeed the additional generality afforded by the local setting is only needed at
a single, albeit critical, place in the argument in Section 9. One should informally think of
a multiplicative set A as a set that behaves “as if ” it were in a global group, so long as one
only works “locally” in the sense that one only considers products of up to 200 elements
of A and their inverses. The exponent 200 in Definition 1.1 is somewhat arbitrary, but
for the purposes of studying approximate groups, the exact choice of this exponent is not
important in practice, so long as it is at least 8 (see Theorem 5.3 for a precise formalisation
of this assertion). For the reader familiar with Freiman homomorphisms (cf. [54, §5.3]),
we remark that these are essentially the morphisms in the category of multiplicative sets.
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Definition 1.2 (Approximate groups). — Let K � 1. A K-approximate group is a multi-

plicative set A with the following properties:

(i) the set A is symmetric in the sense that id ∈ A and a−1 ∈ A if a ∈ A;

(ii) there is a symmetric subset X ⊂ A3 with |X|� K such that A · A ⊆ X · A.

We will sometimes refer to actual (global) groups as genuine groups, in order to distinguish them from

approximate groups. We define a global K-approximate group to be a K-approximate group A that

lies inside a global group G. We refer to K as the covering parameter of the approximate group A.

Remark 1.3. — We will also have occasion to deal with infinite K-approximate
groups, which are defined exactly as ordinary K-approximate groups, except that they
are no longer required to be finite sets. A convex body in a Euclidean space, or a small
ball in a Lie group, are examples of infinite approximate groups. Later we will introduce
the important notion of an ultra approximate group, which is another example. However, by
default, approximate groups in this paper will be understood to be finite unless otherwise
stated.

The connection between sets with small doubling and the apparently stronger
property of being an approximate group was worked out in [52], building on work of
Ruzsa [45]; see Remark 1.5 below.

When we speak of an “approximate group” we shall generally imagine that K is
fixed (e.g. K = 10) and that |A| is large. Let us give some examples.

Example 1 (Finite group). — A 1-approximate group is the same thing as a finite
group.

Example 2 (Arithmetic/geometric progression). — If N ∈ N is a natural number, then the
arithmetic progression P(1;N) := {−N, . . . ,N} (which one can view inside the (additive)
global group Z, or the local group {−200N, . . . ,200N}) is a 2-approximate group. More
generally, if G = (G, ·) is any (global) group and g ∈ G then the geometric progression
P(g,N) := {g−N, . . . , gN} is a 2-approximate group.

Example 3 (Generalised arithmetic progression). — Let G = (G,+) be an abelian group,
let u1, . . . , ur ∈ G for some r � 0, and let N1, . . . ,Nr > 0 be real numbers. We refer to the
set

P(u1, . . . , ur;N1, . . . ,Nr)

:= {n1u1 + · · · + nrur : n1, . . . , nr ∈ Z; |n1|� N1, . . . , |nr|� Nr}
as a generalised arithmetic progression of rank r. One easily verifies that this is a 2r-approximate
group.
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Example 4 (Homomorphic images). — Let φ : G → H be a homomorphism between
local or global groups. If A is a K-approximate subgroup of G, then φ(A) is a K-
approximate subgroup of H. This observation can be generalised to the case when φ is a
Freiman homomorphism (of order 3) rather than a group homomorphism; see [54, §5.3] for
more discussion. Indeed, Freiman homomorphisms are very similar to homomorphisms
of local groups, although for technical reasons we will rely on the latter concept rather
than the former.

Conversely, if B is a K-approximate subgroup of H, φ is surjective, and ker(φ) is
finite, then φ−1(B) is a K-approximate subgroup of G. In the latter case one can view the
K-approximate group φ−1(B) as a “finite extension” of the K-approximate group B by
the genuine group ker(φ).

Example 5 (Large subsets). — Let A be a K-approximate group, and let A′ be a sym-
metric neighbourhood of the identity in A such that A is covered by K′ left-translates of
A′. Then A′ is a KK′-approximate group. This hints that approximate groups are con-
siderably more numerous than genuine groups, because the latter property is preserved
under passage to “large” subsets, whereas the former is not.

Example 6 (Heisenberg example). — Let G be the free nilpotent group of step 2 gen-
erated by two generators u1, u2. More concretely, one can take G to be the Heisenberg

group

(1.1) G :=
⎛
⎝

1 Z Z
0 1 Z
0 0 1

⎞
⎠

with generators

u1 :=
⎛
⎝

1 0 0
0 1 1
0 0 1

⎞
⎠ and u2 :=

⎛
⎝

1 1 0
0 1 0
0 0 1

⎞
⎠ .

Consider also the commutator

[u2, u1] := u−1
2 u−1

1 u2u1 =
⎛
⎝

1 0 1
0 1 0
0 0 1

⎞
⎠ ;

one has
⎛
⎝

1 n1 n12

0 1 n2

0 0 1

⎞
⎠= u

n1
1 u

n2
2 [u2, u1]n12

for all integers n1, n2, n12.
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Let N1,N2 � 10 be real numbers. Define the nilprogression P(u1, u2;N1,N2) to be
the set of all words in u1, u−1

1 , u2, u−1
2 that involve at most N1 occurrences of u1, u−1

1 and
at most N2 occurrences of u2, u−1

2 . It is not difficult to verify that P(u1, u2;N1,N2) is a
symmetric neighbourhood of the identity which contains the set

{
u

n1
1 u

n2
2 [u2, u1]n12 : |n1|� N1/10, |n2|� N2/10, |n12|� N1N2/10

}

and is contained in the set
{
u

n1
1 u

n2
2 [u2, u1]n12 : |n1|� 10N1, |n2|� 10N2, |n12|� 10N1N2

}
.

One can easily verify that P(u1, u2;N1,N2) is a K-approximate group for some absolute
constant K (for instance, one could take K = 100).

Remark 1.4. — The above example was constructed inside the Heisenberg group.
Later on we will discuss a generalisation of this example to arbitrary nilpotent groups.
These examples, which we will call nilprogressions, will be needed to state the precise ver-
sion of our main theorem (Theorem 2.10) below. We will define them later in this intro-
duction.

Example 7 (Direct products). — The direct product of a K1-approximate group and a
K2-approximate group is a K1K2-approximate group, and so one may build up examples
of approximate groups using both subgroups and nilprogressions.

Example 8 (Helfgott’s example). — The following example of Helfgott1 is a less obvious
way of combining a subgroup and a nilprogression.

Let A ⊆ GL3(Fp) be the following set of 3 × 3 matrices:

A :=
⎧⎨
⎩

⎛
⎝

rn x z

0 sn y

0 0 (rs)−n

⎞
⎠ : x, y, z ∈ Fp,−N � n � N

⎫⎬
⎭ .

Here, r, s ∈ F×
p are fixed and N is large yet much smaller than p. Then A is a

O(1)-approximate group.
Note that A has the following form: it admits a subgroup H, normalised by A, such

that A/H is a geometric progression. Indeed

H =
⎧⎨
⎩

⎛
⎝

1 x z

0 1 y

0 0 1

⎞
⎠ : x, y, z ∈ Fp

⎫⎬
⎭ .

In the language of Example 4, A is a finite extension of a geometric progression by the
finite group H.

1 See terrytao.wordpress.com/2009/06/21/freimans-theorem-for-solvable-groups/#comment-39705.

http://terrytao.wordpress.com/2009/06/21/freimans-theorem-for-solvable-groups/#comment-39705
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Each of the above examples was rather “algebraic” in nature, whereas the defini-
tion of approximate group is somewhat combinatorial. We also have some more combina-
torial criteria for generating approximate groups using sets of small doubling or tripling.

Remark 1.5 (Relationship between small doubling and approximate groups). — Let A be a
non-empty finite subset of a global group G. If |A3|� K|A|, then the set H := (A∪{id}∪
A−1)2 is2 a O(KO(1))-approximate group that contains A; see [52, Theorem 3.9]. In a
similar vein if |A2|� K|A| or |A ·A−1|� K|A|, then there exists a O(KO(1))-approximate
group H of size |H| = O(KO(1)|A|) such that A can be covered by O(KO(1)) left-translates
gH of H; see [52, Theorem 4.6].

Our aim in this paper is to “describe” the structure of approximate subgroups in
an arbitrary ambient group in terms of more explicit algebraic objects such as those listed
in the examples. Here is one form of our main result in this regard.

Theorem 1.6 (Main theorem, simple form). — Let A be a global K-approximate group, thus it

is contained in a (global) group G. Then there exists a subgroup G0 of G and a finite normal subgroup

H of G0 with the following properties:

(i) A can be covered by OK(1) left-translates of G0;

(ii) G0/H is nilpotent and finitely generated of rank3 and step at most OK(1);

(iii) A4 contains H and a generating set of G0.

In particular, the group G0 is finite-by-nilpotent, and hence also virtually nilpotent.
Indeed, the stabiliser in G0 of the conjugation action on H has finite index in G0 and is a
central extension of a finite index subgroup of G0/H, and therefore is also nilpotent.

By specialising Theorem 1.6 to the combinatorial examples in Remark 1.5 we
obtain an analogous structure theorem for sets of small doubling.

Corollary 1.7 (Freiman-type theorem). — Let A and B be finite non-empty subsets in a (global)
group G such that |AB| � K|A| 1

2 |B| 1
2 . Then there exists a subgroup G0 of G and a finite normal

subgroup H of G0 with the following properties:

(i) A can be covered by at most OK(1) right translates of G0;

(ii) G0/H is nilpotent and finitely generated of rank and step OK(1). In particular, G0 is

finite-by-nilpotent and hence also virtually nilpotent.

2 Here and in the rest of the paper we use X = OK(Y), X �K Y, or Y 	K X for two (standard) quantities X,Y and
a (standard) parameter K to denote the assertion that |X| � CKY for some (standard) quantity CK > 0 depending only
on K, and similarly for other choices of subscripted parameters. We also adopt an analogous notation for nonstandard
quantities; see Appendix A.

3 The rank of a finitely generated group is the least number of generators required to generate the group. The step
is the length of the lower central series, minus 1.
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Proof. — By [52, Theorem 4.6], there exists a O(KO(1))-approximate group A′ of
size O(KO(1)|A|) such that A can be covered by O(KO(1)) right translates of A′ and B can
be covered by O(KO(1)) left translates of A′. We may thus apply Theorem 1.6 to A′. �

Theorem 1.6 (or Corollary 1.7) answers in the affirmative a conjecture that we
have been referring to as the Helfgott-Lindenstrauss Conjecture, on account of its having been
raised independently in private communications by both Harald Helfgott and Elon Lin-
denstrauss. In fact, the conjecture is reasonably explicit in the comments surrounding
[31, Theorem 1.1].

Remark 1.8 (The linear case). — Various forms of the main theorem are also known
in groups of Lie type of bounded dimension, as a consequence of results of many authors
[6–8, 18, 19, 30, 31, 33, 43]. For instance, in [18] an analogue of Theorem 1.6 was
established in the case when G is a solvable algebraic group of bounded dimension over
a finite field of prime order. In that case, the group G0/H has bounded rank, and the
number of cosets of G0 needed to cover A is polynomial in K. We have no examples to rule
out the possibility that this polynomiality in K holds in all groups G, perhaps at the cost
of weakening the rank and step bounds on G0/H. Unfortunately our methods, which rely
on ultrafilter arguments, give no quantitative bounds on the covering number whatsoever.

Remark 1.9 (Bounds on the nilpotent group). — Our method allows us to give an explicit
bound on the dimension (rank and step) of the nilpotent group G0/H in Theorem 1.6
at the expense of replacing A4 in item (iii) by a larger power of A. Namely, if we allow
for H and the generating set of G0 to be contained in A12, then we may ensure that the
nilpotent group G0/H is �-nilpotent with � = O(K2 log K). If we are happy to go as far
as AOK(1), then this may be further reduced to � � 6 log2 K. Here we say that a group
is �-nilpotent if it admits a generating set u1, . . . , u� such that [ui, uj] ∈ 〈uj+1, . . . , u�〉 for all
i < j. In particular such a group admits a normal series with cyclic factors of length at
most �, and so is also nilpotent of step at most �. We refer the reader to Theorem 2.12
and to Section 10 for a detailed statement and proof.

Remark 1.10. — Note that no bound is provided on the size of the finite group H
in Theorem 1.6, other than that it is finite. Indeed, by considering A to be a large finite
simple group it is not difficult to see that H can be arbitrarily large.

We will in fact prove a much more precise version of Theorem 1.6 involving a
slightly complicated type of approximate group which we call a coset nilprogression. We
discuss this concept in some detail in the next section. For many applications, however,
Theorem 1.6 is quite sufficient.

Applications. — We now give a small selection of applications to growth in groups
and to Riemannian geometry; a greater variety is assembled in Section 11, which also
contains proofs of these statements.
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Polynomial growth conditions and Gromov’s theorem. — Firstly, Theorem 1.6 yields a quick
proof of Gromov’s theorem [27] on groups of polynomial growth.

Theorem 1.11 (Gromov’s theorem). — Let G be a group of polynomial growth. That is, G is

generated by a finite symmetric set S, and there are constants C and d such that |Sn| � Cnd for all

n ∈ N. Then G is virtually nilpotent.

Remark 1.12. — In fact, our arguments show that there is some function
f : N → N, f (n)→∞, such that, if G does not have polynomial growth, then |Sn|� nf (n)

for all n. We do not get an explicit function f . However, if the control parameter OK(1) in
Theorem 2.10 were known to be polynomial in K, we could take f (n)= c log n. The best
(in fact only) lower bound known for this function at present is (log log n)c, due to Shalom
and the third author [51]. It is conjectured by some, in the absence of any examples to
the contrary, that f (n) > nc, and possibly even that |Sn|� ec

√
n.

In [33] Hrushovski also gave a derivation of Gromov’s theorem from his Lie model
theorem (see Theorem 3.10 below). He in fact proved a strengthening of Gromov’s
theorem (see [33, Theorem 7.1] or Theorem 11.1 below). We will be able to recover
Hrushovski’s result more directly (see Corollary 11.2 below). In fact, our approach can
also yield the following other strengthening of Gromov’s theorem, which is uniform in the
size of the generating set S and appears to be new. Recall that if � ∈ N then we say that a
group is �-nilpotent if it admits a generating set u1, . . . , u� such that [ui, uj] ∈ 〈uj+1, . . . , u�〉
for all i < j.

Theorem 1.13. — Let d > 0. Then there is n0 = n0(d) > 0 such that if G is a group generated

by a finite symmetric set S with 1 ∈ S for which |Sn| � nd |S| for some n � n0(d), then G is virtually

nilpotent. In fact G has a normal subgroup of index at most Od(1) which is finite-by-(O(d)-nilpotent).

Proof. — The proof of this (and hence of Theorem 1.11) is a short enough deduction
that we can give it here in the introduction. We refer the reader to Section 11 for more
details. Let N = N(d) be a large quantity to be specified later, and let n0 be sufficiently
large depending on N and d . By the pigeonhole principle and the hypothesis |Sn|� nd |S|
we see that if n0 is sufficiently large depending on N then there exists n′, N � n′ � n0/100,
such that |S100n′ | � (200)d |Sn′ |. By Corollary 5.2 (which is quite easy) this implies that
S2n′ is a eO(d)-approximate group. By our main theorem, Theorem 1.6 (and Remark 1.9),
we can thus find a finite-by-(O(d)-nilpotent) and hence virtually nilpotent group G0 such
that S2n′ is covered by Od(1) left-translates of G0. By the pigeonhole principle, if N is large
enough, we can find a nonnegative m < 2n′ such that Sm+1G0 = SmG0. Multiplying on the
left by S repeatedly we conclude that Sm+kG0 = SmG0 for all k � 0. Since S generates G,
we conclude that G = SmG0 = S2n′G0. Since S2n′ was covered by Od(1) left-translates of
G, G0 has index Od(1) in G, and so G is also virtually nilpotent. �
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Riemannian manifolds. — A. Petrunin suggested to us some years ago4 that a re-
sult such as Corollary 1.13 would give a purely group-theoretical proof of a theorem
of Fukaya and Yamaguchi [16] according to which fundamental groups of almost non-
negatively curved manifolds are virtually nilpotent. Recall that a closed manifold M is said
to be almost non-negatively curved if one can find a sequence gn of Riemannian metrics
on it for which diam(M, gn) � 1 while KM,gn

� −1/n where KM,gn
is the sectional cur-

vature. Indeed, a simple application of the Bishop-Gromov inequalities combined with
Corollary 11.5 yields the following improvement assuming only a lower bound on the
Ricci curvature and an upper bound on the diameter.

Corollary 1.14 (Ricci gap). — Given d ∈ N, there is ε(d) > 0 such that the following holds.

Let M = (M, g) be an d-dimensional compact Riemannian manifold with Ricci curvature bounded

below by −ε and diameter diam(M) � 1. Then π(M) is virtually nilpotent.

This result is known to differential geometers and follows from the works of
Cheeger-Colding [11] and Kapovitch and Wilking [36]. We refer the reader to Sec-
tion 11.1 for more discussion and references concerning the above result. We only note
that Corollary 11.5 yields in fact an explicit bound on the nilpotency class, namely that
after passing to a subgroup of π1(M) with index Od(1) and quotienting by a finite normal
subgroup, we obtain a O(d)-nilpotent group.

Generalised Margulis lemma. — Another corollary of Theorem 1.6 is a “generalised
Margulis lemma” for metric spaces of a type conjectured by Gromov in [28, §5.F]. A met-
ric space X is said to have bounded packing with packing constant K if there is K > 0 such
that every ball of radius 4 in X can be covered by at most K balls of radius 1. Say that a
subgroup � of isometries of X acts discretely on X if every orbit is discrete in the sense that
{γ ∈ � : γ · x ∈�} is finite for every x ∈ X and for every bounded set � ⊆ X.

Corollary 1.15 (Generalized Margulis Lemma). — Let K � 1 be a parameter. Then there is

some ε(K) > 0 such that the following is true. Suppose that X is a metric space with packing constant

K, and that � is a subgroup of isometries of X which acts discretely. Then for every x ∈ X the “almost

stabiliser” �ε(x)= 〈Sε(x)〉, where Sε(x) := {γ ∈ � : d(γ · x, x) < ε}, is virtually nilpotent.

Note that the space X is not assumed to be a manifold. The traditional Margulis
lemma establishes a similar statement for subgroups of isometries of pinched negatively
curved manifolds, or more generally under a curvature lower bound.

Approximate groups and polynomial growth. — Finally we remark on an additive-
combinatorial application, which asserts that approximate groups have large subsets with
“polynomial growth”.

4 See also http://mathoverflow.net/questions/11091.

http://mathoverflow.net/questions/11091
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Theorem 1.16 (Approximate groups are locally of polynomial growth). — Suppose that A is a

global K-approximate group. Then A4 contains a OK(1)-approximate group A′ with (A′)4 ⊂ A4 and

|A′| 	K |A| such that |(A′)m| �K mOK(1)|A′| for all m � 1.

This theorem is an immediate consequence of Theorem 2.10 and Proposition C.5
below.

Remark 1.17. — The above argument converted nilpotent structure (or more pre-
cisely, coset nilprogression structure, see below) to polynomial growth. In the reverse di-
rection, there is the result of Sanders [46] in certain monomial groups, in which poly-
nomial growth is shown to imply a metric ball type structure, at least under the (rather
strong) restriction that the approximate group A is normal in the ambient group G.

2. Coset nilprogressions and a more detailed version of the Main
Theorem

This section concerns the more precise variants of our main theorem, whose ex-
istence we hinted at in the first introductory section. Let us first recall the fundamental
inverse sumset theorem for abelian approximate groups. This was first introduced by
Freiman [15], and a simplified argument was subsequently given in the paper [44] of
Ruzsa. Here is the theorem in the torsion-free setting. Recall the notion of a generalised
arithmetic progression, defined in Example 3 above.

Theorem 2.1 (Freiman-Ruzsa theorem). — Let G = (G,+) be a torsion-free (global) abelian

group, and let K � 2 be a parameter. Suppose that A ⊆ G is a K-approximate group. Then 4A =
A + A + A + A contains a generalised arithmetic progression

P = P(u1, . . . , ur;N1, . . . ,Nr)

with r � logO(1) K and |P| 	 e− logO(1) K|A|. In particular A can be covered by O(elogO(1) K) translates

of P.

Proof. — See [48] for the main part of this; the final assertion is then a consequence
of Ruzsa’s covering lemma, Lemma 5.1. For earlier results of this type with weaker bounds
on r and P, see [10, 44]. In [26] it was noted that one can take r as small as �log2 K + ε�
for any ε > 0, at the cost of decreasing the size of |P| somewhat; see also [3, 4] for prior
results along these lines. �

Roughly speaking, Theorem 2.1 asserts that, in a global torsion-free abelian group
such as the integers Z, approximate groups are “controlled” by generalised arithmetic
progressions of bounded rank. In the case of abelian groups with torsion, the class of
generalised arithmetic progressions is not sufficient, as one must also now deal with the
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example of finite genuine groups (Example 1). It is thus natural to introduce the con-
cept of a coset progression H + P: the sum of a finite genuine group H and a generalised
arithmetic progression P = P(u1, . . . , ur;N1, . . . ,Nr). This concept is sufficient for the
formulation of a Freiman type theorem in an arbitrary abelian group.

Theorem 2.2 (Abelian Freiman-Ruzsa theorem). — Let G = (G,+) be a (global) abelian

group, and let K � 2 be a parameter. Suppose that A ⊆ G is a K-approximate group. Then 4A
contains a coset progression H + P, where

P = P(u1, . . . , ur;N1, . . . ,Nr)

is a generalised arithmetic progression with r � logO(1) K, H is a finite abelian subgroup disjoint from

P, and |H+P| = |H||P| 	 e− logO(1) K|A|. In particular, A can be covered by O(elogO(1) K) translates

of H + P.

Proof. — Again, see [48]; see also [25] for an earlier result in this direction. �

We turn now to the business of dropping the commutativity assumption. We will
also drop the assumption that A is contained in a global group and merely assume that
A is a subset of a local group G. Informally, this means that we will not require the mul-
tiplication law to be defined everywhere in G, but only in a certain neighborhood of id.
We refer the reader to Appendix B for a precise definition and basic properties; see also
[50, IV.3] for a discussion of the closely related notion of group chunk. We generalise the
concept of a generalised arithmetic progression to this setting as follows.

Definition 2.3 (Non-commutative progression). — Let u1, . . . , ur be r elements in a local group

G = (G, ·), and let N1, . . . ,Nr be r positive real numbers. If all products g1 . . . gn are well-defined

in G, where each gi is equal to one of uj or u−1
j and, for each j = 1, . . . , r, the formal expression5 uj

and its inverse u−1
j appear at most Nj times, then we call the set of such products a non-commutative

progression of rank r and side lengths N1, . . . ,Nr and we denote it by P(u1, . . . , ur;N1, . . . ,Nr). We

refer to r as the rank of the non-commutative progression.

Remark 2.4. — One can view non-commutative progressions as multiparameter
variants of balls in a word metric. For instance when all Nj take the same value N and
one is working in a global group, the progression P(u1, . . . , ur;N, . . . ,N) is comparable
with the word ball B(N) of radius N in the group 〈u1, . . . ur〉 for the word metric with
generating set {u1, . . . , ur} in the sense that B(N)⊆ P(u1, . . . , ur;N, . . . ,N)⊆ B(rN).

In the global abelian setting, all generalised arithmetic progressions of bounded
rank are automatically approximate groups with a bounded covering parameter K. This

5 For this definition, we consider ui and uj to be distinct formal expressions when i �= j, even if ui and uj take the
same value in G, and similarly for u−1

i , u−1
j . Thus, for instance, P(u1, u2;1,1) contains u1u2 even if u1, u2 are equal.



126 EMMANUEL BREUILLARD, BEN GREEN, TERENCE TAO

is not the case in general non-abelian groups, even in the global setting. For instance,
if F is the free non-abelian group on two generators e1, e2, then the non-commutative
progression P(e1, e2;N,N) (which, as remarked earlier, is essentially the ball of radius N
in F) grows exponentially in N, and one can easily verify that P(e1, e2;N,N) is only a
K-approximate group for K growing exponentially in N. However, the situation is much
closer to the abelian case if the ambient group G is nilpotent. Given the link between pro-
gressions and balls, the reader familiar with Gromov’s theorem on groups of polynomial
growth [27] (to be discussed later on) will not find this surprising. Indeed, it can be shown
(though we will not do so here) that if G is a global nilpotent group of step s, a non-
commutative progression P(u1, . . . , ur;N1, . . . ,Nr) in G will be a Or,s(1)-approximate
group if N1, . . . ,Nr are sufficiently large depending on r and s.

This motivates the following definition. Given some generators u1, . . . , ur , let us
recursively define an iterated commutator of degree k involving these generators for a natural
number k � 1 by declaring u±1

1 , . . . , u±1
r to be the iterated commutators of degree 1, and

[g, h] to be a iterated commutator of degree j + k whenever g, h are iterated commutators
of weight j, k respectively for some j, k � 1. Thus for instance [[u2, u−1

3 ], [u−1
2 , u4]] is an

iterated commutator of u1, u2, u3, u4 of degree 4.

Definition 2.5 (Nilprogression). — Suppose that G is a local group and that s � 0 is an integer.

A nilprogression of rank r and s is a non-commutative progression P(u1, . . . , ur;N1, . . . ,Nr) with

the property that every iterated commutator of degree s + 1 in the generators u1, . . . , ur is well-defined

and equals the identity id.

Example 9. — The generalised arithmetic progressions P(u1, . . . , ur;N1, . . . ,Nr)

in Example 3 is a nilprogression (in additive notation) of rank r and step 1. The set
P(u1, u2;N1,N2) in Example 6 is a nilprogression of rank 2 and step 2.

It can be shown (though we shall not do so here) that if N1, . . . ,Nr are sufficiently
large depending on r, s, and P(u1, . . . , ur;CN1, . . . ,CNr) is a well-defined nilprogression
of step s for some sufficiently large C depending on r, s, then P(u1, . . . , ur;N1, . . . ,Nr) is
a Or,s(1)-approximate group.

The concept of a nilprogression as defined above is related to, though not quite
identical with, the one given in [5]. As a byproduct of our proof methods, we will be able
to work with a more tractable subclass of nilprogressions, which we will call nilprogressions

in C-normal form. These generalise the notion of a proper generalised arithmetic progression
in the additive combinatorics literature, and are also close in spirit to the nilprogressions
introduced in [53].

Definition 2.6 (C-normal form). — Let C � 1. A non-commutative progression

P(u1, . . . , ur;N1, . . . ,Nr)

is said to be in C-normal form if the following axioms are obeyed.



THE STRUCTURE OF APPROXIMATE GROUPS 127

(i) (Upper-triangular form) For every i, j with 1 � i < j � r and for all four choices of signs

± one has

(2.1)
[
u±1

i , u±1
j

] ∈ P
(

uj+1, . . . , ur; CNj+1

NiNj

, . . . ,
CNr

NiNj

)
.

In particular, [ui, ur] = id whenever 1 � i < r.

(ii) (Local properness) The expressions u
n1
1 . . . unr

r are distinct as n1, . . . , nr range over integers

with |ni|� 1
CNi , i = 1, . . . , r.

(iii) (Volume bound) One has

(2.2)
1
C

(
2�N1� + 1

) · · · (2�Nr� + 1
)
� |P|� C

(
2�N1� + 1

) · · · (2�Nr� + 1
)
.

The somewhat ugly expression (2�N1� + 1) · · · (2�Nr� + 1) is convenient to have
in (2.2) for some minor technical reasons, but it would not do much harm for the reader
to mentally substitute N1 . . .Nr for this expression instead if desired. The volume bound
(2.2) is morally (up to some degradation in the constants C) implied by the other axioms
of a nilprogression in C-normal form, when the N1, . . . ,Nr are sufficiently large, and one
is working in a global group (or at least if one assumes P(u1, . . . , ur;DN1, . . . ,DNr) to be
well-defined for some sufficiently large D = Dr,s), but for some further minor technical
reasons it is convenient to state this bound explicitly in the definition.

Example 10. — The generalised arithmetic progressions P(u1, . . . , ur;N1, . . . ,Nr)

in Example 3 will be in 1-normal form if it is proper, i.e. if all the expressions n1u1 +· · ·+
nrur for |ni|� Ni are distinct.

Example 11. — The set P(u1, u2;N1,N2) in Example 6 is not in C-normal form for
any bounded C, because [u1, u2] is non-trivial. However, the closely related nilprogression

P
(
u1, u2, [u1, u2];N1,N2,N1N2

)

of rank 3 and step 2 is in 1-normal form. The two sets are “comparable” in a number of
ways; for instance, one can easily verify that

P
(

u1, u2; 1
C

N1,
1
C

N2

)
⊂ P
(
u1, u2, [u1, u2];N1,N2,N1N2

)

⊂ P(u1, u2;CN1,CN2)

for some absolute constant C (e.g. one can take C = 100).

Remark 2.7. — Note that in the global group case, the step of a nilprogression in
C-normal form is less or equal to its rank.
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In Lemma C.1 we will show that any non-commutative progression P(u1, . . . , ur;
N1, . . . ,Nr) in C-normal form is “essentially” a Or,C(1)-approximate group. More pre-
cisely, we will show that P(u1, . . . , ur; εN1, . . . , εNr) is a Or,C,ε(1)-approximate group
whenever ε > 0 is sufficiently small and the Ni ’s are sufficiently large depending on C, r.
We will also show that every element of P(u1, . . . , ur; εN1, . . . , εNr) can be rewritten in
the form u

n1
1 . . . unr

r h, where h ∈ H and |ni| = Or,s(εNi), while conversely every such prod-
uct with |ni|� εNi obviously belongs to P(u1, . . . , ur; εN1, . . . , εNr).

Just as in the abelian case, we need to account for genuine subgroups. The ana-
logue of coset progression is a coset nilprogression, a concept we first define in the simpler
setting of global groups.

Definition 2.8 (Global coset nilprogression). — Let G be a (global) group. By a coset nilprogres-

sion of rank r and step s in G, we mean a set P of the form π−1(Q), where G0 is a subgroup of G, H
is a finite normal subgroup of G0, π : G0 → G0/H is the quotient map, and Q is a nilprogression of

rank r and step s in G0/H.

We say that P is in C-normal form if Q is in C-normal form.

We can extend this definition to local groups, using the local notion of quotient
group reviewed in Lemma B.12.

Definition 2.9 ((Local) coset nilprogression). — Let G be a (local) group, which we endow with

the discrete topology. By a coset nilprogression of rank r and step s in G, we mean a set P of the form

π−1(Q), where H is a finite genuine subgroup of G with a cancellative normalising neighbourhood G0,

W is a neighbourhood of H in G0 with W6 ⊂ G0, WH = HW = W, π : W → W/H is the

quotient map defined in Lemma B.12, and Q is a nilprogression of rank r and step s in W/H.

We say that P is in C-normal form if Q is in C-normal form.

We call H the finite group associated with P, and Q the nilprogression associated with P.

If Q = P(u1, . . . , ur;N1, . . . ,Nr), then we write P = PH(u1, . . . , ur;N1, . . . ,Nr).

Example 12. — A subgroup is a coset nilprogression of rank 0 and step 0. More
generally, the direct product of a subgroup with a nilprogression of rank r and step s is
a coset nilprogression of rank r and step s. The coset nilprogression will be in C-normal
form if the associated nilprogression is.

Example 13. — The set A constructed in Example 8 is a coset nilprogression of
rank 1 and step 1, and is also in 1-normal form as long as N <

p−1
2 .

Again, coset nilprogressions in normal form are essentially approximate groups;
see Lemma C.1 for a precise version of this statement.

We are now ready to state our main technical theorem, which among other things
implies Theorem 1.6, and whose proof will occupy the bulk of this paper.



THE STRUCTURE OF APPROXIMATE GROUPS 129

Theorem 2.10 (Main theorem). — Let A be a K-approximate group. Then A4 contains a

coset nilprogression P of rank and step OK(1) and |P| 	K |A|. Furthermore, P can be taken to be in

OK(1)-normal form.

We remark that precursor results to this theorem in the case of nilpotent or solv-
able groups were obtained in [5, 6, 14, 18, 52, 53]. Theorem 2.10 also provides an inde-
pendent proof of a qualitative version of the abelian results of Theorem 2.1 and Theo-
rem 2.2, which, in contrast to the other known proofs of these results, manages to almost
completely avoid the use of Fourier analysis.6

It is easy to see that Theorem 2.10 implies Theorem 1.6, by taking G0 to be the
global group generated by P. The key point here is that a group generated by a set
u1, . . . , ur is nilpotent of step at most s if every iterated commutator of the u1, . . . , ur of
degree s + 1 is trivial. A proof of this assertion may be found in Hall’s book [29].

