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ABSTRACT

We prove that the chain-transitive sets of C1-generic diffeomorphisms are approximated in the Hausdorff topology
by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes.

This result is a consequence of a global connecting lemma, which allows to build by a C1-perturbation an orbit
connecting several prescribed points. One deduces a weak shadowing property satisfied by C1-generic diffeomorphisms:
any pseudo-orbit is approximated in the Hausdorff topology by a finite segment of a genuine orbit. As a consequence,
we obtain a criterion for proving the tolerance stability conjecture in Diff1(M).
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0. Introduction

0.1. The shadowing lemma in hyperbolic dynamics

In the study of differentiable dynamics, a remarkably successful theory, starting
from the early sixties with Smale [Sm2], describes a large class of systems: the uni-

formly hyperbolic systems. Their dynamics may exhibit complicated behavior but are well
understood. For instance, Smale’s spectral decomposition theorem asserts that the re-
current dynamics breaks down into finitely many invariant basic sets. Each of them is
undecomposable (it contains a dense orbit), locally maximal (the only invariant sub-
sets in a neighborhood are contained in the basic set itself) and contains a dense set
of periodic points.

It also appears that these systems satisfy some stability properties, meaning that
the orbit behavior does not change under small perturbations. Let Diffr(M) be the
space of Cr diffeomorphism of a compact riemannian manifold M, endowed with the
Cr-topology. A diffeomorphism f ∈ Diffr(M) is called structurally stable in Diffr(M) if
any diffeomorphism g ∈ Diffr(M) that is close to f is conjugate to f through a home-
omorphism of M. Palis and Smale conjectured in [PS] that the structurally stable
diffeomorphisms in Diffr(M) are the hyperbolic Cr-diffeomorphisms that satisfy the
strong transversality condition: the stable and the unstable manifolds are transverse.
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Robin, de Melo and Robinson [Rob,D,Rob2,Rob3] have then proven that the hyper-
bolic diffeomorphisms that satisfy the strong transversality condition are structurally
stable and also that the strong transversality condition is necessary for the structural
stability. At the end of the eighties, Mañé [M3] finished to prove the conjecture for
the C1-diffeomorphisms.

An important tool of the hyperbolic theory is provided by the shadowing lemma.
Conley and Bowen have introduced [B,C] the notion of ε-pseudo-orbits of a dynam-
ical system f . These are sequences of points {zn} in M that generalize the orbits,
since errors (of size smaller than ε) are allowed at each iterations. More precizely, for
each n, the distance between f (zn) and zn+1 is smaller than ε. Such a pseudo-orbit
is δ-shadowed by an orbit { f n(x)} if for any integer n, the points zn and f n(x) are at
distance less than δ. For any hyperbolic set K, the shadowing property is satisfied: for
any scale δ > 0, there exists ε > 0 such that to any ε-pseudo-orbit {zn} in K one can
associate a genuine orbit { f n(x)} which δ-shadows the pseudo-orbit. Two important
consequences of the shadowing lemma may be mentioned:

– If two periodic orbits in K have points that are close, their stable and un-
stable manifolds intersect, implying that the two orbits are included in a same
transitive set. This can be used to prove Smale’s spectral theorem.

– One easily gets a form of stability of the hyperbolic systems, that is weaker
than the structural stability. If the diffeomorphism g is close enough to the
map f , then, any orbit of g that stays in a neighborhood of the hyperbolic set
K is shadowed by an orbit of the unperturbed system f . Let us now consider
the non-wandering set Ω( f ) of f , which supports, in some sense, the non-trivial
dynamics. (A point is wandering if one of its neighborhoods is disjoint from
all its iterates; Ω( f ) is the set of points that are not wandering.) One says
that f is Ω-stable in Diffr(M) if for any diffeomorphism g that is close to f in
Diffr(M), the induced dynamics of f and g on Ω( f ) and Ω(g) are conjugate
by a homeomorphism. Using the shadowing property, one can prove that the
hyperbolic systems whose basic sets don’t have cycles (roughly speaking, this
means that the basic sets are strictly ordered by the dynamics) are Ω-stable
in Diffr(M). This result was originally proven by Smale in [Sm2]. Improv-
ing Mañé’s result on the structural stability, Palis [P] proved conversely that
the hyperbolic systems that don’t have cycles are the only Ω-stable systems in
Diff1(M).

