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ABSTRACT

We resolve several longstanding problems concerning the stability and the absence of multi-particle binding for
N ≥ 2 polarons. Fröhlich’s 1937 polaron model describes non-relativistic particles interacting with a scalar quantized field
with coupling

√
α, and with each other by Coulomb repulsion of strength U. We prove the following: (i) While there is a

known thermodynamic instability for U < 2α, stability of matter does hold for U > 2α, that is, the ground state energy per
particle has a finite limit as N → ∞. (ii) There is no binding of any kind if U exceeds a critical value that depends on α but
not on N. The same results are shown to hold for the Pekar-Tomasevich model.

1. Introduction and main results

Fröhlich’s large polaron [9] is a model for the motion of an electron in a polar
crystal and it is also relevant as a simple model of non-relativistic quantum field theory.
Consequently there is a huge literature, both experimental and theoretical, devoted to
its study. See, e.g., [1, 13, 29, 34, 35] and references therein. Our concern here is with
the binding or non-binding of several polarons: whether the ordinary Coulomb repulsion
among the electrons can, if strong enough, prevent the binding that would otherwise be
created by the electric field of the polar crystal. We are also interested in the stability of

matter, i.e., whether the energy of N polarons is bounded below by a constant times N
even when there is binding.

In this model the single polaron, which is one non-relativistic electron interacting
with a phonon field, has the Hamiltonian

(1.1) H(1) = p2 − √
αφ(x) + Hf .

This Hamiltonian acts in the Hilbert space L2(R3) ⊗ F , where F is the bosonic Fock
space for the longitudinal optical modes of the crystal, with scalar creation and annihila-
tion operators a†(k) and a(k) satisfying [a(k), a†(k′)] = δ(k −k′). The electron momentum
is p = −i∇ , the phonon field energy is

(1.2) Hf =
∫

R3
dka†(k)a(k),

and the interaction of the crystal modes with the electron is

(1.3) φ(x) = 1√
2π

∫
R3

dk

|k|
(
eikxa(k) + e−ikxa†(k)

)
,
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with coupling constant α > 0. (In another frequently used convention α is replaced
by α/

√
2.) We refer to [30] (see also [28]) for a careful definition of H(1) as a self-adjoint,

semi-bounded operator.
The ground state energy E(1)(α) is the infimum of the spectrum of H(1). Because

of translation invariance, E(1)(α) cannot be expected to be an eigenvalue, and indeed it
is not; this was proved in [12] using methods developed in [10].

A noteworthy feature of the phonon field energy Hf is its flat dispersion relation,
i.e., there is no non-constant function ω(k) in the integrand of (1.2). The energy of in-
frared phonons does not go to zero as |k| → 0, while the ultraviolet energy is finite when
|k| → ∞. If we tried to minimize the energy in a naïve way by completing the square,
we would end up with a Coulomb-like

∫
dk|k|−2 self-energy of the polaron. The non-

integrability for large k would lead to a divergent self-energy, but this divergence is ac-
tually mitigated by the electron kinetic energy p2 and the uncertainty principle. While
the single polaron has finite energy, another problem remains for the many-polaron sys-
tem; the energy is finite, but stability of matter will not hold unless a sufficiently strong
Coulomb repulsion among the electrons is included in the Hamiltonian.

The Hamiltonian for N electrons is

(1.4) H(N)

U =
N∑

i=1

(
p2

i − √
αφ(xi)

)+ Hf + UVC(X)

with X = (x1, . . . , xN) ∈ R3N and

(1.5) VC(X) =
∑
i<j

1
|xi − xj| .

We impose no symmetry restrictions on the electrons, which means that our lower bounds
apply equally to bosons or fermions or particles with no symmetry restrictions (boltzons).
The Hilbert space is then L2(R3N) ⊗ F . Particle spin is irrelevant for our results and is
ignored. Physically, the parameter U is the square of the electron charge, and it satisfies
U > 2α [9]. Nevertheless, we will consider all values U ≥ 0.

The ground state energy of H(N)

U is denoted by E(N)

U (α), and the binding energy is
defined to be �E(N)

U (α) = NE(1)(α) − E(N)

U (α). We will prove three theorems about these
quantities. They were previously summarized in an announcement [8]. Our main goal
is to find conditions on U and α such that no binding occurs, i.e., �E(N)

U (α) = 0. Of
particular physical interest is the case N = 2 (bipolaron).

Theorem 1 (Absence of binding for N polarons). — For given α > 0 there is a finite Uc(α) >

2α such that

(1.6) �E(N)

U (α) = 0 for all N ≥ 2

whenever U ≥ Uc(α).
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Remark 1. — If U > Uc(α), then given (1.6) and any normalized ψ

(1.7)
〈
ψ

∣∣∣H(N)

U

∣∣∣ψ
〉
≥ NE(1)(α) + (U − Uc(α))

〈
ψ

∣∣∣∣
∑
i<j

|xi − xj|−1

∣∣∣∣ψ
〉
.

This inequality gives a quantitative estimate of the energy penalty needed to bring two
or more particles within a finite distance of each other. In particular, it implies that for
U > Uc(α) there cannot be a normalizable ground state, even in a fixed momentum
sector. The Uc(α) is not our bound obtained in the proof of Theorem 1, rather it is the
(unknown) exact value of the critical repulsion parameter.

Our proof of Theorem 1 is constructive and gives an explicit upper bound
on Uc(α); see the discussion at the end of Section 4. This bound on Uc(α) is linear in
α for large α, which is the correct behavior. Presumably, the true Uc(α) behaves linearly
even for small α, but this remains an open problem.

For the bipolaron, N = 2, our proof is simpler and yields the sharper result that the
critical Uc(α) indeed obeys a linear law, as Theorem 2 shows.

Theorem 2 (Absence of binding for bipolarons). — Let N = 2. For some constant C < 26.6,

(1.8) �E(2)

U (α) = 0

whenever U ≥ 2Cα.

The optimal constant C in Theorem 2 is presumably much closer to 1 than the
bound we derive. It is not equal to 1, however. In the strong coupling limit α → ∞, bind-
ing occurs if U ≤ 2.3α [34, 38]. For small α, on the other hand, variational calculations
[2, 37] suggest that bipolaron binding does not occur at all for any U ≥ 2α. The proof of
this remains an open problem.

On the other hand, if binding does occur, we would like to know how the binding
energy depends on N; in particular, is there stability of matter, in the sense that �E(N)

U (α) ≤
C(U, α)N for all N?

This linear bound, if it exists, implies the existence of the thermodynamic limit

lim
N→∞

N−1E(N)

U (α).

The proof is a simple consequence of the sub-additivity of the energy, i.e.,

(1.9) E(N+M)

U (α) ≤ E(N)

U (α) + E(M)

U (α),

which follows from the fact that one can construct variational functions in which N elec-
trons are localized on the earth and M behind the moon [14], [22, Section 14.2].
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The proof of the linear lower bound is far from obvious; indeed, it is not always
true! Griesemer and Møller [14] recently proved that when U < 2α, there are posi-
tive constants (depending on U and α) such that −c1N7/3 ≥ E(N)

U (α) ≥ −c2N7/3. This
result holds for particles, like electrons, that satisfy Fermi statistics. If the electrons were
bosons, the result would be even worse, −N3, as a similar analysis shows. This is the
same behavior as that of gravitating particles in stars [22, Chapter 13]. In the oppo-
site regime, U > 2α, [14] shows that E(N)

U (α) ≥ −C(U, α)N2, independently of statistics,
where C(U, α) → ∞ as U ↘ 2α. (In their convention the dividing line is U = √

2α.) We
note in passing that the question of stability was addressed in [11], but for models with
less singular interactions. This question was also investigated in [16].