By standard non-commutative product estimates, we can also establish the follow-
ing Freiman-type theorem for sets of bounded doubling.

Corollary 2.11 (Freiman-type theorem). — Let K � 1. Let G be a (global) group and A,B be

finite non-empty subsets of G such that |AB|� K|A|1/2|B|1/2. Then there exists a coset nilprogression

P of rank and step OK(1) with |P| 	K |A| which is in OK(1)-normal form, such that A can be

covered by OK(1) left-translates of P, and B can be covered by OK(1) right-translates of P.

Proof. — This follows immediately from combining Theorem 2.10 with [52, The-
orem 4.6]. �

In Section 10, we will show the following explicit bounds on the rank and step of P.

Theorem 2.12 (Bounds on the rank and step of the nilprogression). — In Corollary 2.11 (and

in Theorem 2.10 if A is assumed to be a global K-approximate group), at the expense of replacing

the conclusion P ⊆ A4 with the weaker statement that P ⊆ A12, the coset nilprogression P can be taken

to have rank and step at most O(K2 log K) while remaining in OK(1)-normal form. Moreover, if we

settle for the even weaker inclusion P ⊂ AOK(1), one can ensure that P has rank and step at most 6 log2 K
(while still remaining in OK(1)-normal form).

It is likely that the numerical constants 6 and 12 here can be improved, but we will
not pursue such improvements here.

Local approximate groups can be embedded in global groups. — As we have remarked above,
the approximate groups A considered in this paper are local in the sense that we do not

6 However, our argument still uses results relating to Hilbert’s fifth problem which require Fourier-analytic tools,
such as Pontryagin duality, even in the abelian setting.
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need to assume that A lies in a global group G. However as a consequence of Theo-
rem 2.10, the more detailed version of our main theorem, we have the following state-
ment. It asserts that, at least at the qualitative level, there is in fact no loss of generality in
dealing with the global case.

Theorem 2.13. — Suppose that A is a K-approximate group. Then A4 contains a OK(1)-

approximate group A′ with (A′)4 ⊂ A4 and |A′| 	K |A| which is isomorphic to a subset of a global

group G.

This theorem follows from Theorem 2.10 and the fact (which we prove in Lemma
C.3) that a large portion of a coset nilprogression in normal form can be embedded in
a global group. This theorem can be viewed as a discrete analogue to a recent result
of Goldbring and van den Dries [56], who established that every locally compact local
group is locally isomorphic near the identity to a locally compact global group (thus there
is a neighbourhood of the identity in the former group that is isomorphic to a neighbour-
hood of the identity in the latter group). One should also compare this result with Lie’s
third theorem that every local Lie group is locally isomorphic to a global Lie group (see
Theorem B.16 and the discussion in Serre’s book [50]).

3. Ultra approximate groups and Hrushovski’s Lie Model Theorem

In the next section we will give an outline of the argument we shall use to prove
Theorem 2.10. An extremely important component of it will be a Lie Model Theorem

that implicitly appears in a remarkable paper of Hrushovski [33, Theorem 4.2], which
provided the foundation for much of the work here, and for which we will give a self-
contained proof later in this paper. We can state this theorem very informally as follows:

Theorem 3.1 (Hrushovski’s Lie Model Theorem, informal version). — In a suitable limit, an

approximate group is virtually modelled by a precompact neighbourhood of the identity in a Lie group.

Of course, to make this theorem more precise, one has to formalise terms such as
“suitable limit”, “virtually”, and “modelled”. We shall do so presently, but first we point
out that Theorem 3.1 is very similar in spirit to a key step [27, §7] in Gromov’s proof
of his celebrated theorem on groups of polynomial growth, which we state informally as
follows.

Theorem 3.2 (Gromov’s Lie Model Theorem, informal version). — In a suitable limit, a group

of polynomial growth can be modeled by a finite-dimensional locally compact space with a transitive

isometric action of a Lie group.

To deepen the analogy between the two results, we note that Theorem 3.1 and
Theorem 3.2 both require the deep body of results surrounding the solution to Hilbert’s
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fifth problem on the topological description of the category of Lie groups (see [40]) in
order to bring into view the Lie structure, which is not manifestly present when one first
takes a limit. There are however some technical differences between the precise formu-
lations of Theorem 3.1 and Theorem 3.2. In the latter theorem, one has a group G (of
polynomial growth) generated by a finite set S. This gives a metric on G, the word metric
given by the generating set S. Gromov then looks at the discrete balls Sn, n = 1,2,3 . . .

“from a distance” to get some continuous limit metric space X. For example if G = Z
and S = {−1,0,1}, then Sn = {−n, . . . , n}, and it is heuristically clear that these discrete
intervals Sn, after rescaling by n, “converge” in a suitable sense to the continuous interval
[−1,1] ⊆ R.

To effect this limit, Gromov introduced what is now known as Gromov-Hausdorff con-

vergence of a sequence of metric spaces. In subsequent work of van der Dries and Wilkie
[58] a slightly different approach, using ultralimits (or non-standard analysis) was pio-
neered. This construction is now known, in the geometric group theory literature, as the
asymptotic cone.

The asymptotic cone, then, is (a quotient of) an ultraproduct of the sequence of
balls (Sn)n∈N. We will use a similar limit7 in order to formalise Theorem 3.1, namely an
ultraproduct A of an arbitrary sequence (An)n∈N of K-approximate groups, an object we
call an ultra approximate group. We now define this term more precisely.

Definition 3.3 (Ultra approximate group). — Throughout this paper, we fix a non-principal

ultrafilter α ∈ βN\N (see Lemma A.1 for a definition of this concept). If K > 0 is a real number then

an ultra K-approximate group is an ultraproduct A :=∏
n→α An, where each An is a (standard)

K-approximate group. Thus, A is the space of all formal limits limn→α an with an ∈ An, where two

formal limits limn→α an and limn→α a′
n

are considered equal if an = a′
n

for all n sufficiently close to α

(i.e. for all n in an α-large subset of N). See Appendix A for more discussion on ultraproducts. Often we

will not need to refer to K explicitly, in which case we speak simply of an ultra approximate group.

Note that we allow the approximate groups An to lie in different ambient groups
Gn (much as the notion of Gromov-Hausdorff convergence also does not require the
spaces Xn involved to all live in a common ambient space). Ultraproducts are a model-
theoretic limit, in contrast to the more geometric notion of a limit defined by Gromov-
Hausdorff convergence. There are two key properties of these model-theoretic limits that
make them convenient to use for our purposes. The first is Łos’s theorem, which roughly
speaking asserts that any property that can be stated in the language of first-order logic
holds for an ultraproduct A =∏

n→α An if and only if it holds for those An with n suf-
ficiently close to α; see Theorem A.6. The second is countable saturation, which we will
use to establish the completeness of a certain (pseudo)metric space associated to an ultra
approximate group; see Proposition 6.1.

7 In [33], more saturated limits (not necessarily constructed using ultrafilters) were also considered, but we will not
need such constructions here.
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Next, we discuss what it would mean to8 “model” an ultra approximate group A.
Informally, a model would seek to describe the “coarse-scale” behaviour of A, and in par-
ticular be able to predict when an orbit id, a, a2, a3, . . . of an element a of A will “escape”
A, while ignoring the “fine-scale” behaviour of A. Such a model will be formalised by a
homomorphism φ : A8 → L of local groups that obey certain good properties (see Defi-
nition 3.5 below). Before we present this formal definition, though, we first discuss some
key examples of ultra approximate groups and their models.

Example 14 (Nonstandard finite groups). — Suppose that An is a sequence of (standard)
finite groups; then the ultraproduct A :=∏

n→α An is an ultra approximate group. In this
case, A is in fact a genuine group, with group operation given by the law

(
lim
n→α

an

)
·
(

lim
n→α

bn

)
:= lim

n→α
(anbn).

We will refer to such groups as nonstandard finite groups. A typical example of a nonstandard
finite group is the nonstandard cyclic group9

Z/NZ :=
∏
n→α

Z/nZ,

where N ∈ ∗N is the nonstandard natural number

(3.1) N := lim
n→α

n.

In a nonstandard finite group A, there are no elements that ever escape A: if a ∈ A, then
one has an ∈ A for all n ∈ N. As such, it will turn out that A can be modeled by a trivial
homomorphism φ : A →{id} to the trivial group.

Example 15 (Nonstandard intervals). — Now consider the sequence An := P(1;n) =
{−n, . . . ,n} of (standard) arithmetic progressions in Z. The ultraproduct A :=∏

n→α An

can be viewed as the nonstandard arithmetic progression A = P(1;N)= {−N, . . . ,N} in
the nonstandard integers ∗Z :=∏

n→α Z, where N was defined in (3.1). Then A is an ultra
approximate group, and it can also be viewed as a local group inside the nonstandard
integers ∗Z.

Consider now the map π : A → R defined by

π
(

lim
n→α

an

)
:= st lim

n→α

an

n
,

8 Our use of the term “model” here is not, strictly speaking, the precise notion that is used in model theory, but is
closer to the notion of a “Freiman model” from additive combinatorics, as used for instance in [25, 44].

9 This group is the analogue of the profinite completion Ẑ = lim← Z/nZ of the integers, but is built using the
machinery of ultralimits rather than inverse limits. The two groups are however not identical. For instance, Ẑ is torsion-
free, whereas Z/NZ can contain torsion; for example if N is even, or equivalently if the set of even natural numbers is
α-large, then Z/NZ contains the element N/2 mod N, which has order 2. But see Remark 3.4 below for a link between
ultraproducts and inverse limits.
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where stx is the standard part of a nonstandard real x (see Appendix A). Thus, for every
standard ε > 0, one has

π
(

lim
n→α

an

)
− ε � an

n
� π
(

lim
n→α

an

)
+ ε

for all n sufficiently close to α. One may also write

π(a)= st
a

N

for all a ∈ A. The map π is a homomorphism of local groups from A into [−1,1]. It is
surjective since, for any γ ∈ [−1,1], the nonstandard integer

x := �γ N� = lim
n→∞�γ n�,

where �� is the integer part function, has image π(x) = γ . The kernel ker(π) is the set
of x ∈ A with x = o(N) (thus if x = limn→α xn and ε > 0 is standard, then |xn| � εn an
α-large set of n). For instance, every standard integer lies in ker(π), as do some non-
standard integers such as �√N� = limn→∞�√n�.

There are similar maps from10 Am to [−m,m] for any fixed natural number m,
which by abuse of notation we also call π . Informally, these maps model A by the interval
[−1,1], and more generally model Am by [−m,m]. In this particular case, the model
π : A → [−1,1] of the ultraproduct A can be viewed as a limiting object for models
πn : An →[−1,1] of the individual factors An, by defining πn(a) := a

n
. However, in more

general situations, the model for the ultraproduct is only a limit for approximate models of
the factors, and this is one reason why we need to work in the ultraproduct setting as
much as we do.

The model π : Am → [−m,m] is not injective: if π(a) is trivial, this does not imply
that a is trivial. However, π does have an injectivity-like property which will be impor-
tant later, which roughly speaking asserts that if π(a) is small, then a is small. For instance,
observe that if a ∈ A1000 is such that11 π(a) ∈ (−1,1), then a ∈ A. This property on the
model π can be used to derive some important facts about the ultraproduct A; for in-
stance it implies the escape property that if a, a2, . . . , a100 all lie in A10, then a lies in A. These
sorts of escape properties will play a major role in our arguments in later sections.

Example 16 (Generalised arithmetic progression). — We still work in the integers Z, but
now take An to be the rank two generalised arithmetic progression

An := P
(
1,n10;n,n

) := {a + bn10 : a, b ∈ {−n, . . . ,n}}.
10 Strictly speaking, as we are currently in an additive setting, one should write mA = A + · · · + A rather than

Am = A · · · · · A here.
11 This claim is not quite true when π(a) is −1 or +1, as can be seen for instance by considering a = N + 1 =

limn→α n+ 1.
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Then the ultraproduct A :=∏
n→α An is the subset of the nonstandard integers ∗Z of the

form

A = P
(
1,N10;N,N

)= {a + bN10 : a, b ∈ {−N, . . . ,N}}.
This is an ultra approximate group which can be modeled by the Euclidean plane R2,
using the model maps π : Am → R2 defined for each standard m by the formula

π
(
a + bN10

) :=
(

st
a

N
, st

b

N

)

whenever a, b = O(N). The image π(Am) is then the square [−m,m]2. As before, if
a ∈ A1000 is such that π(a) ∈ (−1,1)2, then a ∈ A; this can be used to conclude that
if a, a2, . . . , a100 ∈ A10, then a ∈ A. Note here that while A lives in a “one-dimensional”
group ∗Z, the model R2 is “two-dimensional”. This is also reflected in the volume growth
of the powers Am

n
of An for small m and large n, which grow quadratically rather than lin-

early in m.

Example 17 (Heisenberg box, I). — This example is related to the Heisenberg example
in Example 6. We take each An to be the “nilbox”

(3.2) An :=
⎧⎨
⎩

⎛
⎝

1 xn zn

0 1 yn

0 0 1

⎞
⎠ ∈
⎛
⎝

1 Z Z
0 1 Z
0 0 1

⎞
⎠ : |xn|, |yn|� n, |zn|� n

2

⎫⎬
⎭ .

This is not quite an approximate group because it is not quite symmetric (cf. Example 6),
but we will ignore this technicality for sake of exposition. In any case it can be repaired in
a number of ways, for instance by replacing An with An ∪ A−1

n
. Once again we consider

the ultraproduct A := ∏
n→α An; this is a subset of the nilpotent (nonstandard) group( 1 ∗Z ∗Z

0 1 ∗Z
0 0 1

)
, consisting of all elements

( 1 x z
0 1 y

0 0 1

)
with |x|, |y| � N and |z| � N2; again, this is a

(discrete) local group.
Consider now the map

π : A8 →
⎛
⎝

1 R R
0 1 R
0 0 1

⎞
⎠

defined by

(3.3) π

⎛
⎝
⎛
⎝

1 x z

0 1 y

0 0 1

⎞
⎠
⎞
⎠ :=

⎛
⎝

1 st x

N st z

N2

0 1 st y

N
0 0 1

⎞
⎠ .
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This is easily seen to be a homomorphism (of local groups) to the Heisenberg group,
whose image is the compact set

(3.4)

⎧⎨
⎩

⎛
⎝

1 x z

0 1 y

0 0 1

⎞
⎠ ∈
⎛
⎝

1 R R
0 1 R
0 0 1

⎞
⎠ : |x|, |y|, |z|� 1

⎫⎬
⎭ .

Informally, π models A (or A8) by what is essentially a unit ball in this Lie group. As
before, we have the injectivity-like property that if a ∈ A1000 is such that π(a) is sufficiently
close to the identity, then a ∈ A; as such, one can again establish the escape property that if
a, a2, . . . , a100 all lie in A10, then a lies in A.

Example 18 (Heisenberg box, II). — This is a variant of the preceding example, in
which the (not quite) approximate groups An now take the form

(3.5) An :=
⎧⎨
⎩

⎛
⎝

1 xn zn

0 1 yn

0 0 1

⎞
⎠ : |xn|, |yn|� n, |zn|� n

10

⎫⎬
⎭

so that the ultralimit A :=∏
n→α An takes the form

A :=
⎧⎨
⎩

⎛
⎝

1 x z

0 1 y

0 0 1

⎞
⎠ ∈
⎛
⎝

1 ∗Z ∗Z
0 1 ∗Z
0 0 1

⎞
⎠ : |x|, |y|� N, |z|� N10

⎫⎬
⎭ .

Now consider the map

π : A8 → R3

defined by

π

⎛
⎝
⎛
⎝

1 x z

0 1 y

0 0 1

⎞
⎠
⎞
⎠=

(
st

x

N
, st

y

N
, st

z

N10

)
.

The image of this map is the unit cube [−1,1]3, and is in particular compact. It is also a
homomorphism of local groups, since

π

⎛
⎝
⎛
⎝

1 x z

0 1 y

0 0 1

⎞
⎠
⎛
⎝

1 x′ z′

0 1 y′

0 0 1

⎞
⎠
⎞
⎠=

(
st

x + x′

N
, st

y + y′

N
, st

z + z′ + xy′

N10

)
,

but the nonstandard real xy′/N10 = O(N2/N10) is infinitesimal, and so the previous ex-
pression is equal to

(
st

x + x′

N
, st

y + y′

N
, st

z + z′

N10

)
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which establishes the homomorphic nature of π .
Here we note that the homomorphism π : A8 → R3 is not associated to any exact

homomorphisms πn from A8
n to R3. Instead, it is only associated to approximate homomor-

phisms

πn

⎛
⎝
⎛
⎝

1 xn zn

0 1 yn

0 0 1

⎞
⎠
⎞
⎠ :=

(
xn

n
,

yn

n
,

zn

n10

)

into R3. Such approximate homomorphisms are somewhat less pleasant to work with
than genuine homomorphisms; one of the main reasons why we work in the ultraproduct
setting is so that we can use genuine group homomorphisms, or at least local group
homomorphisms, throughout the paper.

Note that the preceding example (3.2) admits a homomorphism π̃ onto the abelian

group R2 by composing the map (3.3) with the natural map from
( 1 R R

0 1 R
0 0 1

)
to its abelian-

isation R2. However the kernel of π̃ is, for us, too “big”. In particular it contains every( 1 0 z
0 1 0
0 0 1

)
, and in particular contains elements of A8 not in A. By contrast there are no such

elements in the example (3.5). In particular, we can still use the model π to establish the
same escape property for A as before, namely that whenever a, . . . , a100 ∈ A10, one has
a ∈ A.

We also note the sets Am
n

for small m and large n grow cubically in m in this example,
and quartically in m in the previous example. This is consistent with the model groups
having homogeneous dimension 3 in the current example and 4 in the previous example.

In all the above examples, the model group L was a Lie group. We give now give
some examples to show that the model need not initially be of Lie type, but can then be
replaced with a Lie model after some modification.

Example 19 (Nonstandard cyclic group, revisited). — The first example is the nonstandard
cyclic group A := Z/2NZ =∏

n→α Z/2nZ. This is a nonstandard finite group and can
thus be modeled by the trivial group {id} as discussed in Example 14. However, it can
also be modeled by the compact abelian group Z2 of 2-adic integers using the model
π : A → Z2 defined by the formula

π(a) := lim
n→∞ a

(
mod 2n

)

where for each standard natural number n, a(mod 2n) ∈ {0, . . . ,2n−1} is the remainder of
a modulo 2n (this is well-defined in A) and the limit is in the 2-adic metric. Note that the
image π(A) of A is the entire group Z2, and conversely the preimage of Z2 in A8 = A
is trivially all of Z/2NZ; as such, one can quotient out Z2 in this model and recover the
trivial model of A.
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Example 20 (Nonstandard abelian 2-torsion group). — In a similar spirit to the preced-
ing example, the nonstandard 2-torsion group A := (Z/2Z)N =∏

n→α(Z/2Z)n can be
modeled by the compact abelian group (Z/2Z)N by the formula

π(a) := lim
n→∞πn(a)

where πn : A → (Z/2Z)n is the obvious projection, and the limit is in the product topology
of (Z/2Z)N. As before, we can quotient out (Z/2Z)N and model A instead by the trivial
group.

Remark 3.4. — The above two examples can be generalised to model any nonstan-
dard finite group G =∏

n→α Gn equipped with surjective homomorphisms from Gn+1 to
Gn by the inverse limit of the Gn.

Example 21 (Lamplighter group). — Let F2 be the field of two elements. Let G be the
lamplighter group Z � FZ

2 , where Z acts on FZ
2 by the shift T : FZ

2 defined by T(an)n∈Z :=
(an−1)n∈Z. Thus the group law in G is given by

(i, x)(j, y) := (i + j, x + Tiy
)
.

For each n, we then set An ⊆ G to be the set

An :=
{
(i, x) ∈ G : i ∈ {−1,0,+1}; x ∈ Fn

2

}
,

where we identify Fn
2 with the space of elements (an)n∈Z of FZ

2 such that an �= 0 only for
n ∈ {1, . . . ,n}. These sets An are not quite approximate groups because they are not sym-
metric, but they are close enough to approximate groups for this discussion. For instance,
they have bounded doubling or bounded tripling, and An∪A−1

n
is an approximate group.

We model the ultraproduct A :=∏
n→α An ⊂ Z �

∗FZ
2 by the group

G0 ×Z G0 :=
{(

(i, x), (j, y)
) ∈ G0 × G0 : i = j

}
,

where G0 is the modified lamplighter group Z � F2((t)), where F2((t)) is the ring of
formal Laurent series

∑
n∈Z ant

n over F2 with only finitely many non-zero an for n negative,
and the shift given by the multiplication map T : f �→ tf . We give F2((t)) (and hence G0

and G0 ×Z G0) a topology by declaring the norm of a non-zero element
∑

n∈Z ant
n of

F2((t)) to be 2−n, where n is the least integer for which an is non-zero. The model map
π : 〈A〉→ G0 ×Z G0 is then given by the formula

π
((

i, lim
n→α

(
a(n)

n

)
n∈Z

))
:=
((

i,
∑
n∈Z

lim
n→α

a(n)
n tn

)
,

(
i,
∑
n∈Z

lim
n→α

a(n)
n−nt

n

))
.

Roughly speaking, π(a) captures the behaviour of a at the two “ends” of FN
2 . The image

π(A) of A under this model is then the compact neighbourhood of the identity

π(A)= {((i, x), (i, y)
) ∈ G0 : i ∈ {−1,0,+1}, x, y ∈ F2

[[t]]}
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where F2[[t]] ⊂ F2((t)) is the ring of formal power series
∑∞

n=0 ant
n over F2. One can

also compute the images π(Am) for larger values of m, although they are a bit more
complicated. One can verify the escape property that if g, g2, . . . , g100 ∈ π(A10) for some
g ∈ G0 × G0, then g ∈ π(A); here it is essential that we use both of the two factors of
G0 ×Z G0, as the claim is false if we project π to just one of the two factors G, or to the
base group Z. So, in this case, one needs a moderately complicated (though still locally
compact) group G0 ×Z G0 to properly12 model A and its powers Am. However, if we pass
to the large subset A′ of A defined by A′ :=∏

n→α A′
n
, where

A′
n
:= {(i, x) ∈ G : i = 0; x ∈ Fn

2

}

then A′ is now a nonstandard finite group (isomorphic to the group FN
2 considered in

Example 20) and can be modeled simply by the trivial group {id}. Thus we see that we
can sometimes greatly simplify the modeling of an ultra approximate group by passing to
a large ultra approximate subgroup.

Let us formalise the properties enjoyed by the above examples in the following
definition, which will play a key role in this paper.

Definition 3.5 (Good models). — Let A be an ultra approximate group. A good model for A is

a symmetric local topological group L (see Definition B.1), together with a homomorphism π : A8 → L
of local groups with the following properties:

(i) (Thick image) There exists an open neighbourhood of the identity U0 in L such that

π−1(U0)⊆ A and U0 ⊆ π(A). In particular kerπ ⊆ A;

(ii) (Compact image) π(A) is contained in a compact set.

(iii) (Approximation by “internal” sets) Suppose that F ⊆ U ⊆ U0, where F is compact

and U is open. Then there is an ultraproduct A′ =∏
n→α A′

n
of finite sets A′

n
⊆ An such

that π−1(F)⊆ A′ ⊆ π−1(U).

We will often abuse notation and refer to just L or π as the good model for A, rather than the pair (L,π).

Remark 3.6. — Properties (i) and (ii) together imply that L is locally compact. We
leave it to the reader to check that the examples given above have all of the properties of
this definition. One can think of a good model as accurately describing the “coarse-scale”
structure of the ultra approximate group A, without directly controlling the “fine-scale”
structure. For instance, in the example (3.5) which is “abelian at coarse scales” but “2-step
nilpotent at fine scales”, the model π only detects the abelian structure and not the 2-step
nilpotent structure.

12 This can also be seen from volume growth considerations: Am
n

grows like 4m, which is also the rate of volume
growth of π(A) in G0 ×Z G0, whereas the volume growth in a single factor G0 would only grow like 2m, and the volume
growth in Z is only linear in m.
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Remark 3.7. — In (iii), if F and U are symmetric neighbourhoods of the identity,
then A′ can be chosen to be symmetric (since one can replace A′ with A′ ∩ (A′)−1). As L is
locally compact, we may shrink U to be precompact; then U2 can be covered by finitely
many translates of F, and thus A′ is then an ultra approximate group.

Finally, we need to explain the adjective “virtually” in Theorem 3.1. In group the-
ory, “virtually” means “after passing to a finite index subgroup”. Note that a subgroup
G′ of a group G has finite index if and only if G can be covered by finitely many left-
translates—or, equivalently, right-translates—of G′. This motivates the following defini-
tion.

Definition 3.8 (Large approximate subgroups). — Let A,A′ be ultra approximate groups. We

say that A′ is a large ultra approximate subgroup of A if one has (A′)4 ⊂ A4, and A can be

covered by finitely many left-translates of A′ (by elements of A · (A′)−1, of course).

Remark 3.9. — It would be more aesthetically pleasing to have A′ ⊂ A instead of
(A′)4 ⊂ A4, but we need the exponent 4 in the inclusion for some minor technical reasons.
Note that the property of being a large ultra approximate subgroup is transitive.

We are now in a position to state Hrushovski’s Lie Model Theorem.

Theorem 3.10 (Hrushovski Lie Model Theorem). — Let A be an ultra approximate group.

Then there is a large ultra approximate subgroup A′ of A such that A′ admits a local Lie group as a good

model.

We will prove this theorem in Section 6. As stated above, the basic idea of the proof
is to first establish that A itself admits a locally compact local group as a good model. Here
results of multiplicative combinatorics, and in particular a lemma of Sanders [47] (see also
[13]), are critical. Once this is done, Theorem 3.10 follows relatively quickly from the
deep results in the literature on Hilbert’s fifth problem. This theorem will then play a key
role in the proof of Theorem 2.10 in two ways: firstly by allowing us to establish certain
“escape” properties on (ultra) approximate groups that will be used to build useful metric
structures on these groups; and secondly by giving a natural notion of the “dimension” of
an (ultra) approximate group which we will need to induct on. Note that one can invoke
Lie’s third theorem (Theorem B.16) to upgrade the local Lie group in Theorem 3.10 to a
connected, simply connected, global Lie group, but for technical inductive reasons it will
be more convenient to keep the model in the category of local Lie groups for now.

Theorem 3.10 will be proven in Section 6. We will also establish a “global” variant
of this theorem later, first in a weak form as Proposition 6.12 and then in a stronger form
as Theorem 10.10.
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4. An outline of the argument

In the previous section we introduced the notion of a (Hrushovski) Lie model, one
of the key technical tools we will use to prove Theorem 2.10. In this section we outline
the argument for this proof as a whole.

Our aim is to show that every K-approximate group is controlled in some sense by
a coset nilprogression of rank and density OK(1). We shall prove this by contradiction,
assuming that there is a sequence (An)n∈N of K-approximate groups for which the state-
ment fails in the limit for any given choice of implied constant in the OK(1) notation. In
particular, the cardinality |An| will go to infinity as n →∞. We assemble these approx-
imate groups into an ultra approximate group A :=∏

n→α An. Our assumption implies
that A is not “controlled” in a certain sense by what we call an ultra coset nilprogression,
which we now define.

Definition 4.1 (Ultra coset nilprogression). — An ultra coset nilprogression is an ultraprod-

uct P =∏
n→α Pn of coset nilprogressions Pn = P(u1,n, . . . , ur,n;N1,n, . . . ,Nr,n) of fixed (standard)

rank r and step s. We then say that P has rank r and step s. If the Pn are also all in C-normal form for

some (standard) C independent of n, we say that the ultra coset nilprogression is in normal form. We

call Ni := limn→α Ni,n for i = 1, . . . , r the lengths of the ultra coset nilprogression, and say that the

nilprogression is nondegenerate if all the Ni are unbounded.

We define the concept of an ultra nilprogression similarly, but replacing “coset nilprogression”

by “nilprogression” throughout.

As with all ultraproducts, it suffices to have the Pn obey the stated properties for all
n sufficiently close to α, as one can redefine Pn arbitrarily on the remaining values of n

without affecting the ultraproduct P. Note that an ultra nilprogression P can be expressed
as

P = P(u1, . . . , ur;N1, . . . ,Nr)

where r is the rank, u1, . . . , ur are elements of the ambient nonstandard local group, and
N1, . . . ,Nr are nonstandard positive reals.

To obtain the contradiction, then, it is sufficient to establish the following ultra-
product version of our main theorem.

Theorem 4.2. — Suppose that A is an ultra approximate group. Then A4 contains a nondegen-

erate ultra coset nilprogression P in normal form with |P| 	 |A|.
Here |P| 	 |A| means that the non-standard numbers |A| and |P| satisfy

|A| = O(|P|), or in other words that there is a (standard) number C > 0 such that
|An| � C|Pn| for an α-large set of n ∈ N. See the end of Appendix A for more infor-
mation.
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The Hrushovski Lie model theorem, Theorem 3.10, will be a key tool in establish-
ing this, as we discuss below. In addition to this theorem, a further fundamental additional
concept in our argument will be the notion of an escape norm.

Definition 4.3 (Escape norm). — Let A be a multiplicative set. For a group element g ∈ A10,

we define the escape norm ‖g‖e,A ∈ [0,1] to be the quantity

‖g‖e,A := inf
{

1
n + 1

: n ∈ N; gi ∈ A for all 0 � i � n

}
.

Recall that by convention, the statement gi ∈ A is false if gi is not well-defined. Now suppose that A is a

nonstandard multiplicative set, i.e. an ultraproduct A =∏
n→α An of standard multiplicative sets An.

If g = limn→α gn is an element of A10, we define the escape norm ‖g‖e,A ∈ ∗[0,1] to be the quantity

‖g‖e,A := lim
n→α

‖gn‖e,An
.

The escape norm can always be defined, but there are some remarkable lemmas
essentially due to Gleason [21] concerning its properties when A is an approximate group.
Specifically we will show in Section 8 that there is a set A′ controlling A for which the
escape norms satisfy (precise versions of) the following estimates:

(i) (Product property) If g1, . . . , gn ∈ A′ then ‖g1 . . . gn‖e,A′ � ‖g1‖e,A′ + · · · +
‖gn‖e,A′ ;

(ii) (Conjugation property) If g, h ∈ A′ then ‖h−1gh‖e,A′ � ‖g‖e,A′ ;
(iii) (Commutator property) If g, h ∈ A′ then ‖[g, h]‖e,A′ � ‖g‖e,A′‖h‖e,A′ .

These estimates, which we shall informally term “Gleason’s lemmas” , will be
proven in Section 8. They are valid in both the finitary and the ultralimit settings; the
latter will be deduced, quite straightforwardly, from the former.

The remarks in the following paragraph pertain to the finitary situation. To prove
the Gleason lemmas, the set A′ must be what we call a strong approximate group. The precise
definition of this is Definition 7.1. It is by no means obvious that there is a large strong
approximate group A′ contained in A4, but this will follow from the Hrushovski Lie model
theorem (Theorem 3.10), basically because small balls in a Lie group are automatically
strong approximate groups, and can then be pulled back by the model map.

One A′ has been defined, Gleason’s lemmas are proven by an argument closely
analogous to that of Gleason himself [21]. We shall say nothing further about the details
here; the argument is self-contained and is discussed in Section 8.

With Gleason’s lemmas in hand, let us describe the rest of the argument.
Firstly, the set H = {g : ‖g‖e,A′ = 0} of elements which do not escape is a normal

(genuine) subgroup of A′; this follows from (i) and (ii). We may quotient by H to get an
ultra approximate group A0 := A′/H, all of whose non-identity elements have nonzero
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escape norm. We shall call such approximate groups NSS approximate groups, in analogy
with the no small subgroups property in the theory of locally compact groups.

Now, if g1 ∈ A4
0 is an element other than the identity with smallest (nonzero) ‖·‖e,A0-

escape norm then we shall see that in fact, if A′ is chosen appropriately, g1 ∈ A0. Item (iii)
then implies that for any h ∈ A0, [g1, h] ∈ A4

0 has smaller escape norm than g1, and hence
must be the identity. In other words, g1 is central in A0 and we may quotient again to get
a new approximate group A1 := A0/〈g1〉. We are being quite fuzzy at this point; in fact,
the quotienting takes place in the category of local groups and one is quotienting not by
the entire group 〈g1〉 but by an appropriate geometric progression within it.