In parallel to these works, it appeared however that the hyperbolic diffeomor-
phisms fail to be dense in the set of differentiable systems. When the dimension of
the manifold M is equal or larger than 3, Abraham, Smale and Simon [AS,Si] have
shown that Diff1(M) contains non-empty open sets of non-hyperbolic dynamics. These
examples are related to the existence of periodic orbits that have different indices
(the dimension of their stable space) but contained in the same transitive set, produc-
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ing some so-called heterodimensional cycles. Many generalizations of these examples
were built in [Sh2,M1,BD1]. On surfaces, by looking at the homoclinic tangencies,
Newhouse [N2,N3] discovered an other phenomena that produces open sets of non-
hyperbolic diffeomorphisms. His result applies only in the Cr topologies with r ≥ 2. It
was later generalized to manifolds of higher dimensions, see [PV,Rom,GST].

0.2. The generic dynamics

In view of these results, it is also important to focus on the systems that are far
from the hyperbolic dynamics. Some of them exhibit very degenerate phenomena (for
instance, some coincide with the identity on an open set), but that can disappear by
small perturbations of the dynamics. With the theory of generic dynamics, we forget
these pathological systems, which represent a small part of the space of differentiable
dynamics, and try to give a description of a large class of the remaining diffeomor-
phisms. In this paper we are interested by sets of diffeomorphisms that are residual
for the Baire category (i.e. that contains a countable intersection of dense and open
subsets of Diffr(M)). The results on the hyperbolic systems may indicate what kind of
properties can be looked for: spectral decomposition, weaker forms of stability, shad-
owing properties, invariant splittings of the tangent bundle, ... but new phenomena
having some kind of persistence should also be introduced, in particular when tangen-
cies or heterodimensional cycles occur: for example, the existence of infinitely many
sinks or sources (Newhouse phenomenon).

Let us give an example of a generic property, proven by Kupka and Smale [K,
Sm1]. For any diffeomorphism in a residual subset of Diffr(M), the periodic orbits
are all hyperbolic. Moreover their stable and unstable manifolds intersect transversally.
Pugh then proved [Pu2] that for C1-generic diffeomorphisms, the periodic points are
dense in the non-wandering set. It is a consequence of his closing lemma [Pu1]. By
C1-small perturbations, it is possible to create periodic points close to any non-wander-
ing point. His techniques only work in the C1 topology and explain why Mañé’s the-
orem on the stability and most of the genericity results deal with the space Diff1(M).
Quite recently, Hayashi [H] improved this result and proved a connecting lemma that
opened the door to many developments in C1-generic dynamics. Let us consider two
points p, q whose orbits accumulate – one in the future and the other one in the
past – on a same non-periodic point. Then, p and q can be connected by a seg-
ment of orbit for an arbitrarily small C1-perturbation of the dynamics. Using these
techniques, we were able, with Bonatti, to get a connecting lemma for pseudo-
orbits [BC].

Connecting lemma for pseudo-orbits. — Let us consider a diffeomorphism f whose periodic

orbits are hyperbolic. Let x, x ′ be two points that may be connected by ε-pseudo-orbits of f for any

constant ε > 0.
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Then, there exist arbitrarily small C1-perturbations g of f , such that x and x ′ belong to the

same orbit of g.

As for the structural and the Ω-stabilities, the shadowing property is not generic.
Bonatti, Dı́az and Turcat have proven in [BDT] that there exists a non-empty open
set of C1-diffeomorphisms over a 3-dimensional manifolds where the shadowing prop-
erty fails1. One of the main results of this paper however shows that a weaker prop-
erty holds C1-generically. The pseudo-orbits may be approximated by genuine orbits
if one forgets the time parameterization and uses the Hausdorff topology. Let us re-
call that two compact sets O and X are δ-close for the Hausdorff distance if the
δ-neighborhood of X contains O, and the δ-neighborhood of O contains X .

