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ABSTRACT

Let E/F be a quadratic extension of number fields. We study periods and regularized periods of cusp forms and
Eisenstein series on GL,(Ag) over a unitary group of a Hermitian form with respect to E/F. We provide factorization for
these periods into locally defined functionals, express these factors in terms of suitably defined local periods and character-
ize global distinction. We also study in detail the analogous local question and analyze the space of invariant linear forms
under a unitary group.
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0. Introduction

Let E/F be a quadratic extension of number fields with Galois involution 7 and let
A = Ay be the ring of adeles of F. Denote by 1 : F*\A* — {£1} the quadratic character
associated to E/F by class field theory. Let G' = GL, /F and let G be the restriction of
scalars from E to F of GL,, /E. Let

X:{geG:tgf:g}
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be the F-subvariety of Hermitian matrices in G. Here ‘g is the transpose of a matrix g.
For x € X(F) denote by

ze{geG:’ngg:x}

the unitary group (defined over F) determined by x. The unitary period integral P, (¢) of a
cusp form ¢ of G(A)(= GL,(Ag)) is defined by

Pup) = / ¢ (k) dh.
G'()\G'(A)

A cuspidal automorphic representation 7 of G(A) is called G*-distinguished if there exists a
cusp form ¢ in the space of 7 such that P,(¢) # 0. The study of unitary period integrals
has seen much progress in recent years. In particular, Jacquet showed that an irreducible
cuspidal automorphic representation 7 of G(A) is in the image of quadratic base change
be if and only if 7 is G*-distinguished for some x € X(F) [Jac05a]. In fact, it suffices to
take the quasi-split unitary group [JaclO]. In order to obtain these results, Jacquet, in
the course of many years, invented and developed the relative trace formula on G(A)
and together with his collaborators compared it to a Kuznetsov trace formula on G'(A)
(see [Ye88, Ye89, JY90, Jac92, JY92, Ye93, Ye94, Jac93, Ye95, JY96, Jac98, Ye98, JY99,
JacO01, Jac02, Jac03a, Jac03b, JacO4b, Jac05a, Jac05b, Lap06, Jac10]).

This comparison of trace formulas gives additional information about the period
integrals. To describe it, we first recall that by Arthur-Clozel, an irreducible cuspidal
automorphic representation 7 of G(A) is in the image of quadratic base change if and
only if 77 is Galois invariant [AC89]. In this case, 7 is the image of exactly two irreducible
cuspidal representations of G'(A) of the form 7/, 7’ ® n. We say that E/F splits at infinity
if every Archimedean place of I splits in E. When n = 3, x = ¢ and E/F splits at infinity,
Jacquet showed in [JacOl, Theorem 1] that the period integral P, is factorizable on
and that its local components are governed by certain identities between Bessel distributions
associated to the local components 7, of 7" and 7, of 7. The restriction to the case n =3
was made, since at the time, the necessary relative trace identity was only available in
that case. Based on recent developments (mainly [Jac03b, Jac0O4b, JacO5a, Lap06]), the
method and result of Jacquet can be generalized to any n and x (Theorem 10.2). We
can also remove the assumption that E/F splits at infinity, thanks to a recent result by
Aizenbud and Gourevitch [AG] extending smooth transfer to the Archimedean case.

As pointed out in [JacO1], the factorization of the global unitary period is far from
formal, since there is no multiplicity one for the local invariant functionals. For instance,
for a quadratic extension of p-adic fields, any irreducible unramified principal series rep-
resentation admits 2"~ linearly independent invariant functionals with respect to a given
unitary group. The failure of multiplicity one reflects the fact that locally, quadratic base
change is not one-to-one, even up to a twist by 7.

Along with the factorization we provide for any x € X(F), a criterion for an irre-
ducible, Galois-invariant, cuspidal automorphic representation 7 = be(7") of G(A) to be
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G*-distinguished. Namely, 7 is G*-distinguished except for purely local obstructions de-
pending on the (finitely many) local components of 7w’ (rather than ) at the places where
G" is not quasi-split. (We recall that 7 is generally not determined by 7,, even up to a
quadratic twist.) In the non-Archimedean case (for which non-quasi-split unitary groups
exist only for n even) the obstruction is that 7, > 7, ® 1,. The Archimedean obstruction
is a little more complicated, but it is still given explicitly in terms of 7. More precisely, let
t0'(7r)) be the largest £ such that we can write 7, =8’ X o’ where §’ is a representation
of GLg(F,) such that 8’ >~ § ® n and x denotes parabolic induction. Then we have the
following characterization.

Theorem 0.1. — Let x be a Hermatian form of rank n with respect to E/F and let w be an
wrreducible cuspidal representation of GL,(Ag). Then w is G*-distinguished if and only if there exists a
cuspidal representation 7w’ of GL,(Ay) such that v =bc (') (ie., 7w is Galois invariant) and o' (7))
us not bigger than the Witt index of x with respect to B, /¥, for all inert places v of ¥ over which G* s
not quasi-split.

In particular, with this criterion we may give examples, in the case where G* is
not quasi-split, of cuspidal representations which are locally G*(F,)-distinguished for all
v, but not globally G*-distinguished (see Section 12.3). (The notion of local distinction
is explained below.) At first glance this may look surprising since the special value of
the L-function appearing in the period factorization is always non-vanishing. The point,
however, is that the local functional dictated by the period integral may vanish, even if
the corresponding local representation is abstractly distinguished.

The local factor of the global period P, at a place v is determined by the local
component 7, of the essentially unique 7’ that base changes to 7. One of our main goals
is to identify the local factors as local open periods (see below).

We recall that in many important cases of period integrals, the square of the absolute
value of the period admits (or is expected to admit) a factorization into a product of locally
defined positive semi-definite Hermitian forms on 7, [Wal85, Ich08, II10]. Our context
is different in that the factorization is already for P, itself, but on the other hand, the local
factors (even up to a scalar) are not determined by 7, itself.

As 1t turns out, for the local analysis it 1s extremely useful to study the continuous
part of the relative trace formula and to extend the factorization of unitary periods to
Eisenstein series. Of course, the period integral may not converge, but it is possible to
regularize it [LRO3, LRO1, JLR99]. On a formal level, the period of the Eisenstein series
induced from a parabolic subgroup P unfolds to a sum over the P-orbits in X. The reg-
ularized period is the contribution of the open P-orbit in X (whose F-points decompose
to infinitely many P(F)-orbits). The factorization of unitary periods of cusp forms, to-
gether with Fourier inversion, allows us to express the regularized period of an Eisenstein
series as a finite sum of factorizable, invariant linear forms. The procedure is reminis-
cent of the stabilization of the trace formula of SL(2) [LL79]. A special case of this was
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carried out in [LROO] and [Off07]. We can analogously apply a Fourier transform lo-
cally to obtain open local periods and Bessel distributions. The open local periods are
linear combinations of functionals considered in the generality of symmetric spaces by
Blanc, Brylinsky, Carmona and Delorme [BD92, CD94, BD08]. We establish explicit
local functional equations for the open local periods. This diagonalizes the vector-valued
functional equations of [CD94] (see Theorem 12.4).

The question of global distinction admits a local analogue. Suppose that E/F is a
quadratic extension of local fields. By abuse of language, we call a linear form on a rep-
resentation 7w of G(F) = GL,(E) that is invariant under a unitary group, a local unitary
period. We also say that  is locally G*-distinguished if a non-zero local unitary period
with respect to G*(IF) exists. We may ask the following questions.

— What are the distinguished representations 7 of GL,(E)?
— What is the dimension of the space Homg: (77, G) of local unitary periods?
— Can one construct local unitary periods explicitly?

In the finite field case the answer has been known for a while. Namely, an irreducible
representation 7 of GL,(F2) admits a non-zero functional invariant under the unitary
group U,(F,) if and only if 7 is equivalent to its twist under the non-trivial element of
Gal(F;/F,) and in this case this functional is unique up to a scalar [Gow84]. More-
over, the Galois-invariant representations of GL,(F;2) correspond bijectively, via charac-
ter identities, to the irreducible representations of GL,(F,) [Shi76].

Suppose that F is p-adic. The case n = 3 1s considered in [JacO1], where it is shown
by a simple globalization argument, together with the necessary condition for distinction
in the global case (both of which do not require any comparison of relative trace for-
mulas) that a distinguished supercuspidal representation is Galois invariant. Conversely,
using the relative trace formula, Jacquet shows that Galois-invariant supercuspidal rep-
resentations are distinguished by any unitary group, and a non-zero local unitary period
s

— unique up to scalar,
— can be obtained by integrating a matrix coefficient over G*(I),
— arises as a local component of a non-vanishing global unitary period integral.

Once again, using the aforementioned recent developments on the relative trace formula,
the argument immediately extends to any 7.

Jacquet further conjectured, in analogy with the global case, that in general, an
irreducible representation is distinguished with respect to the quasi-split unitary group if
and only if it is Galois invariant. Using the Geometric Lemma of Bernstein-Zelevinsky
(but once again, without appealing to the comparison of relative trace formulas) we show
the “only if” part of this conjecture (Theorem 6.1, which also applies in the non-quasi-
split case). Using the local open periods that we define, we can prove in many cases the
“if”” part of the conjecture as well. Namely, we show that it holds if 7 is either unitariz-
able or generic, and in the latter case the dimension of Homg: (7, G) is bounded from
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below by the number of equivalence classes of representations 7’ such that be(n') =7
up to a twist by n (Proposition 13.14). Moreover, this bound is tight if 77 is induced from
pairwise inequivalent essentially square integrable representations (the regular case). On
the other hand, in the non-regular case, a simple upper semicontinuity argument (see
Appendix D) gives a sharper lower bound in general. One may speculate that the latter
bound is actually tight.

Our results apply equally well in the non-quasi-split case. The only difference is in
the case where there is a unique ' such that be(’) = , in which case 7 is not distin-
guished with respect to the non-quasi-split unitary group. We will call 7 totally 7-isotropic
in this case. Equivalently, 7 is totally 7-isotropic if and only if 77 is Galois invariant and
the supercuspidal support of 7 consists of 01 ® - - - ® o}, (up to permutation) where no o;
1s Galois invariant. This can happen only if 7 is even.

We summarize the main local results in the following

Theorem 0.2. — Let E/F be a quadratic extension of p-adic fields, x € X(F) and 7 an
urreductble representation of GL,,(E). Assume that 7w s distinguished by G*. Then 1 s Galots invariant.
Conversely, assume that 7 s Galots invariant. If 7 s totally T -isotropic then

1 ; Gx - . l t
dim Homg, (7, C) = | L Y 1 quasi=split
0 otherwise.

Otherwise,

(1) If 7w s generic then 1 is distinguished by G*. More precisely, assume that w = &1 X - - - X §y,
where the 8;’s are essentially square-integrable. Let r be the number of U’s such that §; is Galois
wmvariant. (By assumption r > 0.) Then

(0.1) dim Homg. (7, C) > 2"

with equality if the Galois invariant 8;’s are distinet.
(2) If w5 unmitarizable (or more generally, 7 s fully induced from ladder representations—see
Defination 13.10) then 7 s distinguished by G*.

We conjecture that in general equality holds in (0.1).

In the Archimedean case, an analogue of Theorem 0.2 is proved in Appendix B.

There are other methods to study local unitary periods, especially for supercusp-
idal representations. For instance, Hakim-Mao, and in a more general context, Hakim-
Murnaghan and Prasad, analyze unitary periods using the realization of a supercuspidal
representation as induced from a compact open subgroup modulo the center [BK93], to
reduce the problem to groups over finite fields [HM98, HMO02b, Pra0l]. In contrast, our
method, which gives sharper results, is entirely different and exploits the full force of the
relative trace formula and a global argument.
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Finally, let us describe the contents of the paper in more detail. The paper 1s di-
vided into three parts and four appendices. The first part is purely local. After introducing
relevant notation, we review some basic facts about representation theory of GL,, base
change and Bessel distributions. This enables us to formulate a certain identity of ap-
propriately normalized Bessel distributions for generic representations (Section 3). This
identity will eventually be proved in full generality in Section 12 and it serves to nor-
malize the local unitary period on the Whittaker model. The normalization of the Bessel
distribution is based on the standard inner product on the Whittaker model. For inductive
purposes it is useful to know that the inner product is compatible with parabolic induc-
tion, i.e., that the Jacquet integral is an isometry between an induced representation and
its Whittaker model. This is shown in Appendix A.

In Section 4, we define and start to analyze the main local objects—the open lo-
cal periods, following [LR00]. Eventually, they will show up as the local factors of global
unitary periods. A complementary set of invariant functionals on an induced represen-
tation supported on closed orbits is defined in Section 5. They play a role in the exact
characterization of global distinction. More precisely, they provide the missing link for
the Archimedean analysis.

In Section 6, we prove that local distinction implies Galois invariance in the p-adic
case (Theorem 6.1) answering positively the necessity part in Jacquet’s conjecture on dis-
tinction. We also reduce the study of local unitary periods in the p-adic case to the case
of representations which are subquotients of representations induced from a tensor prod-
uct of unramified twists of a single Galois-invariant supercuspidal representation. The
main tools are the geometric Lemma of Bernstein-Zelevinsky and a globalization argu-
ment which had been used by several authors (cf. [HMO02a, JacOl]). The globalization
uses a “soft” version of the relative trace formula and does not require any comparison.
We also extend the formulation of Jacquet’s conjecture on local distinction to include the
non-quasi-split and the Archimedean cases.

In Section 7, we analyze the open periods in the split case and interpret them
in terms of intertwining operators. Using Shahidi’s expression for the local coefficients in
the context of GL(n) [Sha84, Sha90] we derive the local Bessel identities. The unramified
case 1s considered in Section 8 where we use explicit computations of Y. Hironaka [Hir99]
and the results of [Off09, Off07] to provide the Bessel identities at hand. The dependence
of our results on the choice of the additive character is analyzed in Section 9. This is
necessary in order to apply a global argument later on. Subsequently, in Appendix B by
Aizenbud and Lapid we analyze the Archimedean case. We give a necessary condition
(which is also conjectured to be sufficient) for distinction by a unitary group and an upper
bound on the dimension of invariant forms. In particular, we show that a distinguished
irreducible representation is Galois invariant.

In the second part of the paper we prove the main global results. In Section 10 we
prove, following Jacquet, the factorization theorem for cuspidal representations (Theo-
rem 10.2) and its corollaries for distinction. The factorization of unitary periods of Eisen-
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stein series after applying Fourier inversion is carried out in Section 11, following [LLR0O0].
Along the way, we obtain identities of global Bessel distributions. The relative trace for-
mula will be reviewed in Appendix C.

In the last part of the paper, we apply the results of the first two parts to prove our
main local results. In Section 12, we prove the local functional equations for the open
local periods and the existence of Bessel identities (Theorem 12.4). We also obtain an in-
ductive description of the local factors of unitary periods in terms of the square-integrable
data of the local components of the representation. Alongside, we obtain the precise local
obstructions for global distinction by a given unitary group. In the final Section 13, we
use the functional equations to give upper and lower bounds on the dimension of local
unitary periods. In particular, we prove uniqueness of local unitary periods for square-
integrable representations, and more generally for a large class of representations named
ladder representations. This class includes the general Speh representations and was studied
in [LM]. In the regular case we compute the multiplicity of unitary periods precisely. We
conclude with a summary of what is known and still missing about distinguished rep-
resentations and the dimension of the space of linear forms invariant under a unitary
group. Finally, in Appendix D we give an upper semicontinuity result for multiplicities.
The argument, which is well known to experts, was kindly communicated to us by Joseph
Bernstein, Akshay Venkatesh and Nolan Wallach.

For the convenience of the reader we append an index of symbols at the end of the

paper.

Local theory
1. Notation and preliminaries

1.1. Groups and parabolic subgroups. — Throughout this part, let I be a local field of
characteristic zero with normalized absolute value |-|p. In the non-Archimedean case, let
Ok be the ring of integers of F, @y a uniformizer and ¢y the cardinality of the residue
field. Let E be a quadratic étale algebra over F, i.e., E is either a quadratic field extension
of I (the inert case) or E =F @ I (the split case). Let x = x° denote the non-trivial F-
automorphism of E. Thus, in the split case (x, )" = (5, x), x,» € F. Denote by Tr(x) =
x4+ x" the trace map, Nm(x) = xx" the norm map and 7 the quadratic character attached
to E/F by class field theory. Thus 7 is the unique non-trivial character of Nm(E*)\F* in
the inert case and 7 is the trivial character of I in the split case. Throughout, we fix a
non-trivial character ¥" of F and let ¥ = v’ o Tr. In the p-adic case, we say that ¥’ is
unramified if its conductor is Op. We will usually suppress the dependence on ¥’ from
the notation.

We will often use a boldface letter, e.g. Y, to denote an algebraic set defined
over I. We will use a plain letter, e.g. Y, to denote the set of F-points of an algebraic
set, i.e., Y = Y(F). Let G’ = G, denote the group GL, considered as an algebraic group
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defined over F and let G = G,, = Resg/r GL,, where Res denotes restriction of scalars.
Thus, G’ = GL,(F) and G = GL,(E). The group G’ is viewed as a subgroup of G. Note
that in the split case, G = G’ x G’ and G’ embeds diagonally in G. Let ¢ = I, be the
identity element of G. Denote by ‘x the transpose of a matrix x. For a subgroup Q of G,
we denote by ‘Q its image under the transpose map.

Let

X=X, = {xeG:[xf =x}
be the symmetric space of Hermitian matrices in G with the right G-action given by
xeg='s"xg, g€G,xeX

We denote by X/G the finite set of G-orbits in X. It is indexed by F*/ Nm E* in the p-adic
case and by the possible signatures in the Archimedean case. For an algebraic subgroup
Q of G and any x € X, let QF denote the stabilizer of x in Q. In particular, G* is the
unitary group, defined over F, associated with the Hermitian matrix x. For any x € X, we
denote by to(x) the Witt index of «, 1.e., the F-rank of G*.

The standard maximal compact subgroup of G (resp., G') is denoted by K (resp.,
K’). Thus,

GL,(Op) ifFis p-adic,
K'=130(n) if F=R,

U(n) ifF=C,

K'x K if E/Fis split,

GL,(Og) if E/F is inert and p-adic,
U(n) if E/F=C/R.

7~
|

We shall fix some further notation and conventions pertaining to the group G with the
inert case in mind; the corresponding notation for G’ will be appended by a prime. De-
note by Z the center of G. Let Pg = MUy be the standard Borel subgroup of G with
its standard Levi decomposition, so that Py (resp., My, Up) is the subgroup of upper
triangular (resp., diagonal, upper unitriangular) matrices in G. By a standard parabolic
subgroup of G we mean one that contains Py. Let k = (ny, ..., n,) be a composition of n,
e, ny, ..., n are positive integers with n =n; + - - - 4+ n,. We denote by P, = M, U, the
standard parabolic subgroup of G of type x with unipotent radical U, and Levi part

M, = {diag(g,....2) g € Gy, i=1,...,t}.

When « is clear from the context (and in particular, throughout this section) we simply
write M = M,, U = U, and P = MU; similarly for M, U’ P’. Let % = (nyy...,n1) be
the reverse composition. In particular P« is the standard parabolic subgroup which is
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“«—
conjugate to the opposite parabolic P of P. For P = MU as above, we write P = P«

<~ -
M =M« and U =U¢.

We also consider a composition y = (y, ..., ¥,) of k, i.e., ¥; 1s a composition of
nifori=1,...,t. We think of y as a composition of n refining k. When y is clear from
the context we write L=M, C M and L' =M C M. Usually, Q = LV is the standard
parabolic subgroup of G with Levi subgroup L and unipotent radical V.

We identify the Weyl group W of G with the permutation matrices, or with the
symmetric group S, on the set [1, n], where for ¢, b € R such that b — a € N we write

la, ] ={a,a+1,...,b}.

As a rule, we will use a superscript to refer to objects pertaining to a Levi subgroup
of G. For instance, we denote by A} the set of simple roots of M with respect to its Borel
subgroup MNPy, WM the Weyl group of M (identified with a subgroup of W) and w}! the
longest element in WM i.e. such that wg’[oe <QOforall x € Ag’l. Set wy = wg’. Let WM(L)
be the set of all right W-reduced elements w € WM such that wLw ™! is a standard Levi
subgroup of M and let w%’l denote the longest element of WM(L). Set W(L) = WY (L)

and wy, = wy’. Note that wy' = wyj, and wy = wywy'. Explicitly, for M = M, we have

In[
WM =
L,

1

We view any w € W(M) as the permutation of [1, ¢] (also denoted by w) such that

w dlag(gl b e ,gl)w_l = diag(gwq(l), e 7gw*1(t))*

Thus wMw™" = M,,, where wk = (n,-1(1), - - - » Zu-1(y). In particular, wyk = % and
w;il = Wy;-

For a t-invariant subgroup Q of G denote by X*(Q) the lattice of F-rational char-
acters of Q and let 8¢ be the modulus function of Q.' Let ag be the real vector space
X*(Q) @z R and let ag be the dual space. If N is the Levi part of Q then we identify ag
with ay and with az). We set ag = ay, and aj = alt/lo' The Weyl group W acts naturally
on aj and a. We identify aj and its dual space with R" in the usual way. The W-invariant
pairing (-, -) : aj X ay — R is the standard inner product on R".

As before, let . € M be standard Levi subgroups of G. There is a natural embed-
ding of ay into ar.. We denote by a} the orthogonal complement of ay in ay, and use
similar notation for the dual subspaces so that we also have af = ai; @ (a;")*. For every
X € a’ we denote by A, (resp. AM, A}) its orthogonal projection to the space af (resp.

(Cllgl)*, (Cl%l *)

! The convention is that if dg is a right Haar measure then 8 (g) ™" dg is a left Haar measure. This is opposite to the
convention of Bourbaki.
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In particular, for M = M, we identify ay; with R’ via

ny ny
iveesA) o (Myoo Ay oo Ao Ay € g

We will identify aypy with ay;.
For any real vector space a we denote by ag = a Qg C its complexification. The
function H : G — qy is defined by

€<X,H(z)>

=|x(m)|,, x €X*(Mo)

via the Iwasawa decomposition g = umk, u € Uy, m € My, k € K. Note that with our
conventions we have H(g) = 2H'(g) for all g € G’. We let

n—1 n—3 1 —n c o
=p0,= , ey a
pP=p 9 9 9 0

be the half-sum of the positive roots of G with respect to Py. Note that

Sonm = (PPLHO),
Denote by
(ai’l)_;,_ = {()\'19 "")"t) S CLKTIXI > e > )\'l‘}

the positive Weyl chamber of ay;.
Denote by 11 the characteristic function of a set I'. For a group Q, let 1 denote
the trivial character of Q. For every function f on Q and x, y, z € Q, we set

(LOROY) (D) =/ (x"2).

For an affine variety Y over F, we denote by S(Y) the space of Schwartz functions
on Y = Y(F). (We will only consider smooth varieties.) If F is p-adic, S(Y) is the space
of locally constant compactly supported functions. If F is Archimedean, S(Y) consists of
the restrictions to Y of Schwartz functions (in the usual sense) of the ambient affine space,
with the usual topology. (This does not depend on the embedding,) If H is a group then
S(H) is an algebra under the convolution *. Note that S(X) is a S(G)-module via the

convolution

From=[f@oregi
G

We denote by $*(Y) the space of (Schwartz) distributions on Y, i.e. the (continuous) linear
forms on S(Y).
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1.2. Measures. — Recall that for any non-singular algebraic variety V over I of
dimension 4 with a gauge form wy, the Tamagawa measure on V is defined by transfer-
ring the “standard” Haar measure on F? to V using wy. (See [Wei82]; the varieties that
we consider will always be groups or homogeneous spaces and the gauge forms will be
non-zero invariant differential forms.) For global reasons, we will multiply this measure
by Myve(¥')¥? where My is a local factor described below and

m

q if F is non-Archimedean and
c(lﬁ’) = the conductor of ¥’ is w™ Oy,

lalp  if F is Archimedean and v’ (x) = > iR,
As a rule we take
OResy v = P (Wy)
where p* is defined in [Wei82, p. 22]. (In the split case this becomes the product form.)

The invariant differential forms are chosen (up to a sign) as follows. We take wy =

. dg. .
[ [du;; where the product ranges over the non-constant coordinates of U’, wg = gﬂ“‘;;,’ ,
S

oM = ]_[f:1 wg,, and wp which matches wy and @y in the sense of [Wei82, p. 24].

. i<j d 1)
The forms on U, G, M, P are taken by the convention above. We also take wx = %

(where for 7 < the coordinates are in E and for : = the coordinates are in F) and for
any x € X we take wg= which matches wg and wx. For any M we take the product form
onXM=XNM~ X, X+ xX,,. We take oy, y € XM to match wym and wy;.

The factors Ay will be 1 for unipotent groups. In particular the Haar measure
on I (resp. E) will be the self-dual Haar measure with respect to ¥’ (resp. ¥). We take
Ao =[], LG 1), hg =], LG, 1), Ax =[], LG n'tY) and kg =[], LG, n)
where L(s, x) 18 the local L-factor of Tate. The isomorphism X =~ ]_[geX/G GA\G is
compatible with the measures. Similarly, we take Ay = 1_[521 NG,,s M = -, g, .~
and M =[], A for y = diag(y),...,») € XM If F is p-adic and ¥’ has con-
ductor O then the measure on G’ gives vol(K') = 1. If also E/F is unramified then
volg(K) =volx(XNK) = 1.

Given a closed subgroup H' € H we will consider the ‘quotient measure’ on H'\H
which is strictly speaking not necessarily a measure but rather a continuous functional
on the space of continuous left (H', %)-equi\/ariant functions on G which are compactly
supported modulo H'. Thus

/ S(hydh= f / S—H(}z/)f(/z/x) dH dx
H o\H Ji Ow

for any compactly supported continuous function on H.
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1.3. Representations and induced representations. — If F is p-adic then R(G) will denote
the category of admissible finitely generated smooth representations (with respect to the
discrete topology). In the Archimedean case, R(G) will denote the category of smooth
Fréchet representations (7, V) of moderate growth whose underlying (g, K)-module
Vk is admissible and finitely generated, with continuous intertwining operators as mor-
phisms. (Vg determines V up to isomorphism—see [Wal92, Chapter 11].?) In both cases,
any w € R(G) is of finite length and can be realized as the smooth part of a Hilbert repre-
sentation (say, on §)) on which K (but not necessarily G) acts unitarily. In the Archimedean

case, let K be the unitary dual of K and let $§ = €, V" be the decomposition of §) into

yekK
K-types. Let p, : 9 — V", y € K be the corresponding orthogonal projections. We fix
a norm on the Euclidean space spanned by the lattice of characters of a maximal torus
of K. For any y € K let [l be the norm of the highest weight of y. Then V coincides
with the space of K-smooth vectors of §) and the topology of V is given by the norms

Z pr (v)

yek

w(+1vI), neN.

(See e.g. [BK] for this and other basic facts about Harish-Chandra modules and their
globalizations.)

Let (*, V*) be the representation on the topological dual of V and let (7", VY) €
R(G) be the contragredient of . As a representation space, V" is the linear span of
{Lom(f): £ eV* feS(G)}. In the p-adic case V" is just the smooth part of V*. In the
Archimedean case, suppose that 7 is realized as the smooth part of a Hilbert representa-
tion of G on §. Then V" is the smooth part of the dual Hilbert space of $) (isomorphic to
the complex conjugate of §)) with respect to the dual action. Thus, the Fréchet topology
on VY is given by the norms

Y el (L1, neN.

yek

It will be useful to use different realizations of the contragredient representations.
To that end, we say that the data D = (7, 7T, (-, +)) (or simply 7, 7 if (-, -) is clear from
the context) is a dual couple with respect to G if 7, 7 € R(G) and (-, ) is a pairing (i.e. a
non-degenerate G-invariant bilinear form) on 7 X 7. This pairing gives rise to an equiv-
alence of representations Ap : 7% — 7, and conversely, any such equivalence defines a
dual couple.

By definition, an equivalence between the dual couples (my, 7y, (-, +);) and
(79, o, (-, -)9) is a pair (A, A) of equivalences of representations A : 7w, — 7y and
A: 7, — 7, such that (Av, Ad), = (v, D), for any v € m, U € 7;. There is also an
obvious notion of a direct sum of dual couples.

2 Henceforth, equivalence of representations will always mean isomorphism as smooth representations.
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If 7 € R(G) has a central character then we denote it by @,. Given a character
x of E*, we denote by the same letter its pullback to G via det. For any 7 € R(G) we
set T - x =71 @ (x odet). This representation is realized on the same space as 7 and
[ - x1(g) = x(9)7(g). In particular, we write 7 [s] = 7 - |det|’. For any isomorphism j
between two groups Hy, Hy and (7, V) € R(H,) we denote by (77, V) € R(H,) the
twist of by j, 1.e., w/(g’) =7 (g), g€ Hy.

Let (0, V) € R(M) and let I(o) = I{(0) be the space of smooth functions ¢ on G
with values in V such that

@(umg) = Sp(m)o(m)[p()], meM,ueU,geG.

We denote by @;, A € ay; ¢ the holomorphic section given by

gok(g) — EQ’H@)gD(g).

Let I(o, A) = I§ (0, A) be the representation of G on the space 1(o') given by

(I(g. o, V@), (¥) = @r(xg)

for x and g in G. This is the representation parabolically induced from o [A] := o - ¢*HO)

realized on the space I(0). (Occasionally, we omit o from the notation if it is clear from
the context.) Whenever 0 =0, ® ---® 04, 0; € R(G,)) and A = (A1, ..., A) € a5 = C’
we have

orAl=0[M]® - ®afr]

It will sometimes be convenient to denote the induced representation I(o, 0) by o) X
<o X Oy

We use I, as a functor. Thus, if o, 0 € R(M) and T : ¢ — 0 is an intertwining op-
erator then we write Ig’i(T) : ISI(U, A) — Il(;’,I(Q, A), A € ay; ¢ for the intertwining operator
given by [Iﬁ(T)(p](g) =Tle)], g€G, ¢ €l(0).

More generally, if v € R(L) and u € af ¢, we denote by M, n) € RM) the
parabolic induction from v[u] realized on the space IM(v). The associated action of
m € M on IM(v) is denoted by IM(m, v, ) and ¢, = ¢"H g is the holomorphic section

1
associated with ¢ € If’l(v). For ¢ € If(v) we write @y = 8p 2|y € I%I(v) . With this
notation, transitivity of induction can be expressed as follows. Suppose that o = I}(v, w).

%
For ¢ € I¥(v) and & € I{(0) we write ¢ S & if we have

<Pu(é’)=§(¥)(€)’ gEG,

or equivalently,

(1.1 (5@),m =38 g, mg) = ([I(g. v. Wg],,), (m).
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It will sometimes be convenient to write
FL,I\I(Ua M) = Flcjl\/l(va M) : I](j(va 1% + )\‘) - IS{(O” )“)

for the equivalence (for any A € ay; ¢) given by

<1.2> FSM(U’ M)(p(g) = [I(g’ v, ,LL)QD]M
Thus,

L e
Y — FL,M(V’ wep.

We will also denote the (normalized) Jacquet functor from smooth representations
of M to smooth representations of L by 7, \;. The Jacquet functor from G to M will simply
be denoted by ny.

1.4. Jacquet integral, intertwining operators and gamma factors. — Let ¥ be the character
of Uj defined by

I//(/)(u) = 1///(ul,Q +-- 4+ unfl,n)

and let ¥ be the character of Uy defined similarly with respect to .
Henceforth we denote by IT the set of equivalence classes of irreducible represen-
tations of G. We have

chsp g H g ngn g H

sqr

where the notation stands for the subsets of (not necessarily unitary) supercuspidal (in the
p-adic case), essentially square-integrable and generic representations, respectively. We
also write Tl C Iiemp € T, for the subsets of (unitary) square-integrable and tem-
pered representations respectively. As usual, analogous notation for G’ will be appended
with a prime. We write I1* for the irreducible representations of G which are equivalent
to their Galois twist. Similarly for IT o, etc.

For 7 € I, denote by W(rr) = WY () its Whittaker model with respect to
(Uo, ¥o). For every g € G denote by 87 the evaluation at g viewed as a linear form on

W(r) and let
(W(g, 1)W)(h) =W(hg), g he G, WeW(r).

Let é =6, be the involution of G given by g — wy'g~'wy. It preserves Uy and we have
Yo () = Yo(u)~! for all u € Uy. Given 7 € [1,., we have an equivalence

(1.3) e WY () = WY ()

given by 0, (W)(g) = W(d"), g € G.
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For P = MU as above we have 8(U) = U, wl = wg = wy!, H(¢") = —w,H(g),

g € G, and diag(my, ..., mt)e~ = diag(m?“, ceey m?"‘ ), m; €G,.

Leto=01® - -Qo, € Hgm. We identify W(o) with W(o)) ® --- ® W(o,). For
any A € ay; ¢ and ¢ € I(W(0)) we denote by W(g, 0, A) the holomorphic continuation
of the Jacquet integral (see [Jac67])

W(g:p,0,A) =Wy(g:¢9,0,A) = / 8;’((pk(wlﬁlug)) wo_l(u) du.

«—

U
We view W(o, 1) as an intertwining operator from I(WW(o), A) to the space of Whittaker
functions on G. We also write

W, (p:0,A)=W(e:¢p,0,))

so that W, (o, 1) is a Whittaker functional on IOV (o), A). If I(o, A) is irreducible then
I(o, 1) € I, and

W(o, ») : 1(W(0), 1) = W(I(o, 1))

is an equivalence of representations.
Let T =0,® - ® oy € I and define y, : W/(5)" - WY (0¥) by
5, (W)(g) = W(g"), g € M. For any A = (A,...,A) € ay g We write A = wyh =
Ay ..., A1) €as . Define
M.c
W&, %) > (W' (0%), =2)

M

(1.4) O(o, ) : [I

by O(¢) (gé) =1,(¢(g)), g € G. Then O(o, A) is an intertwining operator and if w =
1(o, A) is irreducible then we have

(1.5) D oW (5, W) =W (0¥, =2) 0 ©.

Indeed, by a change of variable in the integral defining W, we have

W(p: &, %)= [ 67 (o (wam))¥o(w) " du

<«
g

57 (o5 ((wgz)”)) Yo () du

Il
T o

87 ((®@) _x (wggu) ) Yo (w) du
=W/ (©¢:0",—A)

for any ¢ € Ig WY (5)).
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Ifvell:

gens M € af g ando = I}\J’I(W(v), w) € MM then using integration in stages
we obtain

gen

(1.6) WL, 1+ 1) = Wa(o, 1) o I (W (v, 1)) © T (W), ).

For any w € W(M) denote by wo the representation of M,,, on V defined
by wo (wmw™") = o (m). There is an intertwining operator M(w, o, A) : Iyi(o, 1) —
Iy, (wo, wA) defined as the meromorphic continuation of the integral

(M(w, 0,1)9),,(9) = f o (w'ug) du.

(Upe NwUw=H\Uyye

If o € ngl,n then we can identify wW(o) with W(wo) by W - W(w - w™'). By
a slight abuse of notation, we write M(w, W(o),A) for the intertwining operator
LiW(o), A) = Iy, W (wo), wh) obtained using this identification. For future record,

we note that for ¢ € Iyy(W (o), 1) we have

(1.7) [@(O’, )\.) o M(U)M, W(U), A)gO]_k(g) = /:_ U(E((pk (1,()1\711 ugé)) du
U

:f t);;(go,\(wgiluégé)) du=/lj<;(g0,\(woMlulwogé)) du
U U

where for the first equality we identified 1), on W(E) = W(wyo) as ns on wyW(o).