Continuing in this vein we pick g2 ∈ A4
1 other than the identity with smallest ‖·‖e,A1 -

norm. We shall see that this norm is automatically nonzero, a consequence of the local

nature of the quotienting operation.
Continuing further, we pick g3, g4, . . . .
All of this makes sense at the level of ultralimits as well, and in this setting one can

show that Ai has a Hrushovski Lie model Li with dim Li < dim Li−1 for all i. Because
of this, the quotienting procedure terminates in finite time with an element gk and one
concludes by reversing these finitely many quotienting operations that A is controlled by
an ultra coset nilprogression with “generators” H, g1, . . . , gk , thereby leading to a proof
of Theorem 4.2.

This concludes our brief summary of the argument. Let us summarise the content
of the remaining core sections of the paper.

• In Section 5, we discuss results from multiplicative combinatorics, essentially due
to Sanders and Croot-Sisask, which are relevant to the proof of Hrushovski’s Lie
model theorem.

• In Section 6, we prove the Hrushovski Lie model theorem.
• In Section 7, we use the Hrushovski Lie model theorem to construct strong

approximate groups.
• In Section 8, we state and prove Gleason’s lemmas.
• In Section 9, we give details of the inductive strategy outlined above for con-

structing H and g1, . . . , gk , and conclude the proof of Theorem 2.10 (except for
the rank bound).

• In Section 10 we show that the rank and step of the coset nilprogression can be
bounded by 6 log2 K in the global case.

• Section 11 is devoted to various applications to the growth of groups and to
Riemannian geometry. We prove there the corollaries stated in the introduction.

5. Sanders-Croot-Sisask theory

In the next section we will establish Hrushovski’s Lie Model Theorem (Theo-
rem 3.10), in which an ultra approximate group is related first to a locally compact
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metrisable local group and then, via Goldbring’s solution [24] of the local Hilbert’s Fifth
problem, to a local Lie group. In locally compact metrisable local groups we have total
boundedness, which means that the unit (say) ball B(id,1) := {x ∈ G : d(x, id) � 1} may
be covered by Oε(1) smaller balls B(xi, ε) := {x ∈ G : d(x, xi) � ε}. On the other hand,
by continuity of the group operation, B(id,1) will contain high powers like B(id, ε)100 for
suitably small ε.

It is not surprising, then, that we need tools for showing (roughly speaking) that
approximate groups A contain high powers of somewhat smaller, but still quite large,
approximate subgroups A′, which do not immediately escape A in the sense that (A′)m

is contained inside A (or perhaps a slightly larger set such as A4) for a reasonably large
value of m. Such a tool is provided by a result from multiplicative combinatorics due to
Sanders [47] and to Croot-Sisask [13, Theorem 1.6], namely Theorem 5.3 below. We
shall also need a “normal” variant of this result, which essentially follows by combining
Theorem 5.3 with [49, Lemma 13.1]. Our version of this is Theorem 5.6 below, and once
again we provide a self-contained proof.

Let us remark that by appealing to these results from multiplicative combinatorics
we differ fairly substantially from the approach taken by Hrushovski [33], although one
may perceive structural similarities in the model-theoretic arguments he uses.

All of the results below are essentially already in the literature, but always for sub-
sets A of some ambient (global) group G. As it turns out, though, the proofs of these
results end up being equally valid for the more local setting of multiplicative sets. Indeed,
most of the tools used in multiplicative combinatorics (with the notable exception of the
Fourier transform) are already “local” in nature in that they only require one to do O(1)

multiplications.
Our first such tool is Ruzsa’s covering lemma, which essentially allows one to select

a “complete set of coset representatives” in the approximate group setting.

Lemma 5.1 (Local Ruzsa covering lemma). — Let A,B be finite sets, and suppose that A ∪ B
is a multiplicative set. Then there exists a finite set X ⊆ B with |X| � |AB|/|A| and B ⊆ A2X.

Similarly there exists a finite set Y ⊆ B such that |Y|� |BA|/|A| and B ⊆ YA2.

Proof. — Let X be a subset of B such that the sets A · x for x ∈ X are disjoint, and
such that X is maximal with respect to set inclusion; then we have |X| � |AB|/|B|. If
b ∈ B, then A · b and A · x must intersect for some x, thus a · b = a′ · x for some a, a′ ∈ A.
Multiplying on the left by a−1, we conclude that b = a−1 · a′ · x, and the claim follows. �

A corollary of this is the following result, which allows one to produce an approxi-
mate group from a set with small growth.

Corollary 5.2. — Let A be a symmetric multiplicative set, and suppose that |A5| � K|A|.
Then A2 is a 2K-approximate group.
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Proof. — Clearly A2 is a symmetric set containing the identity. Since |A5|� K|A|�
K|A2|, we see from Lemma 5.1 that there exists X ⊆ A4 with |X| � K such that
A4 ⊆ A2X, and there similarly exists Y ⊆ A4 with |Y| � K such that A4 ⊆ YA2. Taking
the union of X and Y we obtain the claim. �

We turn now to the result of Sanders [47] that drives our whole approach.

Theorem 5.3 (Small neighbourhoods). — Suppose that A is a K-approximate group, and let

m � 1 be an integer. Then there is a OK,m(1)-approximate group S with |S| 	K,m |A| such that

Sm ⊆ A4.

Remark 5.4. — Explicit bounds for the implied constants are given in, for example,
[13, Theorem 1.6]. As much of the remainder of the argument is not explicitly effective
with respect to bounds, we do not worry about such quantitative issues here. Similar
remarks can be made in connection with the normal variant, Theorem 5.6 below.

Proof. — We use the argument from [47], generalised to the setting of multiplicative
sets. For the convenience of the reader, we reproduce it here. A somewhat different proof
of Theorem 5.3 can also be obtained by using the techniques of [13].

For each 0 < t < 1, let f (t) denote the quantity

f (t) := inf
{ |AB|
|A| : B ⊆ A; |B|� t|A|

}
.

Since |A2| � K|A|, we have 1 � f (t) � K for all 0 < t < 1. By the pigeonhole principle,
we can thus find t 	K,m 1 such that

(5.1) f

(
t2

2K2

)
�
(

1 − 1
100m

)
f (t).

Fix this t. As there are only finitely many sets B that make up the infimum for f , we can
find a B ⊂ A with |B|� t|A| such that

(5.2) |AB| = f (t)|A|.
For each a ∈ A, the set Ba has cardinality |B| and is contained in A2.

∑
x∈A2

∑
a∈A

1Ba(x)= |A||B|

and hence by Cauchy-Schwarz we obtain

∑
x∈A2

(∑
a∈A

1Ba(x)

)2

= |A|2|B|2
|A2| .
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The left-hand side can be rewritten as
∑
a∈A

∑
a′∈A

∣∣Ba ∩ Ba′
∣∣,

and so by the pigeonhole principle, there exists a0 ∈ A such that

∑
a∈A

|Ba ∩ Ba0|� |A||B|2
|A2| .

Since |B|� t|A| and |A2|� K|A|, we thus have

∑
a∈A

|Ba ∩ Ba0|� t2

K2
|A|2,

and hence we can find a subset C of A of cardinality

(5.3) |C|� t2/2K2|A|
such that |Ba ∩ Ba0| � t2|A|/2K2 for all a ∈ C. Multiplying by a−1

0 and by a−1, we see
that |Bh ∩ B|� t2|A|/2K2 for all h ∈ S0, where S0 := a−1

0 C ∪ C−1a0 ∪ {id} is a symmetric
subset in A2 containing the identity. From (5.1), we conclude that

∣∣A(Bh ∩ B)
∣∣�
(

1 − 1
100m

)
f (t)|A|.

From (5.2), we conclude that

|ABh ∩ AB|�
(

1 − 1
100m

)
|AB|.

Using induction (and the hypothesis that A8 is well-defined, noting that B ⊂ A and S0 ⊂
A2) we then see that for any 1 � m′ < 100m, the set Sm′

0 is well-defined and

|ABh ∩ AB|�
(

1 − m′

100m

)
|AB|

for all h ∈ Sm′
0 , which in particular implies that Sm′

0 ⊂ A4. On the other hand, from (5.3)
we have |S0| 	K,m |A|. From Corollary 5.2 we see that S := S2

0 is a OK,m(1)-approximate
group. Since Sm = S2m

0 ⊂ A4, we obtain the first claim of the lemma. The second claim
follows by applying the Ruzsa covering lemma (with B := S0). �

Remark 5.5. — Let us pause to note a consequence of this result. We defined mul-
tiplicative sets to be ones in which one was at liberty to take up to 100 multiplications (i.e.
A100 is well-defined), and the associative law would hold to this extent. Theorem 5.3, or
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more accurately a close examination of the proof of it, says that if A is an approximate
group and a multiplicative set in which merely 8 multiplications are allowed (i.e. A8 is
well-defined) then A is Om,K(1)-controlled by an Om,K(1)-approximate group A′ = S in
which up to m multiplications are defined an associative. For this reason Theorem 2.10
holds if only 8 multiplications are allowed. We shall not dwell on such details further in
this paper, allowing ourselves the luxury of 100 multiplications.

We turn now to proving a “normal” variant of Theorem 5.3. Here, we use the
notation

ab := b−1ab

and

AB := {ab : a ∈ A, b ∈ B
}

for elements a, b and subsets A,B of a local group.

Theorem 5.6 (Small normal neighbourhoods). — Suppose that A is a K-approximate group,

and let m � 1 be an integer. Let S ⊆ A4 be a K′-approximate group with |S| = δ|A|. Then there is an

Om,K,K′,δ(1)-approximate group S̃ with |S̃| 	K,K′,m,δ |A| such that (S̃m)A4 ⊆ S4.

Theorem 5.6 will be deduced from Theorem 5.3. To motivate the argument, let
us first recall a standard lemma from group theory.

Lemma 5.7. — Let A be a finite group, and let S be a subgroup of A with |S|� |A|/K. Then

there exists a further subgroup S̃ ⊂ S of A with |S̃| 	K |A| which is normal in A.

Note that this lemma would easily yield Theorem 5.6 from Theorem 5.3 in the
special case when A and S̃ are genuine groups and not merely approximate groups.

Proof. — Let x1, . . . , xk be a complete set of right coset representatives for S in A,
and set

S̃ =
⋂

x−1
i Sxi =

⋂
x∈A

x−1Sx.

All the claims of the lemma are immediate, except for the claim that |S̃| 	K |A|. However,
this follows from iterating the fact that if H1,H2 � G are subgroups of small index in a
group G then so is H1 ∩ H2; in fact we have the well-known inequality

(5.4) [G : H1 ∩ H2]� [G : H1][G : H2]. �

To adapt this argument to the approximate setting we need an analogue of (5.4)
for approximate groups. This is provided by the following lemma.
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Lemma 5.8. — Suppose that A is a K-approximate group and that A1,A2 ⊆ A are sets with

|Ai| = δi|A|. Then A1A−1
1 ∩ A2A−1

2 contains a set BB−1 with B ⊆ A and |B|� δ1δ2|A|/K.

Proof. — Since A−1
1 A2 ⊆ A2, we have |A−1

1 A2|� K|A|. It follows that there is some
x with at least δ1δ2|A|/K representations as a−1

1 a2. Let B be the set of all values of a2 that
appear. Obviously BB−1 ⊆ A2A−1

2 . Suppose that a2, a′2 ∈ B. Then there are a1, a′1 such
that x = a−1

1 a2 = (a′1)
−1a′2, and so a′1a−1

1 = a′2a−1
2 . Thus BB−1 lies in A1A−1

1 as well. �

By iterating the above lemma we obtain the following corollary.

Corollary 5.9. — Suppose that A is a K-approximate group and that A1, . . . ,Ak ⊆ A are

sets with |Ai|� δ|A| for each i. Then |⋂k

i=1 AiA−1
i | 	δ,k,K |A|.

Now we can prove Theorem 5.6.

Proof of Theorem 5.6. — By Theorem 5.3, there is an Ol,K,K′(1)-approximate sub-
group S0 ⊆ S4,

|S0| 	m,K,K′,δ |A|,
such that

(5.5) S4m+4
0 ⊆ S4.

The Ruzsa covering lemma allows us to do the analogue of picking a complete set of
coset representatives in the approximate group setting. Specifically, there are x1, . . . , xk ,
k = Om,δ,K(1), such that

(5.6) A4 ⊆
k⋃

i=1

S2
0xi.

Let us assume without loss of generality that x1 = id.
By Corollary 5.9, the set

T :=
k⋂

i=1

xiS2
0x−1

i

has cardinality

|T| 	m,K,K′,δ |A|.
We claim that the set S̃ := T2 has the required properties. First of all note that, by Corol-
lary 5.2, S̃ is indeed an Om,K,K′,δ(1)-approximate group.
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Next observe that, since x1 = id,

(5.7) x−1
i Txi ⊆ S2

0

for each i.
Suppose that x ∈ A4. Then, by (5.6), there is some i with 1 � i � k and some s ∈ S2

0

such that x = sxi. It follows from this, (5.7) and (5.5) that

x−1S̃mx = x−1T2mx = s−1x−1
i T2mxis = s−1

(
x−1

i Txi

)2m
s ⊆ S4m+4

0 ⊆ S4.

This concludes the proof. �

6. Proof of the Hrushovski Lie model theorem

In this section we establish Theorem 3.10. The reader may wish to reread Sec-
tion 3, which gave an overview of this theorem. We will deduce this theorem from the
following two propositions.

Proposition 6.1 (Locally compact model). — Let A be an ultra approximate group. Then A4

admits a model π : A32 → G by a metrisable locally compact local group G.

Proposition 6.2 (From locally compact models to Lie models). — Let A be an ultra approximate

group and suppose that A4 admits a model π : A32 → G into a locally compact local group G. Then

there is a large ultra approximate group Ã of A (thus Ã4 ⊂ A4) which admits a model π̃ : Ã8 → L into

a connected, simply-connected Lie group L.

It is clear that the above two propositions together imply Theorem 3.10.
We will give a self-contained proof of Proposition 6.1, using the multiplicative com-

binatorics results of the previous section, together with the countable saturation property
of ultraproducts. In contrast, the proof of Proposition 6.2 requires deep material related
to (the local version of) Hilbert’s fifth problem, for which we provide suitable references.

Building metrics on local groups. — We now begin the proof of Proposition 6.1. Suppose
that we have a pseudometric d : G × G → [0,∞) on some local group G, that is to
say d satisfies the axioms of a metric, except that we may have d(x, y) = 0 when x �=
y. Then we may of course define the balls B(id, ε) := {x ∈ G : d(x, id) < ε}, and these
will be nested in the sense that B(id, ε) ⊆ B(id, ε′) if ε < ε′. We now examine ways to
reverse this construction, beginning with a quite general way to construct pseudometrics
on symmetric local groups; this will be needed to prove Proposition 6.1.

Let G be a symmetric local group. For any function ψ : G → R and g ∈ G, we
define the shift Tgψ : G → R by setting

Tgψ(x) :=ψ
(
g−1x
)
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if g−1x is well-defined in G, and Tgψ(x) = 0 otherwise. We then define the “derivative”
operator

∂gψ :=ψ − Tgψ.

The expression

‖∂gψ‖�∞(G) := sup
x∈G

∣∣∂gψ(x)
∣∣

can be viewed heuristically as a “norm” of g relative to ψ , and this makes it natural to
consider the function

(6.1) d(g, h) := ‖Tgψ − Thψ‖�∞(G) = ‖∂h−1gψ‖�∞(G).

One can view d as the pullback of the metric on �∞(G) to G using the translation action
g �→ Tgψ of G on ψ .

Lemma 6.3 (Using functions to build (pseudo-)metrics). — Let G be a local group, and let A
be a symmetric neighbourhood of the identity such that A128 is well-defined in G. Let ψ : G → R be

non-negative and supported on A.

(i) We have ‖∂gψ‖�∞(G) � ‖ψ‖�∞(G) for all g ∈ A128, with equality holding when g �∈ A2.

(ii) Whenever g, h ∈ A128, one has

(6.2) ‖∂ghψ‖�∞(G) � ‖∂gψ‖�∞(G) + ‖∂hψ‖�∞(G).

(iii) For any g ∈ A128, we have

(6.3) ‖∂g−1ψ‖�∞(G) = ‖∂gψ‖�∞(G).

(iv) The function d : A64 ×A64 → R+ defined by the formula (6.1) is a left-invariant pseudo-

metric on A64.

Remark 6.4. — To spell out what we mean in (iv), we are asserting that d(g, g)= 0,
that d(g, h)= d(h, g), and that d(g, k) � d(g, h)+ d(h, k) for all g, h, k ∈ A64. Furthermore
it has the left-invariance property d(gh, gk) = d(h, k) whenever h, k ∈ A64, g ∈ A128, and
gh, gk ∈ A64. Later on, when proving Gleason’s lemmas, we shall require some slightly
more exotic properties of these cocycle “norms”, related to commutation and a certain
“Taylor expansion”.

Proof. — The property (i) is clear from construction. For g, h ∈ A128 we have the
representation property TgThψ = Tghψ and hence the cocycle identity

∂ghψ = ∂gψ + Tg∂hψ
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which gives (6.2).
Similarly, for g ∈ A128 we have the inverse identity

∂g−1ψ =−Tg−1∂gψ

which gives (6.3).
The claims in (iv) follow easily from (ii) and (iii). �

In the next lemma we give a variant of the Birkhoff-Kakutani construction
[40, §1.22], in which a function ψ is constructed so that the pseudometric d(g, h) =
‖∂h−1gψ‖�∞(G) is adapted to a given nested sequence of symmetric sets which are sup-
posed to resemble “balls” in this pseudometric.

Lemma 6.5 (Birkhoff-Kakutani construction). — Suppose that G is a local group and that we

have a sequence of symmetric neighbourhoods A0,A1, . . . of the identity in G with the nesting property

that A2
i+1 ⊆ Ai for i = 0,1,2, . . . , and with A200

0 well-defined. Then there is a pseudometric

d : A64
0 × A64

0 →[0,1]
such that we have the inclusions

(6.4)
{
g ∈ A64

0 : d(g, id) < 2−k
}⊆ Ak ⊆

{
g ∈ A64

0 : d(g, id) � 2 · 2−k
}

for all nonnegative integers k. In particular xn → x in the pseudometric d if and only if, for each k ∈ N,

we have x−1xn ∈ Ak for all sufficiently large n.

Proof. — Suppose that q = 2−i1 + · · · + 2−ik , 0 < q < 1, is a dyadic rational, and
define

Bq := Aik Aik−1 . . .Ai1 .

Even though the definition uses a potentially large number k of multiplications, the nest-
ing property of the Ai means that these sets Bq are well-defined in the local group G.

We claim that Bq ⊆ Bq+2−k whenever q is a dyadic rational with denominator divid-
ing 2k ; this easily implies that

(6.5) Bq ⊆ Bq′ whenever 0 < q < q′ < 1.

The claim follows by repeated use of the nesting A2
i+1 ⊆ Ai (the number of times it will be

required is the number of carries when 2−k is added to q in binary).
In particular, Bq ⊆ Ai1−1 ⊂ A0.
Define ψ : A64

0 →[0,1] by

ψ(x) := sup{1 − q : 0 < q < 1; x ∈ Bq} ∪ {0},
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and consider the pseudometric d(g, h) := ‖∂h−1gψ‖�∞(G) as discussed in Lemma 6.3. Note
that for g, h ∈ A64

0 , ∂h−1gψ is supported in A192
0 , and so one can replace �∞(G) here with

A192
0 if desired.

If d(g, id) < 2−k then |∂gψ(id)|< 2k , which implies that ψ(g) > 1− 2−k and there-
fore g ∈ B2−k and hence g ∈ Ak .

Conversely, suppose that g ∈ Ak : we are to show that d(g, id) � 2 ·2−k . To show this
we must confirm that |∂gψ(h)| < 21−k for all h ∈ G. As discussed before, we may assume
that h ∈ A192

0 . Suppose that h ∈ Bq, where 0 < q < 1−2−k is an integer multiple of 2−k , but
that h /∈ Bq−2−k . Then ψ(h) � 1 − q + 2−k . On the other hand, g−1h ∈ AkBq ⊆ Bq+2−k , by
the claim established above, and therefore ψ(g−1h) � 1−q−2−k . It follows that ∂gψ(h)=
ψ(g−1h) − ψ(h) � −2 · 2−k . Similarly, ∂gψ(h) � 2 · 2−k . Since h was arbitrary it follows
that d(g, id)= ‖∂gψ‖�∞(G) � 2 · 2−k , and the claim follows. �

If the sets Ai satisfy a certain normality condition, the group operations are con-
tinuous with respect to the pseudometric d :

Lemma 6.6 (Normal Birkhoff-Kakutani construction). — Suppose that G is a local group

and that we have a sequence of symmetric sets A0,A1, . . . in G with A200
0 well-defined and with

the nesting property that (A2
i+1)

A100
0 ⊆ Ai for i = 0,1, . . . (and so, in particular, we certainly have

the weaker nesting property A2
i+1 ⊆ Ai required by the preceding lemma). Consider the pseudometric

d : A64
0 × A64

0 → [0,1] defined in the preceding lemma. Then the product map ·A32
0 × A32

0 → A64
0

and the inversion map −1 : A32
0 → A32

0 are both continuous with respect to d.

Proof. — Suppose that gn → g and that hn → h. We wish to show that gnhn → gh, to
which end it suffices to establish that (gh)−1gnhn ∈ Ak for all sufficiently large n. However,
for n sufficiently large in terms of k we have g−1gn ∈ Ak+2, and hence

h−1
n g−1gnhn ∈ Ahn

k+2 ⊆ A
A100

0
k+2 ⊆ Ak+1.

Furthermore, h−1hn ∈ Ak+1 for n sufficiently large, and so

(gh)−1gnhn =
(
h−1hn

)(
h−1

n g−1gnhn

) ∈ A2
k+1 ∈ Ak,

as required. The statement about the inverse map is easier. Suppose that gn → g. Then
g−1gn ∈ Ak+1 for n sufficiently large, and so

gng
−1 = g

(
g−1gn

)
g−1 ∈ Ag−1

k+1 ⊆ A
A100

0
k+1 ∈ Ak.

But this means that g−1
n → g as n →∞. �

The previous lemma showed how to get a local topological group given a sequence
of balls satisfying a suitable normalisation condition. The normal variant of the Croot-
Sisask-Sanders lemma, Theorem 5.6, allows us to find precisely such a sequence of balls
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given any K-approximate group A. Of course, these balls are just finite sets and, for
sufficiently large i, Ai may well consist only of the identity element e. This will be the
case, for example, when A = [−N,N]. However when transferred to the setting of an
ultra approximate group A = ∏n→α An, these balls have “finite index” in A, and this
ultimately leads to the important conclusion that the metric d gives A the structure of a
locally compact local group.

Lemma 6.7. — Let A be an ultra approximate group. Then there is a sequence of ultra approx-

imate groups A0,A1, . . . such that A0 = A4, we have the nesting property that (A2
i+1)

A100
0 ⊆ Ai for

i = 0,1, . . . , and each Ai is large in the sense that A can be covered by finitely many left-translates of

Ai .

Proof. — By definition, one has A =∏
n→α An for some K-approximate groups An

and some fixed K. Applying Theorem 5.6 repeatedly we see that there are, for each n,
OK,i(1)-approximate groups Sn,i , i = 1,2,3 . . . , such that Sn,0 := An and (S8

n,i+1)
S400

n,0 ⊆
S4

n,i for each i. Furthermore we have Sn,i ⊆ A4
n

and |Sn,i| 	K,i |An| for each i. Setting

Ai :=
∏
n→α

S4
n,i,

all of the properties except the assertion about covering are immediate. To check that
each Ai is large, we need only check that Sn,0 is covered by OK,i(1) left-translates of S4

n,i,
for each i. This, however, is an immediate consequence of Lemma 5.1 and the lower
bound on |Sn,i|. �

Lemma 6.8. — Let A be an ultra approximate group. Consider a sequence of ultra approximate

groups A0,A1, . . . as found in the preceding lemma, and let d : A32×A32 →[0,1] be the pseudometric

associated to these sets as in Lemma 6.5. Then A32 is locally compact with respect to the topology

generated by d.

Proof. — By the Heine-Borel theorem (which is usually stated for metrics, but which
extends without difficulty13 to pseudometrics) it suffices to show that A32 is complete and
totally bounded. We deal with the latter task first. From the inclusion Ak ⊆ {x : d(x, id) �
2 ·2−k} and the left-invariance of d , this follows from the fact that A32 is covered by finitely
many left-translates of Ak .

We turn now to completeness. Suppose that (xn)n∈N is a Cauchy sequence. By re-
fining the sequence if necessary we may assume that it is rapidly Cauchy in the sense that
d(xn, xm) � 2−n−1.

We claim that the sets xnAn are nested in the sense that xmAm ⊆ xnAn whenever
m > n. To see this note that by left-invariance we have d(id, x−1

n xm) � 2−n−1 and hence,

13 Indeed, one can deduce the pseudometric case from the metric case by quotienting out by the equivalence relation
x ∼ y defined by the equation d(x, y)= 0.
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by the inclusions of Lemma 6.5, x−1
n xm ∈ An+1. Since An+1Am ⊆ A2

n+1 ⊆ An, it follows that
x−1

n xmAm ⊆ An, thereby confirming the claim.
Now each set xmAm is an ultraproduct

∏
n→α Sm,n, by construction. The nesting

property just established of course implies that, for any positive integer M,
⋂

m�M xmAm �=
∅. Let yM be an element of this intersection; this means that there is a set �M ∈ α such that
(yM)n ∈⋂m�M Sm,n for all n ∈ �M. By replacing �2 with �1 ∩�2 if necessary, and so on,
and using the basic properties of ultrafilters, we may assume that �1 ⊇ �2 ⊇ �3 ⊇ · · · .
By removing 2 from �2, 3 from �3 and so on, if necessary, we may also assume that no
integer lies in infinitely many �M.

Now define a sequence x by setting xn = (yM)n, where M is the largest integer for
which n ∈ �M. Then, by construction, xn ∈⋂m�M Sm,n for all n ∈ �M, that is to say for a
set of n tending to α. This means that x ∈⋂m�M xmAm for every M, and hence x ∈⋂ xmAm.
In particular we have x−1

m x ∈ Am for every m and hence d(x, xm) � 2 · 2−m. It follows that
xm → x, thereby confirming that A is complete with the metric d . �

Remark 6.9. — The last part of this argument, in which an element is found
in the infinite intersection

⋂
m xmAm given that each finite intersection

⋂
m�M xmAm is

nonempty, is an instance of the countable saturation property of the ultraproduct construc-
tion. The completeness that is afforded by the countable saturation property is one of
the main reasons why we work in the ultraproduct setting. Note that a similar complete-
ness also appears in the ultralimit (X, d)/ ∼ of bounded metric spaces (Xn, dn), where
X :=∏

n→α Xn, d := st limn→α dn, and ∼ is the equivalence relation defined by setting
x ∼ y whenever d(x, y)= 0. Indeed, it is not difficult to use countable saturation to verify
that such ultralimits are automatically complete, even if the original spaces Xn are not.

Proof of Proposition 6.1. — We have shown that A32 has the structure of a locally
compact local group with respect to the metric d . To complete the proof of Proposition,
we need only quotient by the equivalence relation ∼ on A32, defined by x ∼ y if and only
if d(x, y)= 0. The quotient L := A32/∼ is then a metrisable, locally compact, local group
and there is a natural map π : A32 → L. We must check that L is a good model for A4 in
the sense of Definition 3.5.

Property (i) requires us to show that there is some open neighbourhood U0 of
the identity in L such that π−1(U0) ⊆ A4 and U0 ⊆ π(A4), or in other words some ball
{x ∈ A32 : d(x, id) < ε} lies in A4. This again follows from (6.4) and the fact that each of
the sets Ak constructed in Lemma 6.7 lies in A4.

Finally, property (ii) in the definition of good model requires us to show that π(A4)

is compact. This is immediate.
To prove property (iii), we first establish the following weaker property:
(iii)′: for any open neighbourhood U of the identity in L there is some U′ ⊆ U and

some ultra finite set A′ =∏n→α A′
n with π−1(U′)⊆ A′ ⊆ π−1(U).
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This is quite easily established: suppose that U contains the ball B(id,2−k). Then it
follows immediately from the inclusions of Lemma 6.5 that we may take A′ := Ak+1 and
then U′ := B(id,2−k−1).

We now upgrade this to property (iii) in the definition of good model. Suppose that
F ⊆ U ⊆ U0 with F compact and U open. Then there is some open neighbourhood of the
identity U′ such that FU′ ⊆ U. Applying (iii)′, we may locate a further open set U′′ ⊆ U′

and an ultra finite set A′ such that π−1(U′′) ⊆ A′ ⊆ π−1(U′). By compactness there are
elements x1, . . . , xM such that F ⊆⋃M

m=1 xmU′′; we may assume that these elements lie
in F(U′′)−1 = FU′′ ⊆ U ⊆ U0, and hence each is of the form xi = π(ai) with ai ∈ A. To
conclude the proof of property (iii) simply take A′′ :=⋃M

m=1 amA′. This completes the proof
of Proposition 6.1. �

To complete the proof of Theorem 3.10, we invoke results about Hilbert’s fifth
problem, and specifically the structural theorem of Goldbring [23] describing locally
compact local groups, which we state as Theorem B.18 in Appendix B.

Proof of Proposition 6.2. — Suppose that we have a model π : A32 → G from A32 to
a locally compact local group G, and let U0 be the open neighbourhood of the identity
featuring in the definition of good model (Definition 3.5), thus π−1(U0) ⊂ A4 and U0 ⊂
π(A4). By Theorem B.18, there are symmetric neighbourhoods U2 ⊆ U1 ⊆ U0 ⊆ G with
U24

2 ⊆ U1 (say) and a compact normal subgroup H of U2 such that U1/H is isomorphic
to a local Lie group L. Let φ : U1 → U1/H be the projection map.

By property (iii) of Definition 3.5 (applied to π : A → G) there is a symmetric ultra
finite set Ã ⊆ A4 with π−1(U2

2) ⊆ Ã ⊆ π−1(U3
2). Certainly, the map π̃ := φ ◦ π is well-

defined and gives a homomorphism from Ã8 to L; since π−1(U3
2)

4 ⊂ π−1(U12
2 ) ⊂ A4, we

have Ã4 ⊆ A4, and by Remark 3.7, Ã is an ultra approximate group. We verify that this
is a good model by checking (i), (ii) and (iii) of Definition 3.5 in turn. For (i), first note
that π̃(Ã) contains Ũ0 := φ(U2)= U2H/H ⊆ L, which is an open neighbourhood of the
identity in L since U2H ⊆ G is open.

Furthermore we have

π̃−1(Ũ0)= π−1φ−1φ(U2)⊆ π−1(U2H)⊆ π−1
(
U2

2

)⊆ Ã.

Turning to (ii), π̃(Ã) is contained in the compact set φ(U2
2).

Finally, we check the “approximation by internal sets” property, which is (iii) in Def-
inition 3.5. Suppose that F̃ ⊆ Ũ ⊆ Ũ0, with F̃ compact and Ũ open. Then φ−1(F̃) = F̃H
is compact, whilst φ−1(Ũ) = ŨH is open. The approximation by internal sets property
then follows from that fact that π : A → G is a good model.

Finally, we check that Ã is a large ultra approximate group. To see this note that
π̃(Ã2) is contained in a compact subset of L; therefore there are finitely many elements
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x1, . . . , xk such that π̃ (Ã2)⊆⋃k

i=1 π̃(xk)Ũ0. It follows that

Ã2 ⊆
k⋃

i=1

xkπ̃
−1U0 ⊆

k⋃
i=1

xkÃ,

thereby confirming that Ã is an ultra approximate group. By essentially the same argu-
ment, A may be covered by finitely many translates of Ã; thus Ã is indeed large. �

We now record some analogues of the above results in the setting of global ultra
approximate groups (i.e. ultraproducts of global K-approximate groups for some fixed
K), which are closer to the results of Hrushovski [33]. Define a global model π : 〈A〉 → G
to be the same notion as a good model π : A8 → G from Definition 3.5, except that A8 is
replaced by the whole group 〈A〉 generated by A, and G is now required to be a global
group rather than a local group.

Proposition 6.10 (Global locally compact model). — Let A be a global ultra approximate group.

Then A4 admits a global model π : 〈A〉→ G by a metrisable locally compact global group G.

Proof. — This is obtained by a modification of the proof of Proposition 6.1. The
one main change is that the nesting condition (A2

i+1)
A100

0 ⊆ Ai appearing in Lemma 6.7
needs to be strengthened to (A2

i+1)
A100(i+1)

0 ⊆ Ai , but this is easily accomplished. �

Proposition 6.11 (From locally compact models to Lie models). — Let A be a global ultra

approximate group and suppose that A4 admits a global model π : 〈A〉 → G into a locally compact

global group G. Then there is a large ultra approximate group Ã of A which admits a global model

π̃ : 〈A〉→ L into a connected Lie group L.