Judging from the physics of the model, it is reasonable to suppose that there is a
linear law as soon as U > 2α. We prove this in the following theorem.

Theorem 3 (Stability for U > 2α). — For given U > 2α > 0, N−1E(N)

U (α) is bounded

independently of N.

Our lower bound on N−1E(N)

U (α) goes to −∞ as U ↘ 2α, but we are not claiming
that this reflects the true state of affairs. Whether limN→∞ N−1E(N)

2α (α) is finite or not
remains an open problem; see, however, the discussion of the strong coupling limit below.

For U in the range 2α < U < Uc(α), there are bound states of an undetermined
nature. Does the system become a gas of bipolarons or does it coalesce into a true N-
particle bound state? If the latter, does this state exhibit a periodic structure, thereby
forming a super-crystal on top of the underlying lattice of atoms? This is perhaps the
physically most interesting open problem. While particle statistics does not play any role for
our main results, the answer to this question will crucially depend on statistics [36].

1.1. The strong coupling limit. — There is a non-linear differential-integral vari-
ational principle associated with the polaron problem, which gives the exact ground
state energy in the limit α → ∞. This variational problem was investigated in detail
by Pekar [31]. Pekar and Tomasevich (PT) [32] generalized it to the bipolaron, and the
extension to N-polarons obviously follows from [32].

The PT functional is the result of a variational calculation and therefore gives
an upper bound to the ground state energy E(N)

U (α). In order to compute 〈	,H(N)

U 	〉,
one takes a 	 of the form ψ ⊗ 
 where ψ ∈ L2(R3N), 
 ∈ F , and both ψ and 
 are
normalized. For a given ψ it is easy to compute the optimum 
, and one ends up with
the functional

P (N)

U [ψ] :=
N∑

i=1

∫
R3N

|∇iψ |2 dX + U
∑
i<j

∫
R3N

|ψ(X)|2
|xi − xj| dX(1.10)

− α

∫∫
R3×R3

ρψ(x) ρψ(y)

|x − y| dx dy,
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where dX =∏N
k=1 dxk , and

(1.11) ρψ(x) =
N∑

i=1

∫
R3(N−1)

|ψ(x1, . . . , x, . . . , xN)|2 dx1 · · · d̂xi · · · dxN

with x at the i-th position, and d̂xi meaning that dxi has to be omitted in the product∏N
k=1 dxk . The ground state energy is

(1.12) E (N)

U (α) = inf
{

P (N)

U [ψ] :
∫

R3N
|ψ |2 dX = 1

}
.

Hence the variational argument above gives the upper bound

(1.13) E(N)

U (α) ≤ E (N)

U (α) = E (N)

U/α(1)α2.

(The equality follows by scaling.) For N = 1 this upper bound is due to Pekar; numerically,
one has E (1)(α) ≈ −(0.109)α2 [27]. Moreover, the minimization problem for E (1)(α) has
a unique minimizer (up to translations), see [20]. The upper bound for N = 1 was widely
understood to be asymptotically exact for large α. A proof of this was finally achieved
by Donsker and Varadhan [6], using large deviation theory applied to the functional
integral discussed below. Later, this fact was rederived in [25] by operator methods, and
it was shown that the error was no worse than α9/5 for large α.

The fact that for fixed ratio ν = U/α ≥ 0

(1.14) lim
α→∞ α−2E(N)

U (α) = E (N)
ν (α = 1)

for N = 2 and any ν ≥ 0 was first noted in [28]. This is also valid for arbitrary N.
It follows from the limiting relation (1.14), together with the fact that our bound

on Uc(α) is linear for large α, that our three theorems about E(N)

U (α) transfer to the same
theorems about E (N)

U (α) which we state next.

Corollary 1 (Stability and absence of binding for the PT functional).

1. Stability holds for U > 2α, that is, for any ν > 2 there is a constant C(ν) such that

(1.15) E (N)

U (α) ≥ −C(ν)α2N for all N ≥ 2

whenever U = να > 0.

2. There is no binding if U/α is large enough, that is, there is a finite νc > 2 such that

(1.16) E (N)

U (α) = NE (1)(α) for all N ≥ 2

whenever U ≥ νcα.
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We note in passing that the critical U in the PT model depends linearly on α. This
follows by scaling.

In Section 5 we will give a direct and easier proof of Corollary 1 that has no need
of the functional integral machinery and leads to better constants. In particular, with our
new proof we find that

(1.17) C(ν) ≤
{

(0.0280)ν3/(ν − 2) if 2 < ν < 3,

0.755 if ν ≥ 3.

For fermions, a stronger result than Corollary 1 was obtained in [14]. They prove that at
critical coupling U = 2α one has

(1.18) E (N)

2α (α, q) ≥ −(0.461)2α2q2/3N for all N ≥ 2 and all 1 ≤ q ≤ N,

where E (N)

U (α, q) is the infimum of P (N)

U [ψ] restricted to fermions with q spin states (q = 2
for electrons). Recall that the single polaron energy is E (1)(α) = −(0.109)α2 [27]. For
completeness we repeat the short proof of (1.18) in Section 5.

1.2. Previous results on the polaron ground state energy. — In addition to the large α

asymptotics just mentioned, there have been several other rigorous results on the ground
state energy of the (single) polaron, some of which we will use here.

(i) One of the earliest results was the variational calculation of E(1)(α) for small
α by Gurari and by Lee, Low, and Pines [15, 18, 19] which leads to

(1.19) E(1)(α) ≤ −α for all α.

(ii) A lower bound, which validates the conclusion that E(1)(α) ∼ −α as α → 0,
was obtained in [26]. They prove that

(1.20) E(1)(α) ≥ −α − 1
3
α2 for all α.

(To derive (1.20) use p = 1 + 2α/3 in [26, Equation (24)].) We note the fact
that (1.20) has the correct power law behavior for both small and large α.

(iii) The functional integral formulation: The large time behavior of the heat kernel
exp(−TH(N)

U ) gives us the ground state energy as

(1.21) E(N)

U (α) = − lim
T→∞

T−1 ln
〈
exp

(−TH(N)

U

)〉
,

where 〈 · 〉 denotes the expectation in a suitable state, i.e., a normalized vector
in the Hilbert space. Since the phonon operators can be realized as the coordi-
nates of a quantum-mechanical harmonic oscillator (one for each value of k),
we can apply the Feynman-Kac formula for the evaluation of 〈exp(−TH(N)

U )〉.
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Since the harmonic oscillator coordinates appear only linearly and quadrati-
cally in the exponent, they can then be integrated out explicitly. One obtains a
formula due to Feynman [7], see also [33, Section 5.3] for a careful discussion.
The conclusion is that

(1.22) E(N)

U (α) = − lim
R→∞

lim
T→∞

T−1 ln Z(N)

U,R(T),

where

Z(N)
U,R(T) :=

∫
BR

dx1 · · ·
∫

BR

dxN

∫
dWT

x1
(ω1) · · · dWT

xN
(ωN)χBR(ω1) · · ·χBR(ωN)(1.23)

× exp

⎛
⎝α

∫
R

ds e−|s|

2

N∑
i,j=1

∫ T

0

dt

|ωi(t) − ωj(t + s)| − U
∑
i<j

∫ T

0

dt

|ωi(t) − ωj(t)|

⎞
⎠.

Here dWT
x denotes the Wiener measure of closed Brownian paths in R3 with

period T starting and ending at x. Moreover, BR denotes the ball centered at
the origin of radius R, and the characteristic function of the path χBR(ωj) is 1
if ωj stays inside the ball BR for all times, and zero otherwise. The argument
of ωj(t + s) is understood modulo T.

Feynman [7] used this path integral representation to get upper bounds on
E(1)(α) for small and large α.