Denote by R,;i(G) the representations in R(G) which are parabolically induced
from an irreducible representation on a Levi subgroup of G. Let 7; € R.i(G,,), i =1, 2
and recall the local Rankin-Selberg factors

e(s,m X mwo; Y)L(l — 5, ) x 7))

defined by Jacquet, Piatetski-Shapiro and Shalika [JPSS83] in the non-Archimedean
case. In the Archimedean case they are defined via Langlands parameterization in terms
of representations of the Weil group (cf. [Sha83]). If m; = 0} X - -+ X 0, then we have

t
L(s, m x 79) = [ [ L(s, 0 x ),

=1
t
e(s.my x mos ) = [ [ (s, 03 x 70 9)
i=1
and therefore also

(1.8) y (s, m x s ¥) = [ v (s, 00 % 5 ).

=1



ON REPRESENTATIONS DISTINGUISHED BY UNITARY GROUPS 201

We recall Shahidi’s normalization for the intertwining operators. Let 0 =0, ®
- ®0; € Rpi(M), w € WM) (considered as a permutation of [1, 7] as before) and A =
(A1, h) € G =ay ¢ Let

Cu(w:o, A ¢) = 1_[ Wg; (—=1)" V()‘i — A}y 0 X G]‘v; 1/f)

l=igy=t
w()>w()
and
(1.9) es(0. 1) =[ [L(xi =&+ 1.0, x0).

i<j
Define the normalized intertwining operators
N(w, g, )\‘) = Cl\I(w 10, )"; w) M(w’ g, )") : II\/I(O—s )\‘) — Iwa*' (wU, w)\')

and (in the case o € TTM )

gen

N(w, W(0), 1) =Cn(w : 0, A3 ) M(w, W(0), 1) : Iu(W(0), 1)
—> le\lw’l (W(U)O'), U))\,)

Suppose that o € Hgﬁn. It follows from the results of Shahidi (cf. [Sha90])” that we
have the identity of meromorphic functions in A € ay; ¢

(1.10) W(wo, wi) o N(w, W(o), 1) =W(o, 1),
and in particular
W, (wo, wA) o N(w, W(0), 1) =W, (0, 1).
We also have
N(wowy, 0, A) = N(wy, w0, wiA) o N(w,, 0, A)
for any w; € W(M) and wy € W(wlel_l). In particular, for any w € W(M)

N(w, o, )»)71 = N(wil, wo, w)»).

% The representatives for W specified in [Sha90] are different from ours. We refer the reader to the earlier paper
[Sha84| where the case of GL(n) is considered.
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1.5. Irreducibility of parabolic induction. — We recall the following basic and well-
known properties of y-factors combining the results of [JPSS83, §8] and [MW89, §L.6].*

Lemma 1.1. — Suppose that § = 8, @ 8, € TIM. (M maximal). Then

usqr

(1) Ls, 81 x 85) and y(s,8, x 83 ¥)~" are holomorphic for Re s > 0. Consequently,
Y (5,81 X 855 W) is holomorphic for Re s < 1.

(2) L(s, 81 x &), or equivalently, y (s, 8, x 85; V)7L, has a pole, necessarily simple, at
s =0 if and only if §, = 6.

(3) M(wni, 8, A) and N(wy, 8, —A) are holomorphic for Re Ay > Re A,.

(4) Suppose that Re Ay > Re Ay, Then 7w :=1(8, L) s reducible if and only iof y (A, —
Ao, 81 X 853 Y) = 00, ve., if and only if L(1 — Ay + Xy, ) X 8) = oo. In this
case, at least in the p-adic and complex cases 7 has length two and admits a unique
urreducible subrepresentation o, which s generic. We have 0 = Ker M(wyy, 8, A) =
ImN(wy, 8, A) 7' = Im N(wy,, wys, wyd).

In particular, in the p-adic case, the following conditions are equivalent for o\, 09 € Iy, (n0t necessarily
unitary)

(1) y(0,01 x 09"; ) =0.
2) y(1,00 X 0975 ) = 00.
(3) o9 =o0.

By the Langlands classification, for any m € Il there exists a unique triplet
(M, 0, A) (Langlands data) where o € Hglm and A € (aj,)+ such that 7 is the unique

irreducible quotient of I(c, A). We write 7 = LQ(o, A) in this case. Recall that Cy(wy :
o, Y) s holomorphic at A and

(1.11) Tely, <= Cywy:oiy) ' #0 <= I(o,A) isirreducible.

See [CGS98, §5] for a more general statement.

Alternatively, we can write any 7 € I, as I(§, 1) where 6 € Hﬁgqr and A € (ayp+,
Le, Ay > > A,

Let 7 € Mge,. Write 7 =07 X -+ X 0, where 01 ® -+~ ® 0, € Hls\gr. Then L(s, m x
7Y) =[] <, Ls, 0: x ;). The latter is holomorphic at s = 1 by Lemma 1.1 and the
irreducibility of 7. It follows that

(1.12) L(s,m x ") is holomorphic at s =1 for any 77 € .

We write IT,,, for the class of unramified representations in IT, i.e., those which
admit a non-zero spherical (i.e., K-fixed) vector, which is necessarily unique up to a scalar.

* Note the following typo in [JPSS83, Proposition 8.1]: L(s, 7 x ) should be replaced by L(s, ¥ X ). Also note
that our convention for the normalized intertwining operator N is different from [MW89].
> Probably also in the real case, but we haven’t been able to find a reference for that.
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Note that w € I, if and only if 7V € I1,,,. For any bi-K-invariant / € S(G) and 7 €
[T, we write f(;r) for the scalar by which 7 (f) acts on the spherical vector. This is

called the Harish-Chandra transform. More explicitly, if 7 is the unramified subquotient
of I(1yg,, A) then

f(JT) — /f(g)e(poH,H(e)) dg.
G

Suppose now that F is p-adic. For any 7w € I1 there exists M and 0 =01 ® - -+ ®
o, € ch\igp such that 7 is a subquotient of I(0). The multiset supp,(w) = {o1,...,0/} 13
determined by 7 and is called the supercuspidal support of . We say that 7 is pure (of type
o) if there exists a divisor m of n and a representation o € l_[gl"s’p such that supp () C
o[Z]:={o[k]: k € Z}. Note that if  is pure of type o then 7 € IT* ifand only if o € TT".
This follows for instance from the Zelevinsky classification. We say that 7, o € IT are
disoint if the sets supp,(2) and o [Z] are disjoint for every o € supp, (). If m,, 7y are
disjoint then 7, X 79 is irreducible. Any 7 € IT can be written as §; X - - x §, where the
d;’s are pure and pairwise disjoint. The §,’s are unique up to permutation and are called
the pure components of 7.

For any o € I, and a, b € Z with a < b the induced representation o [a] X --- X
o [b] admits a unique irreducible quotient A, ([a, b]). We have A, ([a, b]) € I1,. Con-
versely, any 7 € Il is of the form above. Also, A, [a, 6] = A,,[as, by] if and only
if o1[a1] = o9]as] and o,[b;] = 09[bs]. We have A, ([a, b])" = Aqs:([a, b]) and therefore
As([a, b]) € TT;  ifand only if o € IT,

sqr (,Llﬁp

Leto € l‘[gjq The Jacquet module of A, ([a, b]) was described by Zelevinsky as

follows [Zel80, §9. 5] Let M =M, where k = (ny, ..., n,). If d does not divide #; for some
¢ then nv(Ag ([a, b])) = 0. Otherwise,

(1.13) ni(Aq ([a, 5])) ®A [a, b,])

where b; = b, d(b a+1)=n,1=1,...,tand b= —1,1=1,...,t— 1.

Let §; € Hs(’:;;l, i =1,2. We write §; <8y if for some o € I, and integers a; <
as < by < by we have 6, = A, ([ay, b1]) and 8y = A, ([as, b9]). If moreover &, #£ §, then
we write §; <1 §y. It follows from the above description of the Jacquet module that §; <46
if and only if there exist Levi subgroups M ofG,,1=1,2 (not necessarlly proper) and
Se [T, such that ny, (6,) = §® - ®--+ and n(d) =" - 5. Note that when
8, = &y, this condition is only poss1ble for M =M, = Gn1 = G,,.

2. Bessel distributions

2.1. General setup and basic properties. — We first recall and slightly extend the notion
of Bessel distributions (cf. [JLR04, §4.1]). Let 7 € R(G). The map £ — (f — £ om(f))
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defines an equivalence of representations
7* >~ Homg (S(G)", JTV)

where §(G)’ stands for S(G) with the right G-action and G acts on the right-hand side
through its left action on S(G).

Let D = (m, 7, (-,-)) be a dual Couple (see Section 1.3) and recall the ensuing
equivalence Ap : ¥ — 7. For £ € m* and £ € 7* define

B () =(Ap(Lom(h))).

This is a distribution in f € §(G), which we call the Bessel distribution (with respect to
D, ¢, 0).

If D = (m, 7, (,-)) is a dual couple then we define the opposite dual couple to be
D° = (7, m, (-, -)°) where (U, v)° = (v, 0). If x is a character of E* (viewed as a character
of G through det) then (-, -) also gives a duality between 7 - x and 7 - x~'. We write
D-x=@@-x.7-x"" ).

Given a dual couple D = (o, 6, (-, -)) with respect to M we can define the induced
couple I(D, A) = (I(o, A), 1(6, —A), I(:, -)) for any A € ayr ¢ Where

(@, Py = f (09, 9(9)) dg.
P\G

(This depends implicitly on ¥ through the measure on P\G.)
We record some simple formal properties of Bessel distributions in the following
Lemma.

Lemma 2.1. — Let D = (mt, 7, (-, -)) be a dual couple and f € S(G). Then
(1) Letf¥(g) =f(g"). Then
B () =B (/).
(2) Forany g, ¢ € G we have
2.1) BT () = B (LR (Z))-
(8) Similarly, for any f1, fo € S(G) we have
<2.2> %g”(ﬁ),l‘?ﬁ(f?)(f) — %%é(ﬁ *f *]gv)
(4) For any character x of E* we have

(2.3) B () =BE (/0.
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(5) If(A A) D, — Dy = (19, 7y, (-, -)9) is an equivalence of dual couples, £ € 7wy and
le Ty then

(2.4) Bt =B

(6) Suppose that v € T, and let vy and Vo be non-zero spherical vectors in 7T and T respec-
twely. Then for any bi-K-invariant f we have

£(v0)£ (Do)
( Vo, V 0)
We say that £ € 7" is injective if for every non-zero v € 7 there exists g € G such that

£(m(g)v) # 0. In other words, the intertwining map 7 — C*°(G) given by the general-
ized matrix coefficients defined by £ is injective. This is automatic if 7 € IT and £ # 0.

(2.5) BE () =F ()22

Lemma 2.2.

1. Suppose that D = (w, 7w, (-, -)) is a dual couple, 0 # £ € w* and Ler*is injective.
Then B £ 0.

2. Suppose that D; = (7w;, i, (+,)i), i = 1, ..., 7 are dual couples with pairwise inequiv-
alent wy, ..., m, € Il. Let 0 £ L, € ], O;éél- en’, i=1,...,r. Then the Bessel

distributions %%’f", 1= 1, ..., 7 are linearly independent.

Progf- — 'To show the first part, take any f € S(G) such that v¥:= Lo w(f) € T’
iAs non-zero. Since £ o Ap € """ is injective, there exists g € G such that %%Z R@)) =
L(Ap(m¥(g9)vY)) #0. )

To show the second part, assume that )., 4 %%’Z’ =0 with ¢; € C. Let D =
(T, 7, (N =D, =P _ al;en* and £ =@_, {; € #*. Then £ is injective since

m; are irreducible and pairwise inequivalent and %KDK =>", Z‘Bl b, By the first
part, £ = 0 and therefore ¢, = 0 for all :. U

Suppose now that 7 is a unitary representation of G on a Hilbert space (9, (-, -)).
Let V be the space of smooth vectors in §). Assume that V is of finite length. Let 7 be the
representation on the conjugate Hilbert space § and let V C § be the image of V under
the canonical conjugate-linear automorphism §) — 9. Note that V coincides with the
space of smooth vectors of 7. Let D = (7, 7T, (-, )) so that Ap : 7¥ — 7 is the restriction
of the canonical isomorphism $* — $. We say that an orthonormal basis {¢} of § is
admissible if it is contained in V and for any v € V we have v =) _.(v, ¢)¢ where the sum
has only finitely many non-zero terms in the p-adic case and ) . |(v, ¢)|u(¢) converges
for any continuous seminorm p in the Archimedean case. For instance, the union over
y € K of orthonormal bases of V7 is an admissible orthonormal basis. Suppose that {e;}
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is an admissible orthonormal ba51s of 55 We write {¢;} for {¢;} viewed as an orthonormal
basis of $). Then for any £ € V¥, ¢ € V* we have

BL () =D t(n(Ne) {G)

where the sum converges absolutely Indeed, {2;} is also admissible so that Ap[€ o (f)] =
Y L (f)e)e in V. Applying ¢ we get the above.

Consider now a family of induced representations. Let 0 € R(M) and let V =
I(o). The map af(,w x G xV— V given by (A, g, v) — I(g, o, A)v is continuous, and is
analytic in A. In addition, in the Archimedean case, for any compact set C C ay; ¢ and a
continuous seminorm v on V there exists N such that

v(I(g, o, M)v)
V> sup —— ————
1eC,geG IIgII‘

is a continuous seminorm on V, where ||g|| = max(|g;;|, |det g|™"). Tt easily follows that
for any /' € S(G) and v € V the map ay; o — V defined by A — I(f, 0, 1)v is analytic.
Moreover, for any £ € V* the map A — £ o I(f, 0, 1) € V" is analytic.

We say that a family £(1) € I(o, 1)*, A € ay; ¢ is meromorphic if for any Aq € a3 ¢
there exists a connected neighborhood U and a non-zero analytic function p: U — G
such that for all v € V the function p(AX)£(A)(v) is analytic on U.

Lemma 2.3. — Let D = (0,06, (+,+)) be a dual couple with respect to M and let £())
(resp. £(N)) be a meromorphic family in 1(o, A)* (resp. 1(6, —1)*). Then for any f € S(G) the

expression D, (f) = ‘Bf(%),’f)('\) (f) s a meromorphic_function of A. Suppose _further that D, is holo-

morphic at Lo (i.e., for every f € S(G), D, (f) is holomorphic at X), ¢ is holomorphic at Ay and
(o) € 1(0, —o)* is injective. Then £(1) is also holomorphic at A = .

Proof. — For the first part we may assume that £(A) and £()) are analytic. By the
remarks above, the expression

£(h9) 0 Arpy[L(1) 0 I(f, 0, A5)] = €(A1) © Arpe [€(ho) 0 I(f¥, &, —hs) ]

is separately holomorphic in A, Ay, As. Therefore, by Hartogs’ Theorem, it is jointly
holomorphic in A, Ay, A3, and in particular, holomorphic for A} = Ay = A5 = A.

We prove the second part. Assume on the contrary that £(A) is not holomorphic
at A = Ag. Then for some generic direction i € ay; ¢, the linear form £(iq + su) is a
meromorphic function in s which is holomorphic at some punctured disc centered at
s =0 and has a pole at s = 0. Therefore, there exists m > 0 such that s" €(Xo + su) 1s
holomorphic near s = 0 and its value L at s = 0 is a non-zero element of V*. However,

for any / € S(G)
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%}(”é(,);-(;)) G) = [SmD)»o'i-W (Jr)]5=0 =0

since D; is holomorphic at A = 4. This contradicts Lemma 2.2. The lemma follows. [J

2.1.1. Next we consider relative Bessel distributions on the symmetric space X. Let
5G(X, JT*) = {oz X —=>ra"ra,=a,0m(g) forallge Gandx € X}

Here, the value of @ at x € X is denoted by «,. In particular, if « € (X, 7*) then
o, € Homg:(rr, C) for all x € X.

Definition 2.4. — We say that 1 € 'R(G) s G*-distinguished if Homg: (7w, G) # 0. The
elements of Home: (7r, G) are called (local) unitary periods.

Thus, an element of (X, %) is a compatible family of local unitary periods.
More precisely, for every x € X and g € G the map £ — £ o w(g) defines an isomorphism

(N*)G“ = Homg. (7, C) >~ Homgw (7, C) = (T[*)Gl(og.

With these identifications, the map a = (@,)ex/G 1s an isomorphism
* x| G
(X ") ~ @) (")
x€X/G
We can view Eq (X, m*) slightly differently as follows. For any @ € £6(X, 7*) and ® €
S(X),let ® © @ € " be given by
(2.6) <I>®oe(v)=/ d(x)a,(v)dx, PeSX),vem.
X

Then the map
o~ (P~ PO a)

defines an isomorphism of vector spaces £(X, 7*) - Homg(S(X), 7V) (with the right
action of G on §(X)), i.e.,

(f*P)Qa=7"()POa)
for any ® € §(X) and f € S(G).

The above isomorphism is compatible with the identifications

Eo(X.m) = P () = @D Homs(S(G\G). 7)

x€X/G x€X/G

~ Homg (S(X), 7¥)



208 BROOKE FEIGON, EREZ LAPID, OMER OFFEN

where for the middle one, we use the identification
(7*) = [Homg(S(GY, 7¥)]" =~ Homg (S(G\G), 7V)

obtained by viewing S(G*\G) as the left G*-coinvariants of S(G).

If vy, w9 € R(G), T : my — my is an intertwining operator and o € (X, 75) then
we write & o T € E(X, 7}") for the equivariant map x — a, o T.

The relative Bessel distribution associated with a dual couple D = (7, 7T, (-, -)), a
linear form £ € #* and « € E;(X, %) is defined by

BLUD) = L(Ap(P O ), P eSX).
As before, for any g € G we have
2.7) B0 (@) = BL (R(g) D)
where R(g)®(x) = ®(x o ). Similarly, for any f € S(G) we have
(2.8) BEED (@) = BY (/% D).

Moreover, if (AA, A) : Dy — Dy = (79, 9, (-, +)9) 1s an equivalence of dual couples,
a € EG(X, 7)) and £ € 7 then we have

(2.9) Baohfod — Bl

Finally, if 7 € I1,,,, F is p-adic, E/F is unramified and vy and 0y are non-zero spherical
vectors in 77 and 7 respectively, then

a,(v0) £(0)

(2.10) BE(F  Ixrg) = volx (X NK)F () ~
(vo, Vo)

for any bi-K-invariant /.

The relative Bessel distribution on X can be expressed as a sum over the G-orbits
in X of Bessel distributions on G as follows. For any ® € S(X) and x € X there exists
/ € S(G) such that

d(xeg)= | f(ho)dh, g€GC.
GJ(

In this case, we say that ® 1s represented by f (or that / represents @) at x. We say that
the family /* € S(G), x € X represents @ if /* represents @ at x for all x. In this case, for
any v € 7 we have

CIoNOESY / D (x 0.9) 0ty (v) dg
GN\G

€X/G
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= “(hg) a, dhd,
XLLWOfQWW@w 4

€X/G

:Z/°

S@a(r@u)di= Y afr (o).

x€X/GYC xeX/G

In particular, a, o w (f*) does not depend on the choice of /* nor on the representative x.
It follows that

(2.11) By (@) = > BE(r).
veX/G
We conclude from Lemma 2.2 that
(2.12) if 7 € I and & and £ are non-zero then %%é 1s non-zero.

2.2. Normalized Bessel distributions. — Define the Whittaker couple D0(mr) associated
to 7w € [, by W(mr) = WY (), WY (), [, 1Y) where the pairing [-, -] = [-, -]¥ is
defined in Appendix A. It will be useful to adopt the following notational convention.
Whenever an object is related to a contragredient representation (on G or M), the addi-
tive character which is used to define it is implicitly assumed to be ¥ ! (rather than ).
Analogously for G’ and M. Thus, W(z¥) = W' (zV), W,(c¥, 1) = WZ’_I (0¥, M), etc.
Hopefully this abuse of notation will not create any ambiguity.

Given 1w’ € l'[;cn, we define the normalized local Bessel distribution B, on G" associated
to ' by

7! SH,V
e

B. (/) =Bany (f).

By (2.1), B, (/") belongs to the space S*(G/) Voo V6xUi) of distributions D’ on G
satisfying

D' (L(u)R(uy)f") = "W () ¥ (un) "' D' ()
for any /' € S(G'), u € Uy, u € U

where ‘Y is the character on “Uj given by ‘¥ (‘u) = ¥ (w), u € Uj,.
More generally, for any o’ € l'[gg1 define a holomorphic family of Bessel distribu-
tions

B(f 10, 1) = Baws DWW () e S(G), A€ al e
By Proposition A.2, we have an equivalence of dual couples
(2.13) Q(U’, A) = (W(a/, A),W(a/v, —A)) :I(Qﬁ(a/), A) — Qﬁ(I(a/, A))

whenever I(o”, A) is irreducible.
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Applying the relation (2.4), we infer that
(2.14) B(o/, 1) =By,
provided that I(o’, A) € IT".

Remark 2.5. — It is likely that even if I(o”, A) 1s reducible, we still have B(o’, A) =
B, where 7’ is the generic subquotient of I(o’, ). However, we will not discuss this
question here.

Let x' be a character of F*. We also view x’ as a character of G’ via the deter-
minant. For any function /" on G’ set f],(¢) = x'(¢)f"(g), g € G'. For ' € IT}, let A’;: :

gen

W) - x' — W(x" - x') be the isomorphism defined by A’;:(W) =W,, WeW().
Then by (A.3), (AT, A ) : (') - x' — W' - x') is an equivalence. Thus, by (2.4)
we get

v
' en’

3") e
X/(w())%gno(n/).x/ = Bn"x’-
Combined with (2.3), we infer that
(2.15) B (1) = x'(wo)B (/)

for any /" € S(G).
Assume now that E/F is inert. Let

G* ={geG 1 n(wyg) =+1}

so that G’ is the disjoint union of the open cosets G'*. Thus,
S(G)=8(G")aS(G)

and

(2.16) S(GF) ={f eS(G) :fy = £n(wy)f}.

The following property of the support of the Bessel distribution will be useful for us.

Lemma 2.6. — For any 1" € 11, we have By/| s+ # 0. Moreover, By s =0 of
and only if v’ ~ 7" - 1.

Proof. — If m’ = 7" - n then it follows from (2.15) and (2.16) that B,/| -, = 0.
Since B,/ # 0, it remains to see that if 7' 22 7’ - n then B, is non-zero on each of
S(G'®). Since B, and By, are linearly independent (Lemma 2.2) there exists ' €
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S(G) such that By(f') # 0 and B, (/") = 0. By (2.15), B./(f7) = 0 as well. Then
fi=f=E n(wo)ﬂ € S(G'*) and B, (f]) =B, (f") # 0 as required. ]

Finally, suppose that F is p-adic, 7" € IT,,,, ,, and " has conductor Oy. Then by
(A.4) and (2.5) we get

-1

(2.17) B, (1x)=L(1,7' x n"")

3. Local identities of Bessel distributions

In this section, we describe a family of G*-invariant linear forms characterized by
an identity of local Bessel distributions for matching functions. These G*-invariant forms
will eventually appear as the local factors of the global unitary period integral.

We first recall the definition of functions with matching orbital integrals.

3.1. Matching of orbital integrals. — Denote by y : M — {£1} the transfer factor
defined by

(@ = n(a)n’(@)...n"(a), a=diag(a, ..., a,) € M.

Note that this differs from the transfer factor defined by Jacquet in [Jac05a] by a factor
of n"(a). This is motivated by [Off09, Theorem 10.1].

In the inert case, we say that ® € S(X) and /” € S(G') have maiching orbital integrals
(or simply, ® and /" match), and we write ® <— 7, if for every a € M = XN M, we have

(3.1 v (a) / S (‘wraus) ¥ (uyuy) duy duy = / (a o u) Yo(u) du.
0 JUg Uo

Similarly, for any x € X we say that / € S(G) and /' € §(G’) have x-matching orbital
integrals and we write / <— /" if for every a € M, we have

)/(d)/ f/(tUICZUQ) Wé(uluQ) duy duy
07U

3.2) _ on Jef (hgw) dh pro(u) du  if a = x @ g for some g € G,
0 fagxeG.

In the split case, we write & <— f" if ®(g,9) =/"(g), g € G/, so that (3.1) is satisfied.
Similarly, for any / € S(G) and & € G’ we write

f<“"—””>(g’» [ /f(ytg’,‘(/zy)‘l)dy)

Once again (3.2) is satisfied.
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Back in the general case, we observe that for every x € X and g € G we have
(3.3) L(g)f </ ifandonlyif f<—> /.
Let

X[x]={yeX:n0) =n}

and

G'lx]={ge G :n(® =nW}.

In the split case, n is trivial and therefore X[x] = X and G'[x] = G’ for all x € X. In
the inert case, we get a bisection of both X and G’ into two open subsets. In particular,
S 1o € S(G) whenever /7 € S(G’). Note that for any x € X

(3.4) [<=f = <1y

Observe that X[x] = xe G in the p-adic case, in the split case, and in the case where
E/F =GC/R, n=2 and G" is quasi-split. Thus, in the split or non-Archimedean case, for
® € 5(X) represented by the family (f*),ex and /" € S(G’) we have

(3.5) ® <« ifandonlyif f*<— 1, YreX.

However, this is not true in the case CG/R, for which there are n 4+ 1 orbits of G on X,
according to signature.
We recall the following key results

Theorem 3.1 (See [Jac03b, AG, Jac05a)).

e Smooth transfer: For every © € S(G) there exsts ' € S(G') and for every f € S(G')
there exists © € S(X) such that ® <— f". Thus, for every x € X and [ € S(G) there
exists 1 € S(G'[x]) such that f <—> f". Conversely, if X[x] = x ® G then_for every ' €
S(G'[x]) there exists f € S(G) such that f < f".

e The Fundamental Lemma: Assume that ¥ is non-Archimedean of odd residual character-
wstic, /¥ is unramified and ' has conductor O. Suppose that f € S(G) is bi-K-invariant
and let 7 be the bi-K'-invariant function that is the image of | under the base change homo-
morphism of Hecke algebras. Then_for x € X N K we have f <—> f'. In particular

(3.6) 1x <> 1.
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In the split case this is straightforward from the definitions. In the inert case, the
first part was proved by Jacquet in the non-Archimedean case [JacO3b, Theorem 3] and
by Aizenbud-Gourevitch in the Archimedean case [AG]. Note that the last assertion in
the first part follows by taking ® <— /" and any f representing & at x.

Along with the relations (3.1), analogous relations for the singular orbital integrals
are proved as well [Jac03a, AG].

The fundamental lemma was originally proved by Ng6 in the case of positive char-
acteristic, first for the unit element [Cha99] and then in general [Ng699]. Later on, by a
completely different approach, Jacquet gave a proof which is also valid in the character-
istic zero case, first for the unit element [JacO4b] and then in general [Jac05a].

Let S*(X) Uo¥5 ) denote the space of distributions on X which are right (U, ¥, -
equivariant. We say that D € &* (X)(UO"”JI) andD’ € S*(G’)UUBXUE)’%X‘/’F) match and we
write D <— D' it D(®) = D'(f”) whenever ® <— /. In the p-adic case, it follows from
smooth transfer and the principle of localization [GK75] that the relation D <— D’
defines an isomorphism of vector spaces

S* (X)(Uo,wo‘l) ~ S* (G/)(’%XUB”%X%”).

3.2. Quadratic base change. — We recall some properties of the functorial transfers
be : IT" — TI° given by quadratic base change (cf. [AC89, Ch. 1, §86, 7]) and ai : [T% —
§ e given by automorphic induction (cf. [HH95, Hen10]).

For any 7/ € M, i=1,2 we have

L(s be(e) x be(})) = L{s, 7} x 7)) L(s, 7} x 75 )
and

e(s,be()) x be(my): ¥) =N, e(s, 7] x 7wy ¥')e (s, 7y x 7y - ;s ¥'),
where Ay = A(E/F, ¥) is Langlands’s constant. Consequently,
(3.7) y (s, be(rr]) x be(m)); W) = My (s, 7] x 755 0 )y (s, 7] x 7 3 ¥).

Recall that be is onto. For any 7 € IT7, we denote by B(rr) =bc ™' ({zr}) the fiber
of w under be. The set B(r) is finite and we denote its cardinality by b,,. For any 7’ € IT’
we have be(”) =be(z’ - 1) and therefore, the group {1+, n} acts on the set B(w). We
denote by [B] () the set of {1+, n}-orbits in B(;r) and by [b], the cardinality of [B](r).

In the split case, be(n’) =’ ® 7’ for any 7’ € 1" and in particular bc is one-to-
one. From now on, assume that E/F is inert.

Letd € I, Then there exists §’ € H;qr such that 8" 2§ -n and B(§) = {§, 8- n}.
In particular, bs = 2 and [b]; = 1. Moreover, in the p-adic case § € I, if and only

if 8" € IT}, . To describe the situation for tempered representations, we consider an-
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other example first. Let § € T \ H:qr‘ Then § x 67 € l'[fCmp and B(§ x 87) is a sin-
gleton {§'}, with §’ € H;qr. This & is the automorphic induction of §, denoted ai(d). In
particular, ai(§) >~ ai(§) - n = ai(6*) and we have by 5 = [b]sxsr = 1. Again, in the p-
adic case § € I, if and only if ai(d) € l'[’cusp. In general, any 7 € Iy, 1s of the form
8 X -+ x 8, with 8y, ..., 8, € I1,,q which are uniquely determined up to a permutation.
Thus any 7 € chmp can be writtenas m =8 X 0 X 6" where § =68, X --- X §, € Hg&;:
0=0] X X0, € l'[gfnp with 81,...,8, € [T}, 01, ..., 0, € g \ T, The §;’s and
the pairs {0}, 0}, j =1, ..., s are uniquely determined by 77 up to permutation. We call
the integer 0 < k < n/2 the t-Wiit index of m and denote it by (7). Note that in the
Archimedean case, r + 25 = n, 1.e., the §;’s and o;’s are characters of C*, with §; unrami-
fied, and () =s.

In analogy with quadratic forms, we say that 7 is totally t-isotropic (resp., T-
anisotropic) if () = n/2 (resp., () = 0). We have 7’ € B(rr) if and only if 7’ =~
8’ x ai(0) where ai(o) = ai(o) X --- x ai(o,) and §’ € B(§),1.e. ' =8 x --- x &/ where
8ieB(),i=1,...,r. Writing

ki kn
— —
3:A1X“'XA]X"'XAMX"'XAW

with A; € Hﬁsqr distinct and &y + - - - 4+ 4, = r and fixing a choice A’ € B(A)) for each 1,
any 8’ € B(8) can be written uniquely as
Ji k=1 Jm
—_—
Al X X ATx A npx XA px-o XA X x A

m

km _.j m

XA;Z.UX”.XA:”.;?

where 0 <), <k;,i:=1,...,m Inparticular b, = (K, +1)...(k,+1) <2".Thus, b, =2’
if and only if m =, 1.e., if and only if §;, ..., §, are distinct, and b, = | if and only if
() =n/2 (i.e. r=0).

For any 7" € TT/___ we define to/(7") (which we call the n-Witt index of ') to be

temp

the maximal integer 0 < k£ < n/2 such that 7’ = ai(§) x o’ where § € Hl(;‘,lknp' In particular,

' (7’) = n/2 (and we say that 7’ is totally n-isotropic) if and only if 7" >~ 7’ - n (in which

. . . G, . .
case n is even). In this case, 7’ = ai(§) for § € l'Itmﬁi, (not necessarily unique) and be(r') =

8 x 87. Conversely, if m =6 x 6° for some 6 € Hf;’;;ﬁ; then ai(8) depends only on 7 and it
is the unique totally n-isotropic element 7’ € B(rr).

Note that for any w € I17__ we have

temp
3.8 V() = min 1'(7').
(3.8) () ﬂ}’élBlgr)m (7'[)
Now let m € IT* be of the form LQ(o,A) where o € Hi\gmp and A € (a4

The uniqueness part of the Langlands classification implies that o € IT™*. We have
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B(m) = {LQ(o', 1) : ¢’ € B(o)} and in particular b, = b, = ]_[521 b,, where o =

01 ® @0 and o; € Mom, i=1,..., L Set () := () = Y, ©(07)—the T-Witt

index of 7. As before, we say that 7 is T-anisotropic (resp. totally T-isotropic) if to () = 0

(resp. (1) = n/2). Once again, 7 is totally T-isotropic if and only if b, = 1. We denote

by 171 (resp. TT™®) the set of totally T-isotropic (resp. T-anisotropic) representations.
Analogously, we write

' (LQ(o", 1)) = Zm ) <n/2

and define totally n-isotropic and n-anisotropic in a similar vein. Thus, 7’ is totally n-
isotropic, i.e., 0'(w’) = n/2, if and only if 7’ >~ 71’ - n. Note that there exists a totally
n-isotropic " € B(x) if and only if the same property holds for oy, ..., 0, and in this
case such 7’ is unique, indeed it is LQ(0’, ) where 0’ = 0| ® - -- ® 0/ and o/ € B(0,) is
the unique element such that 6/ >~ o/ - 1.

Lemma 3.2.

(1) Suppose that 1 = I(o, 1) € ngn. Then for any o’ € B(o), 1(a’, A) is irreducible.
Hence, B(w) = {I(c’, 1) : 0’ € B(0)}.

(2) Ay v € I1G,, can be wniten as 1 =& X 0 X 0" where § € T, 15 T-amsotropuc,
o€ H;‘n and k = vo (7). Moreover, § and ai(o') (but not necessarily o itself) are uniquely
determined by 7.

(3) Similarly any &' € IT
10’ (') and 8' is n-anisotropic. Moreover, 8" and ai(o') (but not necessarily o ) are uniquely

determined by 7'

can be written as ' = ai(o) x 8" where o € MY, k =

gen gen?

Proof. — The first part follows from (1.11) and (3.7). The remaining assertions are
straightforward. UJ

1
We observe that bec does not take l_[/ to Ig,. For instance, be(]-|p x n) = |det].

We denote by I1 the set of 7' € T’ such that be(nr’) € ,e,. More explicitly,

bc gen gen
H{OC gen con51sts of the irreducible generlc representations of the form o] x --- x o where
oy,...,0; € I  are such that o/n x o/ is irreducible for all ¢ 7 or equlvalently such

that bc(a') X bc(a’) is irreducible for all 1.
The followmg Lemmas are straightforward.

Lemma 3.3. — We have T1,,, € I1*. In the Archimedean case, 1, = I1T%*".

Lemma 3.4. — Suppose that ¥ is p-adic and let v € TI*. Then 7w € TI™Y (resp. w € TI™™)
f and only 1f supp, (7)) NI1T = (resp. supp,(r) € I17). It follows that
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(1) Any 71 € I and 7wy € TI™™ are disjoint.

(2) Ifm € II"™ then all pure components of v are in TI**".

(3) 7 € I1"Y if and only if we can write (non-uniquely) T = 8 x 8% where § € T1° and
87 are disjoint.

(4) Any 7w € TI™ can be written uniquely as & = 1, X 709 where 7w, € 1™ and 7wy € TI™,
Moreover, we have b, = by, .

Finally, we mention the following property. For o’ € T1%, o =bc(o”) and o € T1%"
we have

L(S, OJ X ai(Q)) - L(Sv o X Q),
e(s, 0’ x ai(o), ¥') = Ny e(s,o x0,9).
Hence,

(3.9) y(s,0" xai(0), ¥') =Nyl y(s,0 x 0, ¥).
Note also that
(3.10) Wyi(p) = Wp |F* nm.