Theorem 1. — There exists a residual subset Gshadow of Diff1(M) such that any diffeo-

morphism f ∈ Gshadow satisfies the following weak shadowing property:

For any δ > 0, there is ε > 0 such that to any ε-pseudo-orbit X = {z0, z1, ..., zn}, one

can associate a segment of orbit O = {x, f (x), ..., f m(x)} which is δ-close to X for the Hausdorff

distance.

Moreover if the pseudo-orbit X is periodic (i.e. zn = z0), then, the point x can be chosen

m-periodic.

The weak shadowing property we get is different and stronger than the usual
weak shadowing property introduced by Corless and Pilyugin in [CP] and studied by
Sakai2. Among other results, Sakai proves [Sa] that if M is a surface, the interior of
the set of the C1-diffeomorphisms which have the weak shadowing property are the
diffeomorphisms that satisfy the axiom A and the no-cycle condition. A more detailed
exposition is given in [Pi].

In the proof of Theorem 1, the connecting lemma for pseudo-orbits is needed
but is not sufficient. It allows to show that for each pair of points (z, z′) in the pseudo-
orbit X , there is a segment of orbit Oz,z ′ that intersects the balls centered at z and z′,
with radius δ; but the segment of orbit could be different for each pair (z, z′). In some
sense, the connecting lemma for pseudo-orbits is semi-global. One connects two dif-
ferent points z, z′ ∈ M by a perturbation which is global in M, but we don’t have
any control on the support of the orbit that joints z to z′. (In comparison, the closing
lemma and Hayashi’s connecting lemma are local results: the perturbations are local.)

For proving Theorem 1, we need a new C1-perturbation result which is global.
In particular, we will discuss the following question:

1 The dynamics of these diffeomorphisms is transitive and the non-wandering set is the whole manifold.
Some generalizations of this result exist [YY,AD]. Hence, even in restriction to the non-wandering set, the shadowing
property fails on these examples.

2 These authors require that for any ε-pseudo-orbit {zn}n∈Z, there exists x ∈ M such that {zn}n∈Z is contained
in the δ-neighborhood of the orbit { f n(x)}n∈Z. Consequently, a transitive diffeomorphism has this weak shadowing
property.
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Question. — Let U1, ..., Uk be some (open) regions of the manifold M. Which assumptions

would imply the existence of an orbit that crosses all these regions?

We first define the sets that may be approximated by orbits by perturbation. Let
X be a compact set which is invariant by f . For any points x, x ′ in X , we say that
x ′ is a weak iterate of x ′ in X (this will be denoted by x ≺X x ′) if for any non-empty
open sets U and U′ that contain x and x ′ respectively and for any neighborhood W
of X , there exists a segment of orbit {z, f (z), ..., f n(z)} contained in W, such that z
belongs to U, f n(z) belongs to U′ and n is greater than or equal to 1. The set X is
a weak orbit of f if any distinct points x, x ′ in X may be compared by the relation ≺X .
For example, the closure and the ω-limit set of any orbit are weak orbits. Sometimes,
one will consider weak orbits that are “dynamically ordered”: one requires that ≺X is
transitive (so that it is a total ordering).

We will also need the following technical generic assumption:

(A) For any integer n ≥ 1, the periodic points of f of period n are isolated in M.

This condition holds for instance when all the periodic orbits are hyperbolic.
Kupka and Smale’s theorem thus imply that (A) is generic in any space Diffr(M) for
r ≥ 1.

The announced global perturbation result is the following:

Theorem 2. — Let f be a diffeomorphism that satisfies Condition (A), U a neighborhood

of f in Diff1(M) and X a weak orbit of f such that ≺X is transitive. Then, for any η0 > 0,

there exist a diffeomorphism g ∈ U and a full orbit O(x) = {gn(x), n ∈ Z} of g whose closure is

η0-close to X for the Hausdorff distance.