2. The two-polaron problem: Absence of Binding

We first consider the special case N = 2 and prove Theorem 2. It is convenient to
structure the proof in three steps.

Step 1. Partition of the interparticle distance. We choose a quadratic partition of unity
(IMS localization [4, Theorem 3.2]) and localize the particles according to their rela-

tive distance. (In the N-particle case later on, we will localize with respect to the nearest
neighbor distance, which, for N = 2, is the same as the relative distance.) This kind of
localization is one of the principal novel features of our analysis.

In order to construct this partition, we pick some parameters b > 1 and � > 0, and
let

(2.1) ϕ(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for t ≤ �/b,

sin π

2
t−�/b

�−�/b
for �/b ≤ t ≤ �,

cos π

2
t−�

b�−�
for � ≤ t ≤ b�,

0 for t ≥ b�.
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For j ≥ 1, let ϕj(t) := ϕ(b1−j t), and for j = 0, let

(2.2) ϕ0(t) :=
⎧⎨
⎩

1 for t ≤ �/b,

cos π

2
t−�/b

�−�/b
for �/b ≤ t ≤ �,

0 for t ≥ �.

Then

(2.3)
∑
j≥0

ϕj(t)
2 = 1 for all t ≥ 0.

Using the IMS localization formula, we can write, for any wave function ψ ,

(2.4) 〈ψ |H(2)

U |ψ〉 =
∑
j≥0

〈
ψj

∣∣∣∣∣H
(2)

U − 2
∑
k≥0

∣∣ϕ′
k(|x1 − x2|)

∣∣2
∣∣∣∣∣ψj

〉
=:
∑
j≥0

ej‖ψj‖2

with ψj(x1, x2) = ψ(x1, x2)ϕj(|x1 − x2|) and with numbers ej (depending on ψj ). Our goal
is to prove that ej ≥ 2E(1)(α) for all j if U ≥ 2Cα. If this is indeed the case, then the
right side of (2.4) exceeds 2E(1)(α)

∑
j ‖ψj‖2 = 2E(1)(α)‖ψ‖2, which is the assertion of

the theorem.
For our bounds we shall use the fact that on the support of ϕj(|x1 − x2|), the local-

ization error is dominated by

(2.5)
∑
k≥0

∣∣ϕ′
k(|x1 − x2|)

∣∣2 ≤ π 2

4(� − �/b)2
×
{

1 if j = 0,

b2(1−j) if j ≥ 1.

Moreover, on these supports, we shall bound the Coulomb repulsion from below by

(2.6)
U

|x1 − x2| ≥ b−j U
�

for all j ≥ 0.

It is clear from (2.5) and (2.6) that by choosing U large enough, we can dominate the
negative localization error by a part of the positive Coulomb term. What remains is to
dominate the polaronic attraction by the remainder of the Coulomb repulsion. For this,
we distinguish between the cases j ≥ 1 and j = 0.

Step 2. The case j ≥ 1; Energy estimate for separated particles. We further localize each of
the two particles to its own ball of radius bjL for some parameter L > 0. This will entail
an additional localization error. Concretely, let

(2.7) χ(x) = 1√
2π |x|

{
sin(π |x|) for |x| ≤ 1,

0 for |x| ≥ 1,

and note that
∫

dx χ(x)2 = 1 and
∫

dx|∇χ(x)|2 = π 2. With

(2.8) ψj,u1,u2(x1, x2) = ψj(x1, x2)(b
jL)−3χ(b−j(x1 − u1)/L)χ(b−j(x2 − u2)/L)
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we have, by a continuous version of the IMS localization formula,〈
ψj

∣∣∣∣H(2)

U − 2
∑
k≥0

∣∣ϕ′
k(|x1 − x2|)

∣∣2
∣∣∣∣ψj

〉
(2.9)

=
∫

R3
du1

∫
R3

du2

〈
ψj,u1,u2

∣∣∣∣H(2)

U − 2
∑
k≥0

∣∣ϕ′
k(|x1 − x2|)

∣∣2 − 2‖∇χ‖2

b2jL2

∣∣∣∣ψj,u1,u2

〉

≥
∫

R3
du1

∫
R3

du2

〈
ψj,u1,u2

∣∣∣∣H(2)

U − b−2j

(
b2π 2

2(� − �/b)2
+ 2π 2

L2

)∣∣∣∣ψj,u1,u2

〉
.

The latter inequality comes from (2.5). Note that since |x1 − x2| ≥ b j−2� on the support
of ϕj , the wave function ψj,u1,u2 is non-zero only if the two balls of radius b jL centered at
u1 and u2, respectively, are separated at least a distance

(2.10) d ≥ b j−2� − 4b jL.

We choose this to be positive by requiring that L < �/(4b2).

Lemma 1. — Assume that ψ is normalized and supported in B1 × B2 where B1 and B2 are

disjoint balls of some radius R, separated a distance d. Then

(2.11) 〈ψ |H(2)

0 |ψ〉 ≥ 2E(1)(α) − 2α

d
.

This lemma will be proved in Section 2.1. It is an easy consequence of the func-
tional integral representation of the ground state energy.

We apply inequality (2.11) to (2.9). Using the bounds (2.10) on d and (2.6) on the
Coulomb potential, we conclude that ej is bounded from below as

(2.12) ej ≥ 2E(1)(α) − b−j 2α

�/b2 − 4L
+ b−j U

�
− b−2j

(
b2π 2

2(� − �/b)2
+ 2π 2

L2

)
.

This last expression is ≥ 2E(1)(α) for all j ≥ 1 if and only if

(2.13) U ≥ 2α�

�/b2 − 4L
+ b�π 2

2(� − �/b)2
+ 2π 2�

L2b
(the j ≥ 1 condition).

Step 3. The case j = 0; Energy estimate for neighboring particles. Because of (2.5) and (2.6)
we have the lower bound

(2.14) e0 ≥ E(2)

0 (α) − π 2

2(� − �/b)2
+ U

�
,

where E(2)

0 (α) denotes the two-polaron energy in the absence of Coulomb repulsion, i.e.,
for U = 0. The following lemma compares this energy with 2E(1)(α).
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Lemma 2. — For all α > 0,

(2.15) E(2)

0 (α) ≥ 2E(1)(α) − 7
3
α2.

Also this lemma uses the path integral formulation and we defer the proof to Sec-
tion 2.1. At this point we will utilize it to conclude the proof of Theorem 2. The constant
7/3 in (2.15) is certainly not optimal, and an improvement would lead to a better constant
in Theorem 2.

It follows from (2.14) and (2.15) that e0 ≥ 2E(1)(α) if

(2.16) U ≥ 7
3
�α2 + π 2�

2(� − �/b)2
(the j = 0 condition).

Numerical evaluation shows that the two conditions (2.13) and (2.16) on U can be satisfied
for an appropriate choice of b, �, and L if U ≥ 61α. (Choose b = 1.2, � = 22.8α−1 and
L = 0.142�.) For U satisfying these conditions, each ej ≥ 2E(1)(α). This completes the
proof of Theorem 2 with the bound on the constant C < 30.5.

In order to improve the bound on the constant C of Theorem 2, we replace
Lemma 1 by the following alternative bound.

Lemma 3. — Under the same assumptions as in Lemma 1,

(2.17) 〈ψ |H(2)

0 |ψ〉 ≥ 2E(1)(α) −
〈
ψ

∣∣∣∣ 2α

|x1 − x2|
∣∣∣∣ψ
〉
− 16αR

π 2d(d + 4R)
.

In the Appendix A we provide a proof of this lemma using the Rayleigh-Ritz vari-
ational principle. The proof is certainly not easier than the one of Lemma 1 using the
functional integral method, but it may be of use in other applications where a functional
integral approach is not as convenient (or available). The method does point up the utility
of localizing the phonon field about the respective particles—in this case, to half-spaces
each containing a particle.