3.3. The Bessel udentities—BL. — Our goal is to define for any 7 € I}, and
7’ € B() a certain element o € (X, W(rr)*), i.e., a compatible family of local uni-
tary periods on the Whittaker model of 7. These local periods will turn out to be the
local components of global unitary periods. The definition 1s given implicitly via an iden-
tity of Bessel distributions which will only be established in full generality in Section 12.
! for any x € X as follows. Suppose that

be-gen

and let m = be(rr’). Then by definition, 7" € BZ, if there exists a linear form

Provisionally, we define a subset BZ, of I1
n'e Hi)c—gen
a™ € W(mr)* (possibly zero, but necessarily unique by Lemma 2.2 and smooth transfer)

satisfying
af/,zSZ,Zv /
By, () =B (f)

for any / € S(G) and /" € S(G') such that / <— /. For convenience, we set o =0in
the (a posteriori empty) case 7’ & BZ,. We also set

BI =BI¢=(")BL.
reX

In the split case, it follows from [JacOl, Lemma 2] that every unitarizable 7" € TT{ ., =

IT,., belongs to BZ. The argument easily extends to any ' € IT}, —cf. Corollary 7.2
below. Eventually, we will show that BZ = IT; in the inert case as well—cf. Theo-

be-gen
rem 12.4 below.
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Suppose that 7’ € BZ, for some x € X and let 7 = be(r’). Then it follows from
(3.3) and (2.1) that for any g € G we have 7’ € BZ,,, and

(3.11) o, =a” oW(g, 7).

xXeg

In particular, oe;’/ € Homg:(W(rr), C). Recall that by (2.1), for any £ € Homg.(W (), C),

%g’ﬁ?ﬂ)(f ) is right (U, ¥ ')-equivariant and left G*-invariant, and therefore, at least in
the p-adic case, it depends only on the orbital integrals of /.
Suppose that 7' € BZ. It follows that o™ € E(X, W(m)*) (so that o is G*-

mvariant for all x € X). Therefore, by (2.7) we have %g;(j: e S*(X)Vo¥ ) and by
definition we have

’ \%
~ C(ﬂ ,8;1

%Qﬁ(n) ~—— B,.

For a character x of E* and m € Il,,, recall the equivalence A7 : W) - x —
W(r - x) defined by AT(W) =W,, We W(r).

Lemma 3.5. — Suppose that 7' € BL, for some x € X and let 1 =bc(rt'). Then for any
character ' of F* we have v’ - x' € BL, and
(3.12) o % oAT = x'(wyx) af
where x = x' o Nm. In particular,
(3.13) a™ M =n(wox) o .

X

Proof. — Note that for f <> f" we also have x'(x)f, <—> J,» and therefore

’ of 57 /
X (X)%m(n) () = Bﬂ’(/;/)'
Combined with (2.153) this gives
B (/') = x'(wo) B o (fy)-
On the other hand, as in the proof of (2.15) we have
Olf,,tsfv af,,ﬁfv
By )= %Qﬁ(n)~x )
by (2.3), and then applying (2.4) to (A7, AZ: ),

%!
x)

’ \%
g T
6,

\%
oy _ pts
By = Banir.

where £ o AT = o . Hence (3.12) follows. UJ
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For induction purpose, it will be useful to define more generally subsets BZy; , of
Hgf_gen for any M and x € X as follows. We write o’ € BZy; , if there exists a meromorphic
family A > oy (07, 1) € IWV(0), 1)* on a, ¢ such that

%QM,X(G’J),WAUV,—K) (f) = B(f/ o, )\‘)

I (W(0).1)

as meromorphic functions whenever / <—s f’. Here, as usual, ¢ = bc(o”’). We further set
BIM = mxeX BIM,X.
Once again, it follows from (3.3) and (2.1) that if 0’ € BZy;, then ¢’ € BIyj 4, for
all g € G and
O[h/l,xtg(a/, )\') = ah’[,x(6/9 )") o I(g7 W(U)’ )")

where o = bc(o”).

Lemma 3.6. — Let m' = 1(0’,A) € IT] and suppose that o' € BIy,. Then

be-gen
an.. (o', ) is holomorphic at )., w'" € BZ, and ozfl oW(o, A) = app. (o', 1).

Progf- — The holomorphicity follows from Lemma 2.3 and smooth transfer. The
rest of the Lemma follows from (2.4) applied to the equivalence €2 (o, A) defined in (2.13)
and the identity (2.14). 0J

Lemma 3.7. — For o’ € BLy and p € ay; ¢ we have o'[ 1] € BIy; and
an(o'[ul, A) =an(o’, w4+ 1) o Alo, 1), Ae€ajg
where 0 = be(o’) and
Ao, ) = 1A, s TV (1), 1) = TV (@), 1+ 1)
Le., Ao, 1g(g) =" "Vop(g), g€G.

Progf. — Tt is easy to see that (A(o, u), A(c”, —w)) : 1(W(o[u]), 1) = (W (o),
1+ A) is an equivalence of dual couples and that W,(o¥, —u — A) o A(c¥, —pn) =
W.(0V[—n], —A). Applying (2.9) we get that

B uto Al W =il 1) _ gaan(@’,u+2).We(e",—p—h)
I{ (W (o [u]).0) I$ (W (o), u42) )

It follows from (2.14) that B(o'[u], 1) = B(o’, u + A). Taking (2.11) into account, the
lemma follows. O
Assume that E/F is inert. Let
Xt =X[wy] and X =X\X".

From the support property of the normalized Bessel distributions (Lemma 2.6) we get the
following (partial) vanishing criterion.
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Lemma 3.8. — Assume that 7’ € T1] and x € X. Then

be-gen

() IfxeX~ and ' =7’ -0 then w' € BL, and a™ = 0.
(2) In the non-Archimedean case, if ©'" € BL, then af/ = 0 if and only tf G* 15 non-quasi-split
and v’ >~ 7" - 1.

Proof. —If v’ >~ " -  then by Lemma 2.6, B,/ vanishes on S(G'™). It follows from
(3.4) that 7’ € BZ, and o™ =0 for x € X"

Conversely, in the non-Archimedean case, (in which X[x] is a single G-orbit) for
any /” € S(G'[x]) we can find f € S(G) such that f <— f". Thus, if 7’ € BZ, and &” =0
then B,/ vanishes on S(G'[x]). Applying Lemma 2.6 once again, we conclude that
x € X~ and 7’ >~ 7’ - n. In particular, 7 is even and therefore G* is non-quasi-split. O

!/

be-gen = BZ, Lemma 3.8 can be restated as

In the p-adic case, once we show that I1
o™ £0 ifandonlyif w'(7') <ro(x)

where we recall that 10/(7r') is defined in Section 3.2 and t(x) is the Witt index of x. As
we shall see later, this criterion holds in the Archimedean case as well.
We conclude this section with a computation for unramified data.

Lemma 3.9. — Assume that ¥ s non-Archimedean of odd residual characteristic, E./¥ is un-
ramified and " has conductor Op. Let 1 = be(n') € Mgen unr and W € W(r) the spherical
Whittaker function normalized by W (¢) = 1. Let x € X N K and suppose that 7" € BL,. Then

I L(l, 7 x7Y)
ax (WO)_ =

4 /V_
_m_L(l,n X 7T n).

Proof. — By (2.5) and (A.4) we have

ol (Wp)  ar (Wp)

BL T (1) = = .
a1 = [ e, = L x )

On the other hand, by (3.6), the defining property of @™ , and (2.17) we have

—1

Ban (L) =Ba(le) =L(1, 7' x ")
The Lemma follows. O

4. Open local periods

The local periods that we are going to study in this section were introduced in
[LROO] for principal series representations. They were further analyzed in [Off07]. Here
we introduce analogous objects for more general induced representations of finite length.
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Fix a standard parabolic P = MU. Note that P has an open orbit X° = XN*UMU
on X. While X° is not a single P orbit in general, any P orbit in X° intersects X™ = XNM
in a single M-orbit. Therefore, X°/P is in bijection with the finite set X /M. The P-orbits
in X° are the open orbits of P in X (in the usual topology).

Let vy = vﬁ be either the character of M’ or the function on X™ defined by

t
(4.1) (g = 1_[ ni_l(detgi), g=diag(g,...,g)
i=1

and set further vy = vy, .
Let 0 € R(M) and let o € Ey(XM, 0*). For any x € X, A € a; ¢ and ¢ € I(0)
consider the expression

(4.2) Jul@ v, a,h) = Z"M(y) HN D) / (91 (g))) dg
B P\

where y ranges over a (finite) set of representatives of the M-orbits (M Nxe G)/M in M N
xe G and ¢ € G 1s such that x =y e . (See Lemma 4.3 below for geometric motivation.)

Proposition 4.1. — Let 0 € R(M) and a € Exy(XM, 0*). In the Archimedean case, assume
Surther that o s unitarizable. Then

(1) The sum of integrals (4.2) is well-defined and absolutely convergent for A = (Ay, ..., A;) €
Oy Such that Re(h; — A1) >0, 1=1, ..., 01— 1.

(2) For every x € X the linear form ¢ v J$i(¢ : x, &, A) admits a meromorphic continuation
n € ayy ¢ (stll denoted by J(x, &, 1) =5 (x, &, A)). In the p-adic case, it is a rational
Sunction in ¢ = (g5, . ..., g§'). In the Archimedean case, it has hyperplane singularities of
the form A; — A; = c.

(3) The map x + J(x, &, A) is an element of Ec (X, 1(o, X)*) which we denote by J(ct, 1).

(4) Suppose that J(x, o, -) 15 regular at A. Then J(x, o, A) = 0 1f and only if o, = 0 for all
yeMNxeG.

Proof. — We first check that the definition formally makes sense. If y =
diag(y1, ..., ) € XM then

P}:NP:{diag(gl,...,gt):gieGﬁ,i=1,...,t}

is a product of unitary groups in the diagonal blocks of M. The measure on P is the
product of the measures on G); according to our convention. It follows from the descrip-
tion of P’ that H(m)y = 0 for all m € P’. Furthermore, since «, is an M-invariant linear
form on o we have

o, (1 (mg1))) = e (0 (M (e1)) =@ (gi(e)), meP.geG
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and therefore, the integrand in (4.2) is indeed MP-invariant. If ¢ € G 1s another element
such that x =y e ¢ then « € G’¢} and the G’-invariance of dg shows that the integral

is independent of the choice of ¢]. If m € M then we can choose ¢, = mile and the
equivariance of « gives that

o4 o+ Hpom) Gy (01 (gm ™! Lj)) —  HoaHR HO)+2H(m) o, (o (m)y (g™ Lj))

_ g%(pM-M,H(y)) ay(w,\ (mg m™! Lj))

for all g € G. Since G*" = m~' G’ m it follows, that

e%(ﬂ)H‘)nH()"m)) / a)mm (‘PA (g Ljﬂﬂ)) dg
Myem \ Gyem
— pientAHO) [ Ol),(gl))\ (mgm_l Lj)) dg
1\/U.m\(‘;)om

_ Ao HO) / a,(e1(g 5)) dg.
MN\G?

Since we also have vy (yem) = vy (»), y € XM m e M, we see that each summand in (4.2)
1s independent of the choice of a representative » of the M-orbit and whenever absolutely
convergent, (4.2) is well-defined. Furthermore, for any £ € G we may choose Lj'h = h
Since

e(guh) = (I, 0, V@), (g17),

it 1s also formal from the definition that whenever defined by an absolutely convergent
sum of integrals, we have

Jp:xega,))=](Ig,0, Mg :x,a,1), g€G.

Next, we justify the absolute convergence and meromorphic continuation. The absolute
convergence of integrals of the form

| alo)d
MG

in some positive cone and their meromorphic continuation (to a rational function in ¢} in
the non-Archimedean case) was proved in a more general context of a reductive symmet-
ric space. In the Archimedean case this was done by Brylinski, Carmona and Delorme
([CD94, Proposition 2 and Theorem 3], cf. [BD92]) using a result of Flensted-Jensen,
Oshima and Schlichtkrull [FJOS88]. In the non-Archimedean case we refer to Blanc-
Delorme [BD08, Theorems 2.8 and 2.16].° The result in [loc. cit.] is stated under an ad-
ditional assumption, but the latter is always satisfied thanks to a result of Lagier [Lag08,

% Note that in the terminology of [loc. cit.], any P is a 6,-parabolic subgroup of G where 6,(g) =»~'('¢") ™'y
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Theorem 4(1)]. (Alternatively, one could also prove the rationality using Bernstein’s mero-
morphic continuation principle as in the proof of [LR00, Proposition 2]—cf. Remark 6.8
below.) The formal steps at the beginning of the proof are now justified.

For the last part, let G°[x] = {g € G : x @ g~' € X°} be the union of open double
cosets in P\G/G"*. One observes (cf. [CD94, Theorem 3, part 3]) that the restriction of
Jx, o, A) to

e €1(0) : suppy € G°[«1}

is non-zero if and only if there exists y € X™ N x @ G such that e, % 0. UJ

Corollary 4.2. — Leto € R(M), m =1(0, A) and x € X. In the Archimedean case assume
Surther that o s unitarizable. Suppose that o 1s NP -distinguished for some y € M N x @ G. Then 1 15
G*-distinguished.

Proof: — The Corollary follows by taking & € Ey (XM, 6*) non-zero and supported
(as a function on X™) in the given M-orbit y ¢ M and taking the leading term at A of the
restriction of Jy(x, @, -) to a complex line through A in general position. U

We may interpret and motivate the definition of the operation Jy; as follows. Recall
the isomorphism

E6(X, (0, 1)*) = Homg (S(X), I(0, 1))

defined by (2.6). Similarly, for o € £y (XM, 0*) we may define ® © o by

(POa)(v) = /

XM

w()POa,(v)dy, P e S(XM), vEo.

(Note that this is consistent with (2.6) when M = G.) Then o = (® = & © «) defines
an isomorphism of vector spaces

(XM, 0%) = Homy(S(X™), o).
We also have a canonical isomorphism of vector spaces
Evu(XM, 0%) = Eu(XM, o[ATY)
for any A € a3 ¢ given by & > a[A] where

1 )
a[r], = * Mg,

ye XM
The map o — Ju(a, A) (when defined) gives rise to a map

Ju) :Eu(XM, 0%) = E6(X. I(o, 1))
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and therefore, via the identifications above, gives rise to a map
Homy (S(XM), 0V[—1]) = Homg(S(X), I(a, 1)").
By Frobenius reciprocity, we obtain a map
(4.3) Homy (S(XM), 0V[—A]) = Homy (ni(S(X)), oV [—A]).

For any ® € S(X) let ®M be the smooth function on XM defined by

ch\/I(y) — e%(ﬂkrl;H(_l’)> / CI)()) ° u) du

U

In general, ®M ¢ S(XM). However, we have ®M € S(XM) for any ® € S(X°) where
we identify S(X°) with the P-invariant subspace of S(X) consisting of functions which
vanish (together with all their derivatives in the Archimedean case) on the complement
of X°. We get an M-equivariant map

(4.4) ni(S(X°)) = S(XM).
The alternative description of Jy is as follows.
Lemma 4.3. — The composition of (4.3) with the restriction map
Homy (n(S(X)), oV[—A1) = Homy (i (S(X°)), o/ [—A])
coincides with the map
Homy (S(XM), oV[—A1) = Homy (ni(S(X°)), oV [—A])
obtained by composition with the map (4.4) induced by @ > M.

Proof. — Explicating the various identifications, the Lemma amounts to the relation

(® O (e ) (9) = f (R©D)" 0al]) () de

P\G

for any ¢ € (o) and ® € S(X°).
To show this, we compute the left hand side as

/ O () :x, a, L) dx
X

:/ ® (x) Z ) o3 (PAHALHO) f a}(%(gg)) do dx
X PG

ye(reGNM)/M
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= > vm(y)e%("“‘“’H(”)/ P(yez) a,(@r(g2)) dgdz

exM/M NG PG
1
— Z INLC)) o2 (M2, HO)) / P (yeyg) Ot,((p,\(g)) dg
yexM/M PAG
I ;
— Z v () o2 (M1 HG)) / d(yemg)a, (go,\ (mg)) dmdg
S XMM M\G JM\M
— Z i (y) o2 {PMAH))
yeXM/M

X / f / D (y ® mug) O{),((p)\ (mug)) dm du dg
PG JUu v
_ Z N ) o2 oM+ HE)

yeXM/M

§ / / o~ 2 (v HOem) (R(g)(I))M(y om)a, (‘PA (mg)) dm dg
P\G /M"\M

»/P\G

:/ f nmi()e MO (R(9®) "0, (¢:()) v de
P\G JXM

f () ¢ PO (R () D) (1 0 1) @y (. (0)) i
MAM

yeXM/M

M
= [ (Ro)" oati)ew) &
P\G
where the integrals are absolutely convergent for ® € S(X°). The lemma follows. O

It will be useful to normalize the functionals Jy for o € R,;(M) (assumed uni-
tarizable in the Archimedean case). The normalizing factor depends on an auxiliary
o' € R,i(M) (as well as on o itself which will be omitted from the notation, since in
all cases at hand, o will be determined by o). More precisely, for A € ay; ¢ set

Ca(wn o, A ¢)
Car(wn 0/, A5 97)
and define the normalized linear forms and equivariant maps

jd’(xva’ )\‘):n(a/v A‘)J(xaa’ )\‘)9 xeX
Tor(, 1) =n(o’, A)J (e, 1).

By Proposition 4.1, these are meromorphic functions in A (rational in ¢} in the non-
Archimedean case) and lie in Homg:(I(o, 1), C) and £ (X, I(o, 1)*) respectively. Sup-

n(O'/, )\.) = nM/(a/, )\_) =
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pose further that o’ € TT™ and o = be(o”). In this case, we may write

(4.5) me(o’, 1) = [ M og(=D)"y(hi— 4.0/ x o/ 03 ).

1<i<j<t

Note that it follows from (3.12) that in the notation of Lemma 3.7, for any o’ € ITM
we have

be-gen

(4.6) Toia (@M 0) = T (@, i+ 1) 0 Ao, 1)

where 0 =bc(o”) and u, A € ay; .

For inductive arguments, it will be useful to consider the open periods in the relative
situation for a pair L =M, € M = M, of standard Levi subgroups in G. Let v} (£) be
defined for £ in either I or X" by

vL(€) = vy () v ().

For a representation ¢ € R(L) (unitarizable in the Archimedean case), y € XM and « €
EL(XY, 0%), we define the linear form JY (5, o, 1) € Homyp (IM (0, 1), C) as the function
in 4 € af ¢ given by the meromorphic continuation of the sum of integrals

V@oam= ) et / o (¢, (mt)) dm

ze(LnyeM)/L LAM?

for ¢ € I}'(0), where ¢, € M is a choice such that z e ¥, =y. We denote by J (e, M) €
5M(XM M (o, )*) the associated equivariant map. Assume that o € Rpi(L) and let o' =
0| ®---® 0, € Y where @/ is a representation of the Levi M’ of G, (see Section 1 for
the notatlon) Let w = (w1, ..., 1) € a7 ¢ with p; € aM C and let w e WM(L). Writing

w = diag(wy, ..., w,) where w; € Wb (M,,), we set
Cr(w:o' sy ]_[Cl\f? w; 1 0} i ¥),
) Gy,
CY(w:o. i) = ]_[CM;i(wi L0 s V),
=1

and

nyy (o' n) = CL e piv)
L CY (wyy 0, s )
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It follows from the multiplicativity of y-factors (1.8) that for any w, € W(M), w,y €
WM(L) we have

(4.7) Cr(wiws: 0, w44 9') = C (wo: 0y s ¥') Cap(wi s 1V (s 1), A3 ¥)

as meromorphic functions in 4 € af ¢ and A € a3 ¢. On I} (0) we set

M M M
Tro (t, 0, 1) =ny, (o' I} (x, e, ).
We now show that the open local unitary periods are compatible with transitivity

of induction.

Lemma 4.4. — Let L. € M be Levi subgroups of G, 0 € R(L), o' € TI" and « €
ELXY, 0%). In the Archimedean case, assume further that o is unitarizable. Then as a meromor-
phic function in A + o (in the p-adic case, rational function in qgﬂ ) Jor k€ af ¢ and & € ay; ¢, we
have

(4'8> Jﬁ(x7 o, L + )\‘) :Jl(\j’[(xv [N‘I(a’ /"(/)’ )\') o FL,I\l(Q? l’l’)
and if @ € R (L) then similarly

(4‘9> jfg,(x,ot,ﬂ—i—)\,) :jG ( , )(X, j}i\,lg’(a’ /'L)’)\') OFL,I\/I(Q’ /’L)

MY (o

The right-hand sides of (4.8) and (4.9) are defined by an absolutely convergent sum of integrals (also
in the Archimedean case) whenever A and v are sufficiently positive and by meromorphic continuation in
general.

Progf. — Since wy, = wy wy, (4.9) follows from (4.7) and (4.8). To prove the iden-
tity (4.8) we may assume that Re v and Re A are sufficiently regular in the corresponding
cones. A set of representatives for (.M x @ G)/L can be chosen by first fixing a set {y} of
representatives for (M N x e G)/M and then taking the union over all such y of a set of
representatives for (L.Nye M) /L. By Proposition 4.1 for any ¢ € I1.(0), J{' (¢ : x, &, .+ )
is equal to

(4.10) Z Z vL(2) 2 ) / az(‘PMH (gtf)) dg

€MNxeG)/M ze(LNyeM) /L LAG*

where the sum-integral is absolutely convergent. Since z € y @ M, we have

(4.11) ni(2) = vm ().

Let v € M and L)’f € G be chosen so that U= Lyztj. Since z e Y=y, we have

(4.12) (or. + 1+ 2, HE)) = (o + 1, HR)) + (ow + &, HO) — 2H(2)).
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Since (2) 7'M, =M and (¢))7'G*, = G, by integrating in stages and performing the
change of variables g — ¢g(¢))~" we obtain

[ wlonlate= [ [ alpslna)) and
LA\G? MA\G2 J LA\M?
= f / o, ((pMH (mb’z’gtj)) dmdg.
MG JLA\ME

Let & =TI m(0, )@, so that by (1.1) we have

() = 04D 6 ), ()

Since H(m) € (a)")* for m € M* we deduce that

/;Z\GZ o (‘pMH (ng)) dg
_ fonHi HE) / / a.((5(e0))),, (me))) dm de.
MN\G J 12\ M=

Plugging this into (4.10), taking into account (4.11) and (4.12), and changing the order
of summation over z with integration over M\ G’ we obtain that

Ji(@:x,a,u+Ar)= Z INTO)) o2 (PHLH))

ye(MNxeG)/M

| 1M
X / { Z VﬁI(Z) o2 0PL 1 H )
MNAG

ze(XLryeM)/L

8 fr:’\Mz ( (& (gtj))u(mﬂz)) dm} dg,

where the right-hand side is absolutely convergent. Note that the term in curly brackets
equals JM(§; (gt}) 19, &, ) and therefore, this gives the identity (4.8). 0

Remark 4.5. — Under the interpretation of Lemma 4.3, Lemma 4.4 reflects the
relation ®% = (M),

For future use, we define a meromorphic family of normalized relative Bessel dis-
tributions associated with a representation o € TTM. gen (Unitarizable in the Archimedean
case) by

= ST (@ )W, (Y, —1)
(4.13) B(U/’ )‘) =Bl w(0).1) . AEayg

where o = be(o”).
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5. Closed periods

Next, we consider invariant functionals arising from the closed orbits of a parabolic
subgroup on X. They are defined for induced representations in special position.

3.1. Definitions and properties. — Throughout this section, let L be a Levi subgroup

such that woLw, = L. Thus, L is of type (ny, ..., n,m,n, ...,n) where m is possibly
zero. We say that L is even symmetric if m = 0 and odd symmetric otherwise. In both
cases set k =mn; + -+ + n, so that n = 2k + m and let k = (n, ..., n,) be the associated

composition of £. Let
Xy =X¢ =X NwL.

It is an L—i{lvariant subspace of X. Let 6 = 6; be the involution 7 o 0 of G, where we
recall that 6(g) = wy'g™'wy. Also set

Gy
lk w

w*zwo‘ . w = L,
(If m =0 then w, = w,.) We have
(5.1) Xy = {w, diag(g,7,0(¢")) : g €My, y € X, } M, x X,

with the action of L given by

(5.2) w, diag(g.»,0(g™")) e diag(hy, , 6(hy)) = w, diag(hy ' ghi, y e h, 6 (h;lghl)_l)
for any g, hy, hy € My, h € G,,,, y € X,,,. Consequently,
(5.3) LY+ 4800 — [diag(f, b, 6 (g ")) 1l €My, he G2} =M, x G,

Let p, : Xp — X, be the projection to the middle m x m block, i.e.,

tgr wgrk
pu(w. diag(g.».0(¢™"))) = pu ” =)
Gy
Wy 8

Lemma 5.1.

(1) The inclusion Xy, € X induces an injection Xy,/L. < X /G. The tmage (i.e., the orbits in-
tersecting w, L, or equivalently w, Q) consists of the orbits of Witt index > k. In particular,
in the even case the image 1s a singleton—the quasi-split forms.

(2) For any x € Xy, QF 15 a parabolic subgroup of G* with Levi decomposition 1."V* and
opposite parabolic (‘Q)* with respect to L.*.
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(3) Themap p,, : Xy, = X, induces a byection Xy,/1. =X, /G,,. In particular, in the even
case X3, = wy e L.
(4) Let'Y be the space of n x n Hermutian_forms whose entries are zero on the constant coordinates

of W, V. Then forany x €e X;, xoV=x+YandxeV=x+Y.

Progf: — Part (1) follows from Witt’s cancellation theorem for Hermitian forms.

Let x € X,. Note that Q is invariant under the involution g > x~! 't (g) ~'x. There-
fore, QF, which is the subgroup of fixed points of that involution, is a parabolic subgroup
of G*. The Levi decompositions Q* = L*V*, (‘Q)* = L*("V)" follow from statement (14)
on [LRO3, p. 178]. We deduce part (2). Part (3) follows from (5.2). The last part of the
lemma is straightforward. UJ

We will normalize the measures on QF, x € X|, by the recipe of Section 1.2. To that
end, we need to specify the gauge form wq+ and the scalar hgs. First, let @ = @, A
wg. be the gauge form on L* defined via the isomorphism (5.3), and let hyx = hm, A2,
where y = p,,(x). For any x € X, we take @,y = [[dx j Where the product is over all
non-zero coordinates of Y such that : <j (where the coordinates are in Eif: <j and in I
if : =) and take wy= which matches @y and ®,,y. Finally, applying Lemma 5.1 (2), we
define wg~ to be matching with @y~ and vy, and take hgx = Ap-.

We also define a gauge form on Xy, by wx, = wm, A wx,, via the isomorphism
(5.1) and the scalar Ax; = Mm, Mx,,. The isomorphism X, >~ [ | L*\L is compatible
with measures.

For a Levi subgroup M of G, an M-invariant subset C of X and 0 € R(M), let

xeXy,/L

Ew(C,0")={B:C—> 0" :Bu=PB.00(g) forallxe CandgeM].

1

Any w € W such that wMw™" = M acts on ay; and we define

(a3)" ={rea} :wr=2}.
We have

(a7)" = {(u, )z p € agy ) m=0,
- {(w, 2, W) :pe ay, > 2 € R} otherwise.

It follows from (5.3) and Lemma 5.1(2) that for x € X}, we have

(5.4) (A, H(@)=0, geQ, re(a]),

For 0 € R(L), B € &E.(X1, 0%), x € X and A € (af)g define the closed period
Z(x,B,A) = Zf’(x, B, ) as follows. If x @ G N X}, =@ we set Z(x, B, 1) = 0. Otherwise,
there exist y € Xy, and ¢} € G such that x =y e 1] and we define

(5.5) Z(@: x, B, A) = ¢3HON /@ o B (w.(he))) dh. ¢ €11 (0).
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In particular, if m = 0 then

Joporgeo Bun @iy )y dhe i x=1wg e 13,

(5.6) 2pix B2 =10 if x ¢ wo e G,

g €If(0).

Lemma 5.2. — The expression (3.5) is well-defined and holomorphic in A € (a})g". Further-
more, the map x — Z.(x, B, A) is an element of E¢ (X, IE'(Q, A)*) that we denote by Z.(B, A).

Moreover, for any A € (a7) &, Z(x, B, A) £ 0 if and only if there exists y € x @ G N Xy, such
that B, # 0.

In particular, form =0, Z(x, B, 1) #£ 0 tf and only if x € wy 0 G (e, G* is quasi-split) and
B #0.

1

Progf.: — Recall that by [LR03, Proposition 4.3.2] we have 8(3|Qy = 8¢y . Therefore,
it follows from the equivariance property of B, (5.4) and the fact that ()’ is a parabolic
subgroup of G’ (Lemma 5.1(2)) that the integral in (5.5) is well-defined and holomorphic
n A.

If x =y ey for 1, € G then L;LQ_I € (& and the change of variables / k(tjtg_l)_1
shows that (5.5) is independent of the choice of ¢]. If )’ € Xy, is such that ye G =)' ¢ G
then it follows from Lemma 5.1(1) that there exists £ € L such that y’ =y £ and we may
therefore choose ¢, = £~'t;. Since

(5.7) (PO S HON B (0, (671 g)) = 2O (0, (9)), g€G

and the change of variable 4 +> £4£™" transforms our measure on Q’\G” to ¢~ 1-H®)
times our measure on Q”\G”’, this change of variables shows that (5.5) is independent of
the choice of y.

The equivariance property is trivial if x ¢ G N Xy, = @J. Otherwise, it follows by
choosing (% = t/g for g € G.

For the non-vanishing criterion, the ‘only if” part is trivial. For the ‘if” part,
we may suppose that x =y € X, and B, # 0. Let v € ¢ be such that B,(v) # 0. By
Lemma 5.1(2), we may replace the integration in (3.5) over (’\ G’ by integration over
(VY. Fix f € C*('V) > 0 with f(¢) > 0 and let ¢ € IE’(Q) be the section supported in
Q'V such that ¢, (1) =f(u)v for u € 'V. Then up to a positive scalar, Z(¢ : x, B, 1) is
given by B,(v) f(l\/)x [ (©) du and hence it is non-zero. ]

The map
SX) > S(Xy)

which takes ® to

CDV(y):/ P(rev)dv, yeX|
VAV
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induces an L-equivariant map
(5.8) n(SX)) = SXu).
On the other hand, we may identify
&L(X1, 0*) =~ Homy (S(X1), 0")
and
Ea(X, T (0, 1)*) = Homg (S(X), I(0, 1)) = Homy, (n.(S(X)), 0" [—2])

by Frobenius reciprocity, cf. the discussion before Lemma 4.3). For 8 € &.(Xy, 0%) let
y recip s
BlAl= (O gf()‘*H()’))'B]) € EL(Xy, o[A]).

Lemma 5.3. — Under the above identifications, the map B[L] — Z(B, L) becomes the map
Homy, (S(XL), QV[—)»]) — Homy, (TL (S(X)), Qv[—)»])
obtained by composition with the map (5.8).

Proof. — It B € &E.(X,0%) is such that B[A] corresponds to A €
Homy,(S(Xy1), 0V[—A]) then

AW (v) = / W(x)e? OB (1) dy, WeSXy),veo

XL

and we need to show that for ® € S(X) and ¢ € I(0) we have

| ewzinpii= [ ARO®)) @)k

AG

From the definition of Z we get

/ S ()Z(p:x, B, L) dx
X

=y g2 -HO)) f d(yeyg) B,(¢.(hg)) dhdg

eXr/L GN\G A\
1 ,
= Z 02 (A, H()) / d)(y og)ﬁy(gok(g)) dg
yeXp/L Q\G

= ) A®Ho / / D (y 0 49)B,(9:.(499)) 80 (9) ™" dgdg
acJana

yeXp/L
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= 3 o) / f / @ (y 0 vig)8y ()" B, (91 (Ig)) dv dl dg
Q\G JINL Jw\Vv

yeXy/L

= ) atH / / (R@®),.(v o DB, (0:.(12))80 (D)~ dldg
Q\G JI\L

2€eXL/L

5.7) I

N / Z ./ (R@®), 0o Der™ M08, (¢, (0)) dvdg
QG jexy /Y L

- fQ\c /X (R@®) (et 1, (9 (9)) drdg

= f A((R@®),)(9:(9)) dg
Q\G
The lemma follows. UJ

5.2. Further analysis. — Next, we would like to connect the closed periods above to
the open periods defined in Section 4 and to reduce the study of the closed periods to the
even symmetric case (m = 0).

Assume thatm > 0. Let M = M4, D L and introduce the pair of Levi subgroups
L € M where L = M,... %) and M= M,.06. Let P = MU, P =MU and Q LV be
the corresponding standard parabolic subgroups. Let also w = w((:ZJ,Zk})k ' e W(L), so that
L=w"'Lw, and set W, = w'w,w = diag(1,, w(‘f?") )

Let Xlgl — w.L.NXM = #.1.N X and note that y > yew : X, — X?{’I is an isomor-
phism. Accordingly, for any o € R(L) the map B+ wp, where (wB), = B4, for y € Xy,
defines an isomorphism Ei(Xgl, 0*) = EL(Xy, (we)*).

Note that

XM = [diag(x, %) 1 11 € X,y %9 € X )
and
(a]’{)z* ={Gzn. W) :zeCueay }=w'(af)-

For any x = diag(x;, x0) € Xi[ we have U* = 1 and therefore, Q* € P* = M*U* = M*. In
fact,

sz{diag(g,/o)IgEG’” peP(KK)} GXI xP)(CfCK)

We endow P? .
(e, &)

gives rise to a Haar measure on Q*.

with a Haar measure as in the discussion following Lemma 5.1. This
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For o € R(L), B € £.(XM, 0*) and 1 € (a2)¢", let ZM (B, 1) be defined by

2 HHO) [ B dh x=yer, ye XM, e M,

5.9 M0 x, B, X)) = A
(5.9) (p:x,B, 1) 0 ngX%IoM,

for ¢ € IEI(Q) and x € XM, Note that as in Lemma 5.2 (for the special case m = 0),
ZM(,B, A) is a well defined element of Ey (XM, I?(Q, A)), entire in A and
(5.10) ZM(x, B,A) #0 1if and only if there exists y € Xil N xeM such that B, # 0.
Proposition 5.4. — For any 0 € 'R(i) and B € 5i(X§1, %) we have
(5.11) Ju(ZM(B. 1), 0) o Ty g1(0, A) = n(—=1)! Z(wB, wi) o M(w, 0, A)
as an wdentity of meromorphic functions in A € (a}“)g" .
We first n~eed some more notatign. Let L = Mgup and I, = Muin =
wlLiw=MNM,sothat LCL, CM,LCL; €M and wzw%f. Let Q, =LV, be

the corresponding standard parabolic subgroups of G. Also, let R be the non-standard
parabolic subgroup w™'Qw € P and let V|, = w™'V,w. Explicitly,

G, 0 % G, 0 O
R={|*x P, x |; Qﬂilz 0O P, 0 };

0 0 P 0 0 P«

I, 0 = I, 0 0
Vi=[x I, x]; UnM=|0 I, =x

0 0 I 0 0 I,

Note that R = (Qﬂ I:l) x V, and Q: (Qﬂ f,l) x (UN l\~/I)[~J The following result follows
by straightforward verification.