Proof. — This is obtained by a modification of the proof of Proposition 6.2. The
one main change is that one needs to replace Theorem B.18 with Theorem B.17. �

Note that in contrast to Proposition 6.2 that we do not assert that the global Lie
group L is simply connected (as this is not provided by the global Gleason-Yamabe the-
orem (Theorem B.17), which only promises connectedness). And indeed, in general we
do not have simple connectedness of the model. For instance, if A = {−N, . . . ,N} ⊂
Z/100NZ for some unbounded nonstandard natural number N, then the obvious global
model here is the map π : Z/100NZ → R/Z defined by π(x)= st( x

100N) mod 1, and of
course the unit circle R/Z is not simply connected. On the other hand, A100 = Z/100NZ
is globally modeled by the trivial group; and so one can still recover simple connected-
ness by passing from A to a suitably large power. See [33, Remark 4.11] for some further
discussion of this point, as well as Theorem 10.10 below.

Combining Proposition 6.10 and Proposition 6.11 we obtain the following result,
originally due to Hrushovski [33].
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Proposition 6.12 (Weak global Lie model theorem). — Suppose that A is a global ultra ap-

proximate group. Then there is a large ultra approximate group Ã of A which admits a global model

π̃ : 〈A〉→ L into a connected Lie group L.

We will strengthen this proposition in Theorem 10.10 below.

Remark 6.13. — Let π : A8 → L be a good model for an ultra approximate group
A =∏

n→α An by a locally compact local group L, and let U0 be the neighbourhood in
Definition 3.5. Let U1 be a symmetric neighbourhood of the identity such that U100

1 ⊂ U0.
For any continuous function f : L → R with compact support in U1, we can define a
functional I(f ) by the formula

I(f )= inf st

∑
a∈A F+(a)

|A|
where F+ = limn→α F+

n
is the ultralimit of functions F+

n
: An → R, with the nonstandard

real
∑

a∈A F+ and nonstandard natural number |A| defined in the usual fashion as

∑
a∈A

F+(a) := lim
n→α

∑
an∈An

F+
n
(an)

and

|A| := lim
n→α

|An|,

and the infimum is over all F+ for which F+(a) � f (π(a)) for all a ∈ A. Using Definition
3.5(iii) it is not difficult to also obtain the equivalent formula

I(f )= sup st

∑
a∈A F−(a)∑

a∈A 1

where the supremum is over all F− for which F−(a) � f (π(a)) for all a ∈ A. From these
two definitions we see that I(f ) is both super-linear and sub-linear, and is thus a contin-
uous linear functional on the space Cc(U1) of continuous compactly supported functions
in U1. By the Riesz representation theorem, there thus exists a Radon measure μ on U1

such that I(f ) = ∫U1
f dμ for all f ∈ Cc(U1). From the translation invariant properties of

I(f ), we see that μ(gE) = μ(E) for any measurable subset E of U1, and any g ∈ L such
that gE are defined in U1, and similarly for gE replaced by Eg. Thus μ is a bi-invariant
Haar measure on U1; since A can be covered by finitely many left-translates of π−1(F)

for any compact neighbourhood F of the identity, we see that μ is non-trivial (which im-
plies in particular by bi-invariance that the locally compact local group L is unimodular).
This Haar measure can then be used to estimate the (nonstandard) cardinality of various
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nonstandard finite sets that are “close” to A in some sense. Indeed, from the definitions
(and the regular nature of Radon measures) we see that

μ(F)|A|� ∣∣A′∣∣� μ(U)|A|
whenever F ⊆ U ⊆ U1, F is compact, U is open, and A′ is a nonstandard set with

π−1(F)⊂ A′ ⊆ π−1(U).

We will not use this measure μ in this paper, but see [33] for some further discussion of
this measure and its relationship to Kiesler measures from model theory. One can also use
μ to relate the volume growth of Am to the volume growth of the model group L, giving
some rigorous substance to some of the volume growth heuristics invoked in the examples
in Section 3, but we will not formalise this relationship here.

Remark 6.14. — As remarked in [33], the Lie Model theorem is not only valid
in the context of nonstandard finite ultra approximate groups, i.e. the ultraproduct of
finite K-approximate groups for a fixed K, but also for “continuous” ultra approximate
groups, that is to say the ultraproduct of precompact open subsets of a locally compact
local group that obey all of the approximate group axioms other than finiteness. See [52]
for the basic theory of such continuous approximate groups. Indeed, one can check that
the machinery in Section 5 can be adapted to this setting by replacing the cardinality of
finite sets with the Haar measure of various precompact open subsets of a locally compact
local group, as in [52]. Some other components of this paper, such as the construction of
strong approximate groups and Gleason metrics, can also be extended to this setting after
some minor notational changes. However, there will be a key place in the argument14 in
Section 9 in which the (nonstandard) finiteness of the ultra approximate groups is used
in an absolutely crucial way, namely to locate an element in such a group element of
minimal non-zero “escape norm”. As such, the main result of this paper, Theorem 2.10,
does not immediately extend to the continuous setting. Indeed, the basic example of a
small ball in a Lie group shows that continuous approximate groups need not resemble
coset nilprogressions at all. We will not pursue this matter further here.

Some finitary consequences of the Lie Model Theorem. — To illustrate the power of the
Lie Model Theorem in the analysis of approximate groups, we offer two fairly quick
applications. The reader interested in the proof of our main results may skip ahead to the
next section.

The first application is a special case of our main theorem (Theorem 2.10), follow-
ing Hrushovski [33, Corollary 4.18].

14 Another, much more minor, place where ultra finiteness is used in Remark 6.13 above, as we implicitly used
the trivial fact that counting measure is bi-invariant. In general, one can only conclude that the measure associated to a
good model is bi-invariant if each of the individual approximate groups in the ultraproduct is also equipped with a finite
bi-invariant measure.
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Theorem 6.15 (Hrushovski). — Suppose that G be a group of exponent m and suppose that

A ⊆ G is a K-approximate group. Then A4 contains a genuine subgroup H of G with |H| 	K,m |A|.
In particular, by Lemma 5.1, A is covered by OK,m(1) left-translates of H.

Remark 6.16. — When m = 2 the group G must be abelian, and in this case the
theorem is due to Imre Ruzsa [45].

Proof. — Suppose for sake of contradiction that the claim failed. Then we may find
fixed K,m and a sequence of K-approximate groups An ⊆ Gn in groups Gn of expo-
nent m, such that for each n, A4

n
does not contain a genuine subgroup Hn of cardinality

|Hn|� |An|/n. As usual we form the ultra approximate group A :=∏
n→α An. The ultra-

product group G :=∏
n→α Gn also has exponent m, and by Hrushovski’s Lie model theo-

rem we can find a large approximate group A′ ⊆ A4 with a local Lie model π : (A′)8 → L.
By Definition 3.5(i), we may find a neighbourhood U0 of the identity in L such that
π−1(U0) ⊆ A′ and U0 ⊆ π(A′). Using the fact that the exponential map is a homeo-
morphism near the identity of L, we may then find a neighbourhood U1 of the identity
with Um

1 ⊆ U0 such that U1 contains no elements of order m other than the identity. If
a ∈ π−1(U1), then we conclude that am is well-defined in A′ with π(a)m = π(am) = id,
and so π(a) is trivial, which means that π−1(U1) = ker(π). As π(A′) is precompact, we
conclude that A′ is covered by a finite number of translates of ker(π); as A′ is large, A is
also covered by M such translates for some (standard) finite M.

From Definition 3.5(iii), we see that the set π−1(U1) = ker(π) is a nonstandard
finite set, and so ker(π) =∏

n→α Hn for some finite subsets Hn of Gn. Since ker(π) ⊆
A4 is a group and A is covered by M translates of ker(π), we see from Łos’s theorem
(Theorem A.6) that for all n sufficiently close to α, Hn ⊆ A4

n
is a group and An is covered

by M translates of Hn. However if one takes n larger than M then this contradicts the
construction of An, and the claim follows. �

Remark 6.17. — The astute reader will notice that the only properties of the local
Lie group L that were really used in the above argument were that L was locally compact
and had the NSS (no small subgroups property). Thus, one could prove Theorem 6.15
using a weaker form of the Gleason-Yamabe theorem (Theorem B.17), in which the
model group is merely locally compact NSS rather than Lie. (The machinery of Hilbert’s
fifth problem implies that these two concepts coincide, but this is considerably deeper.)
However, we do not know of a proof of Theorem 6.15 that avoids the machinery of
Hilbert’s fifth problem completely, and in particular some variant of the Gleason lemmas
is required.

Next, we prove (a slight variant of) the main theorem from Hrushovski’s paper [33,
Theorem 1.1], which uses the Lie structure (via the Baker-Campbell-Hausdorff formula)
more thoroughly than the preceding application.
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Theorem 6.18 (Hrushovski’s structure theorem). — Let A be a K-approximate group, and let

F : N × N → N be a function. Then there exist natural numbers L,M,N with N � F(L,M) and

L,M �K,F 1, and nested sets

{id} ⊂ AN ⊆ · · · ⊆ A1 ⊆ A4

with the following properties:

(i) For each 1 � n � N, An is symmetric;

(ii) For each 1 � n < N, A2
n+1 ⊆ An;

(iii) For each 1 � n � N, An is contained in M left-translates of An+1;

(iv) For 1 � n,m, k � N with k < n + m, the set [An,Am] := {[g, h] : g ∈ An, h ∈ Am} is

contained in Ak ;

(v) A can be covered by L left-translates of A1.

Proof. — Suppose this is not the case. Carefully negating all the quantifiers, we
conclude that there exist K,F and a sequence A(n) of K-approximate groups, such that for
each n and each L,M � n, there does not exist N � F(L,M) and A(n)

1 , . . . ,A(n)

N obeying
the conclusions of the theorem.

As usual, we form the ultraproduct A :=∏
n→α A(n), which is an ultra approx-

imate group. By Theorem 3.10, we may find a large ultra approximate subgroup
Ã =∏

n→α Ã(n) which has a good model φ : Ã8 → L by a local Lie group.
Let l be the Lie algebra of L, and fix an open bounded convex symmetric body B

in L. Let ε > 0 be a sufficiently small (standard) real number depending on B, L to be
chosen later; in particular we may assume that the exponential map is a homeomorphism
from εB to exp(εB), and that exp(εB) is contained in the neighbourhood U0 appearing
in Definition 3.5. For each standard natural number n � 1, we apply Definition 3.5 and
Remark 3.7 to find an ultra approximate group An with

π−1
(
exp
(
10−nεB

))⊆ An ⊆ π−1
(
exp
(
2 × 10−nεB

));
In particular we have the nesting

· · · ⊆ A2 ⊆ A1 ⊆ A4.

From the Baker-Campbell-Hausdorff formula, we have

exp
(
2 × 10−n−1εB

)2 ⊆ exp
(
10−nεB

)

if ε is small enough, and thus A2
n+1 ⊆ An. In a similar spirit, we can find an M depending

only on the dimension of L or l such that each ball 10−nεB is covered by at most M trans-
lates of 4 × 10−n−1εB, which by the Baker-Campbell-Hausdorff formula again implies,
for small enough ε, that each An is covered by at most M left-translates of An+1. Finally,
another application of the Baker-Campbell-Hausdorff formula reveals that

[
exp
(
2 × 10−nεB

)
, exp

(
2 × 10−mεB

)]⊆ exp
(
10−kεB

)
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whenever k < n + m, and hence [An,Am] ⊆ Ak .
Finally, since one can cover π(A) by a finite number of translates of exp(εB), we

see that A can be covered by at most L left-translates of A1 for some standard L ∈ N.
Now set An =∏n→∞ A(n)

n for some finite sets A(n), and set N := F(L,M). Applying
Łos’s theorem (Theorem A.6) repeatedly (but only finitely many times), we see that for n

sufficiently close to α the sets A(n)

1 , . . . ,A(n)

N ,A(n) obey all the properties in the conclusion
of the theorem. This contradicts the construction of the A(n) for n larger than L,M, and
the claim follows. �

Remark 6.19. — One can also use the Lie Model Theorem to establish a stronger
statement than Theorem 6.18, which roughly speaking asserts that given a (finite) K-
approximate group A, one can find a large sub-approximate group A′ which has an ap-
proximate homomorphism π : (A′)8 → L into a local Lie group L with bounded range
that obeys an approximate version of Property (i) in Definition 3.5, where the accuracy
of these approximations exceeds the “complexity” of the model15 by any given function
F. The precise formulation of this statement, which is in fact a logically equivalent “finiti-
sation” of Theorem 3.10, is somewhat complicated. We will not need it elsewhere in the
paper, and so we leave it as an exercise to the reader.

7. Strong approximate groups

We now give a combinatorial consequence of the Lie Model Theorem (Theo-
rem 3.10) which will be important later, involving a concept which we will call a strong

approximate group.

Definition 7.1 (Strong Approximate Group). — Let A be a K-approximate group for some

K � 1. We say that A is a strong K-approximate group if it admits a symmetric subset S such

that

(7.1)
(
SA4)1000K3 ⊆ A

and for which the following two trapping conditions are satisfied:

(i) (First trapping condition) If g, g2, g3, . . . , g1000 ∈ A100 then g ∈ A;

(ii) (Second trapping condition) If g, g2, . . . , g106K3 ∈ A then g ∈ S.

An ultra strong approximate group is an ultraproduct A = ∏
n→∞ An of strong K-

approximate groups An, for some K � 1 independent of n.

15 The complexity, which we do not define here, would be some quantity taking account of the dimension and
structure constants on the Lie algebra l of L, the diameter of the range of π and the inradius of the neighbourhood U0

appearing in Definition 3.5(i).
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At present this definition will seem somewhat unmotivated, although it can be
demystified to some extent by remarking that these properties suggest that S and A are
behaving like very small neighbourhoods of the identity in a Lie group L, with S much
smaller than A. This point should become clearer shortly. The reader should not pay too
much attention to exponents such as 1000K3 or 106K3 in the definition; they are chosen
for the sake of concreteness.

The main reason for introducing this concept is that we will be able to show, in the
next section, that the escape norm ‖g‖e,A (defined in Definition 4.3) for an ultra strong
approximate group A has the pleasant properties outlined in Section 4. There is scope
for varying the parameters in the definition of strong approximate group, but the ones we
have given here are strong enough to prove the desired properties of the escape norm.

It is easy to give examples of strong approximate groups. For instance, if A =
{−N, . . . ,N} (and K = 3) then we may take S = {−N′, . . . ,N′} with N′ ∼ N/1000K3.
If A is a subgroup, then we may simply take S = A. On the other hand, if one randomly
removes a small number (e.g. N0.01) of elements symmetrically from {−N, . . . ,N}, the
resulting set is likely to remain a O(1)-approximate subgroup, but not a strong O(1)-
approximate subgroup.

The main result of this section implies the following.

Proposition 7.2 (Finding a ultra strong approximate group). — Let A be an ultra approximate

group. Then there is a large ultra approximate subgroup Ã of A which is a strong ultra approximate

group.

For use in Section 9 we will require the following somewhat more precise result.

Proposition 7.3 (Balls are ultra strong approximate groups). — Let A be an ultra approximate

group with a good model π : A → L to a local Lie group L. Let B be an open bounded convex symmetric

subset of the Lie algebra l of L. Then there exists a standard radius r0 > 0 such that for all 0 < r < r0,

any symmetric nonstandard finite set Ã with

(7.2) π−1
(
exp(rB)

)⊆ Ã ⊆ π−1
(
exp(2rB)

)

is a large strong ultra approximate subgroup of A.

It is clear that Proposition 7.2 follows from Proposition 7.3, Theorem 3.10, and
Definition 3.5(iii); we will, however, only need Proposition 7.3 in the sequel.

We now prove Proposition 7.3. Let r0 > 0 be a sufficiently small quantity depending
on A,π,L,B to be chosen later; in particular, we take r0 so small so that the exponential
map is a homeomorphism from 2r0B to exp(2r0B), and exp(2r0B)100 is contained inside
the open neighbourhood U0 of L0 from Definition 3.5.
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Let Ã be as in the proposition. In particular Ã100 ⊂ A. By Remark 3.7 we may
take Ã to be a ultra K-approximate group for some16 K, and therefore an ultra approx-
imate subgroup of A. Since π(A) is precompact, it may be covered by finitely many
left-translates of exp(rB), and so A can be covered by finitely many left-translates of Ã.
Thus Ã is a large ultra approximate subgroup of A.

It remains to establish that Ã is a strong ultra approximate subgroup. Suppose that
g ∈ Ã100 is such that g, . . . , g1000 ∈ Ã100. Applying π , we see that

π(g), . . . , π(g)1000 ∈ exp(2rB)100.

Working in exponential coordinates and using the Baker-Campbell-Hausdorff formula
we conclude, if r0 is small enough, that π(g) ∈ exp(rB) and thus g ∈ Ã. We have thus
shown the first trapping condition for Ã.

Next, we use Definition 3.5 to find a symmetric nonstandard finite set S with

exp
(
10−5K−3rB

)⊆ S ⊆ exp
(
10−4K−3rB

)
.

From the Baker-Campbell-Hausdorff formula we see that
(
exp
(
10−4K−3rB

)exp(2rB)4)1000K3 ⊆ exp(rB)

and thus

(7.3)
(
(S)Ã4)1000K3 ⊆ Ã.

Finally, suppose that g ∈ Ã is such that g, . . . , g106K3 ∈ Ã. Applying π , we conclude that

π(g), . . . , π(g)106K3 ∈ exp(2rB).

Working in exponential coordinates, we conclude that π(g) ∈ exp(10−5K−3rB) and hence
g ∈ S. Thus we have verified the second trapping condition for Ã.

Finally, we need to push the trapping conditions from the ultraproduct Ã back
to the finitary setting. Write A =∏

n→α An, Ã =∏
n→α Ãn and S =∏

n→α Sn for some
finite sets An, Ãn,Sn. By Łos’s theorem (Theorem A.6), we see that for n sufficiently close
to α, Ãn is symmetric and contains the identity with Ã4

n
⊂ A4

n
, with Ã2

n
covered by K

left-translates of Ãn, that
(
(Sn)

Ã4
n

)1000K3 ⊆ Ãn,

and that the first and second trapping properties hold for Ãn and Sn. Thus we see that Ãn

is a strong K-approximate group for n sufficiently close to α. After redefining Ãn suitably
for all other values of n, we conclude that Ã is an ultra strong approximate group as
required. This concludes the proof of Proposition 7.3 and hence Proposition 7.2.

16 Indeed, by using the Baker-Campbell-Hausdorff formula one can take K to depend only on the dimension of L,
if r0 is small enough, but we will not need this fact here.
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Remark 7.4. — This proposition represents by far the most serious use of
Hrushovski’s Lie Model Theorem in our paper. Although we use that theorem else-
where in the paper, it is only for this proposition that we do not currently have a plausible
alternative approach.

8. The escape norm and a Gleason type theorem

In this section we prove a variant of “Gleason’s lemmas” in the setting of approx-
imate groups. These show that if A is a strong approximate group then the escape norm
has pleasant properties with respect to product, conjugation and commutation. The role
of these lemmas was briefly discussed in Section 4.

Here is a precise statement.

Theorem 8.1 (Gleason-type theorem). — Suppose that A is a strong K-approximate group.

Consider the escape norm

‖g‖e,A := inf
{

1
n + 1

: n ∈ N; gi ∈ A for all 0 � i � n

}
,

with the convention that ‖g‖e,A = 1 when g is undefined. This has the following properties:

(i) (Conjugation) If g, h ∈ A10 then ‖gh‖e,A � 1000‖g‖e,A;

(ii) (Product) We have ‖g1 . . . gn‖e,A � KO(1)(‖g1‖e,A + · · · + ‖gn‖e,A) if

g1, . . . , gn ∈ A10;

(iii) (Commutators) If g, h ∈ A10 then we have ‖[g, h]‖e,A � KO(1)‖g‖e,A‖h‖e,A.

Note that, as a consequence of (i) and (ii), the set of g ∈ A with ‖g‖e,A = 0 is a
subgroup normalised by A10.

Remark 8.2. — Note that this lemma is trivial when the ambient local group is
abelian. For that reason, this section can be ignored by those readers interested in seeing
our alternative proof of the (abelian) Freiman’s theorem.

Motivation and heuristic discussion. — We will shortly give a self-contained proof of
Theorem 8.1, but as motivation we first offer some comments and discussion of the con-
text in which these ideas were first invented: the solution of Hilbert’s fifth problem by
Gleason, Montgomery-Zippin and Yamabe [20, 21, 39, 40, 60, 61] (see also [23] for the
local group analogue of these lemmas).

In that context, the Gleason lemmas show the existence, in an arbitrary locally
compact group G, of arbitrarily small compact neighborhoods A of the identity whose
associated escape norm satisfies properties (i) to (iii) as above. The Gleason lemmas lie
at the heart of Hilbert’s fifth problem and are used at several places in its proof, both in
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the reduction step from general locally compact groups to NSS (No Small Subgroups)
groups, and in order to deal with NSS groups.

For example, if G is NSS, the Gleason lemmas are needed in order to es-
tablish that the set of one-parameter subgroups of G forms a vector space. If X(t)

and Y(t) are two one-parameter subgroups, then a natural candidate for X + Y is
limn→+∞(X(t/n)Y(t/n))n. In order to show that such a limit does exist, the bound (ii)
on the escape norm of a product is precisely what is needed. For the full story, the reader
may wish to consult the classical references [34, 40], the more recent non-standard treat-
ments of the Gleason lemmas by Hirschfeld [32] and by Goldbring and van den Dries
[57], or the blog posts of the third author.17

To give a flavour of how the Gleason lemmas are proven, let us discuss a simple
case of the product estimate, namely

(8.1) ‖uv‖e,A � C
(‖u‖e,A + ‖v‖e,A

)
.

Here, A is a ball B(id,1) about the identity in a locally compact group G with the NSS
property, where the ball is with respect to some left-invariant distance d , and C is some
finite quantity depending on A. In the discussion below we will make use of the following
points concerning this situation:

(i) We may construct a distance d with the additional property that d(id, xg) �
Cd(id, x) for g, x ∈ B(id,2) (for example by the Birkhoff-Kakutani construction
[40, §1.22]).

(ii) The balls in G enjoy an escape property quite similar to that in the definition
of a strong approximate group. More precisely, given ε > 0 there is an Mε ∈ N
such that if g, g2, . . . , gMε ∈ B(id,1) then g ∈ B(id, ε). The proof of this is by
contradiction—taking a limit of putative “bad” gs, one can contradict the NSS
property.

The key idea behind the proof of the product estimate (8.1) is to relate the escape
norm ‖g‖e,A to the auxillary quantity ‖∂g�‖∞, where ∂g�(x)=�(g−1x)−�(x) and � is
a non-negative “bump” function supported on B(id,1), let us say with ‖�‖∞ =�(id)=
1. As noted in Lemma 6.3, such a “norm” automatically satisfies the product inequality
(with C = 1), and so we need only show that ‖g‖e,A ∼ ‖∂g�‖∞ in a suitable sense, and for
a suitable � .

In one direction, it is easy to link the two quantities. Indeed if ‖∂g�‖∞ � δ for
some δ > 0, then a simple telescoping sum argument confirms that �(gi) > 0, and hence
gi ∈ A whenever i < 1/δ. Therefore

(8.2) ‖g‖e,A � ‖∂g�‖∞.

17 http://terrytao.wordpress.com/tag/hilberts-fifth-problem/.

http://terrytao.wordpress.com/tag/hilberts-fifth-problem/
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Suppose, conversely, that we know that g, g2, . . . , gn ∈ A = B(id,1). Then certainly,
by the escape property, we have g, g2, . . . , gn′ ∈ B(id, ε) for some n′ 	ε n. Now if G were
a Lie group, and if � were smooth with bounded derivatives, we would have

(8.3) ∂gn′� ≈ n′∂g�,

the approximation being better as ε gets smaller. This immediately gives the bound
‖∂g�‖∞ �ε 1/n, and thus we have linked the escape norm and the auxiliary norm
‖∂g�‖∞ in both directions.

Now unfortunately (8.3) is only an approximate identity and, more seriously, G is
not known to be a Lie group. In fact, as noted above, these Gleason lemmas are required
to prove statements of that form. On a more positive note, observe that we only need to
bound ‖∂g�‖∞ above in terms of ‖g‖e,A when g = u or g = v, and not for all g. We are at
liberty to design the auxillary function � with this in mind.

Now the exact version of (8.3) is basically Taylor’s formula, and it reads

(8.4) ∂gn� = n∂g� +
n−1∑
i=0

∂g∂gi�.

(We replace n′ by n for ease of notation.) This makes it desirable to bound the second
derivatives ∂g∂gi� . At this point another key idea enters: it is possible to get good con-
trol on these second derivatives when � = φ ∗ ψ is the convolution of two “Lipschitz”
functions, that is

�(x)= φ ∗ψ(x)=
∫

φ
(
xz−1
)
ψ(z) dz,

the integral being with respect to Haar measure on G. This is because of the formula

(8.5) ∂g∂h(φ ∗ψ)=
∫

∂gφ(z)∂hzψ
(
z−1x
)
dz.

To make this useful, φ is chosen to be somewhat Lipschitz with respect to shifts by
g = u and g = v, and ψ is chosen to be Lipschitz with respect to the distance d . We omit
the details.

Rigorous argument. — We turn now to the details of such a strategy in the discrete
setting, that is to say a rigorous proof of Theorem 8.1.

Proof of Theorem 8.1. — To simplify the notation, we will abbreviate ‖‖e,A in this
proof as ‖‖e.
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We start with (i), which is a relatively easy consequence of the first trapping prop-
erty in the definition of strong approximate group (Definition 7.1). Indeed suppose that
g, g2, . . . , gn ∈ A for some n; then certainly gh, (gh)2, . . . , (gh)n ∈ Ah ⊆ A12. By the first
trapping property this implies that gh, (gh)2, . . . , (gh)n′ ∈ A for any n′ � n/1000, and this
confirms (i).

The proof of (ii) is significantly trickier and is based on the construction of Glea-
son that was briefly discussed earlier. In order to facilitate a certain technical “bootstrap
argument”, it will be convenient to temporarily replace the escape norm ‖g‖e by the
regularised version ‖g‖(ε)

e := ‖g‖e + ε, where ε > 0 is a small quantity. We shall obtain
estimates uniform in ε, and then let ε → 0.

It is natural to introduce the norm-like quantity

d(ε)(g) := inf
{ n∑

i=1

‖gi‖(ε)
e : g = g1 . . . gn, n � 1

}
.

It is clear that

(8.6) d(ε)(g) � ‖g‖(ε)
e .

We shall prove an estimate in the opposite direction, namely

(8.7) ‖g‖e � KO(1)d(ε)(g).

The exponent O(1) will be independent of ε. This implies that, for each positive integer
n and all g1, . . . , gn,

‖g1 . . . gn‖e � KO(1)
(‖g1‖(ε)

e + · · · + ‖gn‖(ε)
e

)
.

Letting ε → 0, we recover the product estimate (ii).
In order to establish this we shall, as in Gleason’s argument, relate ‖g‖e and d(ε)(g)

to an auxillary quantity ‖∂g�‖∞, where � : A4 →[0,∞) is a certain “smooth” function
supported on A4. We will specify � shortly; as in Gleason’s argument it will be con-
structed as a convolution of two functions φ and ψ . The former is taken to be a kind of
smoothed version of 1A defined using the metric d(ε) and Lipschitz for this metric, and
the latter constructed using the set S appearing in the definition of strong approximate
group (Definition 7.1) and Lipschitz with respect to the word metric on S.

One link between these quantities is relatively easy to establish for any function
� with �(id) � 1. Indeed suppose that ‖∂g�‖∞ = δ for some g ∈ A100. Then certainly
|�(gi) − �(gi+1)| � δ for all i with gi ∈ A100, which implies by an easy telescoping sum
argument that �(gi) � 1− δi for all i. In particular gi lies in the support of � , and hence
in A4, for i < 1/δ; note that the hypothesis gi ∈ A100 can be removed by induction. By
the first trapping condition in Definition 7.1 this implies that gi ∈ A for i < 1/1000δ, and
hence ‖g‖e � 1000δ. Thus

(8.8) ‖g‖e � 1000‖∂g�‖∞
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whenever g ∈ A100.
To establish (8.7) and hence the product estimate (ii) it therefore suffices to prove a

bound

(8.9) ‖∂g�‖∞ � KO(1)d(ε)(g)

in the opposite direction for all g ∈ A100 (the claim for g �∈ A100 being an easy conse-
quence). This argument will depend crucially on the specific form of � . The following
two lemmas describe the construction of the functions φ and ψ .

Lemma 8.3 (Properties of φ). — There is a function φ(ε) : A1000 →[0,1] such that

(i) φ(ε)(x)= 1 for x ∈ A;

(ii) φ(ε)(x)= 0 if x /∈ A2;

(iii) (Lipschitz bound) For all g ∈ A1000, one has

∥∥∂gφ
(ε)
∥∥
∞ � d(ε)(g)

d(ε)(id,Ac)
.

Here d(ε)(y,B) := inf{d(ε)(b−1y) : b ∈ B}, and Ac is the complement of A in G.

Proof. — Define

φ(ε)(x) :=
(

1 − d(ε)(x,A)

d(ε)(id,Ac)

)

+
.

Note that this is well-defined since d(ε)(id,Ac) �= 0; this would be an issue without the
fudge factor of ε that we have introduced.

Obviously φ(ε)(x) = 1 for x ∈ A. If φ(ε)(x) �= 0 then d(ε)(id, x−1A) = d(ε)(x,A) <

d(ε)(id,Ac), and so x−1A contains a point outside of Ac. This implies that x ∈ A2.
The Lipschitz bound is easily established. �

Lemma 8.4 (Properties of ψ ). — There is a function ψ : A1000 →[0,1] such that

(i) ψ(x)= 1 for x ∈ A;

(ii) ψ(x)= 0 if x /∈ A2;

(iii) (Lipschitz bound) ‖∂hyψ‖∞ � 1/104K3 for h ∈ S and y ∈ A4.

Proof. — Let Q := SA4
; recall from the definition of strong approximate group

that QN ⊆ A, where N := 104K3. Define ψ(g) = 0 if g /∈ QNA, ψ(g) = 1 if g ∈ A and
ψ(g) = 1 − i/N if g ∈ Qi+1A \ QiA for i = 0,1, . . . ,N − 1. The claimed properties of ψ

are easily checked. �
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We now define � to be the convolution

�(x) := 1
|A|
∑
y∈A2

φ(ε)(y)ψ
(

y−1x
)

for all x ∈ A100, with the convention that �(x)= 0 for x outside A100.
We note that

�(id)= 1
|A|
∑

x

φ(ε)(x)ψ
(
x−1
)
� 1

|A|
∑
x∈A

φ(ε)(x)ψ
(

x−1
)= 1,

a property required in the proof of (8.8). Note also that since φ and ψ are both at most 1
pointwise and are supported on A2 we have, for all x such that �(x) �= 0,

�(x)= 1
|A|
∑

y

φ(ε)(y)ψ
(

y−1x
)= 1

|A|
∑
y∈A4

φ(ε)(y)ψ
(

y−1x
)
� |A4|

|A| � K3,

that is to say

(8.10) ‖�‖∞ � K3.

Let g ∈ A100. Now since id ∈ A we have the crude bound d(ε)(id,Ac) � ε. It follows
from Lemma 8.3 that ‖∂gφ

(ε)‖∞ � d(ε)(g)/ε. From the identity

∂g�(x)= 1
|A|
∑

y∈A200

∂gφ
(ε)(y)ψ

(
y−1x
)
,

we have that

∣∣∂g�(x)
∣∣� ‖∂gφ‖∞ 1

|A|
∑
y∈A4

ψ
(

y−1x
)
� K3

ε
d(ε)(g).

This immediately yields the crude bound

(8.11) ‖∂g�‖∞ � K3

ε
d(ε)(g)

in the direction of (8.9), the statement we are trying to prove.
Denote by P(X) the bound

(8.12) ‖∂g�‖∞ � Xd(g)

for all g ∈ A100. We have just demonstrated P(K3/ε), and we wish to prove P(KO(1)),
which is (8.9). To this end we will implement a bootstrapping argument, showing that
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P(X) implies a stronger version of itself, namely P(X′) with some X′ < X, under appro-
priate conditions.

The hypothesis P(X) (cf. (8.12)) implies an improved Lipschitz bound on φ. To
see this note that if d(ε)(g) < 1/1000X then from assumption P(X) we have ‖∂g�‖∞ <

1/1000 and hence, from (8.8), that ‖g‖e < 1. By definition of the escape norm this implies
that g ∈ A. Phrased in the contrapositive, it follows that d(ε)(id,Ac) � 1/1000X, and
therefore the Lipschitz bound in Lemma 8.3 implies that

(8.13) ‖∂gφ‖∞ � 1000Xd(ε)(g).