We apply the bound (2.17) to (2.9), with R = b jL and d satisfying (2.10), and con-
clude that

ej ≥ 2E(1)(α) + b−j U − 2α

�
− b−j 16αLb2

�π 2(�/b2 − 4L)
(2.18)

− b−2j

(
b2π 2

2(� − �/b)2
+ 2π 2

L2

)
.

This expression is ≥ 2E(1)(α) for all j ≥ 1 if and only if

(2.19) U ≥ 2α + 16αLb2

π 2(�/b2 − 4L)
+ b�π 2

2(� − �/b)2
+ 2π 2�

L2b
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Equations (2.16) and (2.19) are satisfied for U ≥ 53.2α with the choice b = 1.23, � =
19.7α−1 and L = 0.15�.

2.1. Some uses of the path integral. — Lemmas 1 and 2, used in the previous subsec-
tion, will be proved here.

Proof of Lemma 1. — We use a Feynman-Kac representation similar to (1.22). It
implies that the infimum of the left side of (2.11) over all ψ with the required support
properties equals

(2.20) − lim
T→∞

1
T

ln ZB1,B2(T)

where

ZB1,B2(T) :=
∫

B1

dx1

∫
B2

dx2

∫
dWT

x1
(ω1)dWT

x1
(ω2)χB1(ω1)χB2(ω2)(2.21)

× exp

⎛
⎝α

∫
R

ds e−|s|

2

2∑
i,j=1

∫ T

0

dt

|ωi(t) − ωj(t + s)|

⎞
⎠ .

Here dWT
xj

denotes the Wiener measure of closed Brownian paths in R3 with period T
starting and ending at xj , and χBj

(ωj) is 1 if ωj stays inside the ball Bj for all times, and zero
otherwise. Since |ω1(t) − ω2(t + s)| ≥ d for all t and s we see that ZB1,B2(T) is bounded
from above by

e2αT/d

2∏
j=1

(∫
Bj

dx

∫
dWT

x (ωj)χBj
(ωj) exp

(
α

∫
R

ds e−|s|

2

∫ T

0

dt

|ωj(t) − ωj(t + s)|
))

.

Replacing χBj
(ωj) by its upper bound 1, we deduce inequality (2.11). �

Proof of Lemma 2. — Application of the Cauchy-Schwarz inequality in the path
integral (1.23) yields

Z(2)
0,R(T)2 ≤

∫∫
dWT

R(ω1)dWT
R(ω2) exp

(
2α

∫
R

ds e−|s|

2

2∑
i=1

∫ T

0

dt

|ωi(t) − ωi(t + s)|

)
(2.22)

×
∫∫

dWT
R(ω1)dWT

R(ω2) exp
(

4α

∫
R

ds e−|s|

2

∫ T

0

dt

|ω1(t) − ω2(t + s)|
)

,

where
∫

dWT
R(ω) is short for

∫
BR

dx
∫

dWT
x (ω)χBR(ω). The first factor on the right side

equals the square of

(2.23)
∫

dWT
R(ω) exp

(
2α

∫
R

ds e−|s|

2

∫ T

0

dt

|ω(t) − ω(t + s)|
)

,
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which, in turn, is the one-polaron expression with α replaced by 2α. Using Jensen’s in-
equality, we bound the second factor from above by

∫
R

ds e−|s|

2

∫∫
dWT

R(ω1)dWT
R(ω2) exp

(
4α

∫ T

0

dt

|ω1(t) − ω2(t + s)|
)

.(2.24)

Since closed Brownian paths are invariant under time reparametrization, the latter inte-
gral does not actually depend on s, and hence (2.24) equals

(2.25)
∫∫

dWT
R(ω1)dWT

R(ω2) exp
(

4α

∫ T

0

dt

|ω1(t) − ω2(t)|
)

.

This functional integral represents two particles in the ball BR interacting via an attrac-
tive Coulomb potential −4α/|x1 − x2|. This is like the positronium Hamiltonian whose
ground state energy equals −2α2 in the limit R → ∞. Summarizing, after taking the
T → ∞ limit we find that

(2.26) E(2)

0 (α) ≥ E(1)(2α) − α2.

To finish the proof, we use the bounds (1.19) and (1.20), which imply that

(2.27) E(1)(2α) ≥ 2E(1)(α) − 4
3
α2.

This, together with (2.26), proves (2.15). �

3. The N-polaron problem: thermodynamic stability

We now consider the case of general N and prove Theorem 3. We start by local-
izing particles in balls in order to reduce the problem to a local one. We use the sliding
technique introduced in [3] (see also [23]). Pick an even and real-valued function χ with
compact support, normalized by

∫
χ 2 = 1, and ω > 0 large enough such that the func-

tion

(3.1) f (x) = 1
|x|
(
1 − e−ω|x|χ ∗ χ(x)

)

is positive definite. (The symbol ∗ means convolution.) The existence of such an ω

for smooth enough χ was shown in [3, Lemma 2.1]. For any operator-valued func-
tion ρ(x),

(3.2)
∫∫

dx dy

(
N∑

i=1

δ(x − xi) − ρ(x)†

)
f (x − y)

(
N∑

i=1

δ(y − xi) − ρ(y)

)
≥ 0.
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We apply this to

(3.3) ρ(x) = 1

(2π)2
√

2α

∫
dk |k|eikxa(k)

and obtain the bound

(3.4)
∑

1≤i<j≤N

2α

|xi − xj| − √
α

N∑
i=1

φ(xi) + Hf ≥ −αNω + 2α

∫
R3

dz Iω(z).

Here,

Iω(z) :=
∑

1≤i<j≤N

χz(xi)
e−ω|xi−xj |

|xi − xj|χz(xj)(3.5)

− 1
2

N∑
i=1

χz(xi)

∫
dy

e−ω|xi−y|

|xi − y| χz(y)
(
ρ(y) + ρ(y)†

)

+ 1
2

∫∫
dx dyχz(x)ρ(x)† e−ω|x−y|

|x − y| ρ(y)χz(y)

where we denote χz(x) = χ(x − z). We also note that

(3.6) p2 =
∫

dz pχ 2
z p =

∫
dz χzp

2χz −
∫

dx |∇χ(x)|2,
and thus

(3.7) H(N)

U ≥
∫

dz Hz + (U − 2α)VC − αNω − N
2

∫
dx |∇χ(x)|2

where

(3.8) Hz := 1
2

N∑
i=1

(
χz(xi)p

2
i χz(xi) + piχz(xi)

2pi

)+ 2α Iω(z).

The Hamiltonian Hz is concerned only with the particles in the support of χz; sim-
ilarly for the phonon field, ρ(y) enters only for y in this support. Moreover, Hz commutes
with nz =∑N

i=1 θz(xi), the number of particles in the support of χz, where θz denotes the
characteristic function of the support of χz. We can thus look for a lower bound on Hz in
a fixed sector of nz particles. We will prove the following lower bound.

Lemma 4. — With [t]+ = max{t,0},

(3.9) Hz ≥ −α [4αnz − ω]+

N∑
i=1

χz(xi)
2 − 3αnz

(2π)4

(√
2π

3ω
‖χ‖∞ + ‖∇χ‖2

)2

.
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Proof. — Pick some � ≥ ω. Applying (3.2) with the positive definite function f (x) =
|x|−1(e−ω|x| − e−�|x|)χ ∗ χ(x), we have

(3.10) 2αIω(z) ≥ 2αI�(z) − α (� − ω)

N∑
i=1

χz(xi)
2.

The last term constitutes the ‘self-energy’ terms. For reasons that will become clear later
we choose � = max{ω,4αnz} and, therefore, the last term in (3.10) equals the first term
on the right side of (3.9).