Lemma 3.5. — Lety e Xy, andx =yew € XI\I T hen
R'=(QNL)'x VI>Q =(QNL)" x (UNM)*
s0 that
(5.12) Q"\R* >~ (UNM)*\V*.
Moreover, the projection of P onto M induces an isomorphism

(5.13) UNMA\V' - MNV, =w ' MNV)w.
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Trangfer the measure on QY (defined afler Lemma 5.1) to R* via the relation R* = w “'Qw. Transfer
the quotient measure on Q \R* %0 (U ﬂ M)* \V" via (5.12). Then under the isomorphism (5.13), the

measure on (U N M) \VT becomes ¢~ P HO) fimes the measure on w™ "M NV ) w (which is the
transfer of our measure on M NV via m+—> w™'mw).

Proof of Proposition 5.4. — Fix x € X and write for simplicity
J=1Jui(x Z%(B, 1), 0) € Homg: (Iy (0, 1), 0), C).

Note that if 8, =0 for all y € x @« G N Xgi then (wB), =0 for all y € x @« GN L and
both sides of (3.11) vanish (by (5.10) and Lemma 5.2). Assume therefore that there exists
yexeGN X%" such that B, # 0. By meromorphic continuation, it suffices to consider A
such that Re Ay € (ag)+ 1s sufficiently regular. Note that J is defined in (4.2) as the sum

over (x @ G N M) /M of certain integrals and that y e M is the only M-orbit in x e G N M
that has non-empty intersection with Xil By (5.10), it follows that J equals the summand

parameterized by y @ M. Without loss of generality, we may therefore assume that x € Xil
Note that in this case vg(x) = n(—1)*. Let y = x @ w™!' € X, be as in Lemma 5.5. Fix
¢ € I(0) and let § =T (0, A)¢. We have

J@&) = n(=1fer e / 7M(E(g) : x, B, 1) dg
G

= (=12 exthHO) /  B&@W) dldg
1(\1\/[1

1\1 X \ G.’(

where the integral is absolutely convergent (by our assumption on A). By (1.1) and the
fact that H(M*) 5 = 0 we get n(— 1)kerHO) times

o2 (P51 HW) / / %(lg)) dldg = 3oy HOO) f A ﬁx(‘pk(g)) dg.
M*\G¥ x\l\[x Q‘\GX

By Lemma 5.5 this becomes

o3 (o5 HO) / / S (1B, ((px(rg)) drdg
R¥\G* J Q¥\R¥

% (g, H(x) f / ,3 (tpx(ug)) dudg
RA\G* J (UNND"\ VS

:/ / B(or(w™ uwg)) dudg

RAN\G* J MNV]

= / B.((M(w, 0, M)g) , (wg)) de.
RN\G*
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By the change of variable g > w™'gw, we get

| B ((w.e.0),, ) d
Q\@
Altogether, we get J(§) = n(—D"Z(M(w, 0, V)¢ : x, wB, wl) as required. ]

Suppose now that 0 =bc(0') ® § ® 8 where o’ EH roandd =68, ®---®4, €

bc-gen

[T« Let 2k be the composition (21, . . ., 2n,) of 2k and set a1(8) =ai(d)) ®---®ai(d,) €
1Mo, We write i — ' for the isomorphisrn Oy, —> aKfz obtained by their identification
with R’.

Corollary 5.6. — Let h = (z, j1, ) € (a*i)g* with z € G and p € ay; o and assume that
1(o, 1) is wrreducible. Let B € SE(XE’l, 0") and @' = o'[2] ® Ly, (ai(8), u'). Then

(5.14) A (ZM(,B, 1),0) oI’ xi(0, A) o N(w, 0, 1) =n(—1) xw/"ikZ(wﬁ WA).

Indeed, this follows from (5.11) by observing, using (4.5), (3.9), (3.10), and the fact
that hy-1 = n(—=1)ky, that
n(e’,0) =1, Ca(w : 0,43 %),

For the rest of this section, we assume that L. is even symmetric, 1.e., m = 0 in the
notation above.

Let 0 € R(L) and B € £1.(Xy, 0%). Let P=P( 1, M =My and Qy = Q N M.
Recall that X;, = wy e L and similarly for M. For 4 € (a})g’ and ¢ € IM(o) let

5.15) Flgixp)= fo’o\Mwo Bu(prbey)dh x=wo o,
xeGN X\I == @
Since A € (a7)¢’, it easily follows that (A, HM"")) = 0 and therefore,
Fp:wo, B, 4) = /0 Buy (w(1)) dh
Qyp \M™0

1s independent of A.
Let 1 : G; = M be the embedding given by g = diag(g, g’). Then M = G,
=P and L* =M. . In particular, Q}} is a parabolic subgroup of M with Sqro =

1
LR | quo. Furthermore, (A, H(%)) =0 for all 2 € vt - It follows that the integral in (5.15)
is well defined and F (B, 1) € Ey (X, Ilﬁ[(g, A)*) 1s holomorphic in A.

Lemma 5.7. — Let 0 € R(L), B € EL(XL, 0%) and A € (a}) g’ . We have
75 (B, 1) = 2 (F(B, 1), 0) o Trwil, ).
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Proof. — Both sides are elements of £;(X, I(g, 1)*) which are supported on w, e G.
Therefore, it suffices to show that

Zf(wo, B, A) = ZM(WOa -7:(,3, )\M), )\M) oI'Lm(o, A).

1
Note that Q"0 = Qy; U™, P*0 = M* U™ and 8pwy = 83 |pwo. Thus, for any ¢ € I¥(0) we
have

F(om : wo, B, A) = f 5;%(/1),31110 (¢2(R)) dh

QCJIO \M®0

QY0\P*0

_1

where we recall that gy = 8, “¢ |\ € IM(0). Therefore, by (1.2) and (5.6) we have
ZM(FL,M(Q, M wo, F(B,4), O)

Pwo\GwO
= / f 8o (0) By (2. (p)) dp dh
PY0\G™0 J Q™0 \P¥0

= / Buy (02.(1)) dh
Q¥0\G¥0

which, once again by (5.6), equals Z{ (¢ : wy, B, A) as required. O

5.3. The normalized closed periods. — We continue to assume that L = M, ) is even
symmetric and let M = M ;) as before. Recall that L™ = {diag(m, 0(m)) : m € M,}.
Denote by IT“* the set of all ¢ € TT" that are L**-distinguished. Concretely,

HL’w“:{O'l®---®O’S®O’f®---®0’fZO'Z-EHG""}.

Let MMk = 1" N IIY . Let b be the involution diag(g,g)” = diag(gi, g5) of

gen gen”
M (gl, & € Gk)
For po € H;‘C’g’o, we define the normalized closed period 8¢ by

W) =S (Wi, hW)')

where ,ng is defined in (A.10) (except that now we use it with respect to E) and W’ €
W(") is given by W*(#) = W(/), [ € L. Thus, 0 # B¢ € E.(Xy, W(0)*).
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Lemma 5.8. — Let o € TI=¥0, ) € ()’ and o = Ii’I(Q, A) € M. Then o € TIM:wo

gen 2 gen
and
B7 oW (0, 1) = F(B°, 1).
Proof- — It suffices to prove this equality at wy. This case amounts to Corollary A.5
upon applying b. UJ
For o € H{g‘éfo, we can now define the relative closed Bessel distribution
5 5 SZ(B0 0 W (@) v
(5.16) Di(0. ) =D(. M) =Ny Bl 7 re(af)e -

It is holomorphic in A. The factor Xf/,, is needed for comparison with G'—cf. Section 9.
We may reduce the study of the closed Bessel distribution to the case L =M as
follows.

Proposition 5.9. — We have D1.(0, 1) = Dy (IM(0, 1), 0).
Proof: — Let o = I} (0, 1). We will apply the relation (2.9) to the equivalence
(A, (M), Agv (=)
of dual couples where
A, () =I5 (W (0. 1) o TP (W(0), 1) - IF (W(0), ) = TIjj(W(0), 0).
Recall that by (1.6) we have
W, (0, 1) =W,(0,0) 0 A,(1).
On the other hand, by Lemmas 5.7 and 5.8 we have
Z1(B% 1) =Zn(B7.0) 0 A, ().
The Proposition follows. O

Corollary 5.10. — Let L, C L be both even symmetric, o € Hég;lw“ and jv € (ag, Ve be such
that o = Ih (o, ) € II*. Then

wo

Di(0.2) =Dy (0. n+21)., re(a))y.

Indeed, both sides are equal to l~)M(Ii1(Q, 1), 0).
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6. Applications of the geometric lemma

In this section, we reduce the study of local unitary periods in the p-adic case to the
case of pure Galois-invariant representations (i.e., with supercuspidal support contained
in o[Z] for a Galois-invariant supercuspidal representation o). Once the supercuspi-
dal case is settled, the main tool will be the geometric Lemma of Bernstein-Zelevinsky
[BZ77]. On the other hand, the supercuspidal case requires a global argument (which
however does not require the relative trace formula comparison).

Assume from now on that I is p-adic and E/F is inert. Our main goal in this section
1s the following result.

Theorem 6.1. — Let w € T1 and x € X.

(1) If v s G*-distinguished then w >~ 7 *.
(2) If 7t is totally T-isotropic (see Section 3.2) then Ec (X, 7w*) is one-dimensional and

dim Home, (7, ) = 1 G* zs quasi-split,
0 otherwse.

Consider first the supercuspidal case. We turn to a global setting. Assume that
E/F is a quadratic extension of number fields and v, is an inert place of I such that
E,,/F,, 13 isomorphic to our given quadratic extension of p-adic fields. Consider 7w € Hg,”s%
and x € X,,, such that 7 is Gj -distinguished. After possibly twisting by an unramified
character, we may assume that 7 is unitary. By passing to a different representative in
the G,,-orbit, we may assume that x € X. It follows from [HMO02a, Theorem 1] that
there exists an irreducible cuspidal automorphic representation o = ), 0, of G4 which
is distinguished by G* and such that o,, >~ w. A well-known argument from [HLR86]
using strong multiplicity one (e.g., [Jac05a, Theorem 4]) yields that o (and in particular
) 1s Galois invariant.

For the rest of the proof we return to the local setting. Recall the involution 6 = 6,
of Gk'

Let 0 € R(M) and m = I(o,0). By [BZ77, Theorem 5.2], for x € X, 7w admits
a filtration by G*-invariant subspaces which is parameterized by P\G/G". The succes-
sive quotients can be described in terms of induction and Jacquet functors. We study
G*-invariant functionals on 7 through these subquotients.

6.1. P-orbits in X. — The P-orbits in X were analyzed in [LRO03, Proposi-
tion 4.2.1] building on earlier results of Springer [Spr85]. (For a more general setup—cf.
[HW93].) To describe the results, fix M = M, where « = (ny, ..., n,), and let Wy[M] de-
note the set of involutions w in W satisfying wa < 0 for all @ € AM, i.e., w is the longest
element in the double coset WMwWM. For w € W,[M] the group
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M((w) =MNwMw

1s a standard Levi subgroup of M invariant under conjugation by w.

Lemma 6.2. — [LR03, Proposition 4.2.1]" Every P-orbit x @ P in X intersects wM(w) for
a unigue w € Wo[M]. We say that x (or its P-orbut) lies above w mn this case. If x lies above w then
wM(w) N x e P is a single M(w)-orbut.

Thus, the P-orbits in X are parameterized by the disjoint union over all w €
Ws[M] of the M(w)-orbits in wM(w) N X. Fix w € W,[M] and set L = M(w). Recall
that L =M, for a composition y = (y, ..., y,) of nrefining «, i.e, forall i =1,...,¢,
vi = (ki1, ..., ki) 1s a composition of n;. Thus, the blocks of L are enumerated by the
linearly ordered set (J = J(w), <) where

jz{(i,j):izl,...,t,j:l,...,si}

and < 1s the lexicographic order. We write an element of L as diag(g,),c5 where g, € G, .
Note that w defines an involution on J (also denoted by w) such that £, =4,

. . Gy, Gy,
w diag(g),csw = dlag(wO ! Guy W ! )lej

and
(6.1) wi, )+ 1D <w(,y), =1,...,t,5=1,...,5— 1.

In particular, for any ¢ there is at most one j such that w(s,j) = (z,7). For m =
diag(m,),e5 € L, the element wm € wL lies in X if and only if

My ) = Q(ml_l), 1e7.

Furthermore, if wm € X and g = diag(g,),c5 € L then

(wm) o g =w diag((6 (g0 M), ,)-

Let §, be the set of fixed points of w on J. We can choose g so that Q(g;(ll))m,g, =¢forall
1 ¢ §w. Thus, the L-orbits in wLLN X are parameterized by the product over: € §,, of the
Gy, -orbits on X, or, what amounts to the same, the Gy, -orbits on w, X, (where w, = wg &)
with respect to the twisted action (¥, g) = 6(g™')¥'g. Since we are in the p-adic case, they
are therefore parameterized by (F*/NmE*)S». The stabilizer I of a representative of
the form

(6.2) y=w diag((m),e5), m =cforalli ¢g,

7 In [ibid.], the left action g%y =g90(¢™") of Gon Y={g€ G :g=0(g")} = Xw, was considered instead of
our right action of G on X. Thus, to translate the results of [ibid.] to our setting, we identify Y and X via the map
I x= ()N,U(J)il .
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is the subgroup of elements g = diag(g,) such that for all 1 € J we have

wymy

gl EGk, lfl €5w7
gwoy =0(g) otherwise.

Remark 6.3. — The above analysis works over any I of characteristic 0. The only
difference is the description of X, /Gy where the discriminant map X;/G; — F*/NmE*
may not be injective. In particular, in the case P = P, there is no difference between the
p-adic case and the Archimedean case.

The open P-orbits in X are precisely those which lie above w = wy". There are
exactly 2 open orbits and their representatives can be taken in X™ /M. Recall that X° =
XM o P (the F-points of the Zariski open orbit X° of P on X) is the union of the open
P-orbits in X and for x € X we set

G°[x] = {geG:xog_l EXO}

which is the union of the 2/~! open double cosets in P\G/G".
A P-orbit that lies above w = wy is closed. There is a single orbit that lies above w,

if nis even and M C G,» X G,/ and there are precisely two such orbits otherwise (one
in each G-orbit).

6.2. The geometric Lemma. — Suppose that (,))) is an induced representation
I$ (o). For x € X we describe a filtration for the restriction of 7 to G*.

We 1dentify the double coset space P\G/G"* with the set (x @ G)/P of P-orbits
on x e G via g > x @ g~'. By [BZ76, §1.5], there is an ordering {€;}'_, of double coset
representatives of P\ G/G" such that

j=1

isopenin G foralli=1,..., k. We take the first 27" €;’s to lie in G°[x]. If x € wy @ G, we
also take €, such that x = wg e €;. Let

Vi={peV:suppp) CYi}.
In particular,

Vot = {g € Vi supp(ep) € G°[x]}
and

Vici={p €V :¢|qe =0}
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The sequence
0=VyCVC---CV,=V

is a filtration of V by G*-invariant subspaces and the successive quotients are described as
follows (see [BZ77, Theorem 5.2]). Fix i =1, ..., k and choose y in the P-orbit of x e €,
and a representative ¢} € G such that x =y e ¢]. Thus, (] € P¢; G". For groups AC B, a
representation ¢ of A and 4 € B we let ¢ denote the representation of 4~' Ab on the space
of o given by 0’(b~'ab) = 0(a), a € A. Then

o

<6°3> Vi/Vi,I - \/; [X] = lndg:ﬁ(g)flpl:([oi ‘ 8}1/2 |P)‘:|)‘)

= ind%),lpfg([o SR ]7) 2 (indS ([o - 8121w ]))"

where ind denotes unnormalized induction with compact support. In particular, the G*-
space V7 [x] depends only on the orbit y @ P and not on the choice of y or ¢].

Recall that by Lemma 6.2, any P-orbit O € X/P lies above some w € Wy[M] and
we may choose a representative y € O N wM(w). Recall that 71, : R(M) — R(L) is the
normalized Jacquet functor.

Lemma 6.4. — Let 0 € R(M) and let w € Wo[M]. Set L= M(w) and let y € wLNX.

Then there is an isomorphism of vector spaces

HOl’IlGx (Vj [X], C) ~ HomU (TL,M (O'), C) .

Proof. — Let Q =P, =LV with V=1U, . Thus, Q € P. Let R be the unipotent
radical of P’ and let proj,, : P’ — M be the projection map to the Levi subgroup M of P.
Set also Vi, =M NV, so that V=V,U and LV, is the standard Levi decomposition
of Q N M, which is a standard parabolic subgroup of M. By [LLR03, Proposition 4.2.2]
(adapted to our setup) we have P’ = () = I X R and proj,,(R) = V. Since wLw =1L,
it follows from [ibid., Proposition 4.3.2] that §p = d = 81Q/2 |p. Therefore, by Frobenius
reciprocity and (6.3) we have

1

Homg: (V7 [x], €) = Home (V7 [3], ) = Homp (0 - (835, ) I, C)

= HOH’IUV1 (G . (85 5éé) |L"V] , C) = Hova (VL,M(O'), C)

where for the third isomorphism we used that proj,,(R) =V, and the last equality fol-
lows from the definition of the normalized Jacquet functor. Altogether, we obtain the
Lemma. o

Defination 6.5. — We say that y € X (or y @ P € X/P) is relevant for o (or for w if P is
clear from the context) yf Home, (V7 [y], G) # 0 or equivalently, if Homg: (V7 [x], G) 7 0 for some
r€yeG.
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By Lemma 6.4, in its notation, we have
(6.4) yis relevant for o if and only if 71, (o) is I-distinguished.

For w € Wy[M] set L =M(w) and let y € wL.N X be a representative as in (6.2).
With the notation of Section 6.1, an irreducible representation ¢ = ), 5,0, of L is
[7-distinguished if and only if for every 1 € J we have

(6.5) 0, 1s (G, )" -distinguished 1fw() =1,

Owi) =0/ otherwise.

Definition 6.6. — We say that the unitary periods on w = I(o, 0) are supported on open
P-orbits (or simply supported on open orbits if P s clear from the context) if the non-open orbits are not
relevant. Stmilarly, we say that the unitary periods on w = 1(o, 0) are supported on wy ® P if the only
possibly relevant orbit s wy @ P.

We can of course relate the open and closed local periods defined in the previous
sections to the geometric Lemma. Identify Ey(M N x @ G, 0*) with the subspace of o €
Ev(XM, 6%) such that a,=0forall y € XM\ x e G. Let J°(x, a, A) be the restriction of
J(x, o, ) to V1. Note that for ¢ € Vo1 the integrands in (4.2) are compactly supported
and therefore the integral is convergent and J°(x, v, A) 1s entire in A. It follows that

(6.6) the map o — J°(x, v, 0) defines an isomorphism

SM(M Nxe G, O’*) ~ Home (VQ/—I s C)

Lemma 6.77. — Suppose that the unitary periods on 7w are supported on open P-orbits. Then

(1) The restriction map
(6.7) Homg: (7, C) = Homg:(Vy-1, C)

us an isomorphism_for any x € X.

(2) For every a € Exy(XM, 0%), J(a, A) is holomorphic at A = 0 and a +— J(«, 0) is a
vector space isomorphism between Exy(XM, 0*) and Ec (X, *).

(8) For every x € X, the map o > J(x, e, 0) is a vector space isomorphism between Exy(M N
xe G, 0%) and Homg: (7, C).

Proof. — By our condition, for any x € X the quotients Vi ;/V;, i > 27! admit
no G*-invariant functionals. Hence Homg:(V/Vy-1, G) = 0, and it follows that (6.7)
is injective. Now let @ € Ey(M N x @ G, 0*). By the support condition of unitary peri-
ods, J(x, o, &) is holomorphic at A = 0, for otherwise its leading term (along any line
through 0) would not be supported on open orbits. Combined with (6.6) this shows that
the restriction map is also surjective. The rest of the Lemma also follows from (6.6). [J
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Remark 6.8. — More generally, we say that the unitary periods on Iy(o, A) are
supported on open orbits if this holds for I;(o[A], 0). It is easy to see that this is the case
for generic A € af; ¢, i.e. away from finitely many ‘hyperplanes’ of the form {A : ¢*~% = ¢}
for 1 <i<jy<tandc¢#0 (cf. [BDOS]).

Lemma 6.9. — Suppose that the unitary periods on w = I(o, 0) are supported on w, o P. If
x € wy ® G then the map Homgw (V5, [wol, G) — Homg: (7, C) gien by £ — Lo pom (s, ),
where p 2 71 — Vi, [wo] is the natural projection, is an isomorphism. On the other hand, if x ¢ w, @ G

then Homg:(r, G) = 0. In particular, if in addition M s symmetric then B +— Z.(B,0) s an
somorphism Exy(Xyg, 0%) = Eq (X, ).

Proof. — By our condition V1, /V; admit no G*-invariant functions unless ¢t = £ — 1
and x € wy @ G. The first part immediately follows. The second part now follows from
Lemma 6.4 (with w = wy and L = M) and Lemma 5.2. U

1

In the case where o € H?;lr we can be more precise.

Lemma6.10. —Let§ =6, Q ---® 6, € Hi\gr. Assume that for no 1 <j we have §; < 3;.
(For wnstance, this us satisfied if 6 € l‘[g{sp .) Suppose that w € Wo[M] and y = w diag(y,, ..., ) €

wM(w) N X s relevant for 1(8). Then wMw = M and viewed as an nvolution on {1, ..., t}, w
satisfies the following condition: for any 1 =1, ...,

8; s GV -distinguished  if w(z) =1,

Sway =87 otherwise.

6.8)

In particular; of for no i <j we have 8; I 87 then unitary pervods on 1(8) are supported on open orbits.

Proof. — Let L= M(w). By (6.4) 1, \i(6) 1s I-distinguished, and in particular non-
zero. Recall that L is of type y with indices as in the notation of Section 6.1. Note that

n.m(8) =nu, 6, (61) ® -+ ®ny,.q, (5)

and recall that
M,
MMy, G, (8) =81 ® - ® 8, € Ty’
(see (1.13) for the description of §;;). As before, view w as an involution on J(w). The
property (6.1) implies that there exists ¢ such that w(l, 1) = (%, ).

Suppose first that 0 = 1. Then s; = 1, for otherwise we would have 37| >~ §;
by (6.5) which would contradict the description of ny,, ¢, (61). Thus, y has the form
»=diag(y;,)') for some )’ € X,_,, and by (6.5) 8, is G}, "' -distinguished.

Suppose now that i # 1. Then, once again by (6.5) we have é{ | >~ §;, ;, which im-
plies that ; <487 . By our assumption on §, we therefore have §; = §; , and then necessarily
s1=s,=1.
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Thus, whether or not 7y = 1, the induced representation X;. ;, §; admits a relevant
orbit which is obtained from w and y by omitting the entry(ies) {1, }. By induction, it
follows immediately that w is an involution satistying (6.8). U

We will also need the following variant of the previous Lemma.

Lemma 611, — Let§ =6, ® - - ® 8, € [TM and let 1 < k < t. Assume that

(1> 3i € qur.fbr all1 5& k} say 81' - Aai([aia bz]),]rm' o, € chsp-
(2) There are no i < j different from k such that §; 1 8;.
(3) supp,(8r) N{o1lbi], ..., o41[bi1], Orpi @], - . - oulad} = 0.

Then unitary periods on 1(8) are supported on open orbuts.

Proof. — The Lemma 1is trivially true for ¢ = 1. Suppose therefore that ¢ > 1 and
that w € Wy[M] is relevant for §. As before, we view w as an involution on the set
J(w). We have w(l, 1) = (i, 5;,) for some 70 =1,...,¢ and w(¢, 5) = (jo, 1) for some
Jo=1,...,t Suppose that £ # 1. As in the argument of the previous Lemma, we run
into a contradiction unless ) = 1 and s; = 1. Similarly, if £ # ¢ then necessarily jo = ¢ and
s; = 1. Hence, we can continue by induction on ¢. 0J

6.3. Proof of Theorem 6.1. — Suppose that w € IT is G*-distinguished. We want to

show that w € I1*. We already treated the supercuspidal case (by a global argument).
Assume now that 7w € Il .. Write 7 = A, ([a, b]) with o € Il . Then the induced rep-
resentation 7 = ola] X --- X o[b] is also G*-distinguished. It follows from Lemma 6.10
that unitary periods on 7 are supported on open orbits. It therefore follows from (6.5)
that o is distinguished by some unitary group. We now appeal to the supercuspidal case
to conclude that o € I1{, and therefore 7 € TI{ .

Consider the general case. Assume that 7 is the unique irreducible quotient of
I(5,A) where § =6, ®---®6, € Hﬂ’_fqr and A € (ay;) . By the uniqueness of the Langlands
data it follows that A is uniquely determined by 7w and ¢ is uniquely determined up to
a permutation that fixes A. Note that 7 is Galois invariant if and only if there exists an
involution & on the indices {1, ..., ¢} such that A¢;) = A; and 8z(;) = 8] foralli=1,...,¢.
If 7 1s G*-distinguished then so is I(§, A). It follows from the analysis of Section 6.2 that
there exists w € Wy[M] and y = w diag(yy, ..., ») € wM(w) Nx e G which is relevant for
I(8, A). The first part of Theorem 6.1 now follows from the square integrable case and
Lemma 6.10 applied to 8[A].

To show the second part of the Theorem, suppose that = € IT" is totally 7-1sotropic
(and in particular n is even). By Lemma 3.4, we can write 7 = o X o for some o €
[1% such that o and ¢ are disjoint. In particular, supp,(c) N supp,(c*) = @. Let P
be the parabolic subgroup of type (n/2,n/2). We claim that the unitary periods on 7

are supported on w, e P. Recall that w, e P is the only orbit above wy. Suppose that
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wo # w € Wy[M]. Then as a permutation on [1, 7], w necessarily has the form

n+1—1 i=1,....kn+1—k%, ..., n,
w@)=1n/2+k+1—7 i=k+1,...,n/2,

nf2+1—k—¢ 1=n/2+1,...,0—k,
for some 0 <k <n/2 and L :=M(w) = G; X G,j9_; X G,j9—; x Gy. If y lies above w
then I is isomorphic to the product of G; (embedded twisted diagonally in the first
and last coordinate of L) and a product of two unitary groups (in each of the middle
coordinates). Observe that by the property of o, for any irreducible subquotient o) ® o,
of the Jacquet module of o with respect to a maximal parabolic of G,/» we have oy %
0y . Thus, (0 ® 07) is not I7-distinguished by the first part of Theorem 6.1 already

proved. By (6.4) this affirms our claim.
The Theorem now follows from Lemma 6.4, Lemma 6.9, and the fact that

Homywo (a KRo”, C) ~ Homg,,, (a ® aé, C) ~ Homg,, (O‘ ®acY, C)

1s one-dimensional.

6.4. Further remarks. — It is easy to see that if supp, (1) N supp,(7r5) = ¥ then the
unitary periods on 7, X 79 are supported on open orbits. Therefore, by Lemma 6.7 and
Theorem 6.1, the study of (X, 7*) reduces to the case where 7 is pure and Galois-

mvariant. Indeed, by Lemma 3.4, any w € 1" can be written as 7 = 7, X my where
m € %1 %% and 71, € %2 Thus,

(6.9) Eq (X, 7'[*) ~ &, (X”1 , 7'[1*) ® &, (X, 7'[2*) ~ &, (X, 712*)
and

HomGg;2 (719, C)
Homg:(mr, C) =~ if 3y € X, such that x = diag(w((;’"' ) e G,

0 otherwise, i.e., np = 0 and x ¢ w, e G.

This reduces to the case where w € IT"*". By decomposing 7 € I1**" into its pure com-
ponents 7y, ..., 7, (which are Galois invariant) we get similarly that

t
Eo(X. ) = Eu(XM m7 @ @ 7)) ~ Q) &, (X, 7))
=1

and for any x € X
HOl’l’lGx(T[, C) ~ SM(XM Nxe G, JTT Q- ®7Tt*)

In the quasi-split case, Theorem 6.1 and its converse were conjectured by Jacquet,
in analogy with the main global result of [Jac10].
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6.5. A general comjecture. — Combining Theorem 6.1 (for the p-adic case) and Ap-
pendix B (for the Archimedean case) we obtain that if 7 € IT is G*-distinguished then
7 € IT" and 1o(r) < w(x). (We recall that to(x) is the Witt index of x and () is the
7-Witt index of 7w defined in Section 3.2.) We conjecture that the converse also holds. In
other words,

Comgecture 6.12. — Suppose that w € T1 and x € X. Then 7w 1s G*-distinguished if and only
ifm € " and w () < o (x).

We will show this in Corollary 12.3 below for generic representations. Moreover,
we will show that 7 € IT;, is distinguished by G* if and only if there exists 7" € B(rr)
such that @™ % 0 (Corollary 12.9). We will also show Coonjecture 6.12 in the unitarizable
case.

We finish this section with a couple of instances of Conjecture 6.12 in the
Archimedean case. First note that for compact unitary groups (i.e., for x anisotropic)
the conjecture reduces to Lemma 3.3.

As was pointed to us by Aizenbud, the conjecture holds for finite-dimensional 7.
Indeed,

Lemma 6.13. — Suppose that E./F = G/R and 7w € I1 is finite-dimensional and let x € X.
Then 7t 15 distinguished by G* if and only if v € I17 if and only if w € Ty,

Proof. — The statement is evidently invariant under twisting by an unramified
character. Therefore we may assume that there exist algebraic irreducible representa-
tions oy, 0o of GL,/C such that 7 is the restriction of 0 = 07 ® 0y to G under the
embedding g — (g,¢"). The condition on L € 7* to be invariant under G"* is that
Loo(g, (x¢~'x~ ")) = Lfor all g € G*. Since G* is Zariski dense in GL,(C), the condition
becomes I oo (g, ‘g™") =1 for all g € G where I =L oo (1,'x™"). Such a non-zero L.
exists if and only if 0y = 0. This proves the first equivalence. The second equivalence
follows from the Cartan-Helgason Theorem. 0J

Finally,
Lemma 6.14. — Conjecture 6.12 holds for T1,,,.

Progf: — In the p-adic case, the statement follows from Corollary 4.2 and the fact
that every unramified representation is induced from an unramified character of a Levi
subgroup. (The latter follows from the Zelevinsky classification [Zel80].) Consider the
complex case. Suppose that & € I1,,,, i.e., 7 is distinguished by U(z). By [Bar89, p. 129]
there exists a parabolic subgroup P = MU, a finite-dimensional o € T\ with trivial

central character and Aq € ay; ¢ such that m = I(o, A9). Let x € X and suppose with-
out loss of generality that x € M. By Lemma 6.13, o is M*-distinguished. Therefore,
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there exists 0 # o € Eu(XM, 0*) such that a, =0 for all y ¢ x « M. Since o is finite-
dimensional we have o = LQM(IMO, w) for some u € (agl)i. By Theorem B.7 we have
aop =J§,’{O (B, ) for some B € Ey, (XM, 13,) where p: Iﬁo(lMo’ W) — o is the nat-
ural projection. By the same Theorem J(B, A 4+ ) is holomorphic and non-zero for
Re A sufficiently regular i (ay;) (i.e., when A + p € (ag)? ). Therefore, by Lemma 4.4,
Ju(a o p, i) =JMU§£, (B, ), A) 1s holomorphic and non-zero for Re A sufficiently posi-
tive, and meromorphic for A € ay; . Note that Jyi(e 0 p, &) = Ja(er, 1) o II(C’I (p). Therefore
Jum(a, A) 1s also non-zero and meromorphic in A. Arguing as in the proof of Corollary 4.2
this implies that I(o, A) is G*-distinguished for all A. O

7. Local Bessel identities—the split case

In this section we consider the split case. For g € G’ let g = ‘g~'. Note that

X={(s."g) :¢€ G}
is a single G-orbit and for every x = (%, 'h) € X we have

G'={(g (heh™")): g€ G'}.
We first relate the relative Bessel distributions on X with the usual Bessel distribu-
tions on G'.

Lemma 1.1. — Let D, = (nt!, 7!, (-, -)}) be dual couples of representations of G' and let
Cien!*,i=1,2. La Aty — 7| be an intertwining operator. Define o € Eq (X, (7w] ® 75)*) by
Ui (V) @ Vo) = (T (9Vy, Avy) |, g € G, vy € ), vy € . Then

%06,61@22

él O/\,é\Q
D\ ®D, ’

<~ ‘BDé

Progf: — We first observe that the statement of the Lemma 1s invariant under ¢; —

éi o;(f),i=1,2for any f/, f; € S(G'). Indeed, by (2.8) and (2.2) we have

= o, 0107t ()®La0fth ()

B w) (@) =By o ([ ©% ]+ ®)
and

810 (f))oA b2ty (fy) [ 1 . EroAofth (). B20my(f3)
Do, (f)= By, (/)

£10A, 90} (f]) N , "%
o, () =% (5))
where (/)'(¢) =f/(¢") and (f;)"(¢') = f2(¢~"). On the other hand, it is evident from the
definition of matching in the split case that
/ / "\ , AV
i @] @« (f) /" * ()

whenever ® «— /7.

=B
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Thus, writing /" as a linear combination of f x /' x f; for some f/, f;, /' € S(G'),
we reduce the Lemma to the case where ¢; € (ﬁi’)v, ¢ =1, 2. In other words, we may
assume that there exist «; € 7/ such that éi(vi) =, v) forallv,en!,i=1,2.

Fix ® «— f". Observe that £ := ® © « € (7r] @ m,)" is given by £(v| ® V) =
(v}, Ay (fHvy), vi e/, i =1, 2. Indeed,

[®Oal(v)®v)) = f (e, (v ®vy) de= [ £ (@) (] (‘g)v], Avy)| de
X G’
= | S @i Ai()An), de
= /G/f’(g)(v/l, Amy(g)vy) | dg=L£(v] ® v}).
Thus
By (@) = (0 @ 1) (Ao, ) = £(u, @ 1) = (u, AT} (/)15) -
On the other hand,
[0 o Aomy(1)]() =t @), e,
so that

By (1) = oo Apy (b0 Aoy(f) = [€r o Ao m(f)](xt)
g

The Lemma follows. O

Let 7’ € H;ell andwm =bc(r)=a'"® 7' € Ig.,, and recall that B(7r) = {7’} and
W) =Wr')® QU(JT’). Regall also the definition of BZ and o™ from Section 3.3. Tak-
ing D\ =D, =W(n'), £ =4y, = 527/ and A =19, o W(wy, ') in the previous Lemma
we get

Corollary 7.2. — (Cf: [JacO1, Lemma 2]) We have BL =TI, .. Moreover for any " € T1,

gen
we have

&y (W @W') = [W(h, w" YW, 9 0 W(wp, 7' ) W]

T’

Joranmy he G, W, W e W(rr)).
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7.1. Open periods. — Let P"=M'U’ be a standard parabolic subgroup of G’ and
P = MU the corresponding parabolic subgroup of G. Let o’ = 0] ® - --® 0, € IT™  Next

gen*

we show that o’ € BZy;. To that end, we use the results of Shahidi on local coeflicients.
Beforehand, we interpret the split open period in terms of the intertwining operator.
Recall the intertwining operator (1.4)

O, 1) : [l W (§7), )] = Lu(W* ' (67). =2).
Composing with translation by w, we obtain an intertwining operator
60", 2) : Ip (W (57). %) = [ (W (07). 2]
By (1.5) we have
(7.1) We(a’v, —A) ) C:)(a/, k) = W(wo wyo, wM)»)

Lemma1.3. — Let o’ € TIV

gen?

morphic functions of X € ay; ¢ we have
J@'®¢" x5, 1)
— (I(h, W(a’), A)(p’, (:)(a’, A) o M(wM, W(G’), )‘)(p”)l([~,~1(,/)

x=(h,'h) withh € G' and ¢', 9" € IW(0")). As mero-

and
t7(Tl((p/ ® (p// X, O[U/ )»)
= (I( W(o"), )¢, B(c", 2) o N(wy, W(0'). 1)¢"), -

Proof. — Since 1n the split case we have nyy (o', 1) = Cyp(wy 2 0/, A5 '), the sec-
ond equality is immediate from the first one. For x = (4, 'h) we may choose ¢! = (4, ¢).
By Corollary 7.2, ¢’ € BI™, and using the definition of J(a', 1), for ReA sufficiently
positive J(¢' ® ¢” : x, ', A) is given by

[ o, e
PA\G¢

= /h o [0}.(gh). = (WM (wy's ')} (¢))],, dg

- / . / /[wi(gh), ns (WM (wi', o)y (v g')) | dudg

/’\C//’ h W ) ,)x(g)’n (%(wglu’g‘))] dudg.