The bootstrapping argument hinges on the Taylor expansion identity

∂gn� = n∂g� +
n−1∑
i=0

∂gi∂g�,

valid whenever g, . . . , gn ∈ A200 (say). This identity implies, using the triangle inequality
and (8.10), that

(8.14) ‖∂g�‖∞ � 1
n
‖∂gn�‖∞ + 1

n

n−1∑
i=0

‖∂gi∂g�‖∞ � 2K3

n
+ 1

n

n−1∑
i=0

‖∂gi∂g�‖∞.

To use this, we need to focus attention on the first and second derivatives of � . To
bound the first derivative we use the identity

∂h�(x)= 1
|A|
∑

y

φ(y)∂hyψ
(

y−1x
)
,

valid for h ∈ A100. Since φ � 1, this and the Lipschitz bound on ψ given in Lemma 8.4
imply that

(8.15) ‖∂h�‖∞ � 1
|A|
∑
y∈A2

‖∂hyψ‖∞ � 1/104K2

if h ∈ S.
We turn to the second derivative ∂h∂g� for g ∈ A and h ∈ S. Here we use the

identity

∂h∂g�(x)= 1
|A|
∑

y

(∂gφ)(y)∂hyψ
(

y−1x
)
.
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Recalling that φ,ψ are supported on A2 and using the Lipschitz bound (8.13) on φ

together with the Lipschitz bound on ψ given in Lemma 8.4, we obtain the bound

(8.16) ‖∂h∂g�‖∞ � 1
|A|
∑
y∈A4

‖∂gφ‖∞‖∂hyψ‖∞ � 1
10

Xd(ε)(g)

if g ∈ A and h ∈ S.
These bounds are useful in (8.14) provided that n is such that g, g2, . . . , gn ∈ S.

However, the second trapping property in the definition of strong approximate group
ensures that this is so for a reasonably large value of n, indeed for n as large as 1

106K3‖g‖e
.

Taking n this large and substituting into (8.14) yields

‖∂g�‖∞ � 107K6‖g‖e + 1
10

Xd(ε)(g) � X′‖g‖(ε)
e ,

where X′ = 107K6 + 1
10X and g ∈ S. The claim also trivially holds when g �∈ S.

It is easy to improve this to the stronger statement P(X′) using the triangle inequal-
ity ‖∂gh�‖∞ � ‖∂g�‖∞+‖∂h�‖∞, already observed in (6.2). Indeed for every η > 0 there
are, by the definition of d , g1, . . . gn such that g = g1 . . . gn and

d(ε)(g) > ‖g1‖(ε)
e + · · · + ‖gn‖(ε)

e − η.

Therefore

‖∂g�‖∞ � ‖∂g1�‖∞ + · · · + ‖∂gn
�‖∞ � X′(‖g1‖(ε)

e + · · · + ‖gn‖(ε)
e

)

� X′(η + d(ε)(g)
)
.

Since η was arbitrary, we do indeed obtain the bound ‖∂g�‖∞ � X′d(g), which is
the statement P(X′).

By repeating this deduction of P(X′) from P(X) many times, we see that the crude
bound P(K3/ε), established in (8.11), eventually implies P(109K6), and hence (8.9). By
earlier remarks, this concludes the proof of (ii), the inequality for products.

Finally, we turn to the commutator bound (iii). Now that we have the product
inequality (ii), we may define a function φ obeying the properties in Lemma 8.3 but using
‖g‖e instead of the fudged quantity ‖g‖(ε)

e = ‖g‖e + ε, that is to say with

d(g) := inf
{ n∑

i=1

‖gi‖e; g = g1 . . . gn, n � 1
}
.

This is because (ii) implies the lower bound d(id,Ac) � K−O(1), and in particular
d(id,Ac) �= 0. Moreover we have the Lipschitz bound

(8.17) ‖∂gφ‖∞ � KO(1)d(g).
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We will use this function φ in establishing (iii), the bound for commutators. Once
again we consider an auxillary function �, defined now to be the convolution

�(x) := 1
|A|
∑
y∈A2

φ(y)φ
(
y−1x
)

again with the convention that � vanishes outside of A100. We observe the identity

∂g∂h�− ∂h∂g�=−Thg∂[g,h]�,

for g, h ∈ A10, where Tg denotes the shift defined by Tg f (x) := f (g−1x) if g−1x is well-
defined, and 0 otherwise. It follows that

‖∂[g,h]�‖∞ � ‖∂h∂g�‖∞ + ‖∂g∂h�‖∞.

By the first bound in (8.16) (which holds equally well for this �) we have

‖∂[g,h]�‖∞ � 2
|A|
∑
y∈A4

‖∂gφ‖∞‖∂hyφ‖∞.

From (8.17) we obtain

‖∂[g,h]�‖∞ � KO(1)d(g) sup
y∈A4

d
(
hy
)
� KO(1)‖g‖e sup

y∈A4

∥∥hy
∥∥

e
.

By part (i) , this implies

‖∂[g,h]�‖∞ � KO(1)‖g‖e‖h‖e.

To conclude, we note that (8.8) holds for this new auxillary function � as well, since the
only fact we used in establishing that other than trapping properties of A was the lower
bound �(id) � 1.

This, at last, concludes the proof of Theorem 8.1. �

To conclude this section we assemble the main results of it and the previous section
in a portable form. The following is the only result we shall need from Section 7 and the
present section going forward to the next (and final) part of the paper.

Proposition 8.5. — Suppose that A is an ultra approximate group and that π : A8 → L is a

good model for A into a connected Lie group L with Lie algebra l. Let B be an arbitrary compact convex

neighbourhood of 0 in l. Then, for sufficiently small r, r′ with 2r > r′ > r > 0, we may find a large

strong ultra approximate subgroup A′ of A such that

(i) π−1(exp(rB))⊂ A′ ⊂ π−1(exp(r′B));

(ii) (A′)104
is well defined;



172 EMMANUEL BREUILLARD, BEN GREEN, TERENCE TAO

(iii) The escape norm ‖g‖e,A′ satisfies

(a) (Conjugation) If g, h ∈ (A′)10 then ‖h−1gh‖e = O(‖g‖e);

(b) (Product) If n is a nonstandard natural number and g1, . . . , gn ∈ (A′)10 is a non-

standard finite sequence of elements of (A′)10 (i.e. an ultraproduct of standard finite

sequences, see Section A) then ‖g1 . . . gn‖e = O(
∑n

i=1 ‖gi‖e);

(c) (Commutators) If g, h ∈ (A′)10 then we have ‖[g, h]‖e = O(‖g‖e‖h‖e).

(iv) The set H := {g ∈ A′; ‖g‖e = 0} is a global internal subgroup, that is to say it is of the

form H =∏
n→α Hn, where Hn ⊂ An contains id and is stable under multiplication and

inverse, which is contained in A′ and is normalised by A′.

Proof. — The existence of A′ satisfying (i) and (ii) follows from part (iii) of Definition
3.5. If r, r′ are small enough then Proposition 7.3 ensures that A′ is a ultra strong approx-
imate group in the sense of Definition 7.1. Properties (iii)(a), (b) and (c) then follow imme-
diately from Theorem 8.1 and taking ultraproducts, and (iv) then follows from (iii). �

Remark 8.6. — Observe that if A is a strong ultra approximate group, that is to
say an ultraproduct of K-strong finite approximate groups, and if L is a locally compact
model of A as given for example by Proposition 6.1, then from the strong approximate
group hypothesis made on A we see that the standard part of the escape norm st(‖g‖e,A)

and the escape norm of π(g) ∈ L with respect to the neighborhood of the identity π(A) of
L are comparable. Namely ‖π(g)‖e,π(A) � st(‖g‖e,A) � ‖π(g)‖e,π(A). As a consequence, if
we take the standard parts of the escape norm in properties (i) to (iii), then what we obtain
is precisely the analogous properties for the escape norm in L with respect to π(A). In
that case, the three properties are essentially equivalent to the original Gleason lemmas
in the literature on Hilbert’s fifth problem, applied to the locally compact (local) group L.
In the sequel however, it will be very important that the three bounds (i) to (iii) obtained
in Proposition 8.5 hold at the ultra level in ∗R and not only at the level of standard parts.

9. Proof of the main theorem

In this section, we complete the proof of our main theorem, Theorem 4.2. We
will do so by first reducing to the case when A has no global internal subgroup. For
convenience, we introduce the following definition.

Definition 9.1 (No small subgroups). — An ultra approximate group A has the NSS property
if A does not contain any non-trivial global internal subgroup.

By a global internal subgroup of A = ∏
n→α An, we mean a subset of the form∏

n→α Hn, where Hn ⊆ An is a genuine subgroup. Note that A is NSS if and only if,
for any g ∈ A\id, the escape norm ‖g‖e,A is non-zero (though it may be infinitesimal). We
remark that an analogous NSS condition for locally compact groups plays a key role in
the theory of Hilbert’s fifth problem.



THE STRUCTURE OF APPROXIMATE GROUPS 173

Example 22. — Let N ∈ ∗N be an unbounded (nonstandard) integer. Then the
interval A := [−N,N] (in the nonstandard integers ∗Z) is NSS. Note that while A contains
global subgroups such as Z or {x ∈ ∗Z : x = o(N)}, such subgroups are not internal (they
are not the ultralimits of standard sets).

Clearly, any ultra approximate subgroup of an NSS ultra approximate group is
also an NSS ultra approximate group. Using the Gleason lemmas from Section 8 we can
reduce the proof of our main theorem to consideration of the NSS case.

Proposition 9.2 (NSS reduction). — Let A be an ultra approximate group. Then there exists a

large ultra approximate subgroup A′ of A, with (A′)1000 well-defined and contained in A4, and a global

internal subgroup H contained in A′ and normalised by (A′)100, such that A′/H is an NSS ultra

approximate subgroup, which admits a connected Lie group as a good model.

We refer the reader to Definition 3.5 for the definition of a good model. Here A′/H
denotes the quotient local group as defined in Lemma B.12.

Proof. — By Proposition 7.2 there is a ultra (strong) approximate group A′ ⊆ A4

which is large relative to A, for which (A′)104
is well-defined and contained in A4, and a

good model π : (A′)8 → L, where L is a connected Lie group. Let B be an open bounded
convex symmetric neighbourhood of the identity in the Lie algebra of L. Then for suffi-
ciently small r > 0, exp(rB) contains no non-trivial subgroups of L.

Let H denote the global internal subgroup H = {g ∈ A′; ‖g‖e = 0} given by Propo-
sition 8.5. Since H is normalised by A′, it is also normalised by (A′)1000. We may then
apply Lemma B.12 and consider the quotient local group (A′)100/H. Then (A′)8/H =
(A′/H)8 is well-defined. Since A′,H are nonstandard finite symmetric sets, A′/H is also;
since (A′)2 can be covered by finitely many left-translates of A, (A′/H)2 can be covered
by finitely many left-translates of A′/H. We conclude that A′/H is an ultra approximate
group.

Since exp(rB) contains no non-trivial subgroups, the image of H under π has
to be trivial, thus the homomorphism π descends to a homomorphism of A′/H to L,
which satisfies the conditions for a good model (see Definition 3.5). By construction, every
element g ∈ A′ that is not in H has positive (but nonstandard) escape norm ‖g‖e,A′ . If g ∈ A′

and 〈[g]〉 ⊆ A′/H, where [g] is the class of g in A′/H, then 〈g〉 ⊆ A′2. On the other hand
A′ is a strong ultra approximate group, and thus ‖g‖e,A′ is non-zero if and only if ‖g‖e,A′2

is non-zero. This implies that every non-identity element [g] in A′/H also has positive
escape norm ‖[g]‖e,A′/H. Thus A′/H is NSS and the claim follows. �

Let us now state Theorem 4.2 in the special case of NSS groups, and show how
the general case of Theorem 4.2 follows from it.

Theorem 9.3 (NSS approximate groups contain large nilprogressions). — Let A be an NSS
ultra approximate group which admits a connected Lie group L as a good model. Then A4 contains a
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nondegenerate ultra nilprogression P in normal form, which is large relative to A. Furthermore, the rank

and step of P are no greater than the dimension of L.

Proof that Theorem 9.3 implies Theorem 4.2. — Let A be an ultra approximate group.
We may find a large ultra approximate subgroup A′ of A which satisfies the conclu-
sions of Proposition 9.2. We may then apply Theorem 9.3 to A′/H and find in (A′)4/H
a nondegenerate ultra nilprogression P0 in normal form with |P0| 	 |A/H|. We can
write P0 = Ps(u1, . . . , ur;N1, . . . ,Nr), where Ni ∈ ∗N are unbounded and ui ∈ A′/H. We
may then pick arbitrary lifts ui ∈ A′ and set P = P(u1, . . . , ur;N1, . . . ,Nr). Then HP is
a nondegenerate ultra coset progression in normal form contained in (A′)5 ⊆ A4, and
|HP|� |H||P0| 	 |A| as desired. �

We turn now to the proof of Theorem 9.3, which will occupy the remainder of
this section. We begin with a brief sketch, fleshing out a little more the overview given
in Section 4. The proof will proceed by induction on the dimension of the connected
Lie group L. The base case of the induction, when dim L = 0, is trivial as in this case
the NSS ultra approximate group A is also trivial. To treat the induction step we will
consider an element u of A with smallest possible escape norm. The existence of such
an element is guaranteed by our standing hypothesis that approximate groups are finite
objects, i.e. that each An in A = ∏

n→α An is finite. Then we will mod out A by the
geometric P := {un, |n|� 1/‖u‖e,A}, where u is an element of A which the smallest possible
escape norm ‖u‖e,A. The quotient local group A/P (in the sense of Lemma B.12) will be
shown to be both NSS and to admit a Lie group with dimension at most dim L − 1
as a good model. It is at this step that we crucially rely on the fact that we are only
quotienting out by a local group, the progression P, rather than a global one such as the
group 〈u〉 generated by u. We do this in order to avoid accidentally creating torsion with
an excessively large quotient. Indeed, it is because of this component of the induction
that it was necessary to cast the entire argument in the setting of local groups rather than
global groups, even if one had been willing to restrict the main results of the paper to the
global group case. Finally, making key use of the properties of the escape norm given by
the Gleason lemmas, we will lift the nilprogression from A/P to A.

Let us turn to the details.

Proof of Theorem 9.3. — Let A be an NSS ultra approximate group which admits a
connected Lie group L as a good model π : A8 → L. We proceed by induction on dim L
and first dispose of the trivial case when L has dimension zero. As L is connected, it must
thus be trivial. Applying Definition 3.5(iii), we conclude that A8 is a large global internal
subgroup of A. Since A is NSS, this kernel must therefore be trivial. Therefore A is trivial.

Now suppose that dim L � 1, and that the claim has already been proven for con-
nected Lie groups of smaller dimension. To complete the proof of Theorem 9.3 it suffices
to establish the following lemma.
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Lemma 9.4 (Induction step). — Suppose that A is an ultra approximate group admitting a

connected Lie group L of positive dimension as a good model. Then A contains large ultra approximate

subgroups A′′′ ⊆ A′′ ⊆ A′ ⊆ A with the following properties. Let u ∈ A′ be such that ‖u‖e,A′ is minimal

and non zero, and set P := {un : |n| < 1/‖u‖e,A′ }. Then P commutes with (A′′)10 and obeys the

following properties:

(i) the quotient A′′′/P is an ultra approximate group which admits a connected Lie group of

dimension dim L− 1 as a good model, whose Lie algebra is formed from the Lie algebra of

L by quotienting out by a one-dimensional central subalgebra;

(ii) if A is NSS, so is A′′′/P;

(iii) to any large ultra nilprogression Q in A′′/P in normal form, one can associate a large ultra

nilprogression Q in A′′ in normal form, whose rank exceeds the rank of Q by at most one,

and similarly for the step; and

(iv) (A′′′)4 ⊆ A′′.

Proof of Theorem 9.3. — Indeed apply the induction hypothesis to A′′′/P, which we
can do by (i) and (ii). We may then conclude, using (iv), that A′′/P contains a large ultra
nilprogression. Finally, apply (iii) to conclude. �

Proof of Lemma 9.4. — Take B to be some small convex neighbourhood of 0 in the
Lie algebra l of L. We shall take A′,A′′,A′′′ to be such that

(9.1) π−1
(
exp(B)

)⊆ A′ ⊆ π−1
(
exp(1.001B)

)

and

(9.2) π−1
(
exp(δB)

)⊆ A′′ ⊆ π−1
(
exp(1.001δB)

)

and

(9.3) π−1

(
exp
(

δ

10
B
))

⊆ A′′′ ⊆ π−1

(
exp
(

1.001
δ

10
B
))

,

where δ > 0 is a small (standard) real number to be specified later.
It follows from Proposition 8.5 that large ultra approximate subgroups of A exist

with these properties, and furthermore that, if B is small enough, the escape norm ‖ · ‖e,A′

satisfies the conjugation, product and commutator inequalities laid out in (iii) of that
proposition. Note also that A′,A′′ admit L as a good model and have the NSS property.

Property (iv) of the lemma is essentially immediate; we turn to the more substantial
(i), (ii) and (iii).

We begin with the proof of (i). Recall that u ∈ A′ is chosen so that ‖u‖e,A′ is minimal
and nonzero. Observing that ‖x‖e,A′ � 100δ for x ∈ (A′′)10, it follows from the commuta-
tor estimate of Proposition 8.5 (iii)(b) that for such x we have∥∥[x, u]∥∥

e,A′ = O
(‖x‖e,A′‖u‖e,A′

)
< ‖u‖e,A′

provided that δ is chosen sufficiently small in terms of the implied constant O(·).
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Note that [x, u] lies in A′, rather than merely (A′)4, since its escape norm is less
than 1. From the extremal property of u, it follows that [x, u] = id, that is to say x com-
mutes with u, whenever x ∈ (A′′)10.

Recall that we are taking P := {un : n � 1/‖u‖e,A′ }.
Since (A′′)6 is well defined, we may apply Lemma B.12 and form the quotient local

group A′′/P �∏
n→α A′′

n
/Pn, which is clearly also an ultra approximate group. We now

show that A′′/P admits a proper quotient of L as a good model. To do this, we first verify
that π(P) is a non-trivial central one-parameter local subgroup of L.

Since dim L � 1, the groups A′,A′′ are non trivial, and this implies that ‖u‖e,A′ is
infinitesimal, i.e. that M′

0 := 1/‖u‖e,A′ is unbounded. Let n ∈ ∗N be such that n = o(M′
0).

We must have un ∈ kerπ , because ukn ∈ A′ for all k ∈ N. Define a map φ : [−100,100]→
L by setting

(9.4) φ(t) := π
(
u�tM′

0�
)
,

where �·� is the (nonstandard) greatest integer function. Then π(un) = φ(st(n/M′
0)) for

all n ∈ [−100M′
0,100M′

0], and φ is a local homomorphism in the sense that φ(t)φ(s) =
φ(t+ s) whenever t, s, t+ s ∈ [−100,100]. Also π(P)= φ([−1,1]). Finally, we verify that
φ is continuous. Because of the local homomorphism property, it is enough to check this
at 0. If t is small, then (φ(t))k = φ(tk) ∈ exp(1.001B) for every integer k ∈ [0, 1

t
], hence

φ(t) ∈ exp(1.001B/k) is close to the identity in L, which gives the desired continuity.
As φ is a continuous homomorphism from [−1,1] to the Lie group L, there exists

an element X of the Lie algebra l such that φ(t)= exp(tX) for all t ∈ [−1,1]. Moreover
X ∈ 1.001B. On the other hand by the definition of the escape norm we have uM′

0 /∈ A′,
and hence φ(1) = exp(X) /∈ exp(B) and thus X /∈ B. In particular X is non-zero, and it
follows that φ([−1,1]) is a non-trivial local one-parameter subgroup of L. Finally it is
central in L, because L is connected and φ(t)= π(u�tM′

0�) commutes with the neighbour-
hood of identity π(A′′) as shown above. Thus X lies in the centre of the Lie algebra l.

If we choose a neighbourhood U of the identity in L small enough, then by Lemma
B.12 we may form the quotient space U/φ([−1,1]), which one easily verifies to be a
local Lie group of dimension dim L − 1, whose Lie algebra is obtained from the Lie
algebra of L by quotienting out by a one-dimensional central subalgebra. By Lie’s third
theorem every local Lie group is locally identifiable with an open neighbourhood of a
global connected Lie group L′, which in our case still has dimension dim L− 1. Thus, by
shrinking U if necessary, we may find a local homomorphism η : U → L′ whose kernel
lies in φ([−1,1]). The local homomorphism η ◦ π : (A′′)8 → L′ then pushes down to a
local homomorphism ψ : (A′′)8/P → L′. Choosing δ smaller if necessary, we may assume
that ψ is defined on all of (A′′/P)8, thus making L′ a good model for A′′/P. Note we may
also ensure that π(A′′) contains no non-trivial subgroup of L′, a property that will be
needed in Lemma 9.5 below. This completes the proof of (i).

We turn now to (ii), which asserted that A′′′/P is NSS. In fact we shall prove the
same statement for A′′/P, from which the statement for A′′′/P follows (or note that an
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identical proof works). Key to this endeavour is the following lifting lemma, which we will
require again in the proof of (iii).

Lemma 9.5 (Lifting lemma). — Let g ∈ A′′/P, and let κ : (A′′)8 → (A′′)8/P be the projection

map. Then there exists g̃ ∈ A′′ such that κ(g̃)= g and ‖g̃‖e,A′′ = O(‖g‖e,A′′/P).

Let us first remark on why the NSS property of A′′/P follows quickly from this. Indeed
suppose that g ∈ A′′/P is not the identity. Then the element g̃ generated by the above
lemma is not the identity either, and hence has positive escape norm since A′′ is NSS. By
the lemma, g also has positive escape norm. Since g �= id was arbitrary, this establishes
the NSS property for A′′/P.

Proof of Lemma 9.5. — Fix g ∈ A′′/P. Let g̃ be a lift of g in A′′ which minimizes the
escape norm ‖g̃‖e,A′′ among all possible lifts of g. If g̃ is trivial, then so is g and there is
nothing to prove. Therefore we may assume that g̃ is not the identity and hence, since A′′ is
NSS, that it has positive escape norm. Suppose, by way of contradiction, that ‖g‖e,A′′/P =
o(‖g̃‖e,A′′). Our goal will be to reach a contradiction by finding another lift of g with
strictly smaller escape norm than g̃.

Set M′′
1 := 1/‖g̃‖e,A′′ ∈ ∗N.

We now make an important deduction from our hypothesis. For every n ∈ ∗N such
that n = O(M′′

1), we have gn ∈ A′′/P. In particular, for every (standard) integer k ∈ N,
gkM′′

1 ∈ A′′/P. This implies that the group generated by gM′′
1 lies in A′′/P. However, in

projection to the Lie model, A′′/P gets mapped into a neighbourhood of the identity
in L′, which we chose small enough so as not to contain any non-trivial subgroup. We
thus conclude that gM′′

1 maps to the identity in L′, and therefore g̃M′′
1 maps into the local

one-parameter subgroup φ([−1,1]).
Now there is another element which maps to φ([−1,1]), namely u, the element

for which ‖u‖e,A′ is minimal.
In order to motivate the rest of the argument, let us temporarily work in a heuristic

setting (using informal notation such as ≈), returning to tighten the argument rigorously
later. Since

(9.5) A′′ ≈ π−1
(
exp(δB)

)
,

and since M′′
1 is the least n for which g̃n escapes A′′, we have

(9.6) π
(
g̃M′′

1
)≈ φ(δ)= exp(δX).

Similarly

(9.7) π
(
uM′′

0
)≈ φ(δ).
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Now un takes at least as long as g̃n to escape from A′ ≈ π−1(exp B). Hence (roughly)
it takes as least as long to escape from A′′ ≈ π−1(exp δB) as well, which means that

(9.8) M′′
1 � M′′

0.

We are trying to find a lift of g with smaller escape norm than that of g̃. To do this
it is sensible to look for elements of the form h := g̃u−m, m ∈ ∗N. Provided that m is chosen
judiciously, h will also be a lift of g since (by definition) u lies in P. Since, measured in
φ([−1,1]) by applying π , the element u is “shorter” than g̃, it seems reasonable that by
an appropriate choice of m we can make h shorter than g̃ as well.

Being a little more precise, suppose that m, n ∈ ∗N. Since u is central in A′′

we have hn = g̃nu−mn whenever these expressions are well-defined, and hence π(hn) =
π(g̃n)π(u−mn). From (9.6) and (9.7) we have

(9.9) π
(
g̃n
)≈ φ

(
st
(
δn/M′′

1

))
and π

(
ũ−mn
)≈ φ

(
st
(−δmn/M′′

0

))
.

These expressions will be legitimate if m, n are chosen so that the arguments of the φ’s
always lie in [−50,50] (say). It follows that

(9.10) π
(
hn
)≈ φ

(
st
(

1
M′′

1

− m

M′′
0

)
δn

)
.

However (by the Euclidean algorithm) there is a choice of m ∈ ∗N such that |1/M′′
1 −

m/M′′
0| � 1/2M′′

0. Comparing with (9.10) we see that for n = 1, . . . ,2M′′
0 we have

π(hn)= φ(δ′) with δ′ � δ. Since π−1(φ([0, δ])) ⊆ A′′, we must raise h to at least the
power 2M′′

0 before it escapes A′′. Since 2M′′
0 > M′′

0 � M′′
1, this h is a lift of g with smaller

escape norm than g̃. Note that the computations (9.10) are legitimate for this choice of m

and for n � 2M′′
0.

We now perform the above argument rigorously. Instead of the heuristic statement
(9.5), we must work with the inclusions

(9.11) π−1
(
exp(δB)

)⊆ A′′ ⊆ π−1
(
exp(1.001δB)

)
.

To get a precise form of (9.6), note that by definition of the escape norm we
have g̃M′′

1−1 ∈ A′′, whilst g̃M′′
1 /∈ A′′. In particular, as a consequence of (9.11), π(g̃M′′

1−1) ∈
exp(1.001δB), whilst π(g̃M′′

1) /∈ exp(δB). Since M′′
1 is unbounded, the first of these actu-

ally implies that π(g̃M′′
1) ∈ exp(1.001δB).

Similarly π(uM′′
0−1) ∈ exp(1.01δB), whilst π(uM′′

0) /∈ exp(δB). Once again, the first
of these implies that π(uM′′

0) ∈ exp(1.001δB).
Since B is convex, comparison of these facts shows that π(g̃M′′

1) = φ(t) and
π(uM′′

0)= φ(t′) with

(9.12) t, t′ ∈ [0.9δ,1.1δ].



THE STRUCTURE OF APPROXIMATE GROUPS 179

Suppose that M′
1 and M′

0 are the escape times of g̃ and u from A′, respectively. Since
u ∈ A′ was assumed to have minimal escape norm, M′

1 � M′
0. On the other hand (9.11)

implies that M′′
0/M′

0,M′′
1/M′

1 ∈ [0.99δ,1.01δ], and so

(9.13) M′′
1 � 1.1M′′

0.

As in the heuristic discussion above, take h := g̃u−m, for some m ∈ ∗N. Let n ∈ ∗N. Then
we have

π
(
g̃n
)= φ

(
st
(
tn/M′′

1

))
and π

(
u−mn
)= φ

(−st
(
t′mn/M′′

0

))

provided that the arguments of the φ’s are in [−50,50], which will always be the case
later on in the argument. Since u is central we have

(9.14) π
(
hn
)= φ

(
st
(

t

δM′′
1

− mt′

δM′′
0

)
δn

)
.

Roughly as before, we use the Euclidean algorithm to find m ∈ ∗N such that
|1/M′′

1 − mt′/δM′′
0|� t′/2δM′′

0. By (9.12) and (9.13) it follows that
∣∣∣∣

t

δM′′
1

− mt′

δM′′
0

∣∣∣∣�
t′

2δM′′
0

+
(

1 − t

δ

)
1

M′′
1

<
0.9
M′′

1

.

It follows from this and (9.14) that π(hn) ∈ φ([0, δ]) for n � M′′
1, and hence hn lies in A′′

for these same values of n. As a consequence, h has smaller ‖ · ‖e,A′′ escape norm than g̃,
contrary to assumption. �

Finally we prove item (iii) of Lemma 9.4. Suppose then that Q is a nondegen-
erate large ultra nilprogression in A′′/P in normal form; we wish to lift this to a large
ultra nilprogression Q in A′′ of at most one higher rank and step, while preserving the
nondegeneracy and normal form properties. The main difficulty is that if one lifts the
generators of Q arbitrarily then there is no guarantee that the progression they generate,
or even a significant part of it, will be contained in A′′. The key to ensuring that we do
achieve this lies in making judicious use of the lifting lemma (Lemma 9.5) and the prod-
uct and commutator properties of the escape norm (Proposition 8.5(iii) (b) and (c)). At
this point we advise the reader to quickly review Definition 2.6 and Appendix C, where
nilprogressions in C-normal form are discussed.

We may write the non-degenerate ultra nilprogression in normal form as

Q = P(u1, . . . , ur;N1, . . . ,Nr),

where the ui are in A′′/P, the Ni ∈ ∗N are unbounded, and r is the rank of Q, and some
standard step s. From the normal form hypothesis (and taking ultraproducts), we have
the following properties:
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(i) (Upper-triangular form) For every 1 � i < j � r and εi, εj ∈ {−1,+1}, one has

(9.15)
[
u
εi

i , u
εj

j

] ∈ P
(

uj+1, . . . , ur;O
(

Nj+1

NiNj

)
, . . . ,O

(
Nr

NiNj

))
.

(ii) (Local properness) The expressions u
n1
1 . . . unr

r for nonstandard integers n1, . . . , nr

with |ni|� 1
CNi for all 1 � i � r are all well-defined and distinct, if C is a suffi-

ciently large standard real.
(iii) (Volume bound) One has

N1 . . .Nr � |Q| � N1 . . .Nr.

(Note that as the Ni are unbounded, 2�Ni� + 1 and Ni are comparable.)

Also, since u
ni

i ∈ Q ⊆ A′′/P for all 1 � i � r and |ni|� Ni , we have

‖ui‖e,A′′/P � 1
Ni

.

By Lemma 9.5, we may find lifts ui ∈ A′′ which project to ui in the quotient local
group A′′/P, and are such that

‖ui‖e,A′′ = O
(‖ui‖e,A′′/P

)

and thus

(9.16) ‖ui‖e,A′′ � 1
Ni

.

In order to include P in the lifted progression, we set ur+1 := u, the generator of P,
and Nr+1 := 1/‖u‖e,A′′ . From (9.4) we see that

(9.17) M′
0 � Nr+1 � M′

0.

We then define

Q := P(u1, . . . , ur, ur+1; εN1, . . . , εNr+1)

for some sufficiently small standard ε > 0. We claim that Q is well-defined in A′′ as a
nondegenerate ultra nilprogression in normal form, of rank (r + 1) and step at most
s + 1.

We begin with the claim that Q is well-defined in A′′. From (9.16) and Proposition
8.5 one has

‖g‖e,A′′ � ε

for all g ∈ Q, and in particular every product in Q lies in A′′ as required.



THE STRUCTURE OF APPROXIMATE GROUPS 181

It is clear that Q is a nondegenerate ultra non-commutative progression of rank
(r + 1). To show that it is a nilprogression of step at most s + 1, it suffices to show that
any iterated commutator g of length s + 2 in the generators u±1

1 , . . . , u±1
r+1 is trivial. Using

commutator identities such as the Hall-Witt identity

(9.18)
[
z, [x, y]]= [[y−1, z−1

]
, x
]zy[[

z, x−1
]
, y−1
]xy

where xy := y−1xy (using the unbounded nature of the Ni to justify all operations) we may
restrict attention to iterated commutators g of the form g = [h, u±1

i ] where h is an iterated
commutator of length s+ 1 and 1 � i � r + 1. But by projecting down to A′′/P, we know
that the image of h vanishes and thus h ∈ P. Since P is central in A′′, the claim follows.

Finally, we need to show that Q is in normal form. We begin by establishing the
upper triangular form (2.1), i.e. that

[
u
εi

i , u
εj

j

] ∈ P
(

uj+1, . . . , ur;O
(

Nj+1

NiNj

)
, . . . ,O

(
Nr

NiNj

))

whenever 1 � i < j � r + 1 and εi, εj ∈ {−1,+1}.
If j = r + 1, then uj = u commutes with every element of A′′, and in particular with

ui , so the claim follows in this case. Now suppose that j � r. From (9.15) we then have

[
ui

εi , uj
εj
] ∈ P

(
uj+1, . . . , ur;O

(
Nj+1

NiNj

)
, . . . ,O

(
Nr

NiNj

))

which lifts to
[
u
εi

i , u
εj

j

] ∈ P
(

uj+1, . . . , ur;O
(

Nj+1

NiNj

)
, . . . ,O

(
Nr

NiNj

))
· P.