The remaining first term 2αI�(z) on the right side of (3.10) contains one negative
term, the second line in (3.5). In order to bound this term from below, we complete the
square and write

1
2

(
χz(xi)p

2
i χz(xi) + piχz(xi)

2pi

)− αχz(xi)

∫
dy

e−�|xi−y|

|xi − y| χz(y)
(
ρ(y) + ρ(y)†

)
(3.11)

= 1
2

(
χz(xi)pi − Az(xi)

)(
piχz(xi) − Az(xi)

†
)

+ 1
2

(
piχz(xi) + Az(xi)

†
)(

χz(xi)pi + Az(xi)
)

− Az(xi)
†Az(xi) − 1

2

[
Az(xi),Az(xi)

†
]
,

where Az(x) is a vector operator with three components,

(3.12) Az(x) := α

π 2

∫
dyχz(y)ρ(y)

∫
dk

k eik(y−x)

k2 (k2 + �2)
.

The first two terms on the right side of (3.11) are obviously non-negative and we omit
them to obtain a lower bound.

We next bound the last term on the right side of (3.11) (the commutator term) from
below.

1
2
[Az(x),Az(x)

†] = α

(2π)4

3∑
i=1

∫ ∣∣∇y

(
χz(y)fi(�(x − y))

)∣∣2 dy(3.13)

≤ α

(2π)4

3∑
i=1

(
�−1/2‖χ‖∞‖∇fi‖2 + ‖∇χ‖2‖fi‖∞

)2

with

(3.14) fi(x) = xi

|x|
1 − (1 + |x|)e−|x|

|x|2 , x = (x1, x2, x3).

We use the facts that ‖fi‖∞ = 1, ‖∇fi‖2
2 = 2π/3 and � ≥ ω, and obtain

(3.15)
1
2
[Az(x),Az(x)

†] ≤ 3α

(2π)4

(√
2π

3ω
‖χ‖∞ + ‖∇χ‖2

)2

.
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This bound on the last term in (3.11), when summed on i, yields the last term in (3.9).
Finally, we discuss the penultimate term in (3.11). The Schwarz inequality shows

that

(3.16) Az(x)
†Az(x) ≤

∫
dw dyχz(w)ρ(w)† e−�|w−y|

|w − y| ρ(y)χz(y)
2α2

π 2

∫
dk

1
k2(k2 + �2)

.

We choose � = max{ω,4αnz}, which ensures that

(3.17)
2α2

π 2

∫
dk

1
k2(k2 + �2)

= 4α2

�
≤ α

nz

.

Hence, the penultimate term in (3.11), when summed on i, is bounded from below by

−α

∫∫
dx dyχz(x)ρ(x)† e−ω|x−y|

|x − y| ρ(y)χz(y),

that is, −2α times the last term in the definition (3.5) of I�(z). Because of (3.10) we obtain
the claimed lower bound (3.9). �

We now complete the proof of Theorem 3. If we insert bound (3.9) into (3.7), we
obtain the following lower bound on H(N)

U :

H(N)

U ≥ − α

∫
dz
(
ω + [4αnz − ω]+

) N∑
i=1

χz(xi)
2 + (U − 2α)VC(3.18)

− N
2

∫
dx |∇χ(x)|2 − 3α

(2π)4
N |suppχ |

(√
2π

3ω
‖χ‖∞ + ‖∇χ‖2

)2

.

The volume of the support of χ , |suppχ | = ∫
θ0, enters via the identity

∫
dz nz =

N|suppχ |. We further bound [4αnz − ω]+ ≤ 4αnz, and use that

∫
dz nz

N∑
i=1

χz(xi)
2 =

N∑
i,j=1

∫
dz θz(xj)χz(xi)

2(3.19)

= 2
∑

1≤i<j≤N

∫
dz θz(xj)χz(xi)

2 + N.

Moreover,

(3.20)
∫

dz θz(xj)χz(xi)
2 ≤ Z

|xi − xj|
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with the definition

(3.21) Z := sup
x∈R3

|x| (θ0 ∗ χ 2
)
(x).

The final result is

H(N)

U ≥ (U − 2α − 8α2Z
)

VC − 4α2N − αNω(3.22)

− N
2

‖∇χ‖2
2 − 3α

(2π)4
N |suppχ |

(√
2π

3ω
‖χ‖∞ + ‖∇χ‖2

)2

.

Note that Z is bounded above by the diameter of the support of χ , which can be cho-
sen arbitrarily small. In particular, we can choose the diameter small enough such that
8α2Z ≤ U − 2α, which leads to a lower bound on H(N)

U that is linear in N. (The reader
might be worried that this choice of χ is inconsistent with the choice of ω; the logic of
our construction is to first choose χ such that our bound on Z is satisfied, and then to use
the ω guaranteed by [3].) This concludes the proof of Theorem 3.

For U = να, ν > 2, our lower bound is proportional to α2N for large α. To see this,
we choose the diameter of the support of χ to be of the order 1/α. Hence Z ∼ α−1, and
also ω ∼ α by scaling. Moreover, ‖∇χ‖2 ∼ α, ‖χ‖∞ ∼ α3/2 and |suppχ | ∼ α−3, hence
the right side of (3.22) is of the desired form, namely, − constα2N for large α.

We conjecture that, for U = να, ν > 2,

(3.23) H(N)

U ≥ NE(1)(α) − CνNα2 for all α > 0,

for some constant Cν depending only on ν. For N = 2 this was proved in the previous
section, but the proof of (3.23) for general N ≥ 2 remains an open problem.

4. The N-polaron problem: absence of binding

We now return to the question of binding of polarons and prove Theorem 1. Be-
cause of subadditivity of the energy (1.9), E(N)

U (α) ≤ NE(1)(α) for any N, U and α. Hence
it remains to prove the reverse inequality.

We perform a localization similar to that in the two-polaron case, but relative to the

nearest neighbor. This type of localization is one of the main technical ingredients in our proof. As in the
bipolaron case, the goal will be to localize each particle in a box whose size is of the same
order as the distance to the closest particle(s), as long as this distance is not too small.

Let ϕi be given as in (2.1)–(2.2), for some � > 0 and b > 1. If ti denotes the distance
of xi to the nearest neighbor among the xj , j �= i, then

(4.1) 1 =
∑

j1,...,jN

N∏
i=1

|ϕji(ti)|2



STABILITY AND ABSENCE OF BINDING FOR MULTI-POLARON SYSTEMS 55

and, by the IMS localization formula,

〈ψ |H(N)

U |ψ〉(4.2)

=
∑

j1,...,jN

〈
ψ
∏

i

ϕji(ti)

∣∣∣∣∣∣H
(N)

U −
N∑

i=1

N∑
j=1

∑
k

∣∣∇iϕk(tj)
∣∣2
∣∣∣∣∣∣ψ

∏
i

ϕji(ti)

〉
.

We claim that the following bound on the localization error holds.

Lemma 5. — On the support of ϕji(ti),

(4.3)
N∑

j=1

∑
k

∣∣∇iϕk(tj)
∣∣2 ≤ γ

(� − �/b)2
b2(1−ji)

with γ := 13(π/2)2.

Proof. — Note that ϕk(tj) depends on xi in one of two ways. First, through ti when
j = i, but also through all the tj , j �= i, where xi happens to be the nearest neighbor of xj .

We claim that there can be at most 12 of those xj . If x is the nearest neighbor of
both xj and xk , then |xj − xk| ≥ max{|xj − x|, |xk − x|}, and hence the angle between xj − x

and xk − x is at least π/3. Think of x as the center of a unit sphere. The lines from x to
each of these xj ’s intersects the unit sphere at certain points pj , whose angular separation
is at least π/3. At each of these points pj we can, therefore, construct a unit sphere tangent
at pj to the given sphere around x. From the packing problem we know there can be at
most 12 such spheres. This proves the claim.