It remains to invoke (1.7). The Lemma follows by meromorphic continuation. O
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M

gen

Corollary 7.4. — For any o’ € I1.. we have the identity

(7.2) B(o/,1) < B(d", 1)

of meromorphuc functions in A € ay; o. Thus, BT\y = 1M and we have

gen
(7.3) aM(U’, A) =T (oc“,, A).

Proof. — Set D, = Dy = 1(2W(0"), A) and £, = £, = W,(0", —=1). Consider the

Intertwining operator

L

A= (:)(0’, A) o N(wM, W(a’), A) :I(W(a’), A) — I(W(o’v), —X) .

We have

1.10

él ¢} A(7:1>W(U)0 . U)MO’/, U)M)\.) o N(U)M’ W(OJ), )L) : = )W(U)o . O’/, )\.)
Taking Lemma 7.3 into account, the identity (7.2) therefore follows from Lemma 7.1 and

the definition (4.13) of B(o', 1). The last part of the Corollary is then immediate from
the definition of BZyy and (2.11). O

7.2. Closed split periods. — Next we will show the Bessel identities for the closed
Bessel distributions. Let L be even symmetric.

Proposition 71.5. — Let 0 € TI5™°. Then for any A € (a})g’ such that w = 1(o, 1) is

gen

wrreducible we have
ﬁ(g, A) <— B
where B(w) = {r'}.

By Proposition 5.9 and (2.14) it is enough to prove the Proposition in the case
where L = M, ;). This means that A € a,. We might as well assume (by translating by 1)
that A = 0. We therefore analyze this case. Thus, for the rest of this section let n = 2k
and L =M so that L~ G, x G, = (G} x G}) x (G} x G}). To avoid ambiguity when
considering representations of L, we will continue to use ® for the tensor product of
representations with respect to the decomposition L = G; x G; or L' = G|, x G| and use
the symbol X to express the tensor product with respectto L=L"'x L' or G=G' x G'.

- I / / e/ / /
Letoi € R(G)),j=1,2,0'=0,® 0, 0' =0,® 0] and

<«
0=0'M¢ =(0®0)) W (o) ®0}).
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Assume further that o} € ngn It is immediate from the definitions that for any W’ €
W(0') and Z' e W(o'") we have

(7.4) [W.Z7], = Bu,(W Ry, Z).
We can identify
I(0,0)=1(¢',0) X 1(27, 0)
and
50 =8¢ 8¢
on W(p). Therefore,
(7.5) W.(0.0) =W, (0. 0) X W,(2'. 0).
Consider the intertwining operator
&(¢'.0) : 1W(2'). 0) = I(W (™). 0)".
Recall that
(7.6) W.(0"",0) 0 O(0',0) = W(wy: 7. 0).

Lemma 7.6. — With the above notation, let ¢ = ¢’ K ¢” € IW(0)) where ' € IV (0'))
<«
and " € IOWV(0")). Then for g € G’ and x = (g, 'g) € X we have

Z(p:x.8°,0) = (I{e. W(e'). 0)¢". (¢, 0)¢") 1)

)

Proof: — It suffices to prove this for g = wy, so that x = (wy, wy). We have

Z(go s x, BC, 0) = / Buy ((P (ﬁ, hé)) dh = f Buy (¢’(h) X go”(hé)) dh
Q\G QNG
= f Buy (¢ (1) K9y (O (', 0)¢" (hwy))) dh
QNG
= / Buy (@' (hwo) K, (©(0’, 0)¢" (h))) dh.
Q\G
The Lemma now follows from the relation (7.4). UJ

Finally, we can go back to the proof of Proposition 7.5.
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Proof of Proposition 7.5. — Recall that we can assume that L = M ;) and A € af,. We
identify D, =1(20(0), 0) with Dy =D} X D;, where

&

D, =1(20(0").0) and D,=1(2(¢'),0).

More precisely we identify 7, =10V (0), 0), with my = 7| X 7, where ] =10V (0"), 0)
<«
and ;) = I0WV(0'),0) and we identify 7, = I(W(0"),0) with 7y = 7] X 77, where
<« Vv

7 =1IW(@'""),0), and 7, = IOV ((¢’) ), 0). Under these identifications a;; = Z(¢, 0)
becomes @y € (X, 7)) given by

(02) (g 19) (§01 I ‘Pé) = (n{(g)goi, (:)(Q/’ O)‘pé)pi
(by Lemma 7.6) and £, =W,(0",0) becomes £, = @1 X @2 where

A~ - ev
B=W(e".0) and =W((2)".0)
by (7.5). Thus

~ o iR,
D(o, 0) = By, -

It therefore follows from (7.6) and Lemma 7.1 that

a0 R2)

<
%D’lﬁD’Q <~ B(Q ,0).

<«
By assumption, 7’ >~ I( 0", 0). The Proposition now follows from (2.14). 0J

8. Local Bessel identities—the unramified case

For principal series representations the sought-after Bessel identities were obtained
in [Off07, Theorem 3] using results of Hironaka on spherical functions on X [Hir99].
Actually the results of [Oft07] are only up to a possible twist by 1 in the transfer factor
v, but this was subsequently determined in [Off09, Theorem 7.1]. From these results we
will deduce the necessary identities for unramified data.

Throughout this section assume that I is p-adic, p # 2, E/F is either split or un-
ramified (i.e., ) is unramified) and v’ is unramified.

8.1. Recollection of the results of [Hir99] and [Off09]°. — Let 0 = (01, - .., 0,) € ITM0

unr

be an unramified character of M,. Throughout we denote by ¢, = ¢, the standard

¢ Note that the notational conventions in [Off09] are slightly different.
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spherical section of I(0) normalized by ¢,(¢) = 1. Let o' = (0}, ..., 0)) € B(0)(S Hﬂfﬁ)
Then ¢’ € BZ™ and according to our normalization, the linear forms ocj,’/, peXM =M
on W(g) = C are given by multiplication by L(1, n)" n(dety) ¢'(») and Eyy, (XM, W(0)*)
is the span of {a? : 0’ € B(0)}. Let E; be the kernel of Nm : G; — G considered as an
algebraic group over I, so that E; = {x € E* : xx" = 1} and let

M, = {diag(ai, ..., a,) € My: g € Eq}.

Note that Py = M, for y € X™ and therefore the linear form J(x, on A) on I 1, (0) 1s
given by the meromorphic continuation of the sum of integrals

J(p:x, ozj,’/, by

=L(L )" n(dets) Y (vgo!) (et I f @ (g1) deg

E(M)NxeG) /My M

Up to the factor L(1, )", this is also the “stable intertwining period” considered in
[Off07]. (The terminology comes from the analogy with the stabilization of Labesse-
Langlands [LL79].) The normalized open periods are closely related to Hironaka’s spher-
ical functions on X (cf. [Off07, §3.2]). Using this relation, (4.6) and the explicit formulas
of [Hir99] one gets

L(1 — (A = 4)), 0i(@)~"m)

8.1) Jo(po e, 2) =LA "] LA+ h— 2 0l@) )
1 A A

i<y

forxe XNK =¢e K [Off09, (7.13)].

Let H = H(G, K) = S(K\G/K) (resp. H') be the spherlcal Hecke algebra of G
(resp. G'). The homomorphism bc : H — H' defined by bc(f )T =f (bc(n/ )) 1s injec-
tive and identifies H' as an H-algebra which is free of rank 2". Let M = S(X/K). It is
naturally an H-module via convolution. Hironaka defined in [Hir99] a spherical Fourier
transform @ > ® on M. In terms of the local open periods it is given by

() = i, (oo 2)" / DT, (g0 ™, 2) o

where @, € I(1yy,) is the standard spherical section and 7’ = I(1ng, 2).

By [Hir99, Theorem 2] we have an isomorphism of H- modules between H' and
M given by /' > @ if [ =

Recall that W, (¢ : o', A) cs(0’, A)~" where ¢} € I(0') is the standard spherical
section and ¢s was defined in (1.9) [CS80]. Taking our normalization into account we
recall the following result.
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Theorem 8.1.
(1) We have Hﬁgi C By and for any o' € Hﬁi we have
(8.2) any (0 1) = Ty (', 1)

as meromorphuc functions in A € ay; .
(2) Assume that v’ =1(0’, 1) € My be-gen Then ' € BL and we have

(8.3) a™ oW(g, &) = Jy(a?, 1).

In particular, Ty (a® , -) is holomorphic atA.
(3) For any f e H and ® € M such that O f " we have © <—> f'. Moreover, for any

o' € Hunr we have the identity
B(®:0,2)=B(/:0.2)
of meromorphic functions in X € ay; ¢

4y Suppose that € (aN'e)* and o' = IM (Q w) € M\
pp 0.C

Then as rational functions in gy, A € aM ¢ we have

and let 0 = IMO (0, ).

unr,bc-gen

(8.4) To (@, 1) o TG (Wit (0. 1)) 0 Ty, rp(0: 1) = Tanor (@, A + 1)
Moreover o' € BLyy and
(8.5) a(o',2) = Rror(@”, 1)

Progf: — By Lemma 3.7 and (4.6) we may reduce the first part to the case where
o' = 1. This case is [Off09, Theorem 7.1]. The second part follows from Lemma 3.6.
The third part follows from [Off09, Theorem 10.1] and the first part.

To show the last part, observe that (8.4) follows from (8.3) and (4.9). Let
A= 11(\;[ WMO(Q’ W) o F\L] a0, u) and A= IS{ w:{ (0", —p) o FMO w(@”s —u). Then
(A, A) I(W(o), u + A) — 1(2W(o), L) is an equivalence of dual couples (Proposi-
tion A.2). It follows from (1.6) that Wy (oV, —A) = Wy, (0", —4 — X) o A . By part
(1) of the Theorem, (2.9) (applied to (A‘l,A_1)> and (2.11) we have o’ € BZyy and
a(o’', 1) =a(o', u + A) o A~!. Therefore (8.5) follows from (8.2) and (8.4). O

Finally, we provide an explicit formula for the open period for general M and
unramified data.

Lemma 8.2. — Assume that 0' =0{ ® --- ® 0] € Hunr begen @nd let o =bc(o") and
& € I (W(U )) be the spherical section normalized by [0(e)](e) = 1. For x € ¢ @ K we have

! LA — A, afxa/ -n)

G . o' _ l v
Jn(8o : v, ’A)_[HL(I’UZ' X0 n)]l;[L(1+A A, 0] XGN)

=1
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Proof. — Write o’ = IMB (o', ) and note that & = ¢sM(p, M)IM(WﬁO (0, 0)) o
FIS’IO,M(Q’ w)eo where ¢ is the standard section of Iy, (0). Therefore by (8.4) JS{(SO :
x, 0%, \) equals

nyy (o, A-)_ljl\’l‘a/(éo a, Y
=nyp (o, )‘)_le(Q, 1) Patoor (001 A+ ).

On the other hand, from the identity (8.1) Jy, o (9o : a? A+ ) equals

L(1, )"

esM(g, wip) I1 L(l = (= 2.0 x o - )
es™' (0, wi' wyes™ (o', ) L(1+ i = &j, 0 x 0]")

I<i<j<t

The lemma follows from the easily verified identities

csM ,wM csM , !
L(l,]’])” (Q ():u) (Q ,LL) _l—[L(laO'Z'/XO'iN'n)

es™M (o', wy'wesM (o', ) 1

and

L(l1 —(\; — )x]), O’Z-/v X qj/ . 77)
L(l +)Ll — )“j’ O'Z-/ X O']-/v)

nﬁ/(a/,)»)il l_[

I<igj=t
LA — )\.j, Gi/ X O'J,/V . n)
= l_[ L(l +)"z _)“_/’O—Z’/ X O_]/\/)

I<i<j<t

O

8.2. Closed periods and Bessel distributions. — Denote by M, ; the standard minimal
Levi subgroup of G;. We have the following identity.

Lemma 8.3. — Let n = Q/f, o' = lMé)./; ® Tlle,k and ) € (af{,lo 80. Let @Yo € I(IMO) be the
standard spherical section. Then_for x € X N K we have

(8.6) To (0 :2,0° 1) =Z(9g 1 x, 0, 1).
Furthermore,

l~3(1><m< o, )») = ﬁ(IXﬂK t Inggs A).
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Proof. — First note that both sides of (8.6) are independent of x € X N K since they
are K-invariant and X N K =¢ e K. We have A, _; = A, for all : where A = (A, ..., A,).
By (8.1) for o’ = ¢ the left-hand side of (8.6) is equal to

. L= —2),n) LA — ;= 2), )
LA m) L H L(1 4+ A — Aj, 1p) L(L 4 Ay — A, 1F*)]
<i<j<k
L(l - ()\‘j - )"i)v lF*)
XLQSk LI+ & — o) }

The non-diagonal terms cancel out and we remain with L(1, 7)*L(1, 1p)* = L(1, 1g+)*.

On the other hand, by (5.6) the right-hand side of (8.6) is equal to ™0 ((¢));.(¢))
since G = P;"K"". By our normalization of the inner product on the Whittaker model
(on lyy,,) we get L(1, 1+)" once again. We infer (8.6).

The second part follows from (8.6) and the definitions of the normalized Bessel
distributions using (2.10) applied to vy = 0y = ¢y € I(1y,). UJ

Corollary 8.4. — Let M be even symmetric and o € Hﬁf{r’fgom. Let A € (a§)) ¢ be such that
1(o, 1) s irreducible and let 7" € B(1(0, 1)) be such that 7" = 7w’ - n. (Recall that this ' is unique.)
Then

B, (1x) = D(1xnk : 0, A).

Progf. — There exists u € (a3)¢ such that o = IMO(IMO’M)- Then n’ ~

Iﬁé(v’, i+ A) where v/ = Iy, @ nlyy - It follows from Corollary 5.10 that

D(0, ) =D(ly,, 1 + 1)
and from (2.14) that
B, =B(V, i+ 1).

The Corollary therefore follows from Lemma 8.3. O

9. Dependence on additive character

So far we fixed a non-trivial character ¥’ of F. In this section we examine the
dependence on ¥’ of the various objects and identities. To indicate the dependence on
¥’ in the notation (which was mostly suppressed so far) we append it as a superscript.

For the rest of this section fix « € I'* and let ¥/ = ¥/’ (a).

Firstly, for 7; € R.i(G,,), i =1, 2 we have

nyng (s—%

)
e(s, my X 795 Yr,) = laly, w2 (a) o, (a) (s, w1 X 723 ¥),
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ning(s—15)
Y@, m Xy ¥r,) =laly 7w (@) 0, (@) y (s, w1 X w95 ¥).

Thus, foro =01 ® - ®0, € Ri(M), A= (A1, ..., A) € ay; ¢ and w € W(M) we have
_‘lzi(:w i>w() n; —n;
9.1) Cyn(w o, A3 ,) = a7 j|: 1_[ Wo,12,1(0)7 W11 (a) ’i|

I<i<y<t

w()>w()
x Cy(w : o, A5 9).

In particular

—LdimU . s
9.2) Cym(wy o, A 9,) = alg” W,3,1(@)" W3 (@) |Cyi(wyg 2 o, A5 ).
JY7

i<y

Lo . . .
The measure on F satisfies d¥+x = |a|} ¥ x. Accordingly, for any algebraic variety

Y over I with a fixed gauge form wy and constant Ay, the measure dy on Y satisfies
§ dimY

dVey=lal}" " d"y. It follows that

$(dim (U NwUw ™ H\Uyye)

M"f“(w,a, A) = laly M‘/’(u),a, A)
LS e nin
= |aly, R " MY (w, o, A)

and combined with (9.1) we get

NI’/f{l(wa g, )\') = |: 1_[ wai[)»i](d)’y a)aj‘[)»jj (a)_”i:|N‘[f(w’ g, )\')
I1<i<j<t

w@)>w()

For 7 € R(G) and o € E;(X, ) the notation ® © « implicitly depends on the
choice of ¥’ through the measure on X. Specifically

/ 12 /
(9.3) ® OV a=ldl ®O" a.

Let ¢, = {,, = diag(a"™ ", ..., a, 1) and note that (¥,)o = Yo(t, - £;'). Thus, for
7 € [y, and W € WY () we have W(t,-) € WY«(rr). Furthermore,

0.4 [We) W] = 1P OwW W Wew (), W e wr ().

The identity follows by making a change of variable p > £ ' p in the integral (A.1) defining
n+1\_ (n n
I(W(%,), WY(4,), s) and noting that the Jacobian is 8o, (¢,) ™' 8p, (£,) = |a|1(3 -6 _ |a|1(33 ,
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while the measure changes by the factor |alg; 2 () .Let AV : WY (r) = WY«(rr) be defined
by

APW =W = ol O Owe,,

Then by (9.4) (AV, Afv_ l’“) : WY (r) — V() is an equivalence of dual couples. It is
also clear that
L(n
T, ,a _‘_(1) ( ) 57
8TV o Al =al 7 TV
The analogous property with respect to I together with the relation (2.4) imply that for
n' eIl  we have

gen

w 7

§™ Ve 8 “
B | |(%)+2( %la wo /a
F Qn«//a( /)

Note that

= 8” Vi o W “(wot, 'wo, ') = (Sg;*"’ﬂ/ o WY (2, Ve, ')

ta "o
where z, is the central element of G” with « in the diagonal. Hence, taking into account

1.2
an extra factor of |a|§” which comes from the change of measure on G/, it follows from

(2.1) that
9.5) B (f) = (@ 1ol O B ()
for every /" € S(G’) where
L@=s(5"¢")
For ® € S(X) we have

(9.6) o< ifandonlyif @, <2/

where ®@,(x) = ®(x o £;'). Indeed, by performing a change of variables (uy, up) >
(¢ "urt,, £ ' ugt,) the orbital integral of £ with respect to ¥/ at ¢ € M, is AN 2|a|§lmU

a

times the orbital integral of /" with respect to ¥ at £, *¢. Analogously, the orbltal integral
of ®, behaves in a compatible way.

Let n' e ITj gens = be(m’) and o € EX, WY(m)*). Define o €
EcX, WYe(1r)*) by aj(W) =a, (W), We WY (rr). Then as in the derivation of (9.5)
we have

Yova 9+(9 AR

Bl (0 M2 1 O OB (@)

Q0 Va ()

|a|z(”+l) ©) %3551//(’1)0 (D).
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Hence, using (9.5) and (9.6), 7’ € BZ" if and only if 7’ € BZY+ and we have
9.7) o V(W) = 0 (@)™ oV (W), WeWY ().
More generally, for o € Hggn let AV*: WY (o) = WY%(0) be defined by
AVAW = WM — |a|j i (DX (?)W(t}lxd.)’ We W' (o)

M= diag(ly,,. ... luy). Then (A%, A7) 1 Q0MY (o) — MV (0) is an equiv-
alence of dual couples.

where

LdimU

Set further A¥*(0') = |a|; * L (AY*). More explicitly,

chm U

A (0) (@) () = 0(9) = laly (g™ = Jaly O TR D ().

Then (A¥%(0), AV oY) IV (WY (o), k) — IV«(Q0% (), 1) is an equivalence of dual
couples for every A € a3, ¢. (The factor |al * dmt compensates for the change of measures
on P\G.)

Define the element zM = tM

—1,—1
wM td w]\{.

Lemma 9.1. — Let o € TIM .

gen*

(1) We have 2)' = diag(a™"1,,, ..., a "1,) where [ =n, + - - + ni_y. In particular, 7)"
us central in M.
(2) For any o' € B(o) we have

9.8) wa[A](ZBI)‘wl(a',x)(ﬂ)"_l 3_(j’H(t£“)> .
[ 1< @orp0(@)" w5001 [Tz wor (@)
(3) We have
W (0, 1) 0 A¥(0) = w,ppy () e *HE ALY o WY (0, 2)
whenever 1(o, L) € Mge,. In particular,
9.9) WY (0¥, =1) 0 AY (aY)

= o (21) L hHE) | B RIOREIOMS (0¥, —2).

Progf: — The first two parts are straightforward computations. For the last part, for
any ¢ € (WY (o)) we have
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W (g: 9" 0,2) = f 879[(¢), (wy ug) | W)y (w) d¥*u
Ue

:/ 8;”¢”[(¢“)A(wlﬁlug)]1/ral(taut;])d‘””u.
Ug

By a change of variable this is
8}7; (%) 55’¢“[(<p“)k(w1\_11 Ifa_lutag)]lﬂo_l(u) dVu
U
which is equal to

313 (t)l |F4( %Zle(%‘l)

Xf e(A,H(wl\illt;luzag) 50 W[(p(wM £ utag)]l/fo (u) dVu.
U<
This is

A Hwy! oy
P<—(t)| |E ) (A H(wyp &7 wan)

% f GHwy! ulag))(g” W[@ (w\I utag)]l/fo (w) d""u.
Use

wM a g

Since zla“ 1s central in M and
1,1
3P(wM L wM) = &p._(t)
we get

1 1(n 1 t n;
b O ) iy (A
3P<_2 (ta) |a|E % (2) 2 1 (s)e(wM)L,H(td )>w<7 (zgl)

<[l (utug o v
Ug
which is equal to
! 1 7 dimU¢

(t)|a|hzz () AH(L‘M) U[A( )|d|2()| |

X At [WY (9,0, 1)](9).
It remains to verify (by a straightforward calculation) that

™ = 8 1l .

Finally, the relation (9.9) follows immediately.
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For any a € E¢(X, IWY (0),1)%) let a® € E¢(X, IWV(a),1)*) be given by
al(p?) = a,(p), x € X. Applying (2.9), (9.3) and (9.9) we get

~ 1/,’1 v 1 ntly_(n _ ~ -1
a W 0¥, —n o 3(5) =G MY~ o HED)) Gaoe WY (te,oY =)
%I(mwa(a),x) = |alg Wo 1] ('za ) ¢ %I(Qﬁ‘/’(n),k)

Therefore using (2.7), (2.14), (9.5) and (9.6) we get

Lemma 9.2. — Let o’ € TIMY

begen: Len o’ € BIf\/,’I: if and only if o' € BIK/I“: and then
’ Y n— _ M 4
(9.10) ale (07, 1) 0 AY(0) = o (2)') w107,y (@) &= HHED) al) (o', 1).

We turn to study the open periods. Note that for y € XM we have dim G —
dim M’ = > — >"'_ n? = 2dim U’ and therefore by our choice of measures we have

]//{/l . , /
TG, @, A) = a3V Y (x, @, A).

Together with (9.2) we deduce that

’ $ dimU’ w n ’

(9.11) Tl @, h) = |al; |:l_[ @o100.1()" o131 (@) :| TV (a, 1).
i<y
In particular, using (9.7) we obtain
9.12) T (@Y, 1) 0 AV(0)
t
=[x (" []‘[ @713 (@)" wq;u,-]m)"i] T (@, 1)
i=1 i<j

We note that
lNB]/’/(CID 1o/, A)

T8 @ )W (o )

2.7) &
= %I(QB‘/’ ©).1) (Pa)

t
—gn? MY (—a,HEM 3 ()+() —1yni—l
= |aly* wam(za ) TR lalg ™ | |wa;(d )

=1

X |:l_[ o/ (@) Woll) (a)”i:| B/ (CDa, o', k)

i<y
ny_Lently o )
(52>Cl)71/(6l)17”|a|§3) 2( 2 )Bi//a (q)a . O'/, )\‘)

where 7’ =1(0”, 1) and the second equality follows from (9.3), (2.9), (9.12) and (9.9).
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Remark 9.3. — It follows from (9.10), (9.12) and (9.8) that (8.5) holds with respect
to any ¥’ without restriction on its conductor.

Finally, we study the closed periods. Recall the map v, : W) = WV (z)
defined in Appendix A.4. We have

(9.13) (@) AL oy =yl o AV

Suppose that n =2k, Q =P 1y, L=M and V="U . Let o € I and B €

gen

&L (XL, 0%). Since dim Q" \G*" = dim Q'\G' = dim V' = £? it follows from (5.6) that

9.14) ZV4(,0) = |alZ" 2V (8. 0)

for any a € F*. Now assume that o =0 ® ¢ with ¢ € H;’;’fn and let o' = ai(o). The
definition of B¢ together with (9.13) and (9.4) imply that

B0 AL =, () B2

From this relation and (9.14) we deduce that
ZV4(B%V", 0) 0 A”(0) = w, (@) 7' Z(B%Y, 0).

Together with (9.3) and (9.9) we can apply (2.9) with the equivalence of dual couples
(@A)

to infer that ]~)¢’3(CI>,Z :0,0) is equal to

12 -1, —5G)-® 7V (gev vl v
k L k—1 (BY.0.WY (ia:07.0)
|a|l~g 77(61) wQ(Za) |a|F2 ’ ’ a)o(d) %I(Qﬁw(g),O) (qDa)-

Here we also used the fact that Ny, = n(a)hy .
We have

w, (zi‘) = wy (a) 7"
On the other hand,

Wy | = nka)gu
Furthermore, clearly

WY (4,:0",0) o I(£;, W(0"),0) =W" (0", 0).
Using (2.7) with g = ¢! we obtain

~ Loty (my ~
(9.15) DV(d,:0,0) = a)g/(a)”_1|a|}3( =Opy (P :0,0).
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Now let k = (ny, ..., n) be a composition of k£ and let n =2k, Q =P, ), L=
M. and V=U ¢). Let o € 1L and B € &.(Xy, 0%) and A = (i, w) e (@) -

gen

Assume that o = 0 ® S witho=01® - ® o, € IIM« and let o’ = ai(0). Let also

en
*

w e oy, be as in Section 5.2. Applying Proposition 5.9 and (9.15) we obtain
NV, n—1 %(”ng)_(g) Ny’

(9.16) DY (@, : 0, 1) = wi(un (@) aly DY (®:0.h).

Global theory

10. Factorization of unitary periods—cuspidal representations

We now turn to the global case and prove our main global results on factorization
of periods of cusp forms and Eisenstein series. In this section and the next E/F will be a
quadratic extension of number fields.

10.1. Notation. — Let A = Ay denote the ring of adeles of IF and let A* be the
group of ideles. For every place v of F let I, be the completion of F with respect to v and
set E, =F, @) E. For a finite place v of F we will abbreviate by setting O, = O, . Let T,
Tr and Nm be as in the local case and let n = ), 1, be the quadratic character attached
to E/F by class field theory, i.e., the unique non-trivial character of ¥ Nm(A})\A*. Here
and elsewhere the product is taken over all places v of F. We fix a non-trivial character
V' =), ¥, of A trivial on F and let ¥ = ¥ o Tr. As usual, we suppress ¢’ from the
notation if it is clear from the context.

For an F-variety Y set Y, = Y(I',) for every place v of F, Y = Y(F) and Ya = Y(A).
Let G, G, X, Z, P, = MU, and P, = M, U, (for a composition « of n) be defined as
in the local case. For every x € X, let G} be the stabilizer of x in Gu. It is the restricted
direct product of G}*.

We shall fix some further notation and conventions pertaining to the group G;
the corresponding notation for G’ will be appended by a prime. Let K= [[, K, be the
standard maximal compact subgroup of G, where K, is the standard maximal compact
subgroup of G, (see Section 1.1).

For a subgroup Q of G denote by X*(Q) the lattice of F-rational characters of Q
and let 8 be the modulus function of Qu. Let a, be the real vector space X*(Q) @, R
and let ag be the dual space.

The function H : Gy — ay is defined by

SH©) — l_[}Xv (m,)

x € X*(My)

v’

via the Iwasawa decomposition g = umk, u € Uy s, m = (m,), € Moa, £ € K where y,
is the extension of x to My(F,) for any place v of F. Note that with our conventions
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H(g) = 2H'(g) for all g € G}. Let Eoo =[], o, Ev = £ ®q R and embed R, < EX via
x> 1 ® x. Let Ag be the subgroup of Z, consisting of scalar matrices which are the
identity at the finite places and the scalar x at the infinite part for some x € R;. Note that
H restricts to an isomorphism between Ag and ag.

For an affine variety Y over F we define S(Y,) = ®/S (Y,) where the restricted
tensor product is with respect to the characteristic function of Y(O,) (defined for almost
all v).

10.2. Measures. — For Y = G, G', M, M', U, U’ or X we take the Tamagawa
measure on Y, with respect to the convergence factors chosen in Section 1.2. This is
the product of the local measures defined there with respect to . Discrete groups are
always endowed with the counting measure.

In particular, Ay is endowed with the self-dual Haar measure with respect to ¥’
and vol(I'\Ay) = 1. The product measure on X, is compatible with the isomorphism

[ Gi\GaxXa

£€Xa/Ca

where the measure on Gi is the product measure.

10.3. Global Bessel distributions. — For our purposes, in the global case we will
consider admissible representations of G of the form m = Q) m, (restricted tensor
product with respect to ¢,) where m, € R(G,) and m, is an unramified principal se-
ries with a choice of a non-zero unramified vector ¢, for almost all v. We can speak
about dual couples (7, 7, (-, -)) and define Bessel distributions, ordinary and relative,
in the global setting in a way similar to the local case. Thus, a dual couple D gives
rise to an equivalence Ap :7wY =), 7," — 7, and for any £ € 7* and {en
we set BE () = {[Ap(L o w(f)], f € S(Gy). Similarly, if @ € Eg,(Xa, %) (ic., if
Quog = @, 0 70(g) for all g € Gy, x € X,) we set BE (D) = {[Ap(P O )], D € S(Xa)
where ® QO a = fXA d(x)a,dxem”.

Suppose that D = ), D, where D, = (1, 7T, (-, -),) and (¢, &,), = 1 for almost
all v. Let £ = ®v £y, £, € m; and i = ®U év, év € ) be factorizable functionals with
¢,(e,) = £,(2,) = 1 for almost all v. Then

B () =[]B5" 0b)

for f =) f,.
We write C for the set of cuspidal automorphic representations of G, whose central
character is trivial on Ag. Implicitly, any 7 € C is realized on a space of (smooth) cusp

forms of G\ Gj.
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Given 7w € C, let A, be the dual couple (7, 7T, (-, -)acc\c,) Where 7 € C is realized
on the space {¢? : ¢ € 7} with ¢%(g) = ¢ (¢”) (where we recall that g = wy'g™'wy) and

(@, Qg)A(;G\GA = f ¢>(g)<]3(g) dg, ¢€ T, ETR.

AGgG\Ga

We denote by W7 (¢) the ¥,-th Fourier coefficient of a cusp form ¢ on Gy, 1.e.,

W(g: ) =/ P (ug) ¥y ' (u) du
Uo\Uo.a
where 1 is defined as in the local case. Also, let W7 (¢) = W” (¢ : ¢) be the associated
Whittaker functional. As in the local case, by abuse of notation W* and W7 will be
defined with respect to ¥ ~'. We will use similar notation for G'.
Given 7" € C’ define the global standard Bessel distribution
W (o), W

BJ-[/ - EBQ[

!

We will factorize it according to the factorization of the inner product in the following
manner (cf. [JacO1], [LO07, §2.2]). Suppose that S is a finite set of places, containing the
Archimedean ones, such that 7] is unramified and ¥, has conductor O, for all v ¢ S. For
a right K® =TT, ¢s K -invariant cusp form ¢’ in the space of 7’ which is a factorizable

clement of '~ @, 7, (resp. ¢/ € (&)%) write W7 (g ) = [T, W, (¢) (resp. W' (¢ :
$) = T1, W,(9)) where W, € W () (resp. W, e W™ (7)) = W' (")) and for
all v € S the elements W/, W/ are spherical and normalized by W/ (¢) = W/ (¢) = 1. We

have

(10.1) (4, 43')AGG/\c; = Res— L (s, 7' x ™) [ [[W,, W],

vesS

— ™ H(t['f’)_l (W, W;]n

v

where o™ = Res,_, L(s, 7’ x 7'") and t[”vri' =L(,7, x 7).

Let 20(r’) be the dual couple (Q), W(r)), @, W(7)), NG ®v((t[7lf{’)7l [ 1))
Then by the factorization (10.1) (W* , W) : 2, — 20(xr’) is an equivalence. Let 8;’/ be
the evaluation map at g on @, W(r)). Applying the global analogue of (2.4) we get

!

8%, 07
B, =By, . Thus, for f' =), /] € S(G}) we have
1

—Tevo B (1)

(10.2) B, (/)=

tl

% Note the different convention of measures in [loc. cit.].
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We can also write this as

/ B”é A/)
Bn’(f) = gfg

"~ Res_ LS(s, " x 7'Y)

whenever f” = f{ ® Lkys and f = &), s fy € S(Gg). Here By () =[] s B (). Recall
that by (2.17) this factorization is consistent with enlarging S.

10.4. An extension of Jacquet’s factorization Theorem. — For m € C and an automor-
phism j of G we denote by 7/ € C the representation realized on the space of functions
@’ where ¢ 1s in the space of w and ¢/ (g’) = ¢ (g). In particular 7° is the Galois twist
of .

Denote by C* the subset of C consisting of the T-invariant representations. We have
a functorial transfer bc from C’ to automorphic representations of G, [AC89]. If " € C’
and 7" # 7" - i then be(rr”) € CF and conversely, every w € C™ is the image under be of
7’ € C’ which is unique up to twist by n and we have 7’ # 7’ - 1.

For any automorphic form ¢ and x € X denote by P,(¢) the unitary period integral

R@=f 6 () de
GN\G

whenever absolutely convergent. We say that 7 is (globally) G*-distinguished if P, is not
identically zero on the space of 7.

Our goal is to extend Jacquet’s Factorization Theorem [JacOl, Theorem 1] and
provide a criterion for a cuspidal representation to be G*-distinguished.

Definition 10.1. — Let w = Q) 7w, € C. We say that unitary periods factorize compatibly
on 7 if at every place v of ¥ there exists o’ € Eg, (Xy, 7)) such that for every x € X and every pure
tensor ¢ = @), ¢, in the space of T we have

Pug) =] [t @)

where almost all the factors are 1.
We recall the elements a™ € &g, (X,, 7)) defined for any place v in Section 3.3.

Theorem 10.2. — Let 1 = be(rt') € CT. Then unitary periods factorize compatibly on 7.
More precisely for any x € X we have

(10.3) Pu)=2L(1 " x 7" ) [Tt 7, x 7" 0,) ™ @ (W)

=2L(1,n' x "’ 1) Hafé(Wv)

ves
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where ¢ is a cusp form in the space of T which is a pure tensor and W™ (¢p) = [, W,. Here S is a
Sfinute set of places, containing the Archimedean and the even places, such that for all v & S, v s either
split or unramified in E, ! has conductor O, ) is unramified, x, € K,, and W, is spherical and
normalized by W, (e) = 1. If moreover v is G*-distinguished then 7w, € BZ, for all places v of F.

Progf: — We will prove Theorem 10.2 following closely the method of [JacO1].
Let /" =),/ € S(G}) and ® = Q) ¥, € S(X,) be matching functions, i.c., such that
®, «— /) for all v. For every y € Xy let /7 = ), /2 € S(Gya) be such that (f),ex, repre-
sents ®. (Definition as in the local case.) Let o™ € &g, (X4, %) be given by

P(r(9)p) ifx=reg yeX, g€ Gy,
0 otherwise.

ay (@) = {
It follows from the relative trace formula identity (see Theorem C.3) that

%g:wf (@) =B.(f) + B, (f).