Thus we may write [uεi

i , u
εj

j ] = gun, where

g ∈ P
(

uj+1, . . . , ur;O
(

Nj+1

NiNj

)
, . . . ,O

(
Nr

NiNj

))

and n � 1/‖u‖e,A′ = M′
0. From (9.16) and Proposition 8.5 one has

∥∥[uεi

i , u
εj

j

]∥∥
e,A′′ � 1

NiNj

,

and therefore

‖g‖e,A′′ � 1
NiNj

and hence

(9.19)
∥∥un
∥∥

e,A′′ � 1
NiNj

.
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In particular, ‖un‖e,A′′ is infinitesimal, which implies that π(un)= id and hence n = o(M′
0)

by (9.4). Since ‖u‖e,A′′ = 1/Nr+1, we conclude that

|n| � Nr+1

NiNj

and thus

[
u
εi

i , u
εj

j

] ∈ P
(

uj+1, . . . , ur+1;O
(

Nj+1

NiNj

)
, . . . ,O

(
Nr+1

NiNj

))
.

Noting that ε > 0 is standard and thus can be absorbed into the O() notation, this gives
the desired upper triangular property.

Next, we establish the local properness. Suppose that

u
n1
1 . . . u

nr+1
r+1 = u

n′1
1 . . . u

n′r+1
r+1

for some |ni|, |n′i|� εNi . Quotienting by P, we conclude that

u1
n1 . . . ur

nr = u1
n′1 . . . ur

n′r .

This quotienting can be justified because all products here lie in Q and hence in A′′. By
the local properness of Q, we conclude if ε is small enough that ni = n′i for all 1 � i � r;
we may then cancel and conclude that

unr+1−n′r+1 = id.

Since ‖u‖e,A′′ = 1/Nr+1 and |nr+1 − n′r+1| < Nr+1, this implies that nr+1 = n′r+1, giving the
desired local properness.

From local properness one immediately has the lower bound

|Q| 	 N1 . . .NrNr+1.

Now we establish the matching upper bound

|Q| � N1 . . .NrNr+1.

We first recall from the normal form of Q that

|Q| � N1 . . .Nr.

From construction it is also clear that the image of Q under projection by P lies in Q. It
therefore suffices to show that the preimage of any element in Q contains at most O(Nr)

elements of Q. By construction of the quotient map, we see that the preimage is contained
in a translate of P, and thus has cardinality O(M′

0); the claim then follows from (9.17).
This concludes the proof of Lemma 9.4 and thus Theorem 9.3. �
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We can now conclude the proof of Theorem 2.10, the most basic form of our main
theorem.

Proof of the first part of Theorem 2.10. — We argue by contradiction. Negating the
quantifiers, we see that there exists some K � 1 and an infinite sequence of local groups
Gn and finite K-approximate groups An ⊆ Gn, n ∈ N, for which the conclusion of the
theorem fails, namely for which A4

n
does not contain any coset nilprogression of rank and

step at most n in n-normal form and of cardinality at least 1
n
|An|.

Now form the ultraproduct A =∏
n→α An inside G =∏

n→α Gn. By Łos’s Theo-
rem (Theorem A.6), G is a local group and A an ultra approximate subgroup. We can
now apply Theorem 4.2, whose proof we just completed, to conclude that A4 contains an
ultra coset nilprogression P in normal form with |P| 	 |A|. Using Łos’s theorem again
we conclude that P =∏

n→α Pn, where for an α-large set of n, Pn is a 1/c-proper coset
nilprogression contained A4

n
of rank and step at most 1/c and of size at least c|An| for

some standard positive number c > 0. But this contradicts the construction of the An,
thereby yielding the claim. �

To conclude this section we record another useful conclusion from the above anal-
ysis: Hrushovski’s Lie model is nilpotent.

Proposition 9.6 (Nonstandard finite approximate groups have nilpotent Lie models). — Suppose

that A is an ultra approximate group and that π : A8 → L is a good model for A into a connected Lie

group L with Lie algebra l. Then l and L are nilpotent.

Proof. — By Proposition 8.5 we may find a large strong ultra approximate subgroup
A′ of A obeying the conclusion of that proposition. By quotienting out the elements H
of A′ of zero escape norm as in the proof of Proposition 9.2, we obtain an NSS ultra
approximate group A′/H. Now one runs the argument in Theorem 9.3. An inspection of
this argument shows that if one unfolds the induction from Lemma 9.4, the Lie algebra
l of L is repeatedly quotiented out by central algebras until it becomes trivial. Thus, l

can be obtained from the trivial Lie algebra by a finite tower of central extensions and is
therefore nilpotent as required. The nilpotence of L is an immediate consequence of this
and basic Lie theory. �

10. A dimension bound

In this section we prove Theorem 2.12, in which it is shown that the rank of the
nilprogression P in the main theorem may be taken to be O(KO(1)). We will also show
that so long as we work in a global group G, and replace A4 with AOK(1), it may be
taken to be O(log K). By the usual ultraproduct argument, it will suffice to establish the
following nonstandard analysis formulation of the theorem.
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Theorem 10.1. — Suppose that A is an ultra global K-approximate group, thus A =∏
n→α An for some finite K-approximate groups, each contained in a global group Gn. Then A12 con-

tains an ultra coset nilprogression P in normal form with |P| 	 |A| and rank at most O(K2 log K).

Moreover, there exists a standard natural number m such that Am contains an ultra coset nilprogression P
in normal form with |P| 	 |A| and rank at most 6 log2 K.

Recall that the step of a nilprogression in normal form is always less of equal to its
rank. The derivation of Theorem 2.12 from Theorem 10.1 proceeds analogously to the
derivation of Theorem 2.10 from Theorem 4.2 and is omitted.

It remains to establish Theorem 10.1. The arguments here are inspired by some
remarks of Hrushovski in [33, §4]. In particular, a key tool will be the following lemma
from [33, Lemma 4.9].

Lemma 10.2 (Doubling in a simply connected nilpotent Lie group). — Let G be a connected,

simply connected nilpotent Lie group of dimension d, and let A be a measurable subset of G. Let μ

be a Haar measure on G (note that nilpotent groups are automatically unimodular, and so there is no

distinction between left and right Haar measure). Then μ(A2) � 2dμ(A).

Proof. — We use an argument of Gelander from [33, Lemma 4.9]. As is well known
(e.g. see [12]), in a simply connected nilpotent Lie group, the exponential map exp :
g → G is a diffeomorphism, which pushes forward the Lebesgue measure μg on the d-
dimensional vector space g, the Lie algebra of G, to the Haar measure μ on G. Thus it
will suffice to show that μg(log(A2)) � 2dμg(log A), where log is the inverse of exp. But
as A2 contains {a2 : a ∈ A}, log(A2) contains the dilate 2 · log A of log A, and the claim
follows. �

One is tempted to combine this theorem with the Hrushovski Lie Model Theo-
rem directly (i.e. Theorem 3.10), to get some dimensional control on the Lie group L.
However, there is a technical obstruction; the Lie model is only available for an ultra ap-
proximate subgroup A′ of A, and the covering parameter K′ of this subgroup A′ may be
much worse than the covering parameter K of the original ultra approximate subgroup
A. To get around this problem, we need to choose the subgroup A′ more carefully. A clue
as to how to proceed is provided by the following basic observation (cf. [31, Lemma 7.3]).

Lemma 10.3 (Slicing approximate groups by genuine subgroups). — Let A be a (possibly infinite)
K-approximate group in a global group G, and let G′ be a genuine subgroup of G. Then A′ := A2∩G′

is a K3-approximate subgroup and A4 ∩ G′ can be covered by at most K3 left translates of A′.

Proof. — Since (A′)2 ⊆ A4 ∩ G′, it suffices to show that A4 ∩ G′ can be covered
by K3 left-translates of A′. But A4, can be covered by K3 left-translates of A since A is a
K-approximate group. Next, observe that if a left-translate gA of A intersects A4 ∩ G′ in
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at least one point g′, then

gA ∩ A4 ∩ G′ ⊆ gA ∩ G′ ⊆ g′A′.

Thus A4 ∩ G′ can be covered by K3 left-translates of A′, as required. �

Lemma 10.3 suggests that we should look for Lie models of approximate groups A′

that are formed by slicing A2 with a genuine subgroup G′ of G.
We turn to the details. Let An be a sequence of K-approximate groups in global

groups Gn, and let A =∏
n→α An be their ultraproduct; thus A is a ultra K-approximate

group that lies inside an ultra genuine group
∏

n→α Gn. By Proposition 6.10, we may find
a model π : 〈A〉→ G of A4 by a locally compact group G.

Let U0 be the neighbourhood in Definition 3.5. We have π−1(U0) ⊆ A4 and
U0 ⊆ π(A4). By Theorem B.17, there is an open subgroup G′ of G and a closed subgroup
H of G contained in U0 and normalized by G′ such that L := G′/H is a connected Lie
group. Let U1 ⊆ G′ be an open subset such that H ⊆ U1 ⊆ U2

1 ⊆ U0 and let φ : G′ → L
denote the quotient map.

Now set A′ := A4 ∩ π−1(G′). From Lemma 10.3 applied to A2, we see that A′ is
a K6-approximate group. We now also claim that A′ is a nonstandard finite set, which
would make A′ an ultra K6-approximate group. To see this, observe first from Definition
3.5(ii) that π(A4) is contained in some compact set F. As G′ is an open subgroup of G, it
is also closed and F∩G′ is compact. We then see from Definition 3.5(iii) that we can find
a nonstandard finite set A∗ such that π−1(F ∩ G′) ⊆ A∗ ⊆ π−1(G′). Thus A′ = A4 ∩ A∗,
and so A is a nonstandard finite set as required.

Note that π(A′) contains the open set U0 ∩G′ and is itself contained in a compact
subset of G′. Hence the set E := φ◦π(A′) is precompact and contains a neighbourhood of
the identity in L. Moreover (φ ◦π)−1(φ(U1))⊆ A′, hence it follows that φ ◦π : 〈A′〉 → L
is a good model for A′. From Lemma 9.6, we conclude that L is nilpotent. Every con-
nected nilpotent Lie group admits a unique maximal compact subgroup which, more-
over, is central. Let N be the maximal compact subgroup of L and θ : L → L/N be the
quotient map.

We claim that dim(L/N) � 6 log2 K. To see this note that, as A′ is a K6-approximate
group, we see that E2 is covered by at most K6 left-translates of E. Therefore θ(E)2 can
be covered by at most K6 left-translates of θ(E), and hence θ(E)

2
can be covered by at

most K6 translates of θ(E), where θ(E) is the topological closure of θ(E), a compact set
with non-empty interior. If we let μ be a Haar measure on L/N, it follows that

μ
(
θ(E)

2)� K6μ
(
θ(E)

)
.

On the other hand, from Lemma 10.2 one has

μ
(
θ(E)

2)� 2dim(L/N)μ
(
θ(E)

)
.



186 EMMANUEL BREUILLARD, BEN GREEN, TERENCE TAO

Since θ(E) has non-empty interior, μ(θ(E)) �= 0 and so comparison of these two inequal-
ities implies that

(10.1) dim(L/N) � 6 log2 K.

We now explain how to derive the second part of Theorem 10.1 from the above; we
will turn to the first part later. We consider φ−1(N), which is the kernel of the projection
map from G′ to L/N (= (G′/H)/N). This is a compact subgroup of G′. Since π(A′)
contains an open neighbourhood of the identity, we conclude that there exists a standard
natural number m such that φ−1(N) ⊆ π(A′m−1), and this implies that A′m contains the
kernel of θ ◦ φ ◦ π , which implies that θ ◦ φ ◦ π : A′8m → L/N is a good model. By
Proposition 9.2 we conclude that A′4m contains a large approximate subgroup A′′ with
(A′′)1000 well-defined and contained in A′4m, and a global internal subgroup H′ of A′′ such
that A′′/H′ is an NSS approximate subgroup with a connected Lie group as a good model.
An inspection of the proof of that proposition reveals that we may take (A′′)1000 inside A′m

and that we may take the connected Lie group to be L/N, which we have shown to have
dimension at most 6 log2 K. Applying Theorem 9.3, we see that (A′′/H′)4 contains a large
ultra nilprogression in normal form of rank at most 6 log2 K, and thus (A′′)4 contains
a large ultra coset nilprogression in normal form of rank at most 6 log2 K. As (A′′)4 is
contained in A′m, which is in turn contained in A4m, the second part of Theorem 10.1
follows (after redefining m).

We now turn to the first part of Theorem 10.1. As we see from the last paragraph,
the difficulty here is that φ−1(N) may not be contained in π(A′). We will show that
nevertheless π(A′) still contains a subgroup φ−1(N0), where N0 is a closed subgroup of
N with small codimension. For this the key is the following lemma, which is potentially
of interest its own right. Here, and below, we write Td := Rd/Zd for the d-dimensional
torus. By a subtorus we mean a closed connected subgroup of Td .

Lemma 10.4. — Let K, d � 1 and A be a closed K-approximate group in Td containing a

neighbourhood of 0. That is, A is closed, contains a neighbourhood of 0, is centrally symmetric, and there

is a finite set X ⊆ Td , |X|� K, such that A+A ⊆ A+X. Then 4A := A+A+A+A contains

a subtorus T ⊆ Td of codimension at most O(K2 log K).

Before proving Lemma 10.4, we explain how to conclude the proof of Theo-
rem 10.1 with Lemma 10.4 in hand. First we observe that setting A′

1 := A2 ∩ π−1(G′),
π(A′

1) is a neighbourhood of id in G. Indeed A4 is and A4 ⊆ XA for some finite X,
so that π(A) has non-empty interior, and hence π(A2) is a neighborhood of id. We
now apply the lemma to A = φ ◦ π(A′

1), and conclude that φ−1(T) ⊆ π(A′
1

4
) ⊆ π(A′2).

Writing θ ′ : L → L/T for the projection map, we see that A′3 contains the kernel of
θ ′ ◦ φ ◦ π and this implies that A′3 admits the connected nilpotent Lie group L/T as a
good model. Moreover dim L/T = dim L/Td + dim Td/T = O(K2 log K) by (10.1) and
by Lemma 10.4. The rest of the proof is then identical to the previous case: by Proposition



THE STRUCTURE OF APPROXIMATE GROUPS 187

9.2 and it’s proof we conclude that A′3 contains a large approximate subgroup A′′ with
(A′′)1000 well-defined and contained in A′3, and a global internal subgroup H′ of A′′ such
that A′′/H′ is an NSS ultra approximate subgroup admitting L/N0 as a good model. By
Theorem 9.3, we see that (A′′/H′)4 contains a large ultra nilprogression in normal form
of rank at most O(K2 log K), and thus (A′′)4 contains a large ultra coset nilprogression
in normal form with rank at most O(K2 log K). As (A′′)4 ⊆ A′3 ⊆ A12, the first part of
Theorem 10.1 follows.

We now turn to the proof of Lemma 10.4. Let μ be the normalized Haar measure
on Td . Note that the group T̂d of characters of Td identifies with Zd . Our main tool is
the notion of the (α-)large spectrum of an additive set A, defined by

Specα(A) := {ξ ∈ Zd : ∣∣1̂A(ξ)
∣∣� αμ(A)

}
.

See [54, Definition 4.34] for this definition and a further discussion.
If S ⊆ Zd is a set of characters, we write

S⊥ :=
⋂
ξ∈S

ker ξ.

Note that S⊥ is a closed subgroup of Td with codimension the rank of the subgroup of Zd

generated by S.
To prove Lemma 10.4 we first reduce to the case in which μ(A) is somewhat large

by establishing the following lemma.

Lemma 10.5. — Suppose that A ⊆ Td is a closed K-approximate group containing a neigh-

bourhood of 0. Then there is a subtorus T0 ⊆ Td with dim(T0) � d −O(log K) and some x0 ∈ Td

such that, writing μ0 for the Haar measure on T0, we have μ0((A + x0)∩ T0)	 e−O(K log K).

Then we handle the case in which μ(A) is somewhat large by proving the follow-
ing, which is a straightforward continuous analogue of the so-called Bogolyubov-Chang
lemma [10].

Lemma 10.6. — Suppose that A ⊆ Td is measurable, that μ(A) � α, and that μ(2A) �
Kμ(A). Then 2A − 2A contains a subtorus T ⊆ Td of codimension at most O(K log(1/α)).

To deduce Lemma 10.4 from Lemmas 10.5 and 10.6, we proceed as follows. Lo-
cate an x0 as in Lemma 10.5, and suppose furthermore that for this x0 the measure of
(A + x0)∩ T0 is close to maximal in the sense that

(10.2) μ0

(
(A + x0)∩ T0

)
� 1

2
μ0

(
(A + x)∩ T0

)

for all x ∈ Td . Set A1 := (A + x0)∩ T0. Then , since A + A ⊆ A + X, we have

A1 + A1 ⊆ (A + X + 2x0)∩ T0.
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By (10.2) it follows that μ(2A1) � 2Kμ(A1). We are now in a position to apply Lemma
10.6 to A1, with α = e−O(K log K). We conclude that there is a further subtorus T ⊆ T0 of
codimension O(K2 log K) inside 2A1 − 2A1. Since 2A1 − 2A1 ⊆ 4A, this concludes the
proof of Lemma 10.4.

For the proofs of both Lemmas 10.5 and 10.6 we will require the following lemma
of Bogolyubov type.

Lemma 10.7 (Bogolyubov-type lemma). — Let A ⊆ Td have positive measure and let k � 2
be a natural number. Suppose that

δ �
(
μ(A)/2μ(kA)

)1/(2k−2)
.

Then kA − kA contains (Specδ(A))⊥.

Proof. — It suffices (in fact, it is equivalent) to show that if x ∈ (Specδ(A))⊥ then
f (x) > 0, where f = 1∗k

A ∗ 1∗k
−A = 1A ∗ · · · ∗ 1A ∗ 1−A ∗ · · ·1−A is the convolution of k copies

of 1A and k copies of 1−A. Now by the Fourier inversion formula we have

f (x)=
∑
ξ∈Zd

∣∣1̂A(ξ)
∣∣2k

ξ(x) �
∑

ξ∈Specδ(A)

∣∣1̂A(ξ)
∣∣2k −

∑
ξ /∈Specδ(A)

∣∣1̂A(ξ)
∣∣2k

(10.3)

�
∑
ξ∈Zd

∣∣1̂A(ξ)
∣∣2k − 2

∑
ξ /∈Specδ(A)

∣∣1̂A(ξ)
∣∣2k

,

where we have used the fact that ξ(x) = 1 if ξ ∈ Specδ(A) and x ∈ (Specδ(A))⊥. Now
Parseval’s identity and the Cauchy-Schwarz inequality imply that

∑
ξ∈Zd

∣∣1̂A(ξ)
∣∣2k =

∫
x∈Td

1∗k
A (x)2dμ(x) � 1

μ(kA)

(∫
x∈Td

1∗k
A (x)dμ(x)

)2

= μ(A)2k

μ(kA)
.

On the other hand, by a second application of Parseval’s identity, we have
∑

ξ /∈Specδ(A)

∣∣1̂A(ξ)
∣∣2k

< δ2k−2μ(A)2k−2
∑
ξ∈Zd

∣∣1̂A(ξ)
∣∣2 = δ2k−2μ(A)2k−1.

Substituting these inequalities into (10.3) yields

f (x) � μ(A)2k

μ(kA)
− 2δ2k−2μ(A)2k−1 = μ(A)2k−1

μ(kA)

(
μ(A)− 2δ2k−2μ(kA)

)
.

The lemma follows immediately. �
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Lemma 10.6 is an immediate consequence of the case k = 2 of this lemma and
(the continuous variant of) “Chang’s lemma” [10], which is the following statement. For
a proof, see [54, Lemma 4.36].

Lemma 10.8 (Chang’s lemma). — Suppose that α < 1/2 and that A ⊆ Td is a measurable

set with μ(A) � α. Then Specδ(A) generates a subgroup of Zd of rank at most O(δ−2 log(1/α)).

Proof of Lemma 10.6. — Noting that μ(A)/μ(2A) � 1/K, the lemma follows from
Lemma 10.7 with k = 2 and δ := 1/2

√
K followed by an application of Lemma 10.8. �

To prove Lemma 10.5 we will apply Lemma 10.7 with a much larger value of k, as
well as the following result.

Lemma 10.9. — There is an absolute constant c > 0 with the following property. Suppose that

A ⊆ Td is a closed K-approximate group containing a neighbourhood of 0. Then Spec1−c/ log K(A)

generates a subgroup of Zd of rank O(log K).

Proof. — Let ε = c/ log K, where c > 0 is to be chosen later. Suppose that ξ ∈
Spec1−ε(A) and that ξ �= 0. Let η : Td �→ R/Z be such that ξ(x)= e2iπη(x). Then

∫
Td

1A(x)ξ(x) dμ(x)

is real, since A is symmetric, and at least (1 − ε)μ(A). Thus
∫

Td

1A(x) cos
(
2πη(x)

)
dμ(x) � (1 − ε)μ(A),

and hence the (symmetric) subset A′(ξ)⊆ A, consisting of those x for which cos(2πη(x)) �
99/100, has measure μ(A′(ξ)) � (1 − 100ε)μ(A). In particular ‖η(x)‖ < 1

10 whenever
x ∈ A′(ξ), where ‖θ‖ := infz∈Z |θ − z|.

Suppose now that Spec1−ε(A) contains elements ξ1, . . . , ξm which are linearly in-
dependent over Q, and let η1, . . . , ηm be the corresponding R/Z-valued characters. Con-
sider the set A′′ :=⋂m

i=1 A′(ξi); provided that m < 1/100ε, this will have μ(A′′) � 1
2μ(A).

Note that A′′ = −A′′.
Consider now the homomorphism ψ : Td → Tm given by x �→ (η1(x), . . . , ηm(x)).

The image of A′′ under ψ lies in a box of diameter 1/5.
Now any subset U of Tm = (R/Z)m which lies in a box of diameter < 1

2 is Freiman
2-isomorphic to an open subset of Rm, and thus by the abelian case of Gelander’s Lemma
10.2 (which, in this case, is just a very simple case of the Brunn-Minkowski inequality),
we have

μm(2U) � 2mμm(U),
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where μm is the normalized Haar measure on Tm = (R/Z)m. However, we have
μ(5A′′) � μ(5A) � K4μ(A) � 2K4μ(A′′), and an application of the Ruzsa covering
lemma (here our Lemma 5.2) shows that 2A′′ is a 4K4-approximate group, and con-
sequently so is U :=ψ(2A′′).

Therefore, noting that μm(U) �= 0 since μ(A′′) � 1
2μ(A) > 0, we obtain

2m �
(
4K4
)2 = (2K)8,

a contradiction if m > 8 log2 2K. Such a choice of m is acceptable if ε < c/ log K with
c sufficiently small, and so we are forced to conclude that ξ1, . . . , ξm cannot exist. The
lemma follows. �

Proof of Lemma 10.5. — Note that kA ⊆ (k−1)X+A, and that |mX|� m|X| = mK for
all natural numbers m. It follows that μ(kA) � kKμ(A), and so Lemma 10.7 is applicable
with δ = 1− c/ log K for some k � KC. The conclusion is that 2kA contains the subtorus
T0 := (Spec1−c/ log K(A))⊥ which, by Lemma 10.9, has codimension O(log K). However
2kA is covered by at most (2k)K = eO(K log K) translates of A, and so one of these translates
has μ0(A + x0)	 e−O(K log K), which was precisely what we claimed. �

To conclude this section we record the observation that the above arguments also
yield the following more precise version of Proposition 6.12, the weak global Lie model
theorem. This builds upon a previous result in this direction by Hrushovski: see [33,
Theorem 4.2] and the discussion before [33, Lemma 4.9].

Theorem 10.10 (Strong global Lie Model Theorem). — Suppose that A is a global ultra K-

approximate group. Then there is a large ultra approximate subgroup Ã of Am for some standard m � 1
which admits a global model π̃ : 〈Ã〉 → L into a connected, simply connected nilpotent Lie group L of

dimension at most 6 log2 K.

Furthermore, there exists a large ultra approximate group A′ of A which admits a global model

π ′ : 〈A′〉 → L′, a connected nilpotent Lie group, whose maximal (central) compact subgroup N verifies

L′/N � L.

11. Applications to growth in groups and geometry

In this section we collect a variety of applications of our main results, in particular
proving the various results stated in the introduction.

As an application of his method Hrushovski [33] established the following strength-
ening of Gromov’s theorem on groups with polynomial growth.

Theorem 11.1. — Let G be a finitely generated group and let K � 1. Suppose G =⋃n�1 An,

where An is an increasing union of finite subsets of G such that |A2
n | � K|An| for all n � 1. Then G

is virtually nilpotent.



THE STRUCTURE OF APPROXIMATE GROUPS 191

This is indeed a strengthening of Gromov’s theorem because if G has polynomial
growth with respect to some generating set S then the An may be taken to be some
subsequence of the word metric balls relative to S.

Unsurprisingly, our main theorem also admits an application of this kind. The
following is a corollary of Theorem 2.10 and subsumes Theorem 11.1 above.

Corollary 11.2 (Gromov-type theorem). — Let K � 1. Then there is some K′, depending on

K, such that the following holds. Assume G is a group generated by a finite symmetric set S containing

the identity. Let A be a finite subset of G such that |A2| � K|A| and SK′ ⊆ A. Then there is a finite

normal subgroup N � G and a subgroup G1 � G containing N such that

(i) G1 has index OK(1) in G;

(ii) G1/N has step and rank OK(1).

In particular G is virtually nilpotent.

Proof of Corollary 11.2. — First we make the following simple observation. Suppose
G is a group generated by a finite symmetric set S and let G0 be a subgroup of index
n = [G : G0]. Then for every k < n the ball Sk meets at least k + 1 different left cosets of
G0 in G. Indeed if not then by the pigeonhole principle we have SiG0 = Si+1G0 for some
i < k, and so by multiplying on the left with S it follows that SkG0 = Sk+1G0. Multiplying
on the left by further copies of S implies that SkG0 = 〈S〉G0 = G, and so G0 has index at
most k in G, contrary to assumption.

Now, we apply Corollary 1.7. Thus there exists a subgroup G0 of G and a nor-
mal subgroup H of G0 such that A may be covered by K′ left-translates G0 for some
K′ = OK(1) depending only on K′, and G0/H is nilpotent of step and rank OK(1). In
particular, G0 is finite-by-nilpotent.

Using this value of K′, we see by assumption that SK′
is contained in A and thus

SK′
is covered by at most K′ cosets of G0. From our initial observation we conclude that

[G : G0]� K′.
Note that for some s = OK(1) the s-th term of the central descending series Cs(G0)

is contained in H. Moreover, G1 :=⋂g∈G gG0g−1 is a normal subgroup of G with index at
most OK(1) contained in G0. Hence N := Cs(G1) is a normal subgroup of G contained
in H. On the other hand, G1/N is nilpotent of complexity bounded in terms of K only
and it has index OK(1) in G/N.

To conclude from this that G is virtually nilpotent, it suffices to show that G1 is.
However G1 is actually finite-by-nilpotent (the finite group being N) and any such group
is virtually nilpotent. To see this note that the kernel of the action by conjugation on N is
a nilpotent subgroup of finite index. �

Remark 11.3. — Recall that the condition |A2| � K|A| implies the existence of an
approximate group Z of size O(KO(1)|A|) and of O(KO(1)) left translates of Z which cover
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A (see [52, Theorem 4.6]). Using Remark 1.9 and Theorem 2.12, we then see that G1

can be taken so that G1/N is O(log K)-nilpotent in the sense that it admits a generating
set u1, . . . , u� with �= O(log K) such that [ui, uj] ∈ 〈uj+1, . . . , u�〉 for all i < j. In particular
such a group admits a normal series with cyclic factors of length at most O(log K).

Remark 11.4. — If one assumes that A is a K-approximate group instead of the
doubling condition |A2|� K|A| in Corollary 11.2, then we may also conclude from The-
orem 1.6 that N and a generating set of G1 are contained in A4. Using Theorem 2.12
we see that if one additionally wishes to ensure the logarithmic bound as in the previous
remark, then one can only guarantee that N lies inside AOK(1).

The following corollary is reminiscent of Gromov’s theorem but it involves a
weaker type of polynomial growth condition in which the generating set may be arbi-
trarily large. Furthermore it only requires that at one scale.

Corollary 11.5. — Let d > 0. Then there is R(d) > 0 such that the following holds. Suppose

that G is generated by a finite symmetric set S and that there is some scale r > R(d) such that |Sr| �
rd |S|. Then there is a finite normal subgroup N � G and a subgroup G1 � G containing N such that

(i) N ⊆ Sr ;

(ii) G1 has index Od(1) in G;

(iii) G1/N is O(d)-nilpotent (see Remark 1.9 for a definition).

Proof. — Our assumption is that |Sr|� rd |S|. Let K = 2 · 10d and CK be such that,
in the last part of Remark 11.4, N lies in ACK . We claim that there is some r0,

√
r �

r0 � r/2CK, such that A := Sr0 has |A5| � 10d |A|. Note that A2 is then a K-approximate
group with K = 2 · 10d (see Lemma 5.2). Applying Corollary 11.2 and Remark 11.4 and
ensuring that R(d) is so large that R(d) > (K′)2 (K′ being the quantity in Corollary 11.2),
we obtain a finite normal subgroup N � G and a subgroup G1 � G containing N such
that G1 has index Od(1) in G and G1/N is O(log K) = O(d)-nilpotent. Furthermore N
and a set of generators for G1 are contained in A2CK = S2r0CK ⊆ Sr .

It remains to justify the claim. If it is false then |S5i+1√r| > 10d |S5i√r| whenever
5i
√

r < r/10CK, and in particular |Sr|� (10d)log5(
√

r/10CK)−1|S√
r|. If r is greater than some

absolute constant, this is greater than rd |S|, contrary to assumption. �

Remark 11.6. — Note that there is no bound on the size of N. Indeed, if G is a
large finite simple group and S = G then N must equal G, which shows that |N| can be
arbitrarily large compared to d, r.

In [51] Y. Shalom and the third author gave a quantitative refinement of Gromov’s
theorem inspired by Kleiner’s recent new proof (see also [38, Corollary 4.2] for an earlier
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result in that direction). A consequence of their result is that a polynomial growth condi-
tion at one large scale is enough to guarantee virtual nilpotence. We take the opportunity
to record that this follows easily from Corollary 11.2.

Corollary 11.7. — Let d > 0. Then there is R(d) > 0 such that the following holds. Suppose

that G is generated by a finite symmetric set S containing the identity and that there is some scale r > R(d)

such that |Sr|� rd . Then G contains G′, where

(i) G′ has index Od((r
d)!) in G;

(ii) G′ is nilpotent with step Od(1).

Proof. — We apply Corollary 11.5 to obtain groups N,G1 with the properties stated
there. As N is contained in Sr , it has cardinality at most rd . The group G1 acts on N by
conjugation; since the permutation group of N has cardinality at most (rd)!, we conclude
that the stabiliser G′ of this action has index at most (rd)! in G1. As G1/N is nilpotent of
step Od(1), we conclude that G′ is nilpotent of step Od(1) + 1 = Od(1), and the claim
follows. �

Remark 11.8. — As observed in the last section of Gromov’s original paper [27],
Gromov’s theorem on polynomial growth already easily implies a weaker result of this
kind in which the hypothesis is that |Sr| � rd for all r = 1,2, . . . ,R(d). Note that this
result of Gromov (and, a fortiori, Corollary 11.7) have content even when the group G is
finite. Another weakening of the above result appears in [58], where |Sr|� rd is assumed
for infinitely many r rather than for all r.

Corollary 11.7 is stronger than the results in [38, 51] in the sense that the bounds
do not depend on the cardinality |S| of S. On the other hand, the results in [38, 51],
which follow a strategy close to that of Kleiner’s work [37], yield more effective quanti-
tative control on the index and step of G′, especially in the case when S is of bounded
cardinality.

Another consequence of our main theorem is that polynomial growth in the sense
of Corollary 11.5 at one large scale implies polynomial growth at all subsequent scales.

Corollary 11.9. — Let d > 0. Then there is R′(d) > 0 such that the following holds. Suppose

that G is generated by a finite symmetric set S and that |Sr| � rd |S| for some r � R′(d). Then

|Sr′ |� (r′)Od (1)|S| for all r′ � r.