Of course, the orbit O(x) we obtain in this theorem is in general not periodic.
(For instance if the weak orbit X of f contains a source p and a sink q, then the orbit
O of g still accumulates on p in the past and on q in the future.) So, we have another
version of the result which deals with weak orbits that have a recurrence property:
we will say that a compact and invariant set X is weakly transitive if 3 for any non-
empty open sets U and V that intersect X and any neighborhood W of X , there
exists a segment of orbit {x, f (x), ..., f n(x)} contained in W and such that x belongs
to U, f n(x) belongs to V and n is greater than or equal to 1. (Note that by choosing
U = V, one sees that X is contained in the non-wandering set Ω( f ).) As an example,
any transitive set is a weakly transitive set. Moreover any weakly transitive set X is
also a weak orbit whose relation X is transitive.

Theorem 3. — Let f be a diffeomorphism that satisfies Condition (A), U a neighborhood of

f in Diff1(M) and X a weakly transitive set of f . Then, for any η0 > 0, there exist a diffeo-

morphism g ∈ U and a periodic orbit O of g that is η0-close to X for the Hausdorff distance.

3 An equivalent definition is: for any x, x ′ in X , the point x ′ is a weak iterate of x in X .
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In the next two sections we discuss the consequences of these theorems for the
stability and the spectral decomposition of the C1-generic diffeomorphisms. The reader
will find other corollaries in Section 3.

0.3. Tolerance stability

An important goal of dynamical systems is to describe how the dynamical in-
variants change under perturbations. This leads to the notion of stability. Once people
have discovered that the sets of structurally stable and Ω-stable diffeomorphisms are
not dense, they tried to find weaker forms of stability satisfied by a larger class of
systems (see [Sh1]). At the beginning of the seventies, following an idea of Zeeman,
Takens formulated [T1] an interesting notion of stability: the tolerance stability, which
asserts that the orbit structure of a system varies only a little under small perturba-
tions.

More precisely, for r ≥ 0, we say that a diffeomorphism f ∈ Diffr(M) of M
is tolerance stable in Diffr(M) if for any ε > 0, there exists a neighborhood U of f in
Diffr(M) which satisfies the following: for any diffeomorphisms g and g ′ in U , and
any orbit O = {gn(x), n ∈ Z} of g, there exists an orbit O′ = {g ′n(x ′), n ∈ Z} of
g ′ such that O is contained in the ε-neighborhood of O′ and O′ is contained in the
ε-neighborhood of O (i.e. the closures of O and O′ are ε-close for the Hausdorff top-
ology). This may be also defined in the following elegant way: recall that the set of
non-empty compact subsets of M, endowed with the Hausdorff distance, is a com-
pact metric space, that we denote by K (M). Hence, the closures of all the orbits
of a diffeomorphism f of M gives a subset of K (M). Taking its closure in K (M),
we obtain an element Orb( f ) of K (K (M)). A diffeomorphism f is tolerance sta-
ble in Diff r(M) if it is a continuity point of the map g �→ Orb(g) from Diffr(M) to
K (K (M)). In [T1] Takens stated the following conjecture4.

Tolerance stability conjecture (Zeeman). — For any compact manifold M and any r ≥ 0, the

tolerance stable diffeomorphisms are generic in Diffr(M).

Since the orbits of a perturbed map g close to a diffeomorphism f are pseudo-
orbits of f , it is very natural to look for a new formulation of the tolerance stabil-
ity using pseudo-orbits. Takens defined in [T2] the notion of extended orbit, which
is even more general than the weak orbits defined above: a compact set X which is
invariant by f is an extended orbit if for any ε > 0 there exists an ε-pseudo-orbit con-
tained in X and that is ε-dense in X . The set of all the extended orbits is closed in
K (M) and defines an element EOrb( f ) of K (K (M)). If one replaces the orbits
by the extended orbits in the definition of the tolerance stability, one gets the notion

4 In the AMS review of the paper [Wh], Takens explains that Zeeman never published this conjecture.
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of extended-tolerance stability. (Equivalently, a diffeomorphism is extended-tolerance
stable in Diffr if it is a continuity point of the map g �→ EOrb(g).) Takens proved
by semi-continuity arguments that the extended tolerance stable diffeomorphisms in
Diffr(M) are Cr-generic. Hence, he deduced the following criterion to get the gener-
icity of the tolerance stability:

Criterion 1 (Takens). — If the set of diffeomorphisms f such that Orb( f ) = EOrb( f )

is residual in Diffr(M), then, the tolerance stability conjecture holds in Diffr(M).