Using the global analogue of (2.11) we can write this identity as

(10.4) 3" By ™ () =Ba(f) + By ()
2€X/G
Fix x € X and let f € S(Gy). By Theorem 3.1 there exists /” € S(G)) such that
/€ S(G[x]) for all v and f <—> f". Since x is a rational point, we have /' = (1 o det)/".
The factorization (10.2) together with (2.15) imply that B, (f") = B,/ (f"). For any y €
x ® G choose g € G, such that y=xe g and let /7 = L(g)f. Set /7 =01f y ¢ x @ G5. Then

the family (/7),ex, represents a function @ such that ® <— /. It therefore follows from
(10.4) that

(10.5) B (1) = 2B, (F).

Assume first that 7 is G*-distinguished and fix a place vy. As in [JacOl, Lemma 1], we
show that 7r; € BZ,, . By (a global analogue of) Lemma 2.2 there exists ;" such that

oy %;:w? (oo ® /") is a non-zero distribution on G,,. On the other hand, taking
S =/ ®f" such that f;, ® f;" <—> f" as above, it follows from (10.2) and (10.5) that

(10.6) B (fu ® ") = 2B (f') = cBoy (1)

for some constant ¢ # 0.

Define A, : W(m,,) = W(m™)* by

AW)(E) =P,o (W) (WRE), WeW(m,), & eW(r™).
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Note that A, o W(h, m,,) = A, for all / € G),:f)“ since P, is sz)“ -invariant. Define £, €
W(m,,)* by

v0 \%

bo(W) = 5:[ © AQU(JT“O)( {(W)o )/V(fv0 vo))

where we write () = 20(77,,) ® W(w™) and correspondingly Agyeroy : W(T™)" —
W(@Y). Then £, is Gy -invariant, since A, is, and we have

P W7 v 5o
B (o ®") = By, fon):
Together with (10.6), it follows that 7, € BZ,, and (XZ? = ¢ '¢y. This shows the last

part of the Theorem.
By Lemma 3.9 we may define the linear form P on the space of & by

P(g) = [[L(l. 7, x )" n,) " e (W,)

whenever W7 (¢) = [[, W,. For matching functions f PELEN /" as before, the identities
(10.2), (10.5) and the defining property of a™ yield

W) =2(c ]_[t[’ ”v%ggwf(ﬂ ()

On the other hand, as in (10.2), the analogue for G of the relation (10.1) implies that

4

P,Wf 7\~ ! tU a‘/’ ¢
Ba () =(1) UL(I,E{, EARY )%wl(””)(ﬁ

-1 ’ Ty O"f 7Y
[T %Wv (e -
v
Using these two equations we obtain that

BLW () = oL(1 ' x 7 - n) BV ().

By (a global analogue of) Lemma 2.2 and the irreducibility of 7 we infer (10.3) and the
Theorem under the assumption that 7 is G*-distinguished.

Finally, suppose that 7 is not G*-distinguished. If there exists a place v such that
! & BZ, then by definition o™ = 0 and therefore the identity (10.3) is trivial. Otherwise
n, € BZ,, for all places v of F. The argument above is still applicable and shows (10.3). [J

The factorization theorem immediately provides a criterion for distinction by any
unitary group.



ON REPRESENTATIONS DISTINGUISHED BY UNITARY GROUPS 269
Corollary 10.3. — Let x € X and w =bc(n’) € CT. Then

(1) 7 is G*-distinguished if and only if & % O for every place v of .

(2) In particular, if there exists a place v of ¥ such that x € X and ) >~ 7} - 0, then 7w 1s
not G*-distinguished.

(8) For the converse direction, suppose that E/Y splits at infinaty, i.e., every real place of ¥ splits
in E. Then 7w is G*-distinguished (and consequently, 7, € BZ, and o™ £ 0 for all v)
provided that for any place v of F such that x ¢ X we have 7w} % 7} - n,.

4) Similarly, suppose that n =2 and x € X" for all v|oo inert. Then 7w is G*-distinguished
(and consequently, 7, € BZL, and o™ % 0 for all v) provided that for any finite place v of
F such that x ¢ X we have w) % 7w} - n,.

Progf: — The first statement immediately follows from (10.3). The second state-
ment follows from Lemma 3.8. Now suppose that E/F splits at infinity and 7 is not G*-
distinguished. For every f' = &), f with £/ € S(G/[x]) there exists f <> f". It follows
from the global Bessel identity (10.5) that B,/(f") = 0 for all such f’. The factorization
(10.2) therefore implies that there exists a place v such that B,/ |5, 1.q) = 0. It now follows
from Lemma 2.6 that x € X and 7} >~ 7, - .

The same argument works in the case n = 2 since X, [x] = x @ G, for all v|oco by
our assumption on x. U

Remark 10.4. — In particular if E/F splits at infinity and #z is odd then any 7 € C*
1s G*-distinguished for all x € X. Note that in this case G* is automatically quasi-split.
More generally, without an assumption on E/F and n, Jacquet showed that any & € C* is
G*-distinguished when G* is quasi-split [Jac10]. In Corollary 12.9 we will further extend
this to give an explicit criterion for the non-vanishing of a™.

11. Factorization of unitary periods—Eisenstein series

In this section we extend the global results of [LR00] and [Off07] from the case of
Hecke characters of the diagonal torus to cuspidal automorphic representations on any
Levi subgroup. We define global “open periods” and obtain their meromorphic continu-
ation and functional equations. Using them we also obtain global Bessel identities.

11.1. Factorization of Bessel distributions for G'. — First we discuss the global analogue
of the normalized Bessel distributions B(o’, 1) on G'.
Let M = M, and o € C™. Denote by A, = Ajj , the space of smooth functions

_1
@ : UasM\G, — C such that for any g € G, the function 8, ¢ (-g) on M\M, belongs to
the space of o. For ¢ € A, we write ¢, = ¢*H g for any A € ayc- Let I(o, &) be the
representation of G, on A, given by [I(g, o, A)@li(x) = ¢;.(x9), x,g € Gu. For ¢ € A,
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denote by E(g, 1) the Eisenstein series defined as the meromorphic continuation of the
sum

E(g.o. )= ¢ (9.

5eP\G

(Cf. [Lap08] for the meromorphic continuation in this context.) More generally, for v €
Ct ¢ € A7 and A € af ¢ we denote by EF(¢, 1) the meromorphic continuation of

EP(g.0. 1) = ) ¢:.(59).
8€Q\P

The Fourier coefficient W(g, o, 1) of the Eisenstein series is given by (the mero-
morphic continuation of) the integral

W(g:p,0,1) :/ 0. (wy ' ug) ¥y (w) du

—
UonM\(Up)a

:/ _ go,\(wlcll ug) 1//(;1(u) du.
UoNM\(Up)a

We set
W, (p:0,A)=W(e:¢p,0,A).

We write (o, A) for the triple (I(o, 1), I(G, —1), (-, -) ayMus\Ga) Where

@ Osova= [ @@k oednpeds
AMMUL\Ga
Given o' =0|® --- ® o/ € CM define
(11.1) B(/ 0, A) =By M), S eS(GL), Aeajc.
As 1n the local case set

es(0’,2) =] [LOw =2+ 1,0/ x0).
i<j

We have a factorization

W(g:¢,0' 1) =cs(o’, A)_l l_[ cs,(0,, \)W(g, : Wy, 00, 1)
foro=Q), ¢, € Ay and A € ay;. ¢ Where W, € I§;(WV(0))) are such that

(11.2) WM(I(g, 0, 0)¢) :/

(UMM (UHNM)z

oYy '@ du=[TW,, @)@, geGCj.
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Thus, if we define
W(g:o',A) =cs(o”, A)_l ® cs,(0,, 1 )W(g, 10, 1)

on IW(o”'), A) then using the above and the analogue of (10.1) for M’ together with the
global analogue of (2.4) we get

B(f/ . O'/, )\) — %;zg(();(/f)”,)):)),\\’(e:&/,—A).
Therefore
(11.3) B(/ 10", 2) =tl(c". 1) []el(0]. %) B(f : 0}, %)

where

t[/(a’, A) = HL(M —X+1,0/ x aj’v)
ij

— (" ¢s(o, Mes(oV, =), o = nt[w{’

and
t[;(a,j, k) = L(l, I(a;, A) X I(ol:v, —A))

=[TL( =2+ 1.(0), x ()

= t[:f”5 ¢s(0y, A)es(o,’, —1).

11.2. Perwods of Eisenstein series and Fourier inversion. — We will now apply Fourier
inversion in the spirit of the stabilization of the elliptic part of the trace formula of SL(2)
due to Labesse-Langlands [LLL79] to write the (regularized) unitary period of any cuspidal
Eisenstein series as a finite sum of factorizable invariant linear forms.

Let & =F*/Nm(E*) and for every place v of I let &, = F;/Nm(E}). Thus &,
is a group of order 2 with dual group E; = {1, .} if v is inert and &, is the trivial
group if v is split. By class field theory, & embeds in E4 := P, E, = A*/ Nm(A}) and
the cokernel is a group of order 2 whose dual (Ex/8)" = {14+, n} is the subgroup of E}
consisting of the characters of &, that are trivial on E.

Fix a positive integer ¢. Let f € L'(8}) (with respect to the counting measure) and
let f be the Fourier transform defined by

Joy=Y v@EreE. ve(E) =(g)"

§€B}
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Similarly we define the Fourier transform in the local case with respect to E!. The follow-
ing is a simple consequence of a finite Fourier inversion formula (cf. [LROS, Lemma 2]).

Lemma 11.1. — Let f € L'(EL). Then

2Y &= Jo.
E€E!

VE((Ea/E)Y)!

Furthermore, if there are functions f, on B! such that for any & = (§,), € E the product ], /o (&,)

converges to f(§) then for all v € ((Ea/E)Y)' f (v) is given by the convergent product ], ﬁ(vv)
where v, is the restriction of v to E!

By abuse of notation we also treat an element v = (vy, ..., v,) € (E))' as a charac-
ter of M, or alternatively as a function on X, N Mjy via

t
v(y)znvi(detyi), y=diag(y, ..., ), » € X, oryiEG;Z_.
i=1

Similarly, for the local components. We also set for convenience

nv = (nvl’ ey 77Vz)-

Now let 0 € CM-*. The fiber B(o) of quadratic base change at o is a torsor of the
group ((Ea/ E)Y)". Thus, fixing a base point 6’ =0/ ® - -- @ 0/ € B(0) we have

(11.4) B(o)={o"-v:ve((Ba/E))]}

where weseto’-v=0{- 1 ® - Q0, v,
Recall that by Theorem 10.2 the unitary periods, factorize compatibly on 0. More
precisely, for any factorizable automorphic form ¢ in the space of o we have

(11.5) f & (m) dm =2 |:1_[L (1,0/ x o/ )]]‘[&jé(w,,)
M/ \M, v

where

W@ =[[W.. W,eW"(,)

and

(11.6) ~;’5=[1_[L(1»(<nf)ux( ), m) ‘]a_;”‘-
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For x € X, 0 € CM and ¢ € A, the intertwining period

(11.7) J@:x,0,1) = f (gt dg
M)\G’

yE (XMﬁxoG)/M

is defined by an absolutely convergent sum-integral for A € ay; o with Re A sufficiently
regular in the positive Weyl chamber (cf. [LRO3, Theorem 5.2.1 and Lemma 5.2.1(2)]).
Here, as before, ¢} € G is such that x =y e . Note that J(¢ : x, 0, A) vanishes unless
there exists y € X™ N x o G such that o is MP-distinguished, and in particular, o € CM7.
Moreover, in [LRO03] the regularized period integral

P@1=[ s
G\Gj
is defined for an automorphic form ¢ on G\G, under a certain open condition on the
exponents of ¢ and by [ibid., Theorem 9.1.1] we have

P(E(@, 1) =](p:x,0, 1)

for ¢ € A, and Re A sufficiently positive. By [Lap06, p. 290] P, o E(-, A) € I(0, A)*.

The infinite sum on the right-hand side of (11.7) can be viewed as a sum over the
P-orbits in the intersection of the G-orbit of x with (the F-points of) the unique Zariski
open P-orbit in X. The individual summands are (factorizable) G -invariant linear forms,
defined for Re A > 0 by convergent integrals, but are not expected to admit a meromor-
phic continuation. We will show that, in fact, the resulting sum can be written as a finite
sum of factorizable terms. To that end, we use the local invariant functionals defined in
Section 4 to define for any 0 € CM7, 0’ =0/ ® --- ® 0/ € B(0), a factorizable element
=@, 0, € A, and x € X,y

J(p:x,0' 2)= [HLIOXO')]
x ]:[D;[L(L (o)), x (o), ’7”)_1]

X J(Wy, t %y, %, 1)

where W, € I{.(W(0,)) are as in (1 1.2). It follows from Proposition 4.1 and Lemma 8.2
that the product defining J*(¢ : x,0’, A) converges for ReA > 0 and admits a mero-
morphic continuation to A € ay; ¢. In fact, whenever holomorphic at A the map x
J'(x, o', 1) is an element of &, (X4, I(o, 1)*) which we denote by J*(o”, A).

We also write

aLe (oo’ 1) =i 2) [Tl 2 I, e 2)

v
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where
t
or=[[Tu et
i=1
LA —Aj 0! xa!” - n)
X 1_[ / A4 - . / v
- L e(Xi— A, 0] X 0] ML +A; — 4, 0 X 0] )
i<j
and

(01, ) =% (07, 1) = [1jL<1,<a;>v < (@), )]

L()Vz - )\j’ (Ui/)v X (O‘j'/)vv . nv)

o b X ()0 X (@), 13 YL+ ki — Ay, ()0 X (0)),)

i<y
Recall that by Lemma 8.2 almost all the factors in (11.8) are 1.

Theorem 11.2. — Let 0 € CM7, ¢ € A, and x € X. Then as meromorphic functions in A
we have

(11.9) P,C(E(<p, )\)) =J(p:x,0,A) = Z JSt(go ix, 0, A).

o’'eB(o)

Proof: — We prove the identity for Re A 3> 0. The Theorem then follows by mero-
morphic continuation. Let Sy, be the set of inert real places of F. For every place v of
the determinant map induces a surjection X, /G, — E, and the map is a bijection if and
only if v € So. The Hasse principle for Hermitian forms implies that for any x € X we
have

xoeGa,NX=xeG

and furthermore, X @ G4 = X, N Kern, an open subspace of X,. It follows that X/G is
in bijection with the following subset of (Xs_/Gs ) X E:

Qg = {(zOGsw,é) 2€Xs,,§€E,detz,eéforallve Soo}.

Denote the bijection by (g : X/G — Q. Then tg(x) = (x ® Gg_, detxNm(E*)). Simi-
larly, the assignment

diag(y1, ..., ) = (dety, ..., dety,)

~ ~{

defines surjective maps d, : X)*/M, — E! for every place v of F and ¢ : X™/M — E'.
Again d, is bijective if v € S, and 4 is finite-to-one. We set
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QM :{(Z. MSoo’ g) A Xsoo N MSOO, S € El,
dy(z, @ M,) =& forallv e Soo}
and let 1y : XM/M — Q) be the associated bijection. Note that for any & € E' we have
AL10) (7' ®) ={(2.6) : z€ (X MMy )/Ms, dy(z,) =£ forall v € S..).
Fix ¢’ € B(o), a factorizable section ¢ = ), ¢, € A, and Rei > 0. For y €
XM /M, let

Va1, (9) ez o HAHO)) hene, 64” (W) (gt) dg
hy(y) = ifye (xe G,NM,)/M,

0 otherwise

where ] ° is defined by (11.6). For & € E! let
LE= D" h).
yedy ' (§)

In particular, for v & S, we have &, = f, o d,. Set f>> =[], _f and / =[] /. It
follows from [LRO3, Theorem 5.2.1] that the product is absolutely convergent and that

S eLY(EY)
We get from (11.5) and (11.7) that

t
J(g :x, 0, x)=2‘[]_[L(1,a; xo;v.n)] > T
i=1 ye(XMNreG)/M Vv

Summing in stages we have

> [[wo= Zﬁw@) > I

ye(XMNxeG)/M v yed=1(&) VESwe

Applying (11.10) we get that

Y [[eo= > []1:e@hG) =]]A®

y€d~1 (&) VESx 26(Xs00MMs4, ) /Mgy, VESo VESco

and therefore

J@:x,0,A)= 2’|:1_[L(1, o/ xo!- 77):| Zf(é)-
i=1 geat
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It now follows from Lemma 11.1 that
t
y o
J:x.0.0) = []_[ L(1,0/ x o/" - n)] ) W FACS:
i=1 ve((Ba/B)V)! v

and the product on the right-hand side converges. Finally, we observe that by (3.13) we
have

!
& Vy

_ M\ ~ol M,
; _vv(woy)aj , X

and therefore

Fo(vy) =, (wy") J(eu : , an, 2).

Since globally v(w}!

[T/h00 =TI a7, ).

) =1 we get that

Together with (11.4) and the fact that []._, L(1, o/ x 67" - 1) is independent of o’ € B(o),
this gives (11.9) for Re A > 0. U

11.3. Factorization of Bessel distributions. — We retain the notation of the previous
section.
Observe that by applying the functional equations

L()"z —)\.], O'l-/ X qi/v : 77) = 5()\1' _)"j’ Gi/ X Qj/v : ﬂ)L(l _)\'i—i_)\‘j’ Gi/v X Qj/ ' T})

we get
1111 i n Ty Lo x o M T < LL(E:;F—A]MUU:;]VZ)]
cs(oV, =) tl? tl’ ¢s(oV, —A)
= t[/(o’, A)_l
Similarly, for all v
juoy, A) 1

Cﬁv(O'vv, —)\‘) t[gu n(av’ )“) == t[v (Gv’ )\‘) X

Using (11.11) and the discussion of the previous section we now obtain a factorization of

B(~/ o RS @ ) W6, 1)
B(G ’)\') T Ao M)
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as

(11.12) (o’ 2) " et (o) A)B(o). 1)

where ﬁ(aé, 1) is defined in (4.13) and for almost all v we have ¢l (o], k)ﬁ(lenKU :
o,,A) =1
It now follows from Theorem 11.2 and the definition of ) in (C.1) that

ZO"EB(U)JSt((p :Xa OJ, )\,) XGXOGA,

(M,0) _
o L A) =
r @) 0 otherwise.

In other words, we have

B(o,\) = Z ﬁ(a’,k)

o’eB(o)

where the left-hand side is defined in Appendix C. We claim that for any o € CM'* we
have

(11.13) > B(o.h)«<— Y B(c.1).

o’eB(o) o’eB(o)

Indeed, it follows from Theorem C.3 that this holds up to a constant ¢ depending only
on k. Choosing an everywhere unramified quadratic extension E/F that splits at infinity
and at the even places and o € CM'* everywhere unramified, it follows from the local
identities provided by Proposition 7.5 in the split places and (8.5) for unramified data
together with Remark 9.3 that ¢ = 1.

Assume now that E/F splits at infinity. Then we can view the summands on the
left-hand side of (11.13) as distributions on G/, via smooth matching. Let S be a finite
set of places of I' containing the Archimedean and the finite places with ramified data
with respect to either E/F, ¥’ or 0. Fixing any f; € S(Gyg), each distribution on G}, can
be restricted to a linear form on H"® = ®;¢s H(G/,K). Using part (3) of Theorem 8.1
the restriction of B(c”’, A) is proportional to ™S > f S(1(c’%, A)). Therefore, by linear
independence of characters we get

Proposition 11.3. — Assume that ¥/ F splits at infinity. Then for every o € CM*, o' € B(o)
and A € ay; ¢ we have

ﬁ(a’,k) <« B(U’,A).

Eventually, we will remove the assumption on E/F in Corollary 12.5 below.
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11.4. Global closed Bessel distributions. — Let 0 be the involution on G, defined, as
in the local case, by g = wot (‘g )wy and let & € C. If ¢ is a factorizable element of
7 such that W7 (¢) =[], W,, W, e WY (7,) and ¢ € 77 is defined by ¢? (¢”) = ¢ (9),
g € G, then

(11.14) W5 (97) =T T om, (W)™

Let C7" =C \ C*. Recall the automorphic induction map ai : C% ™" — C% satis-
fying be(ai(o)) =1(o ® 07, 0) [AC89].

Let k = (ny, ..., ny) be a composition of £ and set n = 2k, M =M, ) and Xy =
X N woyM. Suppose that g, € CG"i’ﬁ’, 1=1,...,sand let

Q:QI®...®Q3.®Q:®---®QIIECM.
We define B¢ € &y, ((Xy)a, 0%) by

,ﬁ",o.g(¢>)=f ¢(mg)dm, g€ My.
(AMNM, " )M¥0\ M

Every element of M is of the form diag(#, 1) where he (M )a. If h = diag(hy, ..., hy)
with 4; € (G,,)a then £’ = diag(#?, ..., k). It follows from (11.14) and (10.1) that we
have

(11.15) Bo@) =l [[(x12) "B (W,),  xe (XaDa

v

where

W) =Wo W, eW" (0.

For A € (a}) ¢ define Z(o, 1) € &g, (Xa, Im(0, A)*) by Z(x,0,A) =0 if x @ G4 N
woM = ¥ and

_1 i
Z(p:x,0,A)= /0 B, (SPAZ IM(thU, o, A)<p|1\1A) dh, ¢ €A,

PyO\G0
if x=wy e, forsome 1, € Ga. Note that by (11.15) and (3.6) we have

Z((ﬂ ‘X, 0, )x) =rl° H(t[gu)_lz(wv L Xy, IBQU’ )")

v

where

WY, 1) =Wo.  WoeIW"(0)).
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(_As before we will obtain a factorization of Bessel distributions. We write A =
(A, L), 0 =ai(p),l.c., 0 =0] ® - ® 0] where o} = ai(g;). Note that

¢ _
ti = t[/(Q/, )\-/) :
(0¥, —A)
and for all v
el _
v S :t[;(g;’ )\’/) 1
s, (0), —A)

Therefore, the distribution
Z(Q 1), W, (0,—4)
D(Q7 A) =By

factorizes as
(11.16) t[/(Q/, X)_l [®t[;(g;, )\/)f)(Qv, )»):|

where ﬁ(gv, ) is defined in (5.16). (Evaluating at ® = ), ®, € S(X,) almost all the
factors are 1.)

Assume now that x = wj e ¢} . Then in the notation of Appendix C we have

wo*

(M (g, \) = f / A(mhtfuo) dmdh.
YOG, J (ANM, M0 \M,"

It follows that
a™M™ (@, ) =Z(g : x, 0, 1).
In other words, we have
B(o. 1) =D(. 1)
It follows from Theorem C.3 that
ﬁ(g, A) <—> cKB(Q’, A’)
where ¢, depends only on k.
Lemma 11.4. — We have ¢, = 1, 1.e.,

(11.17) D(o, 1) <> B(o, V).
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Proof. — Choose an everywhere unramified quadratic extension E/F that splits at
infinity and at the even places and take o to be everywhere unramified. Let S be a fi-
nite set of places of F, containing the Archimedean places, such that v, has conductor
O, for all v ¢ S. For every finite place v € S let @, € F* be such that ¥/ (4, ') has con-
ductor O,. For v € S set a, = 1. For every finite place v of F let f] = (1k;),, and let
®, = (Ix,nK,)q,- It follows from Proposition 7.5, Corollary 8.4, (2.14), (9.5), (9.6) and
(9.16) together with the factorizations (11.3) and (11.16) that for every pair of matching
functions @), .. fy < @00 P at the Archimedean places we have

f)(@ ®,: 0, x) =B<®fv’:g’,x’).
Thus ¢, = 1. O

Local applications
12. Local Bessel identities and functional equations—the general case

In this section we obtain the local Bessel identities introduced in Section 3, i.e.,
we show that BZ =TI ... More generally, we show that BZy = I—[gf_gen
subgroup M. We also deduce functional equations for the local open periods. The Bessel
identities generalize (and refine) the main local results of [LR0O0] and [Off07] which treat

the case M’ = M,. New identities are also obtained for the closed periods. The proof’is by

for any Levi

global means using ideas originated in [LR00] and applying the Bessel identities obtained
in Section 7 in the split case, Section 8 for unramified data and Section 11 in the global
setting. In order to use the global result we first give a standard globalization argument.
Many variants of this are known in the literature. For completeness we provide a proof.
In order to simplify notation, for this lemma only G = GL, over the number field F.

Lemma 12.1. — Let S be a finite set of finite places of ¥ and let u ¢ S be an auxiliary finite
place. Let Us be a non-empty open subset of 1] ], . 0 and 8s € T1SS . Suppose that there exist two

ves usqr”

distinct places uy, uy € S such that §,, € l‘[ffﬁ?p, 1=1,2. Then there exists w € C which is unramified
outside S \U {u} and pu € Us such that g >~ S ].

Proof. — We first remark that we can assume without loss of generality that Us =
1[],cs a5.- Indeed, granted the Lemma in that case, we can always find a unitary Hecke
character x : F*\A% — C* which is unramified outside «, and such that xs = ¢/*H)
ves 0¢ (cf. [LROO, Corollary 2]).

Henceforth, assume that Us = 1] [, ai,. We apply Arthur’s trace formula for / =
), /o € C*(Gy) (or rather, its restriction to Ker|det|) where f, are chosen as follows.
For v € S we take f, to be the product of the characteristic function of Ker |det|, by

where p lies in a prescribed open set of i |
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a pseudo matrix-coefficient of 8, (cf. [DKV84]). Thus Tro,(f,) = 0 for any irreducible
representation o, of G, which is either an induced representation from a proper parabolic
subgroup or a discrete series representation which is not an unramified twist of §,. For
v|oo we take f, = g, *g,” where g, € C*(G,) is any non-zero bi-K,-invariant function. At
u we take f, to be the characteristic function of a sufficiently small compact open subgroup
of G,. At all other places we take f, = 1k,. By our choice of / and the assumption on dg,
the spectral side of the trace formula applied to f is Y_ Tr(o (f)) where o ranges over
the cuspidal representations of G, which are unramified outside S U {«} and such that og
is an unramified twist of 8s. On the geometric side, note that if f(g~'yg) # 0 for some
g € G and y € G then the coefficients of the characteristic polynomial of y are adelically
bounded and u-adically close to those of (¢ — 1)" (because of the choice of /). Thus y is
unipotent. It follows from Arthur’s description of the geometric side of the trace formula
[Art86] that only the unipotent conjugacy classes contribute. Suppose that y is a non-
trivial unipotent element of G. Then there exists a proper parabolic subgroup P such that
the class of y intersects U in a Zariski open dense subset. The invariant unipotent orbital
integral of £, at y is given by va\Gv fUu fole™ ug) dudg [LMO9b, Lemma 5.3]. Therefore
it vanishes for v = u;, uy since §,, is supercuspidal.'” Hence, by Arthur’s description of
the unipotent contribution [Art85], the non-trivial unipotent contributions vanish as well

and the geometric expansion reduces to vol(AgG\Ga)f (¢). It remains to recall that for
allv €8S, f,(e) is the formal degree of ,, and therefore f(¢) # 0. O

12.1. The main local results. — We turn back to the local inert case. For the next
result let 8’ € l_[;qr and 6 = bc(8'). Recall that § € Il if and only if by > 1 if and only if
8" 26" - n. In the Archimedean case this is further equivalent to the condition n = 1.

Proposition 12.2. — Let §' € TT{ and § =bc(8"). Then 8" € BL and the following cond:-
tions are equivalent for any x € X.

(1) & w5 G*-distinguished.

(2) o #0.

(3) G* is quasi-split or § € Tl
More generally, suppose that 8" € l_[?;; and let § =bc(§) =8, @ -+ ®8,. Then 8’ € BI™ and the
Jollowing conditions are equivalent for any x € X.

(1) There exists A € a3y ¢ such that Ja(x, o 1) £0.

(2) There exists ). € Oy g Such that Ty (x, o, A) Z 0.

(3) Jan(x, &, X) % O whenever holomorphic.

(4) There exists y € M N x © G such that Otj/ Z 0.

(5) There exists y € M N x @ G such that § 1s NP -distinguished.

10 Actually; this vanishing holds for all v € S.
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(6) There exists y = diag(y1, . . ., »,) € MNx e G such that G); is quasi-split except possibly
(in the p-adic case) for a single index vy for which 8;, € T1

(7) ©(8) < ().

(8) In the p-adic case: G* is quasi-split or by > 1. In the Archimedean case: dim a}' < ro(x).

0 sqre

Progf: — We begin with the first set of equivalences. Suppose first that bs = 1 and
G* 1s not quasi-split. Then § is not G*-distinguished. In the p-adic case this follows from
Theorem 6.1. In the real case this is because G is conjugate to K and § is not unramified.
It further follows from the first part of Lemma 3.8 that 8’ € BZ, (with a® = 0).

For the first part of the proposition, it remains to see thatif ¢’ € I, and G" is quasi-

split or by > 1 then a® # 0 (and 8" € BZ,). We may assume without loss of generality
that 8" € IT . We use a global argument, starting with the p-adic case. Switching the
notation, we consider now a quadratic extension of number fields E/F which is split at
infinity and a place v; of F such that E,, /F,, is our given local extension. Let y € X, and

if §' > &' - n assume further that G}, is quasi-split (i.e., y € X; since n is even). Let vy # v,

be an additional auxiliary finite inert place of F. Fix §, € Hizfr such that §;, %6, - n (for
instance the Steinberg representation). Take »,, € X,, such that n,, (wyy,,) = 7, (Wey).
Then there exists x € X which is contained in the local orbits y ¢ G, , y,, ® G,, and
wy @ G, for all v # vy, vy. By Lemma 12.1, there exists 7" € C’ such that m, ~8'[s] and
n{}g o~ 8;2 [50] for some 51, 5o € iIR. Note that w = be(nr’) is cuspidal thanks to our choice
of §,, and that G} is quasi-split for all v 7 vy, vy. It follows from part (3) of Corollary 10.3

that 7 is G*-distinguished and that 77/ € BZ, and ™ # 0 for all v. By (3.11) and (3.12)
we therefore get that §' € BZ, and o # 0.

Consider now the case G/R. In this case n < 2. The case n =1 is trivial and we
treat the case n = 2 by using the quadratic extension E/F = Q[v/—1]/Q. Let y € X,..
Note that 8" > 4" - 5 for any &’ € IT{, and therefore we only need to consider the case
€ X Since n=2, we have X} = wj @ G, and X = (£¢) @ G. Let D be the mul-
tiplicative group of the quaternion algebra which ramifies at {3, oo}. Take any infinite-
dimensional irreducible automorphic representation o of Dy which is trivial at 3 and up
to an unramified twist transfers to §’ via the Jacquet-Langlands correspondence at 0o.
Then the Jacquet-Langlands transfer 7" of o satisfies the following conditions:

() ' e,
(2) m. is an unramified twist of &',
(3) m; is the Steinberg representation.

As before m = bc(r’) 1s cuspidal (since 3 is inert). It follows from the last part of Corol-

lary 10.3 that 7 is G**-distinguished, 7/ € BZ,,, and aﬁéo“ # 0. As before, it follows that
8" € BZ, and ozj/ = 0. This completes the proof of the first statement.

As for the second statement, the first four conditions are clearly equivalent by part
(4) of Proposition 4.1. The other conditions are equivalent by virtue of the first part and
the structure of M N x o G. U
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Corollary 12.3. — Let w € Hgm and x € X be such that () < vw(x). Then w is G*-
distinguished. Thus, Conjecture 6.12 holds for generic representations. In particular, 7w € T, s G*-
distinguished if G* is quasi-split or if m € TI™™" (and in particular, by Lemma 3.3 if w € T y,).

Progf: — There exists §’ € Hi\g;, 8 =bc(8’) such that w = 1(8). Since () = 10(4),
the corollary follows from the second part of Proposition 12.2 together with Corol-

lary 4.2. U

We also remark that in the p-adic case, if § € Hls\gf and I' 1s a set of representatives
(of size 271 for [B](8) then

(12.1) {0{8, Lo = 8 € F} are linearly independent in EM(x eGNM, 3*).

This follows immediately from the non-vanishing of oci/ and the relation (3.13) (for
G=M).

We are now ready to state and prove the main local result. Recall the distribution
B(o’, 1) defined in (4.13).

Theorem 12.4. — Let E/F be a quadratic extension of local fields. Then for all M we have
= BZ. In particular, TT; = BZ. Moreover, for any n there exists a sign v, = v,(E/F) =

be-gen

M
I be-gen

£ 1 depending only on EJF with vy = 1 and with the following properties. Fix M and o’ € Hﬁ;{/_gm.
Then

(1) As an identaty of meromorphuc functions in A € ay; ¢ we have

(12.2) (o', 1) = ve Tor(a”', 1)
and
(12.3) B(o',1) < uB(o’,2)
where v, = .~ In particular, B(o', 1) is entire.

Q) Ty (', ) is holomorphic at any irreducibility point of 1(o”', 1) and we have
(12.4) o' oW(a, 1) = v Tor (@, 1).

(3) IfE/Y is unramified then v, =1 for all n.
(4) For any w € W(M) we have

(12.5) T (2" ,wh) o N(w, W(0),A) = Tp(a”, 1).

Progf. — First note that the relations (12.2) and (12.3) are equivalent from the
definitions of @ (¢”’, A), B(o', A) and B(a”’, ).
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We begin with the p-adic case. We first prove that Hi\({; C BZy and that (12.2)
holds for o' =8’ =8, ® - -- ® 8, € IIM for some sign vyy. The relation (12.4) would then

sqr
follow from Lemma 3.6. By Lemma 3.7, we may assume without loss of generality that

8 erM .

L(fltt 8 =bc(8'). By Proposition 12.2 we have 8’ € BZ™. As in the proof of Propo-
sition 12.2 we switch to global notation. Thus, assume that §’ € Hﬁg;l(f/) and 6 = bc(§)
with respect to a quadratic extension k/k" of p-adic fields. Choose a quadratic exten-
sion of number fields E/F which splits at infinity and such that at some place v, of F
we have E,, /Fvo ~ k/K. We can choose a different quadratic extension F of F which
splits at vy and such that F, >~ E, at all places v # vy of F which are inert in E and
are even or ramified at E. Let v, vy be the places of I above vy. Then E = EF is a
quadratic extension of F which splits at infinity and such that E, /F, >~ k/k, i =1,2
and all other inert places of E/F are odd and unramified. Let «, u;, uy be three auxiliary
finite places of F which split in E and let ¢« C (ia};)? be an arbitrary non-empty open
set. Denote by St = St,, ® - - - ® St;, the Steinberg representation of the group M, . It
follows from Lemma 12.1 that there exists 0’ = 0] ® --- ® 0, € C™ unramified outside
{v1, vo, u, uy, up} such that o] >~ é8'[u,,] and 042 ~ StM [tty,] for some (i, , (y,) €U. In
particular, o/ # o/ - pforalli=1, ..., ¢ since the same holds for the Steinberg represen-
tation. Therefore o = bc(o”) is also cuspidal. Applying Proposition 11.3 and comparing
the factorizations (11.3) and (11.12) we obtain that for every place v, o, € BZy;, and

there is a non-zero meromorphic function vy, (0, A) such that
01(0'1:, )\.) = UM’U(O';, )\,) ‘70': (adv’ A)

and moreover [ [, vn (0], A) = 1. Note that by (9.10), (9.12) and (9.8) v\, (0, A) does
not depend on ¥, . Taking into account (7.3) in the split case and (8.5) and Remark 9.3
in the unramified case we infer that

Ut (0], A)Uaey (07, 1) = 1.
By Lemma 3.7 and (4.6) we have 8’ € BZy;, and

UM, v, (U,:l , )») = UM,y (5/, A+ ,U«v])-
Similarly St* ¢ l’)’ZMv2 and

UM,y (0'122, A) = Usiu, (StM/”2 At [hyy).
We infer that

UM, v (8/’ A+ le)UM,vg (StM/U2 , A+ MUQ) =1.
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Since (Wy,, 1y,) € U and U was an arbitrary open set we infer that

UM, v, (5/, A+ ,U/l)Ul\fI,vQ (StM,”2 A+ MQ) =1

for all w;, pue. Hence vy, = Un,y, (87, 4) is independent of both §" and A. Moreover,
taking 8’ = St*2, we infer that vy, = Uy, is a sign depending only on M and the local
quadratic extension. Switching back to the local notation, we simply denote it by vy;.
This shows (12.2) in the square-integrable case up to the determination of the sign.