On the support of ϕji(ti),

(4.4)
∑

k

∣∣∇iϕk(ti)
∣∣2 ≤ π 2

4(� − �/b)2
b2(1−ji)

as we have already used in (2.5). If xi is the nearest neighbor of xj , the same is true with ti
replaced by tj on the left side, since tj ≥ ti by definition, and the left side is easily seen to
be decreasing in ti . This concludes the proof. �

We now proceed with the one-particle localization as in the two-polaron case, lo-
calizing particle i in a ball of radius b ji L centered at ui, with L < �/(4b2). More precisely,
with χ given in (2.7), let

(4.5) ψj,u(X) = ψ(X)

N∏
i=1

[
ϕji(ti)(b

ji L)−3/2χ(b−ji(xi − ui)/L)
]
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where j = ( j1, . . . , jN) and u = (u1, . . . , uN). We have

(4.6) ‖ψ‖2 =
∑

j

∫
R3N

du‖ψj,u‖2

and, using Lemma 5,

〈ψ |H(N)

U |ψ〉(4.7)

=
∑

j

∫
R3N

du
〈
ψj,u

∣∣∣∣H(N)

U −
N∑

i=1

( ∑
k1,...,kN

∣∣∇i

∏
jϕkj

(tj)
∣∣2 + ‖∇χ‖2

2

b2ji L2

)∣∣∣∣ψj,u

〉

≥
∑

j

∫
R3N

du

〈
ψj,u

∣∣∣∣∣H
(N)

U −
N∑

i=1

b−2ji

(
γ b2

(� − �/b)2
+ π 2

L2

)∣∣∣∣∣ψj,u

〉
.

In analogy with the two-particle problem, the goal here is to show that the integrand
in this last expression is bounded below by NE(1)(α)‖ψj,u‖2 which, together with (4.6),
implies the conclusion of the theorem.

For given j and u, let Bi denote the ball of radius bji L centered at ui . Because of our
assumption L < �/(4b2), the balls Bi with ji ≥ 1 do not intersect any of the other balls.
Let dik denote the distance between ball Bi and ball Bk .

Recall that the ground state energy can be obtained from the T → ∞ asymptotics
of the functional integral (1.23). In the case of relevance here, for states having the afore-
mentioned support properties of ψj,u, the Brownian paths ωi in the functional integral
are confined to the respective balls Bi . In addition to this confinement, the paths have
the property that at any given time t, the separation between any ωi(t) and its nearest
neighbor among the ωk(t), k �= i, satisfies the conditions according to the support of ϕji .
We may relabel the particles such that ji = 0 for i ≤ M, and ji ≥ 1 for M < i ≤ N. The
exponential in the functional integral is a sum of three pieces, A + B + C , where

A =
N∑

k=M+1

k−1∑
i=1

(
2α

∫
R

ds e−|s|

2

∫ T

0

dt

|ωi(t) − ωk(t + s)| − U
∫ T

0

dt

|ωi(t) − ωk(t)|
)

,(4.8)

B =
N∑

k=M+1

α

∫
R

ds e−|s|

2

∫ T

0

dt

|ωk(t) − ωk(t + s)| ,(4.9)

and

(4.10) C = α

M∑
i,k=1

∫
R

ds e−|s|

2

∫ T

0

dt

|ωi(t) − ωk(t + s)| − U
∑

1≤i<k≤M

∫ T

0

dt

|ωi(t) − ωk(t)| .
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We first bound A. For k > M and i �= k, the distance dik between the balls Bi and
Bk is nonzero. Since the paths ωi and ωk are confined to the balls Bi and Bk , respectively,

A ≤ T
N∑

k=M+1

k−1∑
i=1

(
2α

dik

− U
dik + 2L(b ji + b jk)

)
.

Similar to (2.10),

(4.11) dik ≥ bmax{ji,jk}−2� − 4bmax{ji,jk}L,

and hence

(4.12) A ≤ −T
(

U
(

1 − 4Lb2

�

)
− 2α

) N∑
k=M+1

k−1∑
i=1

1
dik

.

Under the assumption that U(1 − 4Lb2/�) > 2α this is negative. We not only want it to
be negative, however, we also want it to dominate part of the localization error, namely,

(
γ b2

(� − �/b)2
+ π 2

L2

) N∑
k=M+1

b−2jk .

Using the fact that mini �=k dik ≤ �b jk ≤ �b2jk−1 we can bound

(4.13)
N∑

k=M+1

b−2jk ≤ 2�b−1
N∑

k=M+1

k−1∑
i=1

1
dik

.

From (4.12) and (4.13), we conclude that

(4.14) A + T
(

γ b2

(� − �/b)2
+ π 2

L2

) N∑
k=M+1

b−2jk ≤ 0

as long as

(4.15) U
(

1 − 4Lb2

�

)
≥ 2α + 2�

b

(
γ b2

(� − �/b)2
+ π 2

L2

)
.

Since we are seeking a lower bound on the energy, i.e., an upper bound on the functional
integral, (4.15) then implies that A, together with the localization terms coming from
M < i ≤ N in (4.7), are indeed negative by (4.14). Therefore these terms can be discarded
in the functional integral. This concludes the discussion of the term A and leaves us with
B + C and the remaining localization terms from (4.7) corresponding to 1 ≤ i ≤ M.
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Since B and C refer to different, now non-interacting, sets of particles (namely,
M+1 ≤ k ≤ N and 1 ≤ i ≤ M), we see that the functional integral factorizes. The term B
is just the exponent in the path integral for (N − M) non-interacting polarons, each with
its own field. The integral of eB contributes (N − M)E(1)(α) to the energy. Henceforth we
can forget about B.

With the aid of our previous linear lower bound for U > 2α, term C is almost
as simple as term B. Since U > 2α we can write U = 2α + Z + V with Z and V, both
positive, to be chosen later. Because of the separation condition for any 1 ≤ i ≤ M and any
time t, the distance between ωi(t) and its nearest neighbor among the ωk(t)’s is bounded
above by �, and hence

(4.16)
∑

1≤i<k≤M

V
|ωi(t) − ωk(t)| ≥ V

�
M.

The integral of eC contributes at least

(4.17) E(M)

2α+Z(α) + M
V
�

to the energy. By Theorem 3 this is bounded from below by −MC(2α + Z, α) + MV/�,
where C(2α + Z, α) is the finite constant implicit in Theorem 3. This term is at least

ME(1)(α) + M
(

γ b2

(� − �/b)2
+ π 2

L2

)

(the second term being the localization error from (4.7)) provided we take

(4.18) V = �

(
E(1)(α) + γ b2

(� − �/b)2
+ π 2

L2
+ C(2α + Z, α)

)
.

Another way to state this is that U must satisfy

(4.19) U ≥ 2α + Z + �

(
γ b2

(� − �/b)2
+ π 2

L2

)
+ � sup

n≥2

∣∣∣∣∣
E(n)

2α+Z(α)

n
− E(1)(α)

∣∣∣∣∣
for some Z > 0.

We have thus shown that, for any given j and u, the integrand in the first line
of (4.7) is bounded from below by NE(1)(α)‖ψj,u‖2 as long as U satisfies the bounds
(4.15) and (4.19) (for some Z > 0). In combination with (4.6), this concludes the proof of
Theorem 1.