Takens proved in [T1] some related results that motivated the conjecture. If T
is a map from Diffr(M) to a topological space X, a diffeomorphism f is T-tolerance

stable in Diffr(M) if it is a continuity point of T. For instance, T may associate to
any diffeomorphism f , the set Cl( f ) of invariant compact subsets of M, which is an
element of X = K (K (M)). He showed that the Cl-tolerance stable diffeomorphisms
are generic in Diff1(M).

Another important example for T is the map which associates the support of the
non-trivial dynamics, viewed as an element of K (M). In general, there is no canon-
ical definition of the non-trivial dynamics. It should at least contain all the periodic
orbits: their closure will be denoted by Per( f ). Another possibility for the non-trivial
dynamics is the chain-recurrent set R( f ): it contains the points that belong to periodic
ε-pseudo-orbits for arbitrarily small ε > 0. This set is certainly the largest candidate
(any other point belongs to the basin of a trapping region, as it was proved by Con-
ley, see the next section). There are several other choices between Per( f ) and R( f )

but we will only mention the non-wandering set Ω( f ) since it played an important
historical role (the reason is that by Pugh’s closing lemma Per( f ) = Ω( f ) for C1-
generic diffeomorphisms). Recently, the equality Per( f ) = R( f ) was shown in [BC]
for C1-generic diffeomorphisms, implying that in some sense the non-trivial dynamics
is well defined for the generic diffeomorphisms5.

Using the genericity of Kupka–Smale diffeomorphisms, Takens showed in [T1]
that in Diffr(M) the Per-tolerance stable diffeomorphisms are generic (he proved
a stronger statement, see Theorem 8 at Section 3.2). From Pugh’s closing lemma he
got also the genericity of the Ω-tolerance stability in Diff1(M). The case of the R-
tolerance stability is easier and follows from a standard argument6.

Little progress have been done since Takens papers: using the classical shadow-
ing lemma, Robinson [Rob4] has proved the conjecture for Axiom A diffeomorphisms.

5 Due to this result, my opinion is that the chain-recurrent set should now be preferred to the non-
wandering set. Note for example that, according to Newhouse [N1], the diffeomorphisms that are Axiom A (i.e. the
diffeomorphisms such that Ω( f ) is hyperbolic and Ω( f ) = Per( f )) and satisfy the non-cycle condition may be
simply defined as the diffeomorphisms whose chain-recurrent set is hyperbolic.

6 One first proves that the map f �→ R( f ) is upper-semi-continuous (for any map g close to f , the set
R( g) is contained in a neighborhood of R( f )); Baire’s theorem implies that the continuity points of this map are
residual, see also Section 3.
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In the space of homeomorphisms Diff0(M), Mazur has obtained [Maz] a strong form
of the conjecture, improving a partial result of Odani [O].

The tolerance stability conjecture in Diff1(M) and Takens criterion were a mo-
tivation for proving the perturbation results and the generic weak shadowing prop-
erties of this paper. Theorem 1 seems very close to show that for C1-generic diffeo-
morphisms f , one has EOrb( f ) = Orb( f ): it claims that for a C1-generic diffeo-
morphism f and for any δ > 0, any extended orbit of f is δ-close to a segment of
orbit of f for the Hausdorff distance. There remains however a serious gap which
consists in replacing the segments of orbits of f by whole orbits: let us considers the
invariant compact subsets of M that are limit of segments of orbits for the Hausdorff
distance; this gives a new element FOrb( f ) in K (K (M)). We always have the inclu-
sions Orb( f ) ⊂ FOrb( f ) ⊂ EOrb( f ) but Theorem 1 implies that for a C1-generic
diffeomorphism f , one has FOrb( f ) = EOrb( f ). Another consequence is that the
continuity points of the map g �→ FOrb(g) are generic in Diff1(M). So we improved
Takens criterion:

Criterion 2. — If the set of diffeomorphisms f such that Orb( f ) = FOrb( f ) is residual

in Diff1(M), then, the tolerance stability conjecture holds in Diff1(M).