Proof. — A simple modification of the proof of Corollary 11.5 shows that there is
some r0,

√
r � r0 � r/6, such that |S5r0 | � K|Sr0 | where K = 100d (say). Applying Corol-

lary 11.2 with A := Sr0 (as before) we obtain a normal subgroup H ⊆ S4r0 such that G/H
is virtually nilpotent with the index, step and number of generators of the nilpotent sub-
group G1/H all being Od(1).
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Now by Corollary 5.2, A2 = S2r0 is a 2K-approximate group. This means that there
is some set X, |X|� 2K, such that S4r0 ⊆ XS2r0 . From this it follows that

(11.1) S2mr0 ⊆ XmS2r0

for every positive integer m.
Let π : G → G/H be the quotient homomorphism. We have

(11.2)
∣∣S2mr0

∣∣� |H|∣∣π(S2mr0
)∣∣,

since the cardinality of any fibre is at most |H|.
From (11.1) and the fact that π is a homomorphism we have

(11.3) π
(
S2mr0
)⊆ π(X)mπ

(
S2r0
)
.

On the other hand, since H ⊆ S4r0 , we have

(11.4) |H|∣∣π(S2r0
)∣∣� ∣∣S6r0

∣∣.
Moreover, since

√
r � r0 � r/6, we have

(11.5)
∣∣S6r0
∣∣� ∣∣Sr

∣∣� rd |S|� r2d
0 |S|.

Putting (11.2), (11.3), (11.4) and (11.5) together gives

(11.6)
∣∣S2mr0

∣∣� ∣∣π(X)m
∣∣r2d

0 |S|.
Now π(X) is a set of size Od(1), contained in a virtually nilpotent group in which the
index and step of the nilpotent subgroup are Od(1). Every such group is a quotient of one
fixed virtually nilpotent group with number of generators, index and step of the nilpotent
subgroup also Od(1) and whose generators are lifts of the elements in π(X). Hence there
is a bound of the form

∣∣π(X)m
∣∣� mOd (1)

for all m > 1. Comparing this with (11.6) confirms that
∣∣Sr′∣∣� r′Od (1)|S|

whenever r′ is a multiple 2mr0 with m > 1. It is not hard to see that the same estimate
therefore holds for all r′, at the expense of increasing the exponent Od(1) if necessary. �

A consequence/reformulation of the preceding result is the following.
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Corollary 11.10. — Let α > 0. Then there are r0 ∈ N and β > 0 with limα→0 β(α) = 0
such that the following holds. Let G be a finite group generated by a symmetric set S and as-

sume that the diameter of the associated Cayley graph satisfies diamS(G) � (|G|/|S|)α . Then

|Sr|� min{r1/β |S|, |G|} if r � r0(α).

Proof. — If this does not hold for some r, r0 and β then as soon as r0 is large
enough (in terms of β ) Corollary 11.9 applies and yields |Sn| � ne|S| for all n � r and
some e = e(β) > 0. In particular, when n reaches the diameter of G, we obtain Sn = G so
|G|� (diamS(G))e|S|. This contradicts our hypothesis if e < 1/α. �

We shall apply Corollary 11.10 later on to deduce an isoperimetric inequality; see
Corollary 11.15.

Finally we show that by repeatedly applying Corollary 11.2 we can obtain the
following more precise result, which says something non trivial for finite groups as well.
We say that a polycyclic group has length at most L if it is obtained from the trivial group
by at most L successive extensions by a cyclic group.

Corollary 11.11. — Let G be a group which has a left-invariant metric d : G×G →[0,∞)

satisfying the following conditions for some K � 1:

(i) (Uniform doubling property) We have |B(2r)|� K|B(r)| for every r > 0;

(ii) (Finiteness condition) There are at most K different subgroups of the form 〈B(r)〉 as r

ranges over (0,∞).

Then G has a subgroup of index at most OK(1) which is polycyclic of length OK(1).

Proof. — Given d ∈ N and R � 0 we claim that if there are at most d groups of the
form 〈B(r)〉 for r � R, then 〈B(R)〉 contains a polycyclic subgroup of index OK,d(1). This
is clearly enough to establish the corollary. To prove the claim, we proceed by induction
on d . It is clear for d = 1, since 〈B(R)〉 is then the trivial group.

Let R0 be the upper bound of those R′ � 0 such that there are at most d − 1
groups of the form 〈B(r)〉 for r � R′. Without loss of generality18 0 < R0 � R. Then
〈B(r)〉 = 〈B(R)〉 whenever R0 � r � R. By the induction hypothesis, 〈B(R0/2)〉 contains
a polycyclic subgroup P of index OK,d(1) and length OK,d(1).

Let K′ = OK(1) be the constant obtained in Corollary 11.2. Setting S = B(R0) and
A = B(K′R0), we may apply Corollary 11.2 and conclude that G = 〈B(R0)〉 contains a
subgroup G1 of index OK(1) such that G1 has a normal subgroup N ⊂ B(4K′R0) with
G1/N nilpotent with step and number of generators OK(1). It is enough to show that G1

has a polycyclic subgroup of index OK,d(1), because then so will G = 〈B(R)〉.
By the uniform doubling assumption and a covering argument, B(4K′R0) can be

covered by OK(1) translates of B(R0/2). It follows that N can be covered by OK,d(1)

18 Recall that B(R) is the closed ball {g ∈ G; d(1, g) � R}.
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translates of P, and in particular [N : N ∩ P] = OK,d(1). Now N ∩ P is a subgroup of
P and hence is also polycyclic of length OK,d(1); in particular, it is generated by OK,d(1)

elements. Therefore so is N, and hence N0, the intersection of all subgroups of N of index
at most [N : N ∩ P], has index OK,d(1) in N. (To see this recall Schreier’s theorem that
if S is a symmetric generating set for a group �, and if �′ � � has index k, then S2k−1

contains a set of generators for �′.)
The group N0, being a subgroup of N ∩ P, is polycyclic. It is also characteristic in

N and hence, since N is normal in G1, N0 is also normal in G1.
However G1 acts by conjugation N/N0, and the kernel of this action is a subgroup

G′
1 of G1 with index OK,d(1). Now (N∩G′

1)/N0 is central in G′
1/N0 and of size OK,d(1).

We thus have N0 � N ∩ G′
1 � G′

1, where each successive quotient is polycyclic of length
OK,d(1). It follows that G′

1 is polycyclic of length OK,d(1), which is what we wanted to
establish. �

Remark 11.12. — There are examples of groups which satisfy the assumptions of
Corollary 11.11 yet have no nilpotent subgroup of index OK(1). For instance, let p be a
large prime and set G := (Z/pZ)2

� Z, where the action is by an element of SL2(Z/pZ)

which is a diagonal matrix γ of the form γ := diag(x, x−1), where x ∈ F∗
p is a generator of

the multiplicative group of Fp. Then no subgroup of G of index less than p−1 is nilpotent
(note that such a subgroup must contain (Z/pZ)2 and be the preimage of the subgroup of
Z with that index). However we can endow G with a uniformly doubling weighted word
metric (with 3 generators) by letting the two standard generators of (Z/pZ)2 each have
weight 1

p
and γ have weight 1.

We turn now to some geometric applications of the above results.

Manifolds with a lower bound on Ricci Curvature. — A. Petrunin suggested to us some
years ago19 that a result such as Corollary 11.5 would give a purely group-theoretical
proof of a theorem of Fukaya and Yamaguchi [16] according to which fundamental
groups of almost non-negatively curved manifolds are virtually nilpotent. Recall that a
closed manifold M is said to be almost non-negatively curved if one can find a sequence
of Riemannian metrics on it for which diam(M) � 1 while KM �−1/n where KM is the
sectional curvature. Indeed, a simple application of the Bishop-Gromov inequalities com-
bined with Corollary 11.5 yields the following improvement assuming only a condition
on the Ricci curvature.

Corollary 11.13 (Ricci gap). — Given d ∈ N, there is ε(d) > 0 such that the following holds.

Let M be an d-dimensional compact Riemannian manifold with Ricci curvature bounded below by −ε

and diameter at most 1. Then π1(M) has normal subgroup of index Od(1), which is finite-by-(O(d)-

nilpotent). In particular π1(M) is virtually nilpotent.

19 See also http://mathoverflow.net/questions/11091.

http://mathoverflow.net/questions/11091
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Proof. — Fix a base point x0 on the universal cover M̃ and let F be a Dirichlet
fundamental domain based at x0 for the action of � := π1(M): that is,

F := {p ∈ M̃ : d(x0, p) � d(γ · x0, p) for all γ ∈ �
}
.

Set S := {γ ∈ � : d(γ · x0, x0) � 3}. Note that diam(F ) � 1 and that S is symmetric
and contains 1. Observe further that S generates � and that for every integer r � 1 we
have B(x0, r) ⊂ Sr · F ⊂ B(x0,3r + 1), where B(x0, r) is the ball of radius r on M̃ for the
Riemannian metric lifted from M. It follows that

(11.7)
|Sr|
|S| � |B(x0,3r + 1)|

|B(x0,1)| .

From the assumed Ricci curvature bound and the Bishop-Gromov volume com-
parison estimates (see [17, Theorem 4.19]) we have the bound

|B(x0, r)|
|B(x0,1)| � |B−ε(r)|

|B−ε(1)| ,

where B−ε(r) is a metric ball in the comparison model space with constant curva-
ture −ε and dimension d . The volume of this ball is |B−ε(r)| = 1

(
√

ε)d |B−1(r/
√

ε)| =
cd

∫ r

0 (
sinh(

√
εt)√

ε
)d−1dt, where cd > 0 is the volume of the d − 1-dimensional unit sphere (see

[17, p. 138] for this volume computation). As ε tends to 0, this tends to cd rd/d . Combining
this with (11.7) we obtain that for every R0 � 1 there is some ε0 = ε0(d,R0) such that

|Sr|
|S| � 2(3r + 1)d

for all r � R0 provided that 0 < ε < ε0. Letting R0 = R0(2d) be as in Corollary 11.5,
we obtain the existence of some ε = ε(d) > 0 for which the conclusion of that statement
holds. This completes the proof. �

Remark 11.14. — The fact that π1(M) is virtually nilpotent under the above Ricci
bounds assumptions was obtained by Cheeger and Colding in [11] (and had been con-
jectured earlier by Gromov) and their proof was recently completed and extended by
Kapovitch and Wilking [36], who also established that the index of the nilpotent sub-
group is uniformly bounded by a constant depending on the dimension d only, an im-
provement which seems beyond the scope of our methods. This extended earlier work
of Kapovitch, Petrunin and Tuschmann in [35] which proved the same result under sec-
tional curvature bounds instead of Ricci. The work of these authors is, unlike our work,
differential-geometric in nature. The linear dependence in d of the nilpotency length
proven in our Corollary 11.13 seems new however.
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An isoperimetric inequality. — It has been well-known since the work of Varopoulos on
Kesten’s conjecture ([42, 59]) that isoperimetric inequalities on Cayley graphs are closely
related to lower bounds on the volume growth. Using this idea and Corollary 11.10, we
can derive the following property of finite Cayley graphs with a polynomial upper bound
on the diameter.

Corollary 11.15 (Isoperimetric inequality on finite groups). — Let α > 0. Then there are r0 ∈
N and β > 0 with limα→0 β(α) = 0 such that the following holds. Let G be a finite group generated

by a symmetric set S and assume that the diameter of the associated Cayley graph satisfies diamS(G) �
(|G|/|S|)α . Then for every subset E in G with 1

2 r0 � |E|� 1
2 |G|, |∂E|� 1

8 |S|β |E|1−β .

Proof. — This follows almost immediately from Corollary 11.10 and the follow-
ing well-known lemma, which may be found in [28, Chapter 5] or [42] and references
therein. For the convenience of the reader we offer a self-contained proof. �

Lemma 11.16 (Isoperimetry versus growth). — Let G be group and S some finite symmetric

generating set containing 1. Let B(r) = Sr be the word ball of radius r in the word metric. Let ∂E =
SE \E be the boundary of a subset E ⊂ G. If E ⊆ G is a set, write r(E) for the infimum of those r for

which |B(r)|� 2|E|. Then for all E with |E|< |G|/2 we have |E|� 4r(E)|∂E|.
Proof. — We give a proof for the reader’s convenience. Let f = 1E the indicator

function of the set E, and fr := 1
|B(r)|
∑

g∈B(r) g · f be the average of f over balls of radius
r. By the triangle inequality we have ‖g · f − f ‖1 � |g| · maxs∈S ‖s · f − f ‖1, where |g| is
the distance to the identity in the word metric. Moreover ‖s · f − f ‖1 = |sE � E|� 2|∂E|
for every s ∈ S. Hence ‖fr − f ‖1 � 2r|∂E|. On the other hand for every x ∈ E, there are
at most |E| elements g ∈ B(r) such that g · 1E(x) �= 0. Therefore if |B(r)| � 2|E| then
fr(x) � 1

2 and hence ‖fr − f ‖1 � 1
2 |E|. The claim follows. �

In [1], Benjamini and Kozma conjecture that one can take β = α in the Corollary
11.15 (at the expense of introducing a possible multiplicative constant cα in place of |S|β/8
in (ii)). This, however, is beyond the scope of our method. We would like to thank Itai
Benjamini for drawing our attention to their work and its connection to Gromov-type
theorems.

A generalized Margulis lemma. — In hyperbolic geometry, the Margulis lemma asserts
that there is a constant ε = ε(n) > 0, the Margulis constant, such for any discrete sub-
group � of isometries of the hyperbolic n-space Hn, and any point x ∈ Hn, the almost
stabiliser �ε(x) := {γ ∈ � : d(γ · x, x) < ε} is virtually cyclic. This lemma is important
for describing the geometry of cusps in hyperbolic manifolds, or for establishing volume
lower bounds (see e.g. [55]). Various generalisations of this lemma have been established
in the past for more general Riemannian manifolds under curvature upper and lower
bounds (e.g. [9, Chapter 6]). Typically in these results, unless the manifold has strictly
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negative curvature, “virtually cyclic” in the conclusion of the lemma must be replaced by
“virtually nilpotent”.

In [28, §5.F] Gromov raises the issue of establishing a generalized Margulis lemma un-
der very weak assumptions on the metric space and he proposes a conjectural statement
in this direction. Below we answer Gromov’s question affirmatively.

A metric space X is said to have bounded packing with packing constant K if there is
K > 0 such that every ball of radius 4 in X can be covered by at most K balls of radius 1.
Say that a subgroup � of isometries of X acts discretely on X if every orbit is discrete in the
sense that {γ ∈ � : γ · x ∈�} is finite for every x ∈ X and for every bounded set � ⊆ X.

Corollary 11.17 (Generalized Margulis Lemma). — Let K � 1 be a parameter. Then there is

some ε(K) > 0 such that the following is true. Suppose that X is a metric space with packing constant

K, and that � is a subgroup of isometries of X which acts discretely. Then for every x ∈ X the “almost

stabiliser” �ε(x)= 〈Sε(x)〉, where Sε(x) := {γ ∈ � : d(γ · x, x) < ε}, is virtually nilpotent.

Proof. — Each set Sr(x) is symmetric and contains the identity. Now by the assump-
tion on X the ball B(x,4) can be covered by collection of balls B(xi,1), i = 1,2, . . . ,K.
Suppose that for i = 1,2, . . . , k there is at least one element γi ∈ S4(x) with γi ·x ∈ B(xi,1).
Suppose now that γ ∈ S4(x) is arbitrary; then there is some i ∈ {1,2, . . . , k} such that
γ · x ∈ B(xi,1). But this means that d(γ · x, γi · x) < 2, and therefore γ −1

i γ ∈ S2(x). This
implies that S4(x) ⊆⋃k

i=1 γiS2(x), which yields (since S2(x)
2 ⊆ S4(x)) the doubling esti-

mate |S2(x)
2|� K|S2(x)|.

Let K′ = K′(K) > 0 be the constant from Corollary 11.2. Set ε := 2/K′, S = Sε(x)

and A = S2(x). A direct application of Corollary 11.2 shows that �ε(x) = 〈S〉 is virtually
nilpotent. �

Remark 11.18. — This confirms Gromov’s conjecture, which suggested the same
conclusion under the slightly stronger hypotheses that every ball of radius R in X can
be covered by at most C(R/r)m balls of radius r for all 0 < r < R � 1 and some fixed
constants C,m > 0.

The assumptions of this generalized Margulis lemma are satisfied for example if
X is a complete Riemannian manifold with a lower bound on its Ricci curvature, by an
immediate application of the Bishop-Gromov volume comparison estimates. In this case,
the result was proved by Cheeger-Colding [11] and Kapovitch-Wilking [36], namely:

Corollary 11.19. — Let d � 1 be an integer. Then there is ε = ε(d) > 0 with the following

property. Suppose that M is a d-dimensional complete Riemannian manifold with a Ricci curvature lower

bound Ric �−(d − 1) and that � is a subgroup of Isom(M) which acts properly discontinuously by

isometries on M. Then for every x ∈ M the “almost stabliser” �ε(x) := {γ ∈ � : d(γ · x, x) < ε} is

virtually nilpotent.
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In fact the result in [36, Theorem 1] is a stronger version of Corollary 11.19,
establishing that �ε(x) has a nilpotent subgroup of index Od(1). This stronger result
seems to be beyond the scope of our method.

We also note that Corollary 11.11 applies to the Margulis lemma in the context
of Riemannian d-manifolds with a lower bound on sectional curvature, because then the
Gromov short basis has bounded cardinality from Toponogov’s theorem (see for instance
[9, 37.3]). We thus get this way an alternate proof of the Fukaya-Yamaguchi theorem [16]
according to which almost non-negatively curved n-manifolds have On(1)-virtually poly-
cyclic fundamental group. Again, by [35] we know better, namely that they are On(1)-
virtually nilpotent, but once again this seems beyond the scope of our method.

Finally we would like to remark that the usual proofs of the classical Margulis
lemma bear some resemblance to the proof of our main theorem in as much as they
use a similar “shrinking commutator trick” to establish nilpotence. While we proved this
shrinking commutator estimate for the escape norm associated to an approximate group
as part of the Gleason lemmas (Theorem 8.1), in the Margulis lemma, one proves a
similar estimate for the norm ‖γ ‖x = d(γ · x, x) by a riemannian geometric argument
using the assumed curvature bounds. This “shrinking commutator trick” dates back at
least to Bieberbach [2] in his proof of Jordan’s theorem on finite linear groups.
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Appendix A: Basic theory of ultralimits and ultraproducts

In this appendix we review the machinery of ultralimits and ultraproducts. We will bor-
row some terminology from nonstandard analysis in order to do this, although we will
not rely too heavily on nonstandard machinery in this paper.
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We will assume the existence of a standard universe U which contains all the objects
and spaces that one is interested in (such as the natural numbers N, the real numbers R,
the classical Lie groups, etc.). The precise construction of this universe is not particularly
important for our purposes, so long as it forms a set. We refer to objects and spaces inside
the standard universe as standard objects and standard spaces, with the latter being sets whose
elements are in the former category.

We will rely heavily on the existence of a nonprincipal ultrafilter.

Lemma A.1 (Ultrafilter lemma). — There exists a collection α of subsets of the natural numbers

N with the following properties:

(i) (Monotonicity) If A ∈ α and B ⊇ A, then B ∈ α.

(ii) (Closure under intersection) If A,B ∈ α, then A ∩ B ∈ α.

(iii) (Maximality) If A ⊆ N, then either A ∈ α or N\A ∈ α, but not both.

(iv) (Non-principality) If A ∈ α, and A′ is formed from A by adding or deleting finitely many

elements to or from A, then A′ ∈ α.

We refer to a collection α obeying the above axioms as a nonprincipal ultrafilter.

Proof. — The collection of cofinite subsets of N already obeys the monotonicity,
closure under intersection, and non-principality properties. Using Zorn’s lemma,20 one
can enlarge this collection to a maximal collection which, it may be verified, has all the
required properties. �

Throughout the paper, we fix a non-principal ultrafilter α. A property P(n) de-
pending on a natural number n is said to hold for n sufficiently close to α if the set of n for
which P(n) holds lies in α. A set of natural numbers lying in α will also be called an
α-large set.

Once we have fixed this ultrafilter, we can define nonstandard objects and spaces.

Definition A.2 (Nonstandard objects). — Given a sequence (xn)n∈N of standard objects in U,

we define their ultralimit limn→α xn to be the equivalence class of all sequences (yn)n∈N of standard

objects in U such that xn = yn for n sufficiently close to α. Note that the ultralimit limn→α xn can also

be defined even if xn is only defined for n sufficiently close to α.

An ultralimit of standard natural numbers is known as a nonstandard natural number, an

ultralimit of standard real numbers is known as a nonstandard real number, and so on.

20 By using this lemma, our results thus rely on the axiom of choice, which we will of course assume throughout this
paper. On the other hand, it is possible to rephrase the purely combinatorial results in this paper, such as Theorem 2.10,
in the language of Peano arithmetic. Applying a famous theorem of Gödel [22], we then conclude that Theorem 2.10 is
provable in ZFC if and only if it is provable in ZF. In fact it is possible, with significant effort, to directly translate these
ultrafilter arguments to a much lengthier argument in which neither ultrafilters nor the axiom of choice are used. However,
this would require one to “finitise” or “proof-mine” such infinitary results as the Heine-Borel theorem or Theorem B.18,
and this in turn would require finitisations of the construction of Haar measure and the Peter-Weyl theorem. This would
lead to a vastly messier argument.
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For any standard object x, we identify x with its own ultralimit limn→α x. Thus, every standard

natural number is a nonstandard natural number, etc.

Any operation or relation on standard objects can be extended to nonstandard objects in the obvious

manner. Indeed, if O is a k-ary operation, we define

O
(

lim
n→α

x1
n
, . . . , lim

n→α
xk
n

)
:= lim

n→α
O
(
x1
n
, . . . , xk

n

)

and if R is a k-ary relation, we define R(limn→α x1
n
, . . . , limn→α xk

n
) to be true iff R(x1

n
, . . . , xk

n
) is

true for all n sufficiently close to α. One easily verifies that these nonstandard extensions of O and R are

well-defined.

Example 23. — The sum of two nonstandard real numbers limn→α xn, limn→α yn is
the nonstandard real number

lim
n→α

xn + lim
n→α

yn = lim
n→α

xn + yn,

and the statement limn→α xn < limn→α yn means that xn < yn for all n sufficiently close
to α.

Definition A.3 (Ultraproducts). — Let (Xn)n∈N be a sequence of standard spaces Xn in U

indexed by the natural numbers. The ultraproduct
∏

n→α Xn of the Xn is defined to be the space of

all ultralimits limn→α xn, where xn ∈ Xn for all n. We refer to the ultraproduct of standard sets as an

nonstandard set; in a similar vein, an ultraproduct of standard groups is a nonstandard group,

and an ultraproduct of standard finite sets is a nonstandard finite set. We refer to ∗X :=∏
n→α X

as the ultrapower of a standard set X; the identification of x with limn→α x causes X to be identified

with a subset of ∗X. We will refer to the ultrapower ∗U of the standard universe U as the nonstandard
universe.

Remark A.4. — Nonstandard sets in nonstandard analysis behave analogously in
some ways to measurable sets21 in measure theory; for instance, the union or intersection
of two nonstandard sets is again a nonstandard set. Also, just as a subset of a measurable
set need not be measurable, a subset of a nonstandard set need not be another nonstan-
dard set. For instance, the nonstandard natural numbers ∗N is a nonstandard set (being
the ultraproduct of the sequence N,N, . . .), but the standard natural numbers N, despite
being a subset of ∗N, is not a nonstandard set.

A fundamental property of ultralimits is that they preserve first-order statements
and predicates, a fact known as Łos’s theorem. Here is one formalisation of this theorem.

21 Actually, the notion of an elementary set (e.g. a finite union of intervals) would be an even closer analogy here than
the notion of a measurable set.
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Theorem A.5 (Łos’s theorem with parameters). — Let m be a standard natural number, and for

each 1 � i � m, let xi = limn→α xi,n be a nonstandard object. If P(y1, . . . , ym) is a predicate, then

P(x1, . . . , xm) is true (as quantified over the nonstandard universe ∗U) if and only if P(x1,n, . . . , xm,n)

is true for all n sufficiently close to α (as quantified over the standard universe U).

Proof. — (Sketch) By definition, Łos’s theorem is true for “primitive” predicates
which take the form R(x1, . . . , xk) for some primitive k-ary relation R and objects
x1, . . . , xk , or of the form xk+1 = O(x1, . . . , xk) for some primitive k-ary operator O. From
the ultrafilter axioms, we also see that Łos’s theorem is closed with respect to boolean
operations; for instance, if Theorem A.6 holds for P(x1, . . . , xm) and Q(x1, . . . , xm), then
it also holds for ¬P or P ∧ Q.

Now, we claim that if Łos’s theorem holds for the predicate P(x1, . . . , xm), then
it also holds for the quantified predicates ∃xm : P(x1, . . . , xm) and ∀xm : P(x1, . . . , xm)

(where now there are only m − 1 free variables x1, . . . , xm−1, with xm being bound). We
show this just for the existential quantifier ∃, as the case of the universal quantifier ∀
is similar (and can be deduced from the existential case by negation). Suppose first that
∃xm : P(x1, . . . , xm) is true in ∗U. Then there exists xm = limn→α xm,n such that P(x1, . . . , xm)

holds; by hypothesis, this implies that P(x1,n, . . . , xm,n) holds for n sufficiently close to
α, and thus ∃xm : P(x1,n, . . . , xm−1,n, xm) holds for n in U sufficiently close to α as de-
sired. Conversely, if ∃xm : P(x1,n, . . . , xm−1,n, xm) holds in U for n sufficiently close to α,
then by the axiom of (countable) choice, we may find xm,n ∈ U for such n such that
P(x1,n, . . . , xm−1,n, xm,n) holds. Setting xm := limn→α xm,n, we conclude that P(x1, . . . , xm)

holds, and the claim follows.
The above discussion yields Łos’s theorem for any predicate that can be built out

of primitive predicates by a finite number of boolean operations and quantifications.
However, it is easy to see that all predicates are logically equivalent to a predicate of this
form. For instance, ∀a∀b∀c : (a + b)+ c = a + (b + c) is equivalent to

∀a∀b∀c∃d∃e∃f : (d = a + b)∧ (e = b + c)∧ (f = d + c)∧ (f = a + e).

This completes the proof. �

In applications, we will actually use a slight generalisation of Łos’s theorem.

Theorem A.6 (Łos’s theorem with parameters and ultraproducts). — Let m, k be standard natural

numbers. For each 1 � i � m, let xi = limn→α xi,n be a nonstandard object, and for each 1 � j � k, let

Aj =∏n→α Aj,n be a nonstandard set. If P(y1, . . . , ym;B1, . . . ,Bk) is a predicate over m objects and

k sets, with the sets A1, . . . ,Ak only appearing in P through the membership predicate x ∈ Bj for various

j and various objects Bj , then P(x1, . . . , xm;A1, . . . ,Ak) is true (as quantified over the nonstandard

universe ∗U) if and only if P(x1,n, . . . , xm,n;A1,n, . . . ,Ak,n) is true for all n sufficiently close to α (as

quantified over the standard universe U).
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Proof. — We replace each appearance of x ∈ Bj in P with a new primitive
relation Rj(x,n), which is interpreted in U as x ∈ Aj,n. This replaces the pred-
icate P(y1, . . . , ym;B1, . . . ,Bk) by a predicate Q(y1, . . . , ym,n), with P(x1,n, . . . , xm,n;
A1,n, . . . ,Ak,n) logically equivalent to Q(x1,n, . . . , xm,n,n). One easily verifies that
P(x1, . . . , xm;A1, . . . ,Ak) is logically equivalent to Q(x1, . . . , xm, limn→α n), and the claim
now follows from Theorem A.5. �

Example 24. — Any ultraproduct G :=∏
n→α Gn of groups Gn is again a group,

because one can write the property of G being a group as a predicate P(G) that involves
membership in G (as well as the constant id and the group operations ·, ()−1, of course).
Conversely, if G =∏

n→α Gn is a group, then Gn is a group for all n sufficiently close to α.

Example 25. — Let G =∏
n→α Gn be an ultraproduct of groups (and thus also a

group), and let A =∏
n→α An and B =∏

n→α Bn be subsets of G that are nonstandard
sets. Then, for n sufficiently close to α, An and Bn are subsets of Gn and Bn (because
this statement can be written as a predicate involving membership in An,Bn,Gn). In a
similar (but more complicated) spirit, for any standard K ∈ N, A can be covered by K
left-translates of B if and only if, for n sufficiently close to α, An can be covered by K
left-translates of Bn.

A nonstandard real number x ∈ ∗R is said to be bounded if one has |x|� C for some
standard C > 0, and unbounded otherwise. Similarly, we say that x is infinitesimal if |x| � c

for all standard c > 0; in the former case we write x = O(1), and in the latter x = o(1).
For every bounded real number x ∈ ∗R there is a unique standard real number st(x) ∈ R,
called the standard part of R, such that x = st(x) + o(1), or equivalently that st(x) − ε �
x � st(x)+ ε for all standard ε > 0. Indeed, one can set st(x) to be the supremum of all
the real numbers y such that x > y (or equivalently, the infimum of all the real numbers
y such that x < y). We write X = O(Y), X � Y, or Y 	 X if we have X � CY for some
standard C.

Given a sequence fn : Xn → Yn of standard functions between standard sets
Xn,Yn, one can form the ultralimit f := limn→α fn, which is a function from the ultra-
product X :=∏

n→α Xn to the ultraproduct Y :=∏
n→α Yn defined by the formula

f
(

lim
n→α

xn

)
:= lim

n→α
fn(xn).

Such ultralimits will be called nonstandard functions (and are also known as internal functions in
the nonstandard analysis literature). In particular, since standard finite sequences (an)

N
n=1

of standard reals an ∈ R with some standard length N ∈ N can be viewed as a function
n �→ an from {1, . . . ,N} to R, one can thus define nonstandard finite sequences (an)

N
n=1 of non-

standard reals an ∈ ∗R with some nonstandard length N ∈ ∗N as an ultralimit of standard
finite sequences (ann,n)

Nn

nn=1, thus N = limn→α Nn and

alimn→α nn
= lim

n→α
ann,n.
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One can then transplant various operations on standard finite sequences to their non-
standard counterparts, and can in particular define the sum

N∑
n=1

an ∈ ∗R

of a nonstandard finite sequence (an)
N
n=1 = limn→α(ann,n)

Nn

nn=1 by the formula

N∑
n=1

an := lim
n→α

Nn∑
nn=1

ann,n.

Appendix B: Local groups

In this appendix we recall the basic definitions and notations of (symmetric) local group
theory, following Goldbring [24].

Definition B.1 (Local group). — A symmetric local group G = (G, id, ·, ()−1) is a topo-

logical space G with a distinguished element id ∈ G (the identity element), together with a globally

defined inversion map ()−1 : G → G and a partially defined product map · : � → G, obeying the

following axioms:

(i) (Partial closure) � is an open neighbourhood of (G × {1})∪ ({1} × G) in G × G.

(ii) (Continuity) The maps ()−1 : x �→ x−1 and · : (x, y) �→ x · y are continuous on G and �

respectively.

(iii) (Local associativity) If g, h, k ∈ G are such that (g · h) · k and g · (h · k) are well-defined

(thus (g, h), (g · h, k), (h, k), (g, h · k) all lie in �), then (g · h) · k = g · (h · k).

(iv) (Identity) For any g ∈ G, one has id · g = g · id = g.

(v) (Invertibility) If g ∈ G, then g · g−1 and g−1 · g are well-defined (i.e. (g, g−1),

(g−1, g) ∈�) and are equal to id.

If necessary, we will write id,� as idG,�G to reduce confusion. If �= G×G, we call G a global
group or a topological group.

If G has the structure of a smooth finite-dimensional real manifold, and the inversion map ()−1

and product map · are smooth maps, we say that G is a local Lie group.

Remark B.2. — One can also consider non-symmetric local groups, in which the
inversion map ()−1 is only defined on an open neighbourhood � of the identity. However,
the theory of non-symmetric local groups contains some minor additional technicalities
caused by the existence of non-invertible elements which we wish to avoid here. As we will
not consider non-symmetric local groups anywhere in this paper, we will often omit the
adjective “symmetric” from the term “local group” when there is no chance of confusion.
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Following [24], we do not explicitly assume that G is Hausdorff. In practice,
though, one can reduce to the Hausdorff case because the closure of the identity ele-
ment will turn out to be a closed normal subgroup that one can quotient out by.

Example 26. — If G is a symmetric local group and U is a symmetric open
neighbourhood of the identity (thus g−1 ∈ U whenever g ∈ U), then U can also be
viewed as a symmetric local group, by restricting the domain � of the product maps
to {(g, h) ∈ � ∩ (U × U) : g · h ∈ U} (and also restricting the topological structure of G
to U). We will sometimes write this symmetric local group as G 	U to emphasise that it is
the restriction of G to U. In particular, an important source of local groups comes from
restricting a global group to an open symmetric neighbourhood of the identity.