. Let I be a Levi subgroup of M/, §" € H;r
and u € af ¢ be such that o’ =~ IM(8', 1). Applying the above argument for 8" with
respect to both G’ and M’ and using Lemmas 4.4 and 3.6 we obtain

Consider the general case of o’ € Hﬁi gen®

(12.6) vt a0’ ) = v T (@, A).

In particular, (12.2) holds whenever ¢’ (resp. ) is a principal series representa-
tion of M’ (resp. M) with proportionality constant vy, / vi\,/llo. Using Lemma 12.1, and
a global setting as before, this time for S = {vy, uy, v}, we immediately obtain that

Um = Uy, /Uyg,- Thus vy = l_[l_’;’}m where we set v, = vy . Hence vy = v, and it also
1 1

follows that v,uM = vy. We obtain (12.2) from (12.6).

For E/F unramified it now follows from (8.5) that v, = 1.

We turn to the Archimedean case. Consider first the case where 8’ € Hﬁfqr Take
E/F = Q(+/—1)/Q. Choose a globalization 0’ = 0] ® --- ® o/ of §' such that at the
prime 2 (denoted by the place vy) we have (07)),, % (07),, - 1y, for all 7 and set 0 =
be(o”). (For existence of such ¢’ we may argue as in the Archimedean part of the proof
of Proposition 12.2.) It follows from Lemma 2.2 and strong multiplicity one that the
distributions ®p<oo tl' (o], 1) B(o/,1), 0" € B(o) are linearly independent. It further
follows from the result already established in the p-adic case that

®t a” A a”,k <—> Un., v2®t[ 0” k o”,k).

p<oo p<o0

The factorizations (11.3) and (11.12) together with the global identity (11.13) imply that
B(8', 1) <— v, B(8, 1)

In particular, vy, = Um, 18 independent of 8" and A. Back in a local Archimedean
setting, arguing as before in the p-adic case, one now proves the identities (12.2) for any
o' e TIM gen WIth Uy = Uy,

Finally, we show that (12.5) follows from (12.4). Indeed, since 7’ :=1(c’, A) =~
I(wo’, wA) and vy, = v,, applying (12.2) to (wo’, wMw™") we get

o™ oW(wao, wi) = Ukngx(aw"/, wk).
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Composing this with N(w, WW(0'), A) and using the functional equation (1.10) we obtain
a” oW(o, A) = U,(ng/(aw"/, wk) o N(w, W(o), k).

Using (12.4) once again we infer (12.53). OJ

From (11.13) we now deduce

Corollary 12.5. — Proposition 11.3 holds for any quadratic extension of numbers fields E/F
(not necessarily split at infinity). Moreover, | |, v,(E,/F,) = 1.

Remark 12.6. — In order to determine the signs v, it is necessary to have more in-
formation about the matching at the ramified places. For instance, a factor n(—1) cannot
be discerned at the split or unramified places, and can be incorporated into the transfer
factor at will, resulting in a possible sign change in the a’s.

12.2. Bessel wdentities for closed Bessel distributions. — Next, we prove a similar relation
for the closed periods. Recall the distribution Dy (o, A) defined in (5.16).

Proposition 12.7. — For any k> 0 and a local extension of quadratic fields E./¥ there exist
signs Gy, with the following property. Let n = 2k, i a composition of k, .= M, ) an even symmetric
Leviando =0 ® é_’ € Hg;;f“. Then for any A = (1, (/7) € (a) " such that 1(o, 1) is irreducible
we have

(12.7) o™ oW(0, 1) = g\ Z(B% 1)

where 7' = 1(ai(o), ') (with ' a;lé c in Corollary 5.6) is the unique element of B(1(0, 1))
such that w'" - n = 7', Equivalently,

(12.8) D(0. 1) <— 5Biguico) -

N Proof. — The equivalence of (12.7) and (12.8) follows from the definition (5.16) of
D and the relation (2.9) applied to the equivalence

(W(o, 1), W(g", —1)) : 1I(2(e), 1) — W(I(e, 1))

By Corollary 5.10 and (2.14) we reduce (12.8) to the case where 0 =6 ® --- ® 4, €
MM« In this case we argue exactly as in the proof of Theorem 12.4. First note that by
(2.14), (9.5), (9.6) and (9.16) the identity (12.8) is independent of . In the p-adic case,
switching to a global (split at infinity) setting, we globalize §; to 0, € C% ™", i= 1, ..., s (by
using an auxiliary split place). By (11.17) we get (12.8) up to a constant. The argument
in the proof of Theorem 12.4 using Proposition 7.5 and Corollary 8.4 shows that the
proportionality constant is a sign which depends only on £. For the real case we argue

once again as in Theorem 12.4 applying (11.17) to Q[+/—1]/Q. U
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Now let L = M, . %) be odd symmetrlc We will use the setup of Proposmon 5.4
and its notation. Namely, let w = wézzkk)k), L=w'Lw= Y P M = M0n), Wy =
diag(1,,, w, 9*)

e

Let 0=0Q®686® &7 l'[;;“* with o e Mgn™ and § € Tk, For any o €
£6, (X, W(O)") and B € &, (X! - WE® 5 7)) define a ® € £ (X W(0)")
by 1

((X ® ﬂ)diag(xl,xz) = a,n ® ,szy X1 € Xm’ X9 € XM( o°

We will view w(x ® B) as an element of 5L(Xil“'”‘“, W(wp)*) by identifying wIV(o)
with W(wp) (as in our convention for the intertwining operators N(w, W(o), A)).

Proposition 12.8. — With the notation above, for any A = (z, |, flT) € (a;)@ with z € G,
W€ ayy g such that 1(o, 1) € My, and for any o' € B(o) we have

(12.9) @@ W(wo, wh) =~ e 7 w(a” @' 7)., wh)
mY2k

as elements of E (X, IW(w), wA)*) where o' = 0'[z] ® I(ai(d), ) € Y

gen”

Progf: — First note that by (1.10) and (1.6) we have
W(wo, wh) = W(o, 1) o N(w, W(0), %)
=Wy (IM(e. 1), 0) o Ly (W (o, 1))

oM xi(W(0), 4) o N(w, W(0), 1)

1

Recall that be(p') = I(o, A) = IM(I?(Q, A),0). Thus, by (12.4), the left-hand side of
(12.9) is

1

U'”:’)Q’; T (Ot ,0) o IM(WM(Q’ ») o Tix(W(e). 1) o N(w, W(e). )
2

Note that ® = a”'¥ @ @'@®-#)_ Therefore we infer from (12.7) that
To(@®,0) o Iy (Wio, 1) = oM Ty (2 (a7 ®8°2° 7, 1), 0).
The proposition therefore follows from (5.14) since Ay =n(—=1)\y . U

The following Corollary strengthens Corollary 12.3 (taking into account the rela-
tion (3.8)).

Corollary 12.9. — Lett" € TI{ .. Then o 20 iff 0 (') < v (x). In particular, in the

p-adic case & % O unless G* is not quasi-split and ' ~ 7' - 1.
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Proof: — The p-adic case follows from Lemma 3.8 (and will also follow from the
argument below).

By Lemma 3.2 we can write 7’ = ¢’ x ai(g) where o € Hgfn, k= w'(x’) and
w'(c’) = 0. By (12.9) the non-vanishing of O(f/ 1s equivalent to the non-vanishing of
Z(x, w(a® ®ﬂ9®(5r), 0). In view of Lemma 5.2 and Lemma 5.1 part (1), it suffices to
prove the Corollary for ¢’. That is, we may assume that 10’(7’) = 0.

Suppose therefore that 10'(r') = 0. We have to show that ™ # 0 for all x. We
reduce the statement further to the tempered case. Write 7" as w’ = I(o’, A) where
o' € l'[gr;p and A = (Ay,..., ) € (a})+. By Theorem 12.4 the non-vanishing of otf,
is equivalent to that of J,(x, a®, A). Recall that Cy(wy : 0, - ¥) i1s holomorphic and
non-zero at A (1.11) and therefore the same is true for Cyp(wys : 0/, A; ¥'). Hence, the
non-vanishing of J, (x, @, 1) is equivalent to that of J(x, @’ , 1). In turn, the latter con-
dition is equivalent to the existence of y € M N x @ G such that aj’ # 0. Therefore it
suffices to prove the corollary for o”'.

Hence, we can assume that 7’ € IT,,,, and /(') = 0. Thus 7’ is induced from
§=8® - ®38 el with § % 8; - for any ¢,j. Let § =bc(d) € M . Tt follows

usqr usqr”
from Lemma 1.1 that nyy(8’, A) is holomorphic and non-zero at A = 0. By the same
argument as before, the non-vanishing of o7 " follows from the analogous statement in the

square-integrable case. The latter follows from Proposition 12.2. U

Remark 12.10. — The Corollary gives an alternative proof of a result of Jacquet on
the non-vanishing of &® in the quasi-split case [Jac10].

Combining Corollaries 10.3 and 12.9 we obtain Theorem 0.1.

12.3. An example. — We finish this section with the following example which
shows that in general, local distinction does not imply global distinction. Let E/F be
a quadratic extension of number fields with Galois involution T and corresponding
quadratic character 7 : F*\Aj — {£1}. Let G, = Res;; ¢ GL,.. Suppose that o € COnt
and let " = aij (o) € CY%» so that m' = 7' - 7j. Let E/F be another quadratic exten-
sion such that " # ' - n. (For instance, this is the case if E,/F, is ramified at a place
where 7/ is unramified.) Thus, 7 = be(w’) € CY%. Let x € Xy, and let S, be the (finite)
set of places of I which are inert in E and such that x is not quasi-split with respect to
E,/F,. Assume that for any v € S, 7, is unramified and Ev /¥, = E,/F,. Then by Corol-
lary 12.3 7 is locally G*(F,)-distinguished for all v. On the other hand, by Corollary 10.3
7 1s not globally G*-distinguished unless x is quasi-split with respect to E/F (i.e., unless
S, = ¥). For otherwise, if v € S, then 7, = 7 - n, since 7, = 1, and hence af:) =0 by
Corollary 12.9. There is of course no difficulty in choosing x which is not quasi-split and
satisfying the properties above since E, /F, ~ E, /F, for infinitely many inert places v of F.
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13. Multiplicity of unitary periods

In this section we study the space of local unitary periods. Let E/F be a quadratic
extension of p-adic fields. For simplicity of notation, in the following we will identify all
generic irreducible representations with their Whittaker models.

13.1. The supercuspidal case. — The following Theorem of Jacquet describes the
space of local unitary periods in the supercuspidal case. It was proved in [JacO1, §5] for
the case n =3 and x = ¢. Recall the notation B(7r) and [B](7r) from Section 3.2.

Theorem 13.1  Jacquet. — Let mw € TI} Then for any x € X we have

(‘ng

dim Homg: (7r, C) = 1 and moreover, there exists v¥ € 7" such that

v | vY(m(9v)dg

Gx

is a non-zero element in Homg: (7, G).

Proof. — Since B(rwr) = {n', 7" - n} for some 7w’ 2 7’ - n in chsp, it follows from
Proposition 12.2 that 7 is G*-distinguished (and in fact & % 0). Without loss of gener-
ality we may further assume that 7 is unitary. The rest of the proof follows [JacOl, §3]
verbatim. 0

Corollary 13.2. — Leto =01 ® - ® o, € MY with o, . . ., o, distinct. Then_for every

cusp

o' € B(o) and x € X, the linear form J(x, «’ ) on (o) is holomorphic at 0. Furthermore, if T’
is a set of representatives (of size 2'=) for [BY(o) then the set {J(x,a®,0) : 0’ € T'} is a basis of
Homg:(I(o), C).

Proof. — Recall that by (12.1) the set {&” |,egnm : 0 € T'} is linearly independent
in Ey(x ¢ GNM, 0*). On the other hand, by Lemma 6.10, unitary periods on I(o) are
supported on open orbits. It therefore follows from Theorem 13.1 that {0 |egrm 1 0 €
'} is a basis for Ey(x @ G N M, 0*). The lemma now follows from Lemma 6.7. ]

13.2. The square-integrable case. — Next we study the essentially square-integrable
case.

Proposition 13.3. — For any & € I, and x € X we have dim Homg: (8, C) < 1.

Proof. — Suppose that § = A,([a, b]) for o € H(’d and let P = MU be the

parabolic subgroup of type (d, ..., d) (t =b—a+1 times). IfQ ¢ IT° then 6 ¢ I1". Hence,
by Theorem 6.1 we may assume that 0 = bec(o”) for some o’ 22 0"-n € chsp, in which case
8 = bc(8") where §' = A/Q ([a, b]). Seto =0[a] @ ---Ro[b]l and 0" = 0'[a] ® - - - ® 0'[ /]
so that § is the unique irreducible quotient of I(O’). Let p:I(o) — 6 be the projection.



290 BROOKE FEIGON, EREZ LAPID, OMER OFFEN

Fork=1,...,t—1let w, € W(M) be the permutation associated with the simple
reflection (£, £ 4+ 1) when identifying W(M) with the symmetric group on [1,¢]. The
operator M(wy, w;o, w;A) is holomorphic at A = 0 and the image of M(w;, w;o, 0) is a
proper submodule of I(0). Let

t—1
V=" ImM(w,, w0, 0) S Kerp.

k=1

(In fact, 1t 1s known that equality holds but we do not need to know this a priori.)
It follows from (12.5) that for every k=1,...,t—land v = (v, ..., v,) € B' we
have the functional equation

Toro (%, @77, 1) 0 M(wy, w0, wik)

G ) =l ‘.
= CM(wk - WO, wk)", w) jwk((r/'v) (X, Olwk(a v)’ w/c)‘)
as rational functions in g} In terms of the unnormalized functionals this relation becomes

J(x, a’”, A) o M(wy, wo, wiA)

-1

:CV()%+1 — 41,0 x 0" vy W/)
/ ’ - N1 wy(o’-v
Xy (A — M — Lo x 0 v im v) J(x, ™ wid)
where ¢ # 0 is a constant. Since o' 2 @' - 1, it follows from Lemma 1.1 that the product

-1

Y (M — A+ 1,0 x o vv v')
! / — I -1
Xy (k=M — Lo x 0 v ms ¥)

is holomorphic at A = 0 and it is non-zero there if and only if v; # v;4;. Recall that by
Corollary 13.2, J(x, ", 1) is holomorphic at A = 0. Thus, for any v € E’ there is a
scalar ¢, (v) € G such that

(13.1) J(x, a”, 0) o M(wy, wo, 0) = Ck(V)J(x, o) O)
and
(13.2) () #0 ifand onlyif vy # vy

(Note that for v =1 this implies that J(x, «’’,0) factors through I(o)/V, which as was
pointed out before, is in fact isomorphic to §.)

We will prove the Proposition by showing that for any £ € Homg:(8, C), £ o p €
Homg+(I(o), C) is proportional to J(x, o’ 0).
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Let £ € Homg: (8, G). By Corollary 13.2 there exist complex numbers {a,}yezt:y, =1
such that

lop= Z auj(x, Ot"/'”,O).

veEhv =1

Since £ o pis trivial on V, forany k=1, ..., ¢ — 1 we have

Z avj(x, o, 0) o M(w;, w,o,0) =0.

veELY =1

Together with (13.1) we get

Z a, ck(v)J(x, oK@V O) =0.

veBhv =1

By (13.2) and Corollary 13.2 (applied to w,o”’) we conclude that @, = 0 for all v € E
such that vj = 1 and v; # v;4;. Applying this to all £, we infer that £ o p is proportional
to J(x, a?,0) as required. ]

Remark 13.4. — In its notation, the proof shows that J(x, «®’, 0) factors through
§ as a non-zero multiple of @’ (since the latter is non-zero). The same is true for
Jo(x,a% . 0) by (4.5) and Lemma 1.1.

It is also possible to generalize the second part of Theorem 13.1 to the square-
integrable case. However, we will not discuss this aspect here.

From Theorem 6.1 and Propositions 13.3 and 12.2 together with the fact that
bs=2foré e l'[;qr we infer

Corollary 13.5. — For any § € I, and x € X we have

1 §ell”
dim Homg- (6, C) = S
0  otherwise.

As in Corollary 13.2 we now get

Corollary 13.6. — Let § =6, ® --- ® 6, € l'[gqlf with no © < j such that 8; 1 8;. Then_for
every 8' € B(8) and x € X the linear form J(x, o, ) on 1(8) is holomorphic at 0. Furthermore, if
T is a set of representatives (of size 2=') for [B1(8) then the set {J(x, &%, 0) : 8" € T'} is a basis of

Homg:(I1(5), C).

We also have the following property.
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Lemma 13.7. — Let § € TIN-T and 8" € B(8). Then Jy (a® , 1) is holomorphic for Re A €

usqr
—(ay)+-

Proof. — By Theorem 12.4, B(§, )) is entire. Suppose that ReA € —(a3;)+. Then
by [JS83] W,(8Y, —1) € (8", —A)* is injective. Hence, the Lemma follows from (4.13),
Lemma 2.3 and (2.11). O

Defination 13.8. — Let w € T1. Assume that 7w s the unique irreducible quotient of 1(8, 1)
where § =8, ® --- ® 8, € TN and X € (ai)) . We say that T has regular parameters i

usqr
1M, ..., 8.[A] are parrwise non-isomorphic. We write

I = {7‘[1 X o 1y € 7Y, 7y € TI™™, 71y with regularpammeters}.

reg —

Proposition 13.9. — For any w € T17 and x € X we have dim Homg: (7, G) < [b],.

reg

(Recall that [b], = %bn as long as T ¢ TI™Y,)

Proof- — By (6.9) and the fact that b, = b, we reduce to the case where 7 € IT"*",
In this case 7 is the Langlands quotient of I(§,A) with § =6, ® --- ® 6, € Hﬂslqz and
A= (A1, ...,A) € (ay)+. By the regularity condition on 7= we have §;[A;] % §;[A;] for all
¢ #J. Hence, the Proposition follows from Corollary 13.6 applied to 6[A] together with

the injectivity of the natural map Homg: (7, G) — Homg:(I(8, 1), C). ]

13.3. Ladder representations. — We can extend the uniqueness result of Proposi-
tion 13.3 to a wider class of representations.

Defimtion 13.10. — Let 0 € Hgfgp and let ay > -+ > a,, by > --- > b, be integers such
ﬂlal‘al‘ < biﬁfi: 1, ...,tandbi+1 >a;, — 1, 1= 1,...,5— 1. Let Ai: AU([aZ-, bl]) (T/zus,
A; X Ajq ts reducible for all 1 =1, ..., t — 1.) The Langlands quotient 7w of Ay X -+ x A, will
be called a (proper) ladder representation'' and will be denoted by 1(A1, ..., A)).

Important special cases of ladder representations are the Speh representations
u(d, t) for any 8 € I,y and ¢ > 1 which comprise the building blocks for the unitary
dual of GL, [Tad86]. By definition «(§, ¢) is the Langlands quotient of §[(¢ — 1)/2] x
-+ X 8[(1 —2)/2]. The class of ladder representations is closed under Zelevinsky involu-
tion. This follows from the combinatorial description of the latter [MW86].

Theorem 13.11. — For any ladder representation m = L(Ay, ..., A,) and x € X we have
dim Homg. (7, C) <1

and equality holds if and only if w € T1*.

' There is an unrelated, much earlier notion of ladder representations for unitary groups.
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Proof. — The proof of the first part is similar to the proof of Proposition 13.3. Note
that 7% = L(AT, ..., A7) and therefore by uniqueness of Langlands data, if 7 € I1" then
A; € IT" and therefore o € I1*. Thus, we can assume that 0 = bc(o”) for some o’ € IT
with 6’ 220" 1.

Let§ =A,®---®A, € TM where P = MU is the corresponding parabolic. Thus,
7 1s the Langlands quotient of I(§). Let w, e W(M), k=1, ...,¢— 1 be as in the proof
of Proposition 13.3 and let

—1 t—1
V= ZKerM(wk, 8,0) = ZImN(u}k_l, w8, 0) C KerM(wyy, 8, 0)

k=1 k=1

where the second equality (and the holomorphy of N (w,;l, w6, wiA) at 0) follow from
Lemma 1.1. We recall that the projection p : I(§) — 7 1s essentially the intertwining
operator M(wyg, 8, 0), so that Ker M(wyy, 8, 0) is the unique maximal submodule of 1(3).
Let

§=AL (e, b)) ® -+ ® AL ([a, b))

It follows from (12.5) that for every k= 1,...,t— 1 and v = (vy,...,v,) € E' we have
the functional equations

(13.3) j(x, o, A) o N(wk_l, wid, wkk) = cci(v, A)J(x, o) wkk)
where ¢ # 0 is a constant and

V()\/chl - )\'/ca 812\/ X 8/2_5_1 : 771)/{1)/;11; W)
Y Ak — Mg, 6 X 8/2+1v : kavklll; V')

Ck(v’ )\‘) =
It follows from Lemma 1.1 and the assumption on 7 that ¢;(v, A) is holomorphic at A =0,
and writing ¢;(v) = ¢.(v, 0) we have
(13.4) () #0 ifandonlyif v,=v,.

Let £ € Homg: (7, G). By Corollary 13.6, there exist complex numbers {a, },egt.p, =1
such that

top= Y aJ(xa""0).

veBLv =1

Since £ o p vanishes on V, we have

> aJ(r o, 0) oN(w w8, 0) =0, k=1,....i— 1.

veELY =1
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Using the functional equations (13.3) we get

Z a,c:(v)] (x, a@), wik)a—o = 0.

veBiv =1

Recall that by (12.1) the set {awk(‘s/“’) lecrm @V € Ef, vy = 1} is linearly independent
in Ey(x e GNM, ). Let J°(x, o) 4. 2) be the restriction of J(«, ) ) to
sections supported on G°[x] = {g € G : x @ g7' € X°} (the open orbits). Recall that
Jo(x, @@ 1) is holomorphic in A and by (6.6) the set {J°(x, a™©®),0) : v € &,
v, = 1} 18 linearly independent. Also,

> s (v, 0) =0.

veBhv =1

We therefore get by (13.4) that ¢, = 0 whenever v; = v;4;. Since this holds for all £ we
infer that £ o p is proportional to J(x, @’ ™, 0) where vy is as in (4.1). The first part
follows.

To prove the second part, we use the fact proved in [LM] that V is in fact equal to
the kernel of M(wyy, 8, 0). Therefore, it suffices to show that J(x, o’ ™ 0) vanishes on V,
1.e., that J(x, o™ 0) o N(wk_l, w;é, 0) =0 for all £&. We will write the right-hand side of
(13.3) for v = vy differently as

)/()»k — M1, 8 X 5//c+1v; W/)

M T My
XJl\’Ik (X, jL,lf)k(S’-UM) ((xll)k((S VM)a (w/c)")L/l)7 (wk)“)l\’l/c)

-1

where M, is the Levi of type (ny, ..., m—1, m + #yp1s Mg, ..., 1) and L= wkak_l. By

Lemma 1.1 and the assumption on 7 we have (0,8 x 8;,,"; ¥') = c0. On the other

hand, by Lemma 13.7
M wi(8' v M,
Lo (@70, (wid)y )

1s holomorphic at A = 0 and we can apply Lemma 6.11 and Lemma 6.7 (with respect to
M;and 6, @ -+ ® 64— @ 8 X 841 @ Sp10 @ -+ - ® §,) to infer that

Ja (. jﬁ{,ﬁk(g/.m) CR) (wk)»)ilk), (Wit)u,)
1s holomorphic at A = 0. Our claim follows. U

Corollary 13.12. — Conjecture 6.12 holds for any irreducible representation induced from ladder

representations. In particular, it holds for any unitarizable representation.

Proof. — We already know the necessity part of the Conjecture (in general). The
sufficiency part follows from the previous Theorem using Corollary 4.2. The last part
follows from the description of the unitary dual of G [Tad86]. O
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Remark 13.13. — In the complex case, every unitarizable representation is parabol-
ically induced from a character. Therefore, Conjecture 6.12 holds for unitarizable repre-
sentations in the Archimedean case as well.

13.4. Generic representations.

Proposition 13.14. — Let T € TG, Then the elements {o™ : 7' € B()} of Eg(X, %)
are linearly independent and hence dim Eg (X, %) > b,. Moreover, for any x € X and a set T of
representatives for [B1(7), the non-zero elements in

{a”/ .’ e}

X

are linearly independent in Homg: (v, G). Thus dim Homg: (7w, G) > [b]; — 8, x) where

5 — 1 if G is not quasi-split and w1 = § x 87 for some § € Ty,
o 0 otherwse.

Progf. — By Lemma 2.2 the distributions {B, : 7’ € B(JT)} are linearly indepen-

dent. By Theorem 12.4 and smooth transfer, we infer that B 7’ € B(s) are also

QB"’( )’
linearly independent. Hence, the linear independence of {o™ : 7" € B()} follows from
(2.12).

To prove the second part, let € = n(xwy) so that x € X and let

{lx1e[Blm):n"#%n" -n} e=-—1,

[Bl.(r) = {[B](n) .

Choose a set of representatives ', for [B].(;r). Since there is at most one 7" € B(7) such
that ' >~ x’ - n, we have |I'¢| = [b]; — 8¢.r)-

By Lemma 3.8 and Theorem 12.4, @™ % 0 if and only if [7'] € B, (7).

We claim that the restrictions of the distributions B/, 7’ € I’ to §(G’®) are linearly
independent. Indeed, otherwise there would exist a non-trivial linear combination

D aBo(f +ef))=0 YV eS(G).

By (2.15) it follows that

> aBu+ Y €ayBy,=0.

w'ele w'ele

This contradicts the linear independence of B/, 7" € B(r).
As before, using in addition the property (3.5) we infer (using smooth transfer) that

n/ 7z

the distributions %(m,/, ) ' € I'c on G, and hence the functionals {oz ' e}, are
linearly independent. The Proposition follows. O
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Corollary 13.15. — Let w € IT], and x € X. Then

gen,reg

0 b, =1andxe X,

dim Homg: (7, C) = )
[b], otherwise.
This follows from Theorem 6.1 and Propositions 13.14 and 13.9, by noting that if
m eIl then 8., ) =0 unless b, =1 and x € X~

reg
Recall that any 7 € IT?_ can be written in the form

gen
T >0 X -+ X 0y

where o; is the base-change of an essentially square integrable representation, and the
o;’s are unique up to permutation. Denote by » = 7(7r) the number of indices ¢ such that
o; is itself essentially square integrable. Clearly b, < 2" and [b], < 2m=C~=1.0 If 7 € erg
then equalities hold. In general however, [b],; may be much smaller. For instance, if 7 1s
induced from the trivial character of M then () = n whereas [b,] = [ 7] + 1.

We apply Lemma D.1 and Corollary 13.15 to improve the lower bound obtained
in Proposition 13.14 on the dimension of the space of local unitary periods of generic

representations. For convenience, set

20 ifi>0,
20=11 ifi=—1andxeX",
0 ifi=—landxeX".

Corollary 13.16. — Let w € 13, and x € X. Then
(13.5) dim Homg. (7, C) > 27",

Moreover, equality holds if w € T17,

reg”®

Comecture 13.17. — For any w € I3, and x € X we have an equality in (13.5)

13.5. Further remarks. — In the non-regular case, the naive upper bound on
dim Homg: (7r, C) obtained from the Geometric Lemma is much coarser than the ex-
pected bound. For instance, in the case where 7 is the principal series representation
induced from the trivial character of My, all Py-orbits are relevant their number is
DS, wi—1 218wI=1 \which is of course much larger than 2"'. (Recall that §,, is the set
of fixed points of w.)

The following remark was communicated to us by Yiannis Sakellaridis. Suppose
that E/F is unramified. Then it follows from Hironaka’s results [Hir99] that Conjec-
ture 13.17 holds for unramified (generic) representations. Indeed, Hironaka showed that
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SX)* = S(X/K) is a free module of rank 2" over the Hecke algebra H = H(G, K) =
S(K\G/K) [ibid., Theorem 2]. Therefore, for any 7 € I1,,, we have

Ea(X, %) = Homg (S(X), 1) = Homy (SX)X, (7))
~ Homy (Hzn, (JTV)K) ~C”.

Note that the restriction map ¢ is injective since if / : S(X) — 7" is a non-zero inter-
twining map then /f is onto, and therefore by averaging over K, ¢(f) is also onto. Thus,
dim & (X, %) < 2". Using (13.5) and Corollary 13.16 we get that if in addition 7 is
generic then ¢ is an isomorphism, dim E¢(X, 7*) = 2" and dim Homg: (7, C) = 2"~ for
all x € X. It would be interesting to generalize this type of argument to any generic rep-
resentation.

13.6. Conclusion. — Let us summarize the main results obtained so far about the
spaces Eg(X, 7*) and Homg: (;r, C) and what still remains to be seen. The study of the
space Eg (X, %) reduces to the case where 7 is pure and Galois invariant. For irreducible
representations of the form w =6, X --- x 8; € I1* with §; essentially square integrable
we expect that

(13.6a) dim £(X, *) = 2#5en)
(13.6b) dim Home, (., G — 4 12 dim 6 )T il G is quasi-split,
' o L5 dimEG(X, )|  otherwise.

This is known if E/F and 7 are unramified or if the Galois-invariant §,’s are distinct in
which case an explicit basis for £ (X, 7*) is given by (o™ : 7' € B(x)}. In general we
know the inequalities > (even if §; are ladder representations) although it is not clear how
to construct, even conjecturally, a nice basis for Eq(X, 7*) if w ¢ IT7, -
Note that (13.6a) and (13.6b) hold at least if we twist the Galois-invariant §,’s by
|det -|* for A;’s outside finitely many ‘hyperplanes’ of the form ¢* %
One may even wonder whether in general E(X, " x 7)) ~ (S'Gnl (X, ) ®

=C.

&,, (X, my) for any 7; € M%7, i = 1,2. Again, this holds upon twisting 7, (or )
by |det-|* for ¢ outside a finite set and the inequality

dim E(X, 7} x 75) = dim &g, (X, 77) dim Eg, (X, 75)

always holds.

Another aspect not discussed here is the computation of the local open periods on
special vectors (such as new vectors). This will be useful to the analysis of the growth
of unitary periods (cf. [LOO07, Sar04]) as well as for possible arithmetic applications
(cf. [COO0T7]).
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Appendix A: Inner product for induced representations of GL,,, by Erez
Lapid and Omer Offen

In this section let G = GL,(F) where F is a local field and let @ = Q, be the mirabolic
subgroup of G, ie., the stabilizer of (0,...,0,1) under the right action of G on row
vectors.

A.1 Canonical inner product. — Fix a non-trivial character ¢ of I and let 7w € I,,.
Recall that for simplicity we write W () = WY (1) and W(x") = WY (V). It follows
from the theory of Rankin-Selberg integrals developed by Jacquet, Piatetski-Shapiro and
Shalika [JPSS83, JS90, Jac09] that the integral

(A.1) I(W, WY, 5) = L(n, 1) W(@WY (p)|detpl’ dp,
U\ Q.

WeW(m), W eW(r")

converges for Res > 0 and admits a meromorphic continuation. Here, L(:, 1+) is the
Tate local L-factor attached to the trivial character of F*, which is included because
of our measures convention. In the p-adic case, Bernstein showed that I(W, WY, s) is
holomorphic at s = 0 and its value defines a non-degenerate G-invariant pairing [, -] =
[-, -]x between W(mr) and W(x") [Ber84]. This was a consequence of his result that any
Q,-invariant pairing is G-invariant and the fact that the Kirillov model of 7 contains
the space of compactly supported functions on Ug\ Q,. These results were subsequently
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proved in the Archimedean case by Baruch and Jacquet respectively ([Bar03]," [Jac10,
Proposition 3]). Therefore, [-, -] is defined in the Archimedean case as well.
Note that the Rankin-Selberg zeta integral

Z(W, WY, ®,5) = W(@W" (@) @((0,...,0, 1)g)|detg| dg,
Uo\G

P eS(F)
can be written as

L(n, 1) I(W(g, m)W, W(g, )WY, s = 1)®((0,...,0, 1)g)
A\G

x |detgl’ dg.
In particular, since an\G ®((0,...,0, )g)|detg| dg = L(n, IF*)Ci)(O) we get
Z(W, WY, @, 1) =W, W”]d(0).

Note also that in the case where 7 € I, is unitarizable we have W (") = (W :
W e W(mr)} where W(g) =W(g), g € G. In this case we have

[W, W], =Lz, 1p) / W[’ dp
Up\Q»

where the integral converges.

A.2 A remark by Jacquet on the square-integrable case. — In the case where 7 € I, the

sqr
integral

(W, W) = W(QWY(g) dg

ZUg\G
converges, and by uniqueness, it is proportional to [W, WY]. For completeness, we include
the following result which was kindly communicated to us by Jacquet. (We will not use
this result in the sequel.)
Lemma A.1 Jacquet. — With our normalization of measures, we have
1
[W.WY]==y(0, 7Y, Ad; ¥ ") (= 1) "L(1, 1) (W, W")

n

Jor any w € Ty, and any W e W(), WY e W(rrV).

12 See [AG0O9b] for a stronger statement.
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Proof. — Consider the local functional equation
ZWL WY 0,1 —5) =, (=) y (s, x 75 )
x Z(W(wo, )W, W(wo, YW, @, 5)
where W? (9) = W(wq'g™'wy). Write
y(s,mxx ) =y (s, Ad; )y (s, I ).
Thus, Z(W?, W¥?, &, 1) is equal to

@7 (=1)""y (0,7, Ad; ¥)y'(0, 1y )
x Res,—g Z(W(wo, 1YW, W(wo, )WY, @, 5).

To compute the residue of the Rankin-Selberg integral at O we first recall the Tate integral
26.9= [ solrar pes®)
F*

which converges for Res > 0 and admits a meromorphic continuation with

lim,_ 052 (¢, s) = V,L(g}’lgjqus(oy We can write

(A.2) Z(W, WY, ®,5) = W(@W" (9) Z(¢,, ns)|detg|’ dg

ZUp\G
where ¢,(1) = ®((0, ..., 0, )g). Note that [sZ(¢,, ns)||detg|’ is bounded near s =0 by a
constant multiple of ¢™H@) where @ is the fundamental weight corresponding to the

parabolic Q,Z. On the other hand by easy estimates on the Whittaker function (e.g.,
[LMO09a, Wal92]) the integral

/ W(g
Uo\G

converges in a neighborhood of s = 0. Therefore, we can take the residue at s = 0 inside
the integral of (A.2) to obtain

2
@ HO) g

L(1, 1y
Res,—o Z(W, WY, @, 5) = #cp(m W(9)W" (g) dg.
ny’ (0, 1« ) ZUo\G
Thus,
Y
[W, WY = =y (0, m, Ad; Y. (= 1) ' L(1, 1)
n

X (W(wo, )W, W(wo, nv)Wv).
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Since W (wo, )W, W(wy, m¥YWY) = (W, WY) = (W?, W*7) we get
[Wo, W] = %y(O, 7, Ad; Y@ (=1 L(1, 1) (WP, WYY,
This is equivalent to the statement of the Lemma. U

A.3 Let us analyze a few properties of [, -]. Clearly,
A3 Werw ], =W,

for any W e W(mr), WY € W(xr") and a character x of F*.
Suppose now that w € I, and ¥ has conductor Op. Let Wj € W(rr) be the
spherical Whittaker function normalized by W{ (¢) = 1. Then we have [JS81b]

A.4) [Wo. Wi '] =L(1, 7 x 7).