There are many parameters in (4.15) and (4.19): b, �, L and Z. The only constraint
on them is b > � > 4Lb2, and each choice gives rise to a computable estimate on the
critical U. We emphasize that the resulting bound on U is independent of N.
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Our bound on the critical value Uc(α) is proportional to α for large α. This follows
with the choice � ∼ L ∼ α−1 and b = O(1), in which case condition (4.15) is of the form
U ≥ constα. With Z ∼ α, condition (4.19) is also of this form for large α, since the last
term is bounded by constα2 for large α, as shown in the previous section. We conjecture
that the last term in (4.19) is actually bounded by α2 for all α, as explained at the end of
the previous section, Equation (3.23). Assuming the validity of (3.23), our method leads
to the bound Uc(α) ≤ constα for all α > 0.

5. The Pekar-Tomasevich functional

5.1. Boltzons for U > 2α. — We shall prove the analogue of Theorem 3 for the PT
functional. The designation ‘boltzons’ refers to particles without any symmetry restric-
tion.

Proposition 1. — If U > 2α then

(5.1) E (N)

U (α) ≥
{

−(0.0280)NU3/(U − 2α) if 2α < U < 3α,

−(0.755)Nα2 if U ≥ 3α.

We note that this proves (1.15) with the constant stated in (1.17).

Proof. — We write U = 2(α + δ) with some δ > 0. Given any ψ , and hence ρψ ,
we will use two inequalities to bound the first two terms in the functional (1.10) in terms
of ρψ . The first is the Hoffmann-Ostenhof inequality [17] (see also [22, Corollary 8.4]),

(5.2)
N∑

i=1

∫
R3N

|∇iψ(X)|2 dX ≥
∫

R3
|∇√

ρψ(x)|2 dx.

The second is the Lieb-Oxford inequality [21], [22, Theorem 6.1]

∑
i<j

∫
R3N

|ψ(X)|2
|xi − xj| dX ≥1

2

∫∫
R3×R3

ρψ(x) ρψ(y)

|x − y| dx dy(5.3)

− (1.68)

∫
R3

ρψ(x)4/3 dx.

These two bounds imply that (with φ :=√
ρψ/N)

1
N

P (N)

U [ψ] ≥
∫

R3

(|∇φ|2 − (1.68)UN1/3φ8/3
)

dx(5.4)

+ δN
∫∫

R3×R3

φ(x)2 φ(y)2

|x − y| dx dy.
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Next, we use Hölder’s inequality

(5.5)
∫

φ8/3 dx ≤
(∫

R3
φ3 dx

)2/3(∫
R3

φ2 dx

)1/3

and Lemma 6 below to conclude that

(5.6)
∫

φ8/3 dx ≤ 1
(4π)1/3

(∫∫
φ(x)2 φ(y)2

|x − y| dx dy

)1/3(∫
|∇φ|2 dx

)1/3(∫
φ2 dx

)1/3

.

Using (αβγ )1/3abc ≤ 1
3(αa3 +βb3 +γ c3) for non-negative numbers a, b, c, α,β, γ , we see

that

(1.68)UN1/3

∫
φ8/3 dx ≤

∫
|∇φ|2 dx + δN

∫∫
φ(x)2 φ(y)2

|x − y| dx dy(5.7)

+ (1.68U)3

4π33δ

∫
φ2 dx.

This, together with (5.4) leads to the lower bound

(5.8) E (N)

U (α) ≥ −(1.68)3

54π

U3

U − 2α
N.

While this is true for all U > 2α, the right side is not a monotone increasing function
of U, which we know the left side to be. Therefore we can say that E (N)

U (α) is bounded
from below by the maximum value of the right side once U exceeds the maximum point,
which is U = 3α. This concludes the proof. �

Lemma 6. — For non-negative functions φ

(5.9)
(∫

R3
φ3 dx

)2

≤ 1
4π

∫∫
R3×R3

φ(x)2 φ(y)2

|x − y| dx dy

∫
R3

|∇φ(x)|2dx.

Proof. — We apply Schwarz’s inequality

(5.10)
(∫

R3
φ3 dx

)2

= 〈|p|−1φ2 | |p|φ〉2 ≤
〈
φ2

∣∣∣∣ 1
p2

∣∣∣∣φ2

〉 〈
φ

∣∣∣p2
∣∣∣φ
〉

and recall that |p|−2 is convolution with (4π |x|)−1. �

The stability of the PT functional with critical repulsion U = 2α remains an open

problem. In the fermionic case the answer is affirmative, as was shown by Griesemer and
Møller [14]. For the reader’s convenience we include the proof here.
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Combining the Lieb-Thirring inequality [24], [22, Corollary 4.1]

(5.11)
N∑

i=1

∫
R3N

|∇iψ(X)|2 dX ≥ Kq−2/3

∫
R3

ρψ(x)5/3 dx,

where K := 9
5(2π)2/3 = 6.13 [5], with the Lieb-Oxford inequality (5.3), one deduces

(5.12) P (N)

2α [ψ] ≥ Kq−2/3

∫
R3

ρψ(x)5/3 dx − 2α(1.68)

∫
R3

ρψ(x)4/3 dx.

The minimization of the expression on the right side under the normalization constraint∫
R3 ρψ(x) dx = N leads to the lower bound

(5.13) P (N)

2α [ψ] ≥ −(1.68)2

K
q2/3Nα2,

as claimed in Equation (1.18).

5.2. Absence of binding in the Pekar-Tomasevich model. — We have just given an alter-
native proof of the fact that there is stability of matter in the PT model when U > 2α.
Now we discuss the other part of Corollary 1, that is, the absence of binding for large U.

The first step is to linearize the problem. The variational problem for the PT func-
tional can, equivalently, be written

(5.14) E (N)

U (α) = inf
ψ,σ

{〈
ψ

∣∣∣H(N)

U,σ

∣∣∣ψ
〉
:
∫

R3N
|ψ |2 dX = 1

}

where the N-particle Hamiltonian H(N)

U,σ is defined to be

H(N)

U,σ :=
N∑

i=1

(
−�i − 2α

∫
R3

σ(y)

|xi − y| dy

)
+ U

∑
i<j

1
|xi − xj|(5.15)

+ α

∫∫
R3×R3

σ(x) σ (y)

|x − y| dx dy.

The infimum in (5.14) is taken over all σ for which the last term in (5.15) is finite. No
normalization is imposed. We proceed as before, by localizing particles into individual
boxes, with sizes depending on the distance to the nearest neighbor. In each localization
region we obtain a lower bound on the energy of a given ψ by minimizing over σ , which
yields the PT functional for the localized ψ . (In other words, we linearize, localize, and
de-linearize. If we had not followed this route and tried to deal with the quartic term
directly, the resulting expressions would be much more complicated.)
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Consider first the case N = 2. In the region j = 0, we need a lower bound on
E (2)

0 (α). We could use Lemma 2 above, but it is simpler, and indeed more accurate, to use

(5.16) E (2)

0 (α) = 2E (1)

0 (2α) = 8E (1)

0 (α) = 2E (1)

0 (α) − 6 · (0.109)α2.

The first equality follows from the linearization (5.14) since the ground state of (5.15) for
U = 0 is a product function for every σ ; the second equality follows by scaling.

For the regions j ≥ 1, we obtain the PT functional for 2 particles localized in dis-
joint balls. The proof of the corresponding lower bound to the energy, analogous to
Lemma 1, is obvious, bounding the attractive energy using the smallest possible distance
of the particles. Alternatively, one can use Lemma 3. For j ≥ 1 the resulting condition on
U is thus the same as in the proof of Theorem 2. Our improved estimate in the j = 0 re-
gion leads to the bound νc ≤ 29.4 (to be compared with the bound C < 2 · (26.6) = 53.2
for the Fröhlich polaron).

We can similarly analyze the N-particle problem. For the particles with j ≥ 1 the
bounds are exactly the same as before, except that functional integrals are not needed in
the derivation. For the particles with j = 0 the improved stability bound (5.1) (or (1.18)
for fermions) is used, and hence the final condition for the absence of binding will be a
lower value of U than that for the Fröhlich Hamiltonian.