One can also restrict G to non-open symmetric neighbourhoods of the identity, but
the resulting object obtained is not necessarily a symmetric local group (see e.g. Example
28 below).

We say that two symmetric local groups G,G′ are locally identical if they have a
common restriction, thus there exists a U which is an open symmetric neighbourhood of
the identity 1G = 1G′ in both G and G′ for which the group operations on G and G′, when
restricted to U, agree completely (in particular, they have the same domain and range).
This is an equivalence relation, and we will focus on those properties of symmetric local
groups that are preserved up to local identity.

In a similar spirit, we say that two subsets A,B of a symmetric local group in G are
locally identical if there exists an open neighbourhood U of the identity in G such that A∩
U = B∩U. For instance, all neighbourhoods of the identity are locally identical. Note that
every open neighbourhood if the identity contains an open symmetric neighbourhood,
so we can assume here that U is symmetric without loss of generality.

Remark B.3. — Symmetric local groups are defined as topological groups, but if
one wishes, one can restrict attention to discrete symmetric local groups, in which every set
is open. In this case, all references to continuity, openness, and the Hausdorff property
in Definition B.1 can be omitted as being automatically satisfied. On the other hand, all
discrete local groups are locally equivalent to the trivial local group {id}.

Example 27. — If g is a (finite-dimensional) Lie algebra, and B is a sufficiently small
symmetric open neighbourhood of the identity in g, then exp(B) is a symmetric local
group, with the multiplication law given by the Baker-Campbell-Hausdorff formula.

Example 28. — The closed interval [−1,1] in R with the addition operation is not a
symmetric local group, because the set {(x, y) ∈ [−1,1] × [−1,1] : x+ y ∈ [−1,1]} is not
open in [−1,1] × [−1,1]. However, the open interval (−1,1) is a symmetric local group.
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Given any finite number of elements g1, . . . , gm in a global group G, one can use
the associativity axiom to unambiguously define the product g1 . . . gm. In a symmetric local
group, one can only define this product g1 . . . gm locally. We formalise this as a definition:

Definition B.4 (Finite products). — Let g1, . . . , gm be a finite number of elements in a symmetric

local group G. We say that the product g1 . . . gm is well-defined in G (or well-defined for short) if,

for each 1 � i � j � m, we can find a group element g[i,j] ∈ G with the following properties:

• For each 1 � i � m, we have g[i,i] = gi .

• If 1 � i � j < k � m, the product g[i,j] · g[j+1,k] is well-defined (i.e. (g[i,j], g[j+1,k]) ∈�) and

equal to g[i,k].

By induction we see that if these group elements g[i,j] exist, then they are unique. We then define

g1 . . . gk := g[1,k]. If g1 = · · · = gk = g, we abbreviate g1 . . . gk as gk. By abuse of notation, we also

write g1 . . . gm ∈ G to denote the assertion that g1 . . . gm is defined in G.

We adopt the convention that g1 . . . gm = id when m = 0.

An easy induction using the local associativity axiom shows that if g1, . . . , gm ∈ G is
such that gi . . . gj is well-defined whenever 1 � i < j � m with (i, j) �= (1,m), and (gi . . . gj) ·
(gj+1 . . . gk) is well-defined whenever 1 � i � j < k � m, then g1 . . . gm is well-defined, and
we have

(gi . . . gk)= (gi . . . gj) · (gj+1 . . . gk)

for all 1 � i � j < k � m.

Remark B.5. — It is worth pointing out one subtlety here: in order for g1 . . . gm to be
well-defined, it is necessary that all possible ways of decomposing this m-fold product into
pairwise products be well-defined. For instance, for g1g2g3 to be well-defined, both (g1 ·
g2) · g3 and g1 · (g2 · g3) need to be well-defined. Similarly, if g1, g2, g3, g4 are such that g1g2g3,
(g1g2g3) · g4, g2g3g4, and g1 · (g2g3g4) are well-defined, this is not yet sufficient to deduce that
g1g2g3g4 is well-defined, because (g1g2) · (g3g4) need not be well-defined. For instance, in
the (additive) local group {−1,0,+1}, the expression (+1)+ (−1)+ (−1)+ (+1) is not
well-defined, because (−1)+ (−1) is not well-defined.

Related to this is the well-known fact that local associativity does not imply global
associativity: it is possible for two different ways of decomposing an m-fold product into
pairwise products to both exist, but give distinct values; see [41] for further discus-
sion. For instance, there exists a local group G and elements g1, g2, g3, g4 ∈ G such that
((g1 · g2) · g3) · g4 and g1 · (g2 · (g3 · g4)) both exist, but are not equal to one another. Of
course, in this case, we do not consider g1g2g3g4 to be well-defined.

Another easy induction also shows that for each m � 1, the set of tuples
(g1, . . . , gm) ∈ Gm for which g1 . . . gm is well-defined is an open subset of Gm.
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Now we extend the notion of products and inverses from individual group elements
to sets of such elements.

Definition B.6. — Let G be a symmetric local group. A subset A of G is said to be sym-
metric if the set A−1 := {g−1 : g ∈ A} is contained in A. If A1, . . . ,Am are subsets of G, we say

that A1 . . .Am is well-defined in G (or well-defined for short) if g1 . . . gm is well-defined for all

g1 ∈ A1, . . . , gm ∈ Am, in which case we write A1 . . .Am := {g1 . . . gm : g1 ∈ A1, . . . , gm ∈ Am}. If

A1 = · · · = Am = A, we abbreviate A1 . . .Am as Am. By abuse of notation, we write A1 . . .Am ⊂ G
for the assertion that A1 . . .Am is well-defined in G. We adopt the convention that A1 . . .Am = {id}
when m = 0. In particular, A0 = {id} for any A ⊂ G.

An easy induction (see [24, Lemma 2.5]) shows that for any local group G and any
open neighbourhood U0 of the identity, there exists a nested sequence U0 ⊃ U1 ⊃ U2 ⊃
· · · of symmetric open neighbourhoods of the identity such that U2

m+1 ⊂ Um for every
m � 0, which in particular implies that Um

m is well-defined in U0, and thus A1 . . .Am is
well-defined in U0 whenever A1, . . . ,Am ⊂ Um.

We make the trivial remark that multiplication of sets is associative: if A1 . . .Am

is well-defined, then for any 1 � i � j < k � m, (Ai · Aj) · (Aj+1 . . .Ak) and Ai . . .Ak are
well-defined and equal to each other.

By passing to neighbourhoods such as Um, one can improve the group-like proper-
ties of a local group. To illustrate this principle, let us first introduce the following defini-
tion.

Definition B.7 (Cancellative local groups). — A symmetric local group G is said to be can-
cellative if the following assertions hold:

(i) Whenever g, h, k ∈ G are such that gh and gk are well-defined and equal to each other, then

h = k. (Note that this implies in particular that (g−1)−1 = g.)

(ii) Whenever g, h, k ∈ G are such that hg and kg are well-defined and equal to each other, then

h = k.

(iii) Whenever g, h ∈ G are such that gh and h−1g−1 are well-defined, then (gh)−1 = h−1g−1.

(In particular, if U ⊂ G is symmetric and Um is well-defined in G for some m � 1, then

Um is also symmetric.)

Clearly all global groups are cancellative. A local group need not be cancellative
everywhere; however, we can restrict to a large subset on which it is cancellative, by using
the following proposition.

Proposition B.8. — Let G be a symmetric local group, and let U be an open symmetric neigh-

bourhood of the identity in G such that U6 is well-defined. Then the restriction of G to U is cancellative.

In particular, the restriction of G to the open symmetric neighbourhood U6 dis-
cussed earlier is cancellative. We shall see later that the property of being cancellative is
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hereditary in that it is inherited by passing to subgroups and quotients, and because of this
we will be able to easily restrict attention to the cancellative case in our arguments.

Proof. — If g, h ∈ U, then (gh)−1ghh−1g−1 is well-defined in G. By evaluating this
well-defined expression in two different ways we conclude property (iii). In a similar spirit,
by evaluating g−1gh and g−1gk for g, h, k ∈ U in two different ways, we obtain (i); and
similarly for (ii). �

Lemma B.9. — Let G be a symmetric local group, and let U,V be open sets with id ∈ V.

Then U ⊂ U · V if U · V is well-defined, and similarly U ⊂ V · U if V · U is well-defined.

Proof. — We prove the first claim only, as the second is similar. Suppose that g is
an adherent point of U. By continuity, we can find an open neighbourhood W of g and
an open neighbourhood Y of the identity such that g · g−1 · W · Y−1 is well-defined and
Y−1 ⊂ V. By continuity, the set {h ∈ W : g−1h ∈ Y} is an open neighbourhood of g, and
thus contains an element h of U. Writing v := g−1h and expanding out g · g−1 · h · v−1 in
two different ways, we conclude that g = hv−1, and thus g ∈ U · V as required. �

We can give the class of local groups the structure of a category by defining the
notion of a (continuous) homomorphism.

Definition B.10 (Homomorphisms). — Let G,H,K be symmetric local groups. A continuous
homomorphism φ : G → H is a continuous map from G to H with the following properties:

(i) φ maps the identity of G to the identity of H: φ(idG)= idH.

(ii) For every g ∈ G, we have φ(g)−1 = φ(g−1).

(iii) If g, h ∈ G are such that g · h is well-defined, then φ(g) ·φ(h) is well-defined and is equal

to φ(g · h).

We will often omit the adjective “continuous” when G is discrete.

A local homomorphism from G to H is a continuous homomorphism φ : U → H from a

symmetric open neighbourhood U of the identity of G to H, where of course we give U the structure of the

restricted local group G 	U from Example 26. Two local homomorphisms φ : U → H, φ′ : U′ → H
are equivalent if there exists a neighbourhood V of the identity contained in both U and U′ such that φ

and φ′ agree on V; this is an equivalence relation. A local morphism is an equivalence class of local

homomorphisms.

Given two local homomorphisms φ : U → H and ψ : V → K from G to H and H to

K respectively, we define the composition map ψ ◦ φ : U′ → K by ψ ◦ φ(g) := ψ(φ(g)), where

U′ := {g ∈ U : φ(u) ∈ V}. This allows one to define a composition of two local morphisms in the

obvious manner.

Example 29. — There are no non-trivial global morphisms from the unit circle
R/Z to R. However, there do exist non-trivial local morphisms, such as (the equivalence
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class of) the map φ from (−1/4,1/4) mod 1 to R defined by setting φ(x mod 1) := x

for all x ∈ (−1/4,1/4). The concept of a local homomorphism is closely related to that
of a Freiman homomorphism in additive combinatorics, as discussed for example in [54].

One easily verifies that continuous homomorphisms and local morphisms both
obey the axioms of a category; in particular, the composition of two continuous homo-
morphisms is a continuous homomorphism, and the composition of two local morphisms
is again a local morphism. As usual in category theory, we can now say that two local
groups G,G′ are locally isomorphic if there exists a local morphism φ from G to G′ with an
inverse φ′ from G′ to G which is also a local morphism, such that the compositions φ ◦φ′

or φ′ ◦ φ are equivalent to the identity. Thus, for instance, the unit circle R/Z and the
line R are locally isomorphic. This notion of local isomorphism generalises the notion of
local identity from Remark 26.

Definition B.11 (Sub-local groups [24]). — Given two symmetric local groups G′ and G, we

say that G′ is a sub-local group of G if G′ is the restriction of G to a symmetric neighbourhood of the

identity, and there exists an open neighbourhood V of G′ with the property that whenever g, h ∈ G′ are

such that gh is defined in V, then gh ∈ G′; we refer to V as an associated neighbourhood for G′. If

G′ is also a global group, we say that G′ is a subgroup of G.

If G′ is a sub-local group of G, we say that G′ is normal if there exists an associated neigh-

bourhood V for G′ with the additional property that whenever g′ ∈ G′, h ∈ V are such that hg′h−1 is

well-defined and lies in V, then hg′h−1 ∈ G′. We call V a normalising neighbourhood of G′.

Example 30. — If G,G′ are the (additive) local groups G := {−2,−1,0,+1,+2}
and G′ := {−1,0,+1}, then G′ is a sub-local group of G (with associated neighbourhood
V = G′). Note that this is despite G′ not being closed with respect to addition in G; thus
we see why it is necessary to allow the associated neighbourhood V to be strictly smaller
than G. In a similar vein, the open interval (−1,1) is a sub-local group of (−2,2).

The interval (−1,1) × {0} is also a sub-local group of R2; here, one can take for
instance (−1,1)2 as the associated neighbourhood. As all these examples are abelian,
they are clearly normal.

Example 31. — Let T : V → V be a linear transformation on a finite-dimensional
vector space V, and let G := Z �T V be the associated semi-direct product. Let G′ :=
{0}×W, where W is a subspace of V that is not preserved by T. Then G′ is not a normal
subgroup of G, but it is a normal sub-local group of G, where one can take {0} × V as a
normalising neighbourhood of G′.

Observe that any sub-local group of a cancellative local group is again a cancella-
tive local group.

One also easily verifies that if φ : U → H is a local homomorphism from G to H
for some open neighbourhood U of the identity in G, then ker(φ) is a normal sub-local
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group of U, and hence of G. Note that the kernel of a local morphism is well-defined up
to local identity. If H is Hausdorff, then the kernel ker(φ) will also be closed.

Conversely, normal sub-local groups give rise to local homomorphisms into quo-
tient spaces.

Lemma B.12 (Quotient spaces [24]). — Let G be a cancellative local group, and let H be a

normal sub-local group with normalising neighbourhood V. Let W be a symmetric open neighbourhood

of the identity such that W6 ⊂ V. Then there exists a cancellative local group W/H and a surjective

continuous homomorphism φ : W → W/H such that, for any g, h ∈ W, one has φ(g)= φ(h) if and

only if gh−1 ∈ H, and for any E ⊂ W/H, one has E open if and only if φ−1(E) is open.

Proof. — We define an equivalence relation on W by declaring g ∼ h if gh−1 ∈ H.
Using the cancellative properties of V (and hence of W6) we see that this is indeed an
equivalence relation. We let W/H := {[g]∼ : g ∈ W} be the set of equivalence classes
[g]∼ := {h ∈ W : g ∼ h}, with the obvious projection map π : W → W/H. We define
an inversion relation on W/H by setting [g]−1

∼ := [g−1]∼, and a product operation by
setting [g]∼[h]∼ to equal [g′h′]∼ if g′h′ ∈ W for at least one representative g′, h′ of [g]∼, [h]∼
respectively.

We now verify that these relations are well-defined. To make the inversion relation
well-defined, we need to verify that if g ∼ h, then g−1 ∼ h−1. But from the cancellative
properties of W6, we have g−1(h−1)−1 = g−1(gh−1)−1g, and the claim follows as W6 is a
normalising neighbourhood for H. Similarly, to make the multiplication relation well-
defined, we need to verify that if g, g′, h, h′ are such that g ∼ g′, h ∼ h′, and gh, g′h′ ∈ W,
then gh ∼ g′h′. But (gh)(g′h′)−1 = (g(g′)−1)g′(h(h′)−1)(g′)−1, and the claim follows as W6 is
a normalising neighbourhood for H. Similar arguments (which we omit) show that W/H
obeys the identity, inverse, and local associativity axioms.

Next, we give W/H the quotient topology, declaring a set E in W/H open iff its
inverse image π−1(E) is open in W (or equivalently, in G). One easily verifies that W/H
becomes a symmetric local group, and the claim follows. �

Example 32. — Let G be the additive local group G := (−2,2)2, and let H be
the sub-local group H := {0}× (−1,1), with normalising neighbourhood V := (−1,1)2.
If we then set W := (−0.1,0.1)2, then the hypotheses of Lemma B.12 are obeyed, and
W/H can be identified with (−0.1,0.1), with the projection map φ : (x, y) �→ x.

Example 33. — Let G be the torus (R/Z)2, and let H be the sub-local group
H = {(x, αx) mod Z2 : x ∈ (−0.1,0.1)}, where 0 < α < 1 is an irrational number, with
normalising neighbourhood (−0.1,0.1)2 mod Z2. Set W := (−0.01,0.01)2 mod Z2.
Then the hypotheses of Lemma B.12 are again obeyed, and W/H can be identified
with the interval I := (−0.01(1 + α),0.01(1 + α)), with the projection map φ : (x, y)

mod Z2 �→ y − αx for (x, y) ∈ (−0.01,0.01)2. Note, in contrast, that if one quotiented
G by the global group 〈H〉 = {(x, αx) mod Z2 : x ∈ R} generated by H, the quotient
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would be a non-Hausdorff space (and would also contain a dense set of torsion points,
in contrast to the interval I which is “locally torsion free”). It is because of this patho-
logical behaviour of quotienting by global groups that we need to work with local group
quotients instead.

Remark B.13. — As we have seen in the above discussion, many familiar concepts
in (global) group theory have analogues in the local group setting. We will however men-
tion one important global group-theoretic concept that does not have a convenient local
analogue, and that is the notion of the global group 〈A〉 generated by a set A of genera-
tors. The problem is that this global group 〈A〉 consists of words in A of arbitrarily length,
whereas in a local group one can typically only multiply together a bounded number
of elements of A. However, sets such as Am or (A ∪ A−1 ∪ {id})m for various choices of
exponent m can sometimes serve as a partial substitute for this concept in local group
theory, though one of course has to keep track of the precise value of m throughout the
argument.

Locally compact local groups. — Recall that a topological space X is said to be locally

compact if and every point in X has a compact neighbourhood. In particular, one can
speak of a locally compact symmetric local group.

To verify local compactness of a symmetric local group, it suffices to do so at the
identity.

Lemma B.14. — Let G be a symmetric local group. Then G is locally compact if and only if

there is a compact symmetric neighbourhood of the identity.

Proof. — [24, Lemma 2.16] The “only if ” part is clear (since id already has a
compact neighbourhood). Now we turn to the “if ” part. Let K be a compact symmetric
neighbourhood of the identity. By continuity, there exists an open neighbourhood V of g

such that g−1 ·V ·V · g−1 is well-defined and g−1 ·V ·V · g−1 ⊂ K. In particular, h �→ g−1h

is a homeomorphism from V · V · g−1 to g−1 · V · V · g−1 which is inverted by the map
k �→ gk. By Lemma B.9, we conclude that h �→ g−1h is also a homeomorphism from V to
g−1 · V = g−1 · V. In particular, since g−1 · V is a closed subset of K, it is compact, and so
V is compact also. Thus g has a precompact neighbourhood as required. �

Corollary B.15. — If G is a locally compact symmetric local group, and U is a symmetric open

neighbourhood of the identity, then U is also a locally compact local group.

Proof. — By Lemma B.14, G contains a symmetric precompact open neighbour-
hood V of the identity. By continuity, one can find a symmetric open neighbourhood W
of the identity such that W · W is well-defined in V ∩ U. By Lemma B.9, we conclude
that the closure W in U is the same as the closure of W in G; as it is contained in the
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precompact set V, it is thus precompact. The claim then follows from another application
of Lemma B.14. �

An important subclass of the locally compact local groups are the (symmetric) local Lie

groups, defined as those (symmetric) local groups which are also smooth finite-dimensional
real manifolds, such that the group operations are smooth on their domain of definition.
We have the following basic theorem.

Theorem B.16 (Lie’s third theorem). — Every local Lie group is locally isomorphic to a global

Lie group. Furthermore, one can take the global Lie group to be both connected and simply connected.

See e.g. [50] for a proof.
We have the following deep structure theorem for locally compact global groups,

due to Gleason and Yamabe [61].

Theorem B.17 (Gleason-Yamabe). — Suppose that G is a locally compact global group. Then

there is an open subgroup G′ of G with the following property: inside any neighbourhood of the identity

U ⊆ G′, there is a compact normal subgroup H such that G′/H is isomorphic to a connected global Lie

group.

The analogous theorem for locally compact local groups was established more
recently by Goldbring.

Theorem B.18 (Goldbring). — Suppose that G is a locally compact local group. Then some

restriction G′ of G to a symmetric neighbourhood of the identity has the following property. Inside any

neighbourhood of the identity U ⊆ G′, there is a compact normal subgroup H such that G′/H is

isomorphic to a local Lie group.

Proof. — The only self-contained proof of Theorem B.18 in the literature is in
the thesis [23], where it follows from a combination of Section 4.5 and [23, Proposi-
tion 4.7.1]. A more easily accessible account of essentially the same material follows by
combining [56, Proposition 4.1] (reduction to the NSS case) with [24, §8] (treatment of
the NSS case). Alternatively (though ultimately more circuitously) one may apply the
main result of [56], which shows that G has a restriction in common with a global locally
compact group, followed by Theorem B.17. For our applications, we only need to apply
Theorem B.18 when G is metrisable, although the general case can be deduced from the
metrisable case without much effort. �

Appendix C: Nilprogressions and related objects

In this appendix we prove two basic facts about coset nilprogressions in normal form,
namely that after shrinking the length parameter slightly they are approximate groups,
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and are globalisable: that is to say isomorphic to subsets of a global group. The proofs
of these facts are quite short due to the strength of the normal form axioms. One can
establish similar assertions without the normal form hypothesis, but the arguments are
much more complicated in that they require one to work with an explicit basis for the
free nilpotent group. They are not needed in this paper.

Lemma C.1. — Let P = PH(u1, . . . , ur;N1, . . . ,Nr) be a coset nilprogression in C-normal

form. Then for all ε > 0 that are sufficiently small depending on r,C, one has

(C.1) (1 + N1) . . . (1 + Nr)|H| �ε,C,r

∣∣PH(u1, . . . , ur; εN1, . . . , εNr)
∣∣

�C (1 + N1) . . . (1 + Nr)|H|
and hence, by the volume bounds on P,

∣∣PH(u1, . . . , ur; εN1, . . . , εNr)
∣∣	ε,C,r |P|.

Furthermore, PH(u1, . . . , ur; εN1, . . . , εNr) is a Oε,C,r(1)-approximate group.

Proof. — By quotienting out the finite group H, which is normalised by PH(u1, . . . ,

ur; εN1, . . . , εNr)
6 (say) if ε is small enough, we may assume that H is trivial. The upper

bound in (C.1) is then immediate from the upper bound in (2.2), while the lower bound
follows from the local properness axiom in Definition 2.6.

From (C.1) and the Ruzsa covering lemma we see that for ε small enough,

PH(u1, . . . , ur;2εN1, . . . ,2εNr)

is covered by Oε,C,r(1) translates of PH(u1, . . . , ur; εN1, . . . , εNr), and so the final claim
follows from Lemma 5.1. �

Remark C.2. — It is in fact possible to show that |PH(u1, . . . , ur; εN1, . . . , εNr)|
decays at a polynomial rate in ε, and that PH(u1, . . . , ur; εN1, . . . , εNr) is a OC,r(1)-
approximate group uniformly in ε, but we will not need these stronger conclusions here.

Lemma C.3. — Let P = PH(u1, . . . , ur;N1, . . . ,Nr) be a coset nilprogression in C-normal

form. Then for all ε > 0 that are sufficiently small depending on r,C, the set PH(u1, . . . , ur;
εN1, . . . , εNr) is isomorphic to a subset of a global group G.

From this lemma (and Lemma C.1) we see that Theorem 2.13 follows immediately
from Theorem 2.10.

Proof. — We first establish the claim under the additional hypothesis that the
N1, . . . ,Nr are sufficiently large depending on r,C; we will remove this hypothesis at
the end of the argument.
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Let v1, . . . , vr be lifts of the generators u1, . . . , ur of P/H to P. By Definition 2.6
and the normality of H, one has

(C.2) [vi, vj] ∈ P
(

vj+1, . . . , vr;OC

(
Nj+1

NiNj

)
, . . . ,OC

(
Nr

NiNj

))
H

for all 1 � i < j � r; note that the hypothesis that the Ni are large ensure that the right-
hand side is well-defined in P.

Consider a word in P(vj+1, . . . , vr;OC(
Nj+1

NiNj
), . . . ,OC( Nr

NiNj
)), which therefore con-

tains OC(
Nj+1

NiNj
) copies of v±1

j+1, OC(
Nj+2

NiNj
) copies of v±1

j+2, and so forth. Let us the leftmost

copy of v±1
j+1 and move it all the way to the left. Each time it passes through a v±1

k for some
j + 1 < k � r, we use (C.2) and create OC( Nl

Nj+1Nk
) new copies of v±1

l for each l > k, plus
an element of H which can be pushed all the way to the right using the normality of H.
Thus, if one initially had ak

Nk

NiNj
copies of v±1

k for each j + 1 < k � r before one started

moving the leftmost v±1
j+1 to the left, then by the end of the move, one would have

(C.3) al

Nl

NiNj

+ OC

( ∑
j+1<k<l

akNk

NiNj

Nl

Nj+1Nk

)

copies of v±1
l for each j + 1 < l � r. We may simplify the expression (C.3) as

(
al + OC

( ∑
j+1<k<l

1
Nj+1

ak

))
Nl

NiNj

.

Thus we have effectively replaced the sequence (ak)j+1<k�r by the sequence
(

al + OC

( ∑
j+1<k<l

1
Nj+1

ak

))

j+1<l�r

.

We iterate this process OC(
Nj+1

NiNj
) = OC(Nj+1) times, and note that the ak were initially of

size OC(1), and end up at a sequence, all of whose entries are of size OC,r(1). In other
words, after moving all copies of v±1

j+1 to the left, and all copies of H to the right, we end
up with OC,r(

Nk

NiNj
) copies of v±1

k in the middle for each j + 1 < k � r. We conclude that

[vi, vj] ∈ v
ni,j,j+1

j+1 P
(

vj+2, . . . , vr;OC,r

(
Nj+2

NiNj

)
, . . . ,OC,r

(
Nr

NiNj

))
H

for some ni,j,j+1 = OC(
Nj+1

NiNj
); note that as long as the Ni are large enough, all words that

appear in this reorganisation will lie inside P and so the algebraic manipulations can be
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justified. Iterating this procedure r − j times (which will be justified if the Ni are large
enough) we see that

(C.4) [vi, vj] = v
ni,j,j+1

j+1 . . . vni,j,r
r hi,j

for some ni,j,k = OC,r(
Nk

NiNj
) and hi,j ∈ H. Also, one has

(C.5) vihv
−1
i = φi(h)

for some (outer) automorphism φi : H → H of H.
Now let G be the global group generated by H and formal generators e1, . . . , er ,

subject to the relations

(C.6) [ei, ej] = e
ni,j,j+1

j+1 . . . eni,j,r
r hi,j

and

(C.7) eihe−1
i = φi(h)

for 1 � i < j � r. We claim that for ε small enough, there is an injective homomorphism
from PH(u1, . . . , ur; εN1, . . . , εNr) to G, which will give the claim.

To see this, first observe from the normality of H that

PH(u1, . . . , ur; εN1, . . . , εNr)= P(v1, . . . , vr; εN1, . . . , εNr)H.

Organising the words in P(v1, . . . , vr; εN1, . . . , εNr) by moving all occurrences of v1 to
the left (using (C.4)) and all occurrences of H to the right (using the normality of H) we
then have

(C.8) PH(u1, . . . , ur; εN1, . . . , εNr)

⊆ P(v1; εN1)P
(
v2, . . . , vr;OC,r(εN2), . . . ,OC,r(εNr)

)
H

assuming ε is small enough in order to justify all the algebraic manipulations. Iterating
this we see that

(C.9) PH(u1, . . . , ur; εN1, . . . , εNr)⊆ P
(
v1;OC,r(εN1)

)
. . .P
(
vr;OC,r(εNr)

)
H.

Thus it suffices to establish an injective homomorphism φ from the set

(C.10)
{
v

n1
1 . . . vnr

r h : ni = OC,r(εNi); h ∈ H
}

to G. From the local properness property in Definition 2.6, all the products in (C.10) are
distinct if ε is small enough. We may thus define φ by the formula

φ
(
v

n1
1 . . . vnr

r h
) := e

n1
1 . . . enr

r h.
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Next, we show that φ is injective. Indeed, suppose that there exist ni, n′i = OC,r(εNi)

and h, h′ ∈ H with

φ
(
v

n1
1 . . . vnr

r h
)= φ

(
v

n′1
1 . . . vn′r

r h′
)

and thus

e
n1
1 . . . enr

r h = e
n′1
1 . . . en′r

r h′.

By the universal properties of G, there is a homomorphism from G to Z that maps e1 to
1 and annihilates the other ei and H. This implies that n1 = n′1. We can then eliminate
n1, n′1 and work with the subgroup G2 of G generated by e2, . . . , er and H. From abstract
nonsense we see that G2 is universal with respect to the constraints (C.6), (C.7) for i � 2,
and that G is the semidirect product of G2 with Z using the conjugation action of e1 on
G2 defined using (C.6), (C.7) for i = 1. In particular, there is a homomorphism from G2 to
Z that maps e2 to 1 and annihilates the ei and H for i > 2. This gives n2 = n′2. Continuing
in this fashion we see that ni = n′i for all i and hence h = h′, which establishes injectivity.

Finally, we need to show that φ is a homomorphism. It suffices to show that if
ni, n′i, n′′i = OC,r(εNi) and h, h′, h′′ ∈ H are such that

(C.11) v
n1
1 . . . vnr

r hv
n′1
1 . . . vn′r

r h′ = v
n′′1
1 . . . vn′′r

r h′′

then

(C.12) e
n1
1 . . . enr

r he
n′1
1 . . . en′r

r h′ = e
n′′1
1 . . . en′′r

r h′′.

To see this, we rearrange the word on the left-hand side of (C.11) by moving all occur-
rences of v1 to the left, and all occurrences of elements of H to the right, using (C.4)
and (C.5); if ε is small enough, then all manipulations take place inside P and can thus
be justified. Iterating this process, we must eventually be able to express this word in the
form v

ñ1
1 . . . vñr

r h̃ for some ñi = OC,r(εNi) and h̃ ∈ H. By injectivity, we then have ñi = n′′i
and h̃ = h′′i . But then if one formally replaces all the vi by ei and uses (C.6), (C.7) in place
of (C.4), (C.5) in the rearrangement procedure just described, we conclude (C.12), and
the claim follows.

Now we remove the hypothesis that the N1, . . . ,Nr are sufficiently large depending
on r,C. Let F : R+ → R+ be a function depending on r,C to be chosen later. By the
pigeonhole principle, we can find a threshold M ≥ 1 with M = OF(1) such that every
length Ni is either less than M, or larger than F(M). If we let 1 � i1 < · · · < ir′ � r

be those indices ij with Nij > F(M), then we see (if F is sufficiently rapidly growing)
that PH(ui1, . . . , uir′ ;Ni1, . . . ,Nir) will be a coset nilprogression in OC,r,M(1)-normal form.
For F sufficiently rapidly growing, the preceding argument then applies to conclude that
PH(ui1, . . . , uir′ ; εNi1, . . . , εNir ) is isomorphic to a subset of a global group if ε is small
enough depending on C, r,M, and the claim follows. �
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Remark C.4. — From (C.9) we see that every element in PH(u1, . . . , ur;
εN1, . . . , εNr) takes the form

(C.13) v
a1
1 . . . var

r h

for some integers ai, . . . , ar with ai = OC,r(εNi) and h ∈ H. Conversely, it is clear that
if |ai| � εNi then all expressions of the form (C.13) lie in PH(u1, . . . , ur; εN1, . . . , εNr).
Informally, we thus see that the nilprogression PH(u1, . . . , ur; εN1, . . . , εNr) is comparable
in some sense to the nilbox

{
v

a1
1 . . . var

r h : |ai|� εNi; h ∈ H
}
.

We will however not exploit this description of nilprogressions in this paper.

A variant of the above analysis also gives polynomial growth of progressions in
C-normal form in the global case.

Proposition C.5 (Polynomial growth). — Let P = PH(u1, . . . , ur;N1, . . . ,Nr) be a coset

nilprogression in C-normal form in a global group. Then for all m � 1, one has |Pm| �C,r mOC,r(1)|P|.

Proof. — We allow all implied constants to depend on C, r. As H is normalised by
P, we may quotient out by H and reduce to the case when H is trivial. Then

Pm ⊆ P(u1, . . . , ur;mN1, . . . ,mNr)

and so it suffices (by the volume bound (2.2)) to show that

∣∣P(u1, . . . , ur;mN1, . . . ,mNr)
∣∣� mO(1)(N1 + 1) . . . (Nr + 1).

By modifying the proof of (C.8), one easily verifies that

P(u1, . . . , ur;mN1, . . . ,mNr)

⊆ P(v1;mN1)P
(
v2, . . . , vr;O

(
m2N2

)
, . . . ,O

(
m2Nr

));

iterating this, one sees that

P(u1, . . . , ur;mN1, . . . ,mNr)⊆ P
(
v1;O

(
mO(1)

)
N1

)
. . .P
(
vr;O

(
mO(1)Nr

))
,

and the claim follows. �
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