The reader may observe that by Theorem 2, for any C1-generic diffeomorph-
ism f , and any extended orbit X of f , there are orbits (On) of C1-small perturbations
(gn) of f whose closure are arbitrarily close to X in the Hausdorff topology. This is
however not sufficient to obtain Orb( f ) = FOrb( f ) = EOrb( f ) for C1-generic
diffeomorphisms by some Baire argument since the obtained orbits On are not robust
under perturbations: for any generic diffeomorphism g close to a perturbation gn, all
the orbits that shadows X could escape after a long time and visit other regions of M.
One would obtain however a control on the asymptotic behavior of the orbits On if
the orbit O(x) in Theorem 2 can be obtained as a heteroclinic orbit between two
hyperbolic periodic orbits. This would be implied by another perturbation result:

Problem 1 (Asymptotic closing lemma). — Let f be a diffeomorphism of a compact
manifold M, U a C1-neighborhood of f and x a point in M.

– Does there exist a perturbation g ∈ U such that x is on the stable manifold of
a hyperbolic periodic orbit O?

– Can we require moreover that the closure of the forward orbits of x by f and
by g remain close for the Hausdorff distance? that the ω-limit set of the orbit
of x by f (i.e. the accumulation set of the forward orbit of x) and the periodic
orbit O by g are close for the Hausdorff distance?

A positive answer to these questions would also show that for a C1-generic diffeomor-
phism, the stable and unstable manifolds of the hyperbolic periodic points are dense
in the manifold.
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0.4. Spectral decomposition of C1-generic diffeomorphisms

In dynamical systems the periodic orbits play a particular role. Some dynamical
invariants are associated to them; in general, they also can be followed after perturba-
tion of the dynamics. Moreover, Pugh’s closing lemma implies that any non-wandering
point of a C1-generic diffeomorphism is the limit of a sequence of periodic point.
However, since the perturbation is local, it does not control the support of the periodic
orbit. We will see below that it is interesting to answer the following global problem:

Question. — What is the class of compact sets that may be approximated by a sequence of

periodic orbits?

A partial answer was given by Arnaud in [A2]. She showed that the ω-limit sets
of a C1-generic diffeomorphism belong to this class of sets. However it is not known
if for a generic diffeomorphism the ω-limit sets are the only possible compact sets in
this class: in general the set of ω-limit sets is not closed for the Hausdorff topology.
Let us also mention Mañé’s ergodic closing lemma [M2] which gives the measure the-
oretical viewpoint on the approximation by periodic orbits: it asserts that any ergodic
invariant probability measure µ of a C1-generic diffeomorphism is the limit of a se-
quence of invariant measures supported by periodic orbits (On). Moreover, the orbits
On converge towards the support of µ for the Hausdorff topology. For the C1-generic
diffeomorphisms, Theorem 3 provides us with a complete answer of the question, in
terms of chain-transitivity.

Theorem 4. — There exists a Gδ dense subset Grec of Diff1(M) such that for any dif-

feomorphism f ∈ Grec, a compact invariant set X is the limit ( for the Hausdorff distance) of

a sequence of periodic orbits if and only if X chain-transitive.

This result has some consequences on the spectral decomposition of generic dif-
feomorphisms. Conley has given in [C] a very simple and general way to decom-
pose the chain-recurrence set R( f ) into disjoint and invariant compact sets, called
the chain-recurrence classes: two points of M belong to a same chain-recurrence class if
for any ε > 0, they belong to a same ε-pseudo-orbit which is periodic. He proved that
there exists a “Lyapunov function” h associated to this decomposition: h is a continu-
ous map from M to R such that:

– h decreases along the orbits: h ◦ f (x) ≤ h(x) for each x ∈ M; moreover, the
inequality is strict if and only if x does not belong to the chain-recurrence set.

– h is constant on each chain-recurrence class and takes distinct values on dis-
tinct classes.

– The image of the chain-recurrent set by h is totally discontinuous.
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This provides us with some “generalized filtration” of the dynamics: for any distinct
chain-recurrence classes E, E′, there exists a trapping region U that separates7 E and E′.