We will now study the behavior of [+, -] with respect to induction. Let P = MU be a
standard parabolic subgroup of G, o € Hg’gn and A € af{,l’c. Let (-, )y = I ([, -15) be the
pairing between the induced representations I (o), A) and IWW(c"), —A) given by

(0. 0")y = fP\G[w(g), 0" (9], dg

where [+, -], 13 defined with respect to M. Let W(g, o, 1) be the Jacquet integral defined
in Section 1.4 and recall the convention W(¢", 0", —1) = WWI(QDV, oV, —X) for ¢ €
IW(eY) =TV (o).

Proposition A2, — We have

(A‘S) (§0, @V)Nl = [W(SD, g, )‘-)9 W(QUV, O,\/, _)\-)]
Jorall e W (o)), ¢* € IW(0")) and A € ay; ¢ such that 1(o, 1) is irreducible.

Remark A.3. — In the principal series case (i.e., when P is the Borel subgroup) this
follows by analytic continuation from [LLO07, Proposition 1]. The extension to the gen-
eral case provided here follows the same reasoning, but is technically more complicated.

Progf. — We first reduce to the case where o is unitarizable (or even, o € Il
is square integrable). Indeed, suppose that o = IM(8, u) where § € H]qur. Let & €
Iv(W(0)) and £ € Iy(W(o")). We may write § = WM (g, §, ) where ¢ € I, WV(9)).
Similarly, write §¥ = WM(¢¥, 8", —) where ¢¥ € I,(W(8")). Thus, Wy (§,0,1) =
WiL(p, 8, + A) and Wy (Y, 07, —1) = Wr(¢",8Y, = — X). By assumption (applied
to § and M instead of G) we have

(£0).6" ()] = /Q RO RN
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for all g € G. Hence,

6y = / [6(0).£"(9)] ds = / / 50 [0 2. 0" (4], dp e
P\G P\G JQ\P

- / lv@.¢" @], de=(¢.¢"),.
Q\G
Once again by assumption (applied to § and G) this equals

[W(p, 8,44+ 1), W(p", 8", -2 — )] =[W(E, 0,0, W(EY, 0V, —1)]

as required.
From now on, suppose that o € HM is unitarizable. In this case W(o'¥) = {W :

W e W(o)} where W(m) = W(m) for all meM and IW(0Y)) ={p: ¢ € IW(0))}
where @(g) = ¢(g). Thus, we can take ¢" = @. Note that W(gp, 0, 1) = W(p", 0", 1).
We first observe that the right-hand side of (A 5) is holomorphic whenever I(o, 1) is
irreducible. Indeed, it is known that Z(w(f(fl’(\; Xv(fl(: 1.2 §s entire in (A, ) € a\I o X G
[JPSS83, Jac04a]. In particular, it follows from (1. 12) thatZ(W(<p, o, M), W(pY,a",—1),
®, 5) is holomorphic at (A, 1) whenever I(o, 1) is irreducible. However, Z(W(g, o, 1),
W(pY,ov,—1), D, 1) is &D(O) times the right-hand side of (A.5). Our claim follows.

By analytic continuation, it is enough to consider the case A € ia};. In fact, by

twisting o we can also assume without loss of generality that A = 0.

By induction on n, we will reduce further to the case where P is maximal and at
the same time to the existence of a positive constant ¢; depending only on normalization
of measures, so that

(A.6) (0. 90")y = o [W(g. 0), W(g", 0)].

Let Q be a maximal parabolic containing P and let § =1 1(VV((I)) Let ¢ € [yy(W(0))
and let £ = W(¢p, 0,0). Then & € I; W(8)) and Wy (€, 8, 0) = Wy (¢, o, 0). We have

(0.0")y = fP\G[sv(g), 0" (9], de

= f / 8o(9) ' [@(g9). 9" (49)],, g dg.
Q\G J/P\Q
By induction hypothesis, the inner integral is
ai[£@. @],
Thus,
(ga’(pv)l\/fzcllﬁ (E Sv) _CMCL [W(S 8,0), W(E 87,0 )]
=y [W(p,0,0), W(p¥,0",0)],
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where for the second equality we used the assumption for the maximal parabolic case.
Thus, knowing (A.6) for a maximal parabolic implies it for a general parabolic and im-
plies further that whenever P € QQ € G we have

G_ L G
‘M= ‘M OL-
By [LOO07, Proposition 1] we know that Cg’fo = 1. We therefore obtain ¢ = cﬁo (cﬁ}o)_l =1

for all M. For the rest of the proof we do not need to worry about normalization of
measures.

Suppose now that P is maximal of type (n, ny). We will prove the assertion by
applying Fourier transform 7, times to functions on ny-dimensional vector spaces. Write
M =M, x My where M, 2~ GL,, in the upper diagonal block and My >~ GL,, in the lower
diagonal block. Let w = wy, = (Iﬂ2 b ) and let P'=M'U’ be the maximal parabolic
of type (ny,m) so that M' = w™'Mw = M, x M| where M, = w Mw, i =1, 2. Let
U’ be the group of upper unitriangular matrices in M/, : = 1,2 and Q; the mirabolic
subgroup of M, i = 1, 2. We similarly define the analogous subgroups U; = wU'w ™" and
Qi=wQw ™ of M;,i=1,2.

We can identify U" with the additive group of matrices of size ny X n;. For i =
no+1,...,nlet

C;={I,+ & : & a column vector of size ny in the i-th column} C U’
andlet X; =C---C,, i =ny, ..., n. In particular, X,, = U’. Similarly, let

R; ={I,+ & : & a row vector of size ny in the i-th row} C ‘U’
and Y, =R,,+1 - R;_;. We have a pairing between C; and R,_;.

Note that X; and Y; are both normalized by MU and [X,_;, Y;] € U. In partic-
ular, V; = U X,Y; and V, = U X,;_, Y, are unipotent groups.

Define the groups
. M/sz 7> Ny,
T louu i=a,.

Note that for 7 > 1y, the modulus function §; of S; is |det|*™2"1=2 For i > ny let ¥; be the
character on V; which is trivial on X;Y; and coincides with ¥ on U’|. We also define

RV (A /A
S, =M,V,, i>ny

so that 8! = C;S; for ¢ > ny and S} =R, S,_ for ¢ > ny 4 1. It follows that the modulus
function &/ on ! satisfies 8/|s, = d;|det| for i > ny and 8|5, , = 8,_|det| ™" for i > ny + 1.
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. . Gﬂ‘ . .
Write 0 = 01 ® 0y with 0; € [1gen and view 0y also as a representation of Mi,. We
define representations of Q, as follows

A md@ V) @) i=m+1..n,
| Indg y i=n,,

where W(o,) denotes the completion of W(oy) with respect to the inner product
||W||$/V(02) = [W, W], and the prefix L? indicates I?-induction. Thus, for 7 > ny

A= {(p : Q, = W(0,) measurable : ¢p(muvg)

§;(m)
|det m|

- Wv)( ) Wi m|e@]

forallge Q,, me M;, veV,,

el ::f [r265) [em—ra oo}/{ll.lll:o}.

i n

The smooth part of A4; is contained in the smooth induction IndSQI,” W(oy) ® ¥;) con-
sisting of smooth functions ¢ with values in W (oy) satisfying the equivariance property
above [Pou72]. Similarly for i = ny.

Using induction by stages we have

A7) A =L Ind$ (L Ind{ (W0 ® ¥1)). i > m,

A.8) Ay =12 Ind$" (L-Indy  (W(on) ® Y1), i>nm+ 1,
S/

A.9) A, =L* Ind§:+l (L*-Ind*" ).

For any ¢ > ny the restriction to C; identifies LQ-Indzg W(0y) ® ¥;) with L2(C;, W(0y)).
Similarly for any ¢ > ny + 1 the restriction to R,_; identifies LQ—Indgj_l W(oy) @ ¥;_1)
with LZ(R;_;, W(0y)).

Lemma A.4. — Under these identifications, the Fourier transform
L? (Ci’ W(UQ)) — L’ (Rz’—h W(UQ))
induces a unitary equivalence of representations

Fi:12-Indy (W(oy) @ ¥,) — L:-Indy  (W(on) @ V1), i+ 1.
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Stmalarly, for 1 = ny + 1 we have a unitary equivalence of representations
S p— s,
. 92 no+1 9 no+1
Froer 1 LE-Indg” T (W(02) ® Yip41) = Li-Indyy ™ ¥

given by
[Frp10](vm) = Yo () |detm| 2 G(x,)(m), meMy,veV,  =UU

where X, is the character of C,yyy given by x,,(c) = W (mem™"), and ¢(x,,) = f( N ©(0) xm(0) de
“n9
denoles the Fourier transform of .

Progf: — Consider first the case ¢ > ny + 1. Suppose that f; € LQ—IndZE(W(og) RY;)

and f; € L2—Ind:§7  W(02) ® ¥;_1) are such that the Fourier transform of fi|c, is folr,, -
We have to check that for any s € S! the Fourier transform of £’ := £ (-s) (as a function
of G;) is f; :=_f5(-s) (as a function on R;_;). We check this separately for the cases s € X,
seYi,seU},seC;, se R and s € Mj. In the first three cases /' = f; and f; = f;
because ¥, is trivial on [X;U}, R,_ ] and ; is trivial on [U}Y,_, G;]. In the case s € C;,
/i 1s the translate of fi|¢, by s and f;'(r) = ¥ ([r, s1)fo(r) for any r € R,_,. Similarly, in
the case s € Ri_y, f'(c) = ¥i([c, s])fi1(¢), ¢ € C; and f; is the translate of f, by s. Finally,
for s € My, f;'(¢) = |det sl_%ag ()i (s Les) and £, (r) = |d€t5|%0’2 (5)2(s7'rs). Thus, all cases
follow from standard properties of the Fourier transform.

In the case i = ny 4 1, in order to check that F,,, is an isometry (and well-defined)
we compute

: A~ 2
Pty = [ 1000 ldetnl d

U,\M,

=f /~|ﬂmmeMM@m
MEVRSAYeS

)

= f |02 )¢ () | i It ] dim

9, \M;

. 2
:f@/ . H<p(xm) Hmldetmldm

"
= [ Lol =Tt
C?ZQ+1

Finally, it is straightforward to check that F,,;, is an intertwining map of representations
of S .. O
nz+1
In view of (A.7), (A.8) and (A.9) we conclude that the map F; induces a unitary
equivalence of representations

Bi . Al‘ —> Al‘fl.
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Note that if ¢ is a smooth vector in A, then for any g € Q, the Fourier transform of ¢(-g)
(a function on C,) 1s B¢ (-g) (as a function of R;_)).

We can now complete the proof of Proposition A.2. Let ¢ € I(W(0)) and let ¢, :
Q, — W(ay) be given by

@.(0) =8lp(wp), peQ,

where 8! : W(o, ® 03) = W(0,) denotes the evaluation map at ¢ in the first variable. We
claim that ¢, € A, and

(2. 0") = lll?
Indeed,
2 2
nlln = n d
le.l; fl\ Lo, [0, |y, @0
AR ;o
= 0 di' d
—/Ui\@mq)/ur li ml)”W(«rg) wam,
N AI\QM U ” 851(/)(7721 wu’) Hi\/(oz>8"’(w_lml w) i dm,
/I‘Jl\gﬂl ./ m® w“ HW(@) dil dm = / Hﬁf’ wu)HW(a@@) i
20NE
Define ¢; € A, i=n— 1’ ..., ng recursively by ¢; = Biy1¢;41. In view of the above we
have

(0.0"),, = lonll, = / 0@ d.
Up\Q,

It remains to see that ¢,, is the Jacquet integral W(g, o, 0) of ¢. To show this, observe
first that ¢ > ¢,, is an intertwining map with respect to Q,,. Since ¢ is smooth, so is @,.
Thus, ¢ = ¢,,(¢) is a Whittaker functional on I(o). By uniqueness, we necessarily have
@, = cW(gp, 0,0) for some scalar ¢. To determine ¢, it is enough to verify that ¢,,(¢) =
Wi(e: ¢, 0,0) for any ¢ of our choice such that W(e: ¢, o, 0) # 0. We will show this for
@ that is supported in the big cell MwU'. Fix such ¢. By descending induction on 7 we
show that for any ¢ > ny and «' € U" we have

oi(«) :/ . (u) duz/ 8! o (wur) du.

This follows immediately from the definition of B; in view of the fact that in our case ¢,
is compactly supported on U’ and therefore the Fourier transform with respect to C; is
given by a convergent integral. By the same reasoning we get
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@, (€) = / 5;’2%(@!’)10_1 (u’) di =W(gp, o,0).
U/
The proposition follows. O

A.4 Tinally, we reinterpret Proposition A.2 in a way suitable for the setup of Sec-
tion 5.

Assume that # = 2k and let M = M ;. Recall the automorphism 6 of G given
by g+ wo'g'wy. Let w € ngn and recall the equivalence 1), : W(n)é — WV (") of
(1.3).

Embed G; in M via g g’ = (g, ¢"). Recall the mirabolic subgroup Q, of G;. For
o=mQ@mecIM let

gen

By (W) = L%, 1F*)( W(p)ldetpl® d/ﬂ) . WeW(o).

Ué\Qi s=0

Then 0 # 7 € Homg WV (0), C) and B7 (W, @ W) = [Wy, 9, (Wy)], for any Wi, W, €
W(r).

Now let € = (ny, ..., n,) be a composition of £ and let L = M, ). (We recall that
% =, ...,n).) Let o € TIX_ be of the form

gen
<«
0=0Q 0

y M+«
whereo =01 ® - ®o, e MM and & =0, ® --- ® 0 € Mger . Define

gen

(A.10) ﬁg(W)=[]_[L(ni, m)] ( / W(p)|detp|zczp> ., WeW(o)
i=1 (UpNM, )7\ O} =0

where Q, is the mirabolic subgroup of M, (i.e., the product of the mirabolic subgroups
of G,,1=1,...,s). From (1.5) and Proposition A.2 we obtain
Corollary A.5. — Suppose that v =1} (0, 1) € TIN. with o as above and wok = A (50 that

gen

A s of the form (1, (,lT) ). Then v is G -distinguished and

B (Wi'(g.0,0) = / Ble@]dg. ¢ LI (W)

PI\G]

Appendix B: Distinguished representations in the Archimedean case,
by Avraham Aizenbud and Erez Lapid

In this appendix we consider representations of G = GL(n, C) and a unitary group
G*=U(p, ¢) € G defined with respect to a Hermitian form x with signature (p, ¢). Re-
call that we denote complex conjugation by 7, the diagonal torus of G by Mj and the
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upper-triangular Borel subgroup by Py. For a character x of My we denote by I()x) the
representation induced from the character x on P.

Let Wy be the set of involutions in W. Any w € Wy can be written as a product
of g, disjoint transpositions where the number of fixed points of w is f,, = n — 2g,. Set

m@w) = (5 ) =(,",) (=0ilg, > w() =min(p,g)

—Sw P—8w
In this appendix we will prove the following result.

Theorem B.1. — Let x = (X1,.--, X») be a character of Mg such that |x(t)| =
6 |4 with Ay > -+ > A,. Then

dimHome (I(x).C) < Y m(w).
weWoiwyx=x"
Thus, if v is the Langlands quotient of 1()) then
dimHome: (7, €) < )~ m(w).
weWoiwy=x"
In particular, if v is G*-distinguished then there exists w € Wy with g,, < v0(x) such that wyx = x*.

Hence, 7 is T-invariant and v () < to(x).

For w € Wy set I, = {(z,)) : ¢ > j, w(:) < w(j)} and define for any function « :
I, = Z., a character of M, by

4 K (i)
o (diag(tr, ... 1)) = ] [—] :

(ty)€ely Zf]
Let

Sw(x) = {K Ly, —= Zoo | X wy ™! :a,fwak_l}.

Note that if x satisfies the assumption of Theorem B.1 then

{k =0} fwy=x",

) otherwise.

Sw(X) = {

Thus, Theorem B.1 would follow from the following Proposition which will be
proved at the end of the appendix.

Proposition B.2. — Let x be a character of My. Then

dim Homg: (I(x), C) < Z m(w)[S, (x)]-

weW,
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We will prove the Proposition by representing the G*-invariant linear forms on
I(x) as equivariant distributions on the Schwartz space of G/G"* and using the analysis
of equivariant distributions developed in [AGO08].

Henceforth, we will use the following notational conventions. For now, G is an
arbitrary group.

e For any G-set X and a point x € X, we denote by G(x) the G-orbit of x and by
G* the stabilizer of «.

e Yor any representation of G on a vector space V, we denote by V© the subspace
of G-invariant vectors in V. For a character x of G, we denote by V&% the
subspace of (G, x)-equivariant vectors in V.

e Given manifolds L. € M, we denote by Nlﬁ’[ := (Ty|r)/ Ty the normal bundle
to L in M and by CNM := (NM)* the conormal bundle. For any point y € L,
we denote by N%I} the normal space to L in M at the point y and by CN% the
conormal space.

e The symmetric algebra of a vector space V will be denoted by Sym(V) =

@kzo Symk(V).

We will use the theory of Schwartz functions and distributions on Nash manifolds
as developed in [AG08] generalizing the usual notions for R"."

We denote the Fréchet space of Schwartz functions on a Nash manifold X by §(X)
and the dual space of Schwartz distributions by S*(X) := S(X)*. For a closed subset Z
of a smooth manifold X we set S$(Z) := {& € S*(X) : supp(§) € Z}. More generally, for
a locally closed subset Y € X we set S¢(Y) := S;k(\ ) Y).

If U 1s an open Nash submanifold of X then we have the following exact sequence

0—SX\U) - S5X)— S*(U) —0.

For any Nash vector bundle E over X we denote by S(X, E) the space of Schwartz
sections of E and by §*(X, E) its dual space.

We denote by Dx the bundle of densities over X [AG08, A.1.1] and by G(X) :=
S*(X, Dy) the space of generalized functions on X. More generally we set G(X, E) :=
S*(X, E* ® Dx) for any Nash vector bundle E over X. Note that S(X, E) is naturally
embedded into G(X, E) but not into S*(X, E). For any locally closed subset Y of X, the
spaces Sx (Y, E), Gx(Y, E) and Gx(Y) are similarly defined.

Suppose that a group G acts on a Nash manifold X. Then G naturally acts on
S(X) and §*(X), and Tx has a natural G-equivariant structure. Therefore all the stan-
dard bundles constructed from T, such as Dy, also have a G-equivariant structure. This
gives rise to an action of G on §(X, Dx) and the dual action on G(X). Note that the
G-action on G(X) extends the action on §(X) and similarly the action on §*(X) extends
the action on S(X, D).

We will use some standard facts about equivariant distributions.

13 In the present context we will only apply it to smooth real algebraic manifolds.
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Proposition B.3. — Let a Nash group G act on a Nash manmifold X. Let 7. € X be a closed
G-wnvariant subset with a G-invariant stratification 7. = Uf:o Z;. Let x be a character of G. Then

[ 00

dim(S%(2)) <ZZdlm *(Z:, Sym (CNX)) “).

=0 k=0

The proofis the same as in [AGS08, Corollary B.2.4].

Let ¢ : M — N be a Nash submersion of Nash manifolds. Let E be a bundle
on N. We denote by ¢* : G(N, E) - G(M, ¢*(E)) the pull back of generalized functions
[AG09a, Notation B.2.5].

Proposition B.4. — Let M be a Nash manifold. Let K be a Nash group. Let E.— M be a
Nash bundle. Consider the standard projection p: K x M — M. Then the map p* : G(M, E) —
GM x K, p*E)® is an isomorphism.

For a proof see [AG09a, Proposition B.3.1].

Corollary B.5. — Let G be a real algebraic group and H S G a closed subgroup. Then
GG =G(G/H).

Proof. — By [AG10, Proposition 4.0.6] the map G — G/H is a Nash locally triv-
ial fibration [AG10, Definition 2.4.1]. The assertion follows from Proposition B.4 by a
partition of unity argument (cf. [AG08, Theorem 5.2.1]). O

The following version of Frobenius reciprocity is a slight generalization of [AG09a,
Theorem 2.5.7]. For the convenience of the reader we sketch a proof.

Theorem B.6 (Frobenius reciprocity). — Let G be a Nash group acting transitively on a Nash
manifold 7. and let ¢ : X — 7. be a G-equivariant Nash map. Fix z € 7. and let X, be the fiber
of z. Let X be a tempered character of G [AGO8, Definition 5.1.1]. Then S*(X)X is canonically
somorphic o S* (XZ)G/Z’X‘S;II‘SG.

Moreover, for any G-equivariant bundle E, on X, the space S*(X, E)SX is canonically isomor-
phic to S* (X, E| XZ)GZ’X‘SQI‘SG. Here 8¢, and 8y are the modulus characters of the groups G and H.

Proof. — As in [AG09a, Theorem 2.5.7], we will prove an equivalent state-
ment for generalized functions. Namely, we will construct canonical isomorphisms HC :
GX,E)9* — G(X,,Elx )% and Fr: G(X_, E|x)%* — G(X, E)%.

Consider the natural submersion a : G x X, — X and the projection p: G x X, —
X.. Note that the equivariant structure of E gives us an identification ¢ : a*(E) —
/*(Elx.). Consider the tempered function f on G x X, given by f(g, x) = x ' (g). De-
fine the map a*7 : G(X, E)** — G(G x X., f*(Elx)® by @ (€) = f (a*(£)). Here,
the action of G on G x X, is on the first coordinate. On the other hand, By Proposi-
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tion B.4 we have G(G x Xz,lf"(E|Xz))G = G(X., Elx.). Together, this gives the required
map HC. A similar modification to the construction of Ir in [AG09a, Theorem 2.5.7]
gives rise to Fr in our context. UJ

Proof of Proposition B.2. — Let G = GL,(C) and H = U(p, ¢). Note that after iden-
tifying Dg and D,/ with the trivial bundle (in a G-equivariant way) we have

Noj—

10" = GG = §* (Gt

where Py acts on generalized functions on the left. Therefore

Homy (I(), €) = G(G/H)™*% " = §*(G/H)P 7%

We can stratify G/H by Py-orbits. By Remark 6.3 any such orbit contains a unique ele-
ment x of the form x = wa where w € Wy and a € M, 1s such that ¢, = 1 if w(z) # ¢ and
a; = =1 otherwise. The number of Py-orbits on G/H above a given w € W, is precisely
m(w) and moreover,

(B.1) My =My ={teM:twlfw=1}={mw(™") w:te M.

Using Proposition B.3, it suffices to show that for any w and @ as above we have
o * k X yyPoxdy
3 dim(S*(Po(x), Sym*(CNX ) ) < [Su00)-
k=0

By Theorem B.6 and the relation 8(1)/ 2|p6 = dp; [LLRO3, Proposition 4.3.2] we get

PO,X(S(}W&};B]&O

8" (Po(a), Sy (ONF )™ =" (1) Sy (N )
= 5" ({x). Sym" (CN},, )™
= (Sym'(N},).) @ ©)"".

We reduce to showing that
dim(Sym(Ng/5 ) ®= €)™ < [S,(0)]-
To that end, it suffices to show that

(B.2) Sym(Ni/t) )@ C= P«

K:Iw—>Z20

as a representation of Mj. Indeed, by (B.1) we have

achiy =xhy <= Kk €S,(X)
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and hence it would follow that

Mg, x

dim(Sym (N5 ) @ €)""" < dim(Sym(N§/ ) ®@r €)™ < [S,(x)]

as required.
It remains to show (B.2). We will deduce it by showing that

G/H ~
Ny ®r C= Do,
1€l

as a representation of M where §, is defined by §,(y) =4, ;.
We have

Npyv.« = Herm /Im(¢)

where Herm is the space of n x n Hermitian matrices and ¢ : Lie(Py) — Herm is defined
by ¢ (b) = bwa + wa'b*.
It is easy to see that
Im(¢) = Spang ({¢i.u(- ewgy.i 1j = i}) N Herm
= Spanc({ew—, g w() > z}) N Herm
= Spanc({ez-,j cw() >1or w(z) Zj}) N Herm,
where ¢;; 1s the standard basis for n x n matrices. Therefore
Npyo.x = Spang({e;: > w(),j > w@)}) NHerm
= Spanc({ei,w@ 1>, w() > w(z)}) N Herm
= Spanc({ei,w(j) 1 (1,)) € Iw}) N Herm
= @ Spang (¢ w())

{(iJ)EIu):i:w(]l)}
& ED Spang (€;.u() + €wg.is ¥V —1(ewg) — wi.i)-
(G elyi<w()}

By (B.1), the action of My on ¢; ;) is given by &, = 4;/4. Thus, as a representation of
M we have

Npy.« ®r C = @ s, ) & @ (Olg([.‘/-) @ ag(z;/))

{@)elw,i=w ()} {@y) €Ly, i<w ()}

= @ s, D @ (s D s 00))

{Gely.i=w()} {G)ely,i<w())}
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= @ s, D @ s

{@)elw,i=w ()} {@y)ely,i<w()}

® @ o6y = @ s,

(G ely,i>w()} 1ely,

as required. O
Finally, we go back to the definition of the open periods in Section 4.

Theorem B.7. — For any A € ay; ¢ with ReAy > -+ > Re A, the map o +— J(a, 1) is
holomorphic and defines an isomorphism EMO (X 11”{10) — 5(, (X, I(Tagy, A)F).

Proof. — Let x; be the character ¢ — |4|*' ... |t,|* of My. The argument above

shows that for A as in the statement, unitary periods on I(1y,, A) are supported on open
o . : G/H
orbits, in the sense that for any x outside the open orbits we have (Sym(NPO/(x)’x) ®r

C)P% = (0. We can now argue exactly as in the proof of Lemma 6.7.

Appendix C: The relative trace formula, by Erez Lapid and Omer Offen
For /" € S(G}) and ® € S(X,) let
K () =) /' (x'v), xreGj
yeG’

and

Ko(@ =) ®(reg). g€GCa.

xeX

Define the relative trace formula

RTF(®) = / Ko (u) o (w) du

Uo\Up,a

and the Kuznetsov trace formula
KTF / / Kf/( u1 , )lﬁo(uluz) duy dus.
t \UEJ A U(]\L6 A

Expanding the geometric sides according to double cosets and applying [JacO3a,
Théoreme 1.1] for the non-Archimedean case and [AG] for the Archimedean case, we
see that for @ and /” matching we have

RTF(®) = KTF(f").
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Using the spectral expansion for the kernel (cf. [Art78, §4]) and the computation
of the Whittaker coefficient of Eisenstein series, the spectral decomposition of KTF(f”) is
given by

KTF(f)= > B(/ 7', )N

A x)ex’ Y o

where X' is the set of pairs (M', "), 7’ € C™ up to conjugation and we recall that
B(/' : 7', )') was defined in (11.1).

The spectral expansion of RTF(®) was considered in [Lap06]. Only pairs (L, ),
7 € C* which are conjugate to (L, %) contribute. We can conjugate such (L, 77) to have
the form

T=0® Q0,80 ® Q0,80 ® Q0!

where g; € C®+™" i =1,...,5 and o, € CGI"”J‘T, J=1,...,r. Denote by X" the
collection of all such cuspidal data (L, 7). Let P = MU be the parabolic of type
(ny,...ongm+---+m,n,...,m)andlet ay = (ay)"™, i.e., the subspace of aj given
by

{(I’Ll’---vl’bsa)"lv---7)\'”/1'57---’/1“1):Vi’jv )\’Z’MJER}

We define o™ (1) € g, (Xa, I(r, 1)*), A € AL,y as follows. If x @ Gy N woM = ) then
we set '™ = 0. Otherwise, suppose that y = x e g~ € X N wyM for some g € G, and
set

o (g, 1) = / E"(hg, @, 1) dh.
(

AMNG U, MN\G,

(See [Lap06] for the meaning of the regularized integral [ *.) This is well-defined because
the M-orbit of y is determined by x, and given y, g is determined up to left multiplication
by G,.

In particular, if 7 € C** then M =G, af = af and

€.1) 0. 3) = 1o U @ Wi ifx=yegyeX, g€ Gy
' ’ 0 X ¢ Xe GA.

Of course, if L=G and xe g7' =y € X, this is just fG),\Gz @ (hg) dh.
We set

~ . (Ln))h)wl// —A .
B(®:m, 1) =By ®(@),  reial
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Theorem C.1 [Lap06]. — The spectral expansion of the relative trace formula is given by

> q‘jlf B(®: 7, ) dA

(Lm)eXT iafr, m
where M are certain combinatorial constants depending only on the types of L and M. In particular,
¢ = 1. The integral-sum is absolutely convergent.

Remark G.2. — The formulation in [Lap06] is given in a slightly different form,
but it amounts to the one given here. Note that in [ibid.] the notation suggests that o'
depends on 7 as well, but in fact it is clear from the proof that it does not. Finally, in
[Lap06], the statement is made for compactly supported ®. However, it is easy to see
that the argument extends to all ® € S(X,). First, for any such @ there are still only
finitely many G-orbits x ¢ G in X such that ®(x e g) # 0 for some g € G,. Thus, just
like in [ibid.] it is enough to deal with a single orbit. Everything boils down to extending
the majorization of Eisenstein series given in [Lap06, Proposition 6.1] to any f € S(Gy).
Examining the proof, the only place where the compact support of f was used is the
majorization of the operator norm of I(f, A) on the induced space (for Re A possibly
non-zero, but bounded). But in any case this is bounded by

S@lgll™ dg
Ga

for some N (depending on ReA), and therefore it is still a continuous semi-norm on
S(Ga). We note that the inequality [Lap06, (6.2)] is used only for fixed auxiliary com-
pactly supported functions g, g, but never for f itself.

Let us compare the two spectral expansions. Let L) be a Levi subgroup of G” and
7' e CY. After conjugation, we may assume that L] is of type (my, ..., m,, 2n, ..., 2n,)
and

T'=0{® - ®0/®0® Q0
where o/ %0/ -y for all i and ¢} > ¢; - 1 for all j. Define

be((Ly, 7)) = (L, )
where

T=0® - ®0,®bc(0])® - Qbc(o]) ®0I ® - ® 0]
and where

be(g)) =1(e; @0, 0),
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Le., 0 = ai(g)) for all j. Note that we can identify a; _,

) .
) with aL,1 via

)":(Mla"-9“‘3")\'19"-9)"7‘7/1’5,---7“‘1)'_))"/:()\'1’"'9)"7711‘17---7/1’5)’

Theorem G.3. — For any (L, w) € X7 and M as above there exists a constant ¢ depending
only on the types of L and M such that for all A € 10y, ) we have

B(®:m, ) =¢ > B(/ :7',A)

@47y w)=(L,7)

or any ® <— f. In particular, if 1 € C™% then
Jor any b

B(®:7, 1) =c Z B(f :7', ).

7’ :be(n)=m

Especially, if m € CE" then

BeW @@= Y B.(f).

7'eCY be(n!)=n

(The right-hand side consusts of two summands.)

Proof. — We will use the general linear independence of characters argument
[LROO, Lemma 4]. Fix ® = @ ®, € S(G,) and /' = Q) /) € S(G)) such that &, «— [
for all places v of I and a finite set S of places of I containing the Archimedean and the
even ones, outside of which E/F is unramified, ¥ has conductor O,, ®, = 1k nx, and

Jy =1k, Let /° be in the Hecke algebra of G(A®). Then by the Fundamental Lemma
(%)Y * ® «— f @ be(f®) where

S ®(x) = oD (xeg)ds, xeXa.
G(AS)

We infer an identity

S, 1)B(@ 7, 1) dn

(L, 71) iag, )

= > Sbe(1(x', N))B(f s ', 3) d)’

(L/ b Ll

where the sums are over 7 (resp. ') which are unramified outside S. To separate the con-
tribution of (L, ) and A we appeal to [LR0OO, Lemma 4] whose conditions are satisfied
by the Jacquet-Shalika classification Theorem [JS81b, JS81a]. O
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Appendix D: Upper semicontinuity of multiplicity, by Erez Lapid
and Omer Offen

The following statement and proof are well known to experts. For convenience we include

a simple proof which was suggested to us by Joseph Bernstein, Akshay Venkatesh and

Nolan Wallach. We are very grateful to them for allowing us to include the proof here.
For now G is any p-adic group and H is any closed subgroup of G.

Lemma D.1. — Let 175 be an analytic famuly of admussible representations of G on V. Suppose
that there exist k meromorphic families of linear functionals I, i =1, ..., k on V which are H-invariant
and generically linearly independent. Then dim Homy (7r;, 1) > £ for all A.

Progf: — Let K|} D Ky D -+ be a basis of compact open subgroups of G and let
V, = V& There exists N such that the restrictions of ..., Z/I{ to Vy are generically
linearly independent. Suppose that A is given. By passing to a one-parameter family in
general position through Ay, we may assume that the set of parameters is the unit disc
D ={A € C:|A| < 1}, that 4o = 0, and that the restrictions of , ..., /! to Vy are linearly
independent for A € D \ {0}. For a finite-dimensional vector space W over G, let G,(W)
denote the Grassmannian variety of £-dimensional vector subspaces of W, which we view
as a closed subvariety of the projective space of /\kW through the Pliicker embedding
tw. For any n > N, let

W, = vl,.r.ljzglew ord, — det(l;(vj))w.:1 ..... L EN.

The map A — ([}, ..., lf) defines a holomorphic curve F, : D — Gx(V?) such that,
if we fix a basis vi,...,v; of V,, the homogeneous coordinates of ty:(F,(1)) are
A THa det(li(U;n,v))ile,...,k, 1 <m <--- <my <d. By enlarging N if necessary, we may as-
sume that u, = uy for all # > N. Then for any n > m > N and for all A € D (including 0),
F,,(3) is the image of F,(1) under the restriction map V! — V*. Thus, for any A € D we
get a k-dimensional subspace F(A) of V* whose image in V7 1s I,,(1) for all » > N. Fix
h € H and n > N. By assumption, we have [om, (%)|y, = [|y, for any / € F,(1). This equal-
ity depends only on /|y, provided that K,, C K, N #K,h~'. Therefore, [ o 7, M, =Ilv,
for any / € F(A). It follows that / is H-invariant for any / € F(1), A € D. O

Consider now the Archimedean case and assume in addition that G is reductive
and H is the fixed point subgroup of an involution of G. Let K be a maximal com-
pact subgroup of G such that HN K is a maximal compact subgroup of H. (This can
always be arranged.) The proof above works for the underlying (g, K)-module of 7,
(where we take V, to be the sum of the isotypic components of the first n irreducible
representations of K, ordered arbitrarily). It yields that dim prk) (75, 1) > £ for all A. By
the automatic continuity Theorem for H-invariant functionals [vdBD88, BD92] we get
dim Homy (773, 1) > £. Thus Lemma D.1 holds in this case as well. We thank Eitan Sayag
for pointing this out to us.
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