Acknowledgements

We are grateful to Herbert Spohn for making us aware of the problem of prov-
ing absence of binding for large U. We also thank Marcel Griesemer and Jacob Schach
Møller for helpful comments on an early version of our manuscript. Partial financial sup-
port from the US National Science Foundation through grants PHY-0652854 (E. L. and
R. F.) and PHY-0845292 (R. S.) are gratefully acknowledged. L. T. would like to thank
the PIMS Institute, University of British Columbia, for their hospitality and support.

The authors retain the copyright for this article. The paper may be reproduced, in
its entirety, for non-commercial purposes.

Appendix A: Proof of Lemma 3

We assume that the confining balls B1, B2 are each of radius R, and that the balls are of
distance d = inf{|x1 − x2| : x1 ∈ B1, x2 ∈ B2} from each other. In the following, let

(A.1) â(x) = 1
(2π)3/2

∫
dk eikxa(k), â†(x) = 1

(2π)3/2

∫
dk e−ikxa†(k)
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be normalized annihilation and creation operators, with x a point in configuration space.
In terms of these operators, the particle-field interaction term in H(2)

U is given by

(A.2)
√

αφ(x) =
√

α

π 3/2

∫
dy

â†(y) + â(y)

|x − y|2
and the phonon field energy by

(A.3) Hf =
∫

dx â†(x)â(x).

Fix a plane midway between the two balls and perpendicular to the line between
their centers, and let S1 and S2 be the resulting half-spaces with B1 ⊂ S1 and B2 ⊂ S2.
Then we have the identity

H(2)

U=0 = p2
1 −

√
α

π 3/2

∫
S1

dy
â†(y) + â(y)

|x1 − y|2(A.4)

+
∫

S1

dy

(
â†(y) −

√
α

π 3/2|x2 − y|2
)(

â(y) −
√

α

π 3/2|x2 − y|2
)

+ p2
2 −

√
α

π 3/2

∫
S2

dy
â†(y) + â(y)

|x2 − y|2

+
∫

S2

dy

(
â†(y) −

√
α

π 3/2|x1 − y|2
)(

â(y) −
√

α

π 3/2|x1 − y|2
)

− α

π 3

∫
S1

dy

|x2 − y|4 − α

π 3

∫
S2

dy

|x1 − y|4 .

Define

(A.5) âx2(y) ≡
(

â(y) −
√

α

π 3/2|x2 − y|2
)

, y ∈ S1

and analogous expressions for â†
x2
(y), and for âx1(y), â†

x1
(y) with y ∈ S2. In terms of these

operators, the identity (A.4) becomes

H(2)

U=0 = p2
1 −

√
α

π 3/2

∫
S1

dy
â†

x2
(y) + âx2(y)

|x1 − y|2 +
∫

S1

dy â†
x2
(y)âx2(y)(A.6)

+ p2
2 −

√
α

π 3/2

∫
S2

dy
â†

x1
(y) + âx1(y)

|x2 − y|2 +
∫

S2

dy â†
x1
(y)âx1(y)

− α

π 2|x1 · n| − α

π 2|x2 · n| − 2α

|x1 − x2| ,
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where |xi · n| is the distance between xi and the dividing plane, i = 1,2. (The integrals in
the last line of Equation (A.4) can be done explicitly via cylindrical coordinates, resulting
in the first and second terms in the last line of this identity; the last term is an integral of
|x1 − y|−2|x2 − y|−2 over all of R3 and is readily computed to be the Coulomb attraction
term.)

We can give a lower bound on expectations of the right side of the first line of this
last equation (A.6), assuming the first particle is indeed confined in the ball B1. Let KS1,x2

be the one-particle operator of the first line,

(A.7) KS1,x2 = p2
1 −

√
α

π 3/2

∫
S1

dy
â†

x2
(y) + âx2(y)

|x1 − y|2 +
∫

S1

dy â†
x2
(y)âx2(y),

which we regard as acting in the Hilbert space L2(S1) ⊗ FS1 , the latter factor being the
Fock space associated with the phonon variables y ∈ S1; the operator is a function of
x2 ∈ S2. Note that p1 commutes with âx2(y) and its adjoint and that âx2(y) and â†

x2
(y) satisfy

the canonical commutation relations. The operator function KS2,x1 is defined analogously.
Fix x2, let ψ be a state in L2(R3) ⊗ FS1 supported in x1 ∈ B1, and then consider

a product state 	 = ψ ⊗ 
 ∈ L2(R3) ⊗ F where 
 is a coherent state of the phonon
variables corresponding to y ∈ S2 such that

(A.8) â(y)|
〉 =
√

α

π 3/2|xc − y|2 |
〉, y ∈ S2.

Here, we take xc ∈ S1 to be on the line passing through the centers of the two balls and
of distance d/2 + 2R from the dividing plane (i.e. as remote from the dividing plane as
possible but on the surface of B1). For such a state 	 , we have that

E(1)(α) ≤〈	|H(1)|	〉(A.9)

=〈ψ |KS1,x2|ψ〉 − 2α

π 3

∫
S2

dy

〈
ψ

∣∣∣∣ 1
|x1 − y|2|xc − y|2

∣∣∣∣ψ
〉

+ α

π 3

∫
S2

dy

|xc − y|4

≤〈ψ |KS1,x2|ψ〉 − 2α

π 3
inf

x1∈B1

∫
S2

dy

|x1 − y|2|xc − y|2

+ α

π 3(d/2 + 2R)
.

The integral in the infimum is seen to have no critical points for x1 in the interior of
B1 and so attains its minimum for x1 on the boundary of B1. The integral can again
be written using cylindrical coordinates and the angular integration performed explic-
itly. One then writes the integrand of the resulting double integral just as a function
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of z1, say, where x1 = (r1, θ1, z1) in cylindrical coordinates, and where (z1 + d/2 + R)2 +
r2
1 = R2. Minimization of the integrand in this double integral regarded as a function

of z1 is tedious but straightforward, the minimum occurring at x1 = xc. The integral∫
S2

dy |xc − y|−4 is equal to π/(d/2 + 2R) as computed above for Equation (A.4). Thus,
we obtain

(A.10) E(1)(α) ≤ 〈ψ1|KS1,x2|ψ1〉 − α

π 2(d/2 + 2R)
.

Of course the second line of Equation (A.6) is handled similarly.
By this last inequality (A.10) and Equation (A.6), we have that for any state 	 with

electron support in B1 × B2,

〈	|H(2)

U=0|	〉 =〈	|KS1,x2 ⊗ 1|	〉 + 〈	|KS2,x1 ⊗ 1|	〉(A.11)

− α

〈
	

∣∣∣∣
(

1
π 2|x1 · n| + 1

π 2|x2 · n| + 2
|x1 − x2|

)∣∣∣∣	
〉

≥2E(1)(α) + 2α

π 2(d/2 + 2R)

− α

〈
	

∣∣∣∣
(

1
π 2|x1 · n| + 1

π 2|x2 · n| + 2
|x1 − x2|

)∣∣∣∣	
〉
.

(Here, by abuse of notation, KS1,x2 ⊗1 acts trivially on phonon variables corresponding to
y ∈ S2, and is an operator-valued function of the particle coordinate x2 ∈ S2. The product
KS2,x1 ⊗1 has an analogous interpretation.) Noting that |x1 · n| and |x2 · n| are at least d/2,
we have that

(A.12) 〈	|H(2)

U=0|	〉 ≥ 2E(1)(α) − 2α

〈
	

∣∣∣∣ 1
|x1 − x2|

∣∣∣∣	
〉
− 16αR

π 2d(d + 4R)
,

which is the claim of Lemma 3.
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