Several recent results showed that this decomposition for C1-generic diffeomor-
phisms shares some of the properties of Smale’s spectral decomposition: for hyperbolic
diffeomorphisms, each basic piece E is a homoclinic class. More precisely, it contains
a periodic points P and E is the closure of all the transverse intersection points be-
tween the invariant manifolds of the orbit of P. The dynamics in each homoclinic
class is transitive; the periodic points are dense. For C1-generic diffeomorphisms, the
pieces of Conley’s decomposition also hold recurrent dynamics: by the result of [BC],
the chain-recurrence classes are the maximal weakly transitive sets. Improving a theo-
rem of Carballo, Morales and Pacifico [CMP], it shows also that the chain-recurrence
classes E that contain a periodic point P are the homoclinic classes. Little is known for the
other classes (which are called aperiodic classes): the examples of Bonatti and D́ıaz [BD2]
assert that they exist for generic diffeomorphisms in (non-empty) open subsets of
Diff1(M) when the dimension of M is larger than or equal to 3. In order to obtain
information on the aperiodic classes, it is useful to approximate them by the periodic
orbits in the Hausdorff topology. This is again a consequence of Theorem 1.

Corollary 1. — There exists a Gδ dense subset Gaper of Diff1(M) such that for any dif-

feomorphism f ∈ Gaper, the homoclinic classes of f are dense among the chain-recurrence classes for

the Hausdorff topology.

As an application of this theorem, we extend with Abdenur and Bonatti [AbBC]
a dichotomy proven for homoclinic classes by Bonatti, D́ıaz and Pujals [BDP] to any
chain-recurrence class E: either E is the limit of a sequence of periodic sinks or sources
for the Hausdorff topology (Newhouse’s phenomenon) or E has some weak form of
hyperbolicity (a non-trivial dominated splitting of its tangent bundle). Corollary 1 is
also used in [ABCD] for discussing the generic dynamics on surfaces.

Theorem 1 also explains how the (non-recurrent) dynamics of a C1-generic dif-
feomorphism is organized between the chain-recurrence classes: if E1, ..., Er are chain-
recurrence classes, there exists orbits that successively visit arbitrarily small neighbor-
hoods of them if and only if these chain-recurrence classes are connected together by
pseudo-orbits with arbitrarily small jumps.

0.5. Structure of the paper

In the next section, we give a systematic presentation of the various definitions
of weak and extended orbits. We also prove some general basic properties of weak
orbits.

7 More precisely, U is an open set satisfying f (Ū) ⊂ U; one class is contained in U and the other one in M\U.
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Section 2 deals with the perturbation techniques in C1-dynamics: we recall
Hayashi’s connecting lemma and the connecting lemma for pseudo-orbits. We then
state three perturbation properties that are the technical results of the paper. The first
one (approximation by periodic orbits) implies directly Theorem 3 (see Section 2.4). The
two others (approximation by finite segments of orbit and asymptotic approximation) will give
Theorem 2, as it is shown in Section 5.3.

We discuss in Section 3 the generic consequences of these perturbation results:
in particular, we prove Theorems 1, 4, Corollary 1 and Criterion 2.

The heart of the paper, contained in the last two sections, is devoted to the
proofs of the three perturbation results stated at Section 2: In Section 4, we explain
how to approximate a weakly transitive set by a periodic orbit. In Section 5, we prove
the two other properties and deduce Theorem 2.
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1. Generalized notion of orbits and recurrence

1.1. Notations

Let M be a compact manifold endowed with a Riemannian metric. The induced
distance will be denoted by d. The open ball centered at a point x ∈ M with radius
η > 0 is written B(x, η). The η-neighborhood of a set X ⊂ M is the union of the
balls B(x, η) over the points x ∈ X. The closure of a subset X in a topological space
is Cl(X).

The space of non-empty compact sets of M will be denoted by K (M). This is
a compact metric space for the Hausdorff distance defined by:

dH(K, K′) = max
(

max
x∈K

d(x, K′), max
x ′∈K′ d(x ′, K)

)
.

If dH(K, K′) is less than η, we say that the compact subsets K and K′ of M are η-close.
The set of non-empty compact subsets of K (M) also may be endowed with

the Hausdorff topology. This defines a compact metric space K (K (M)). One adds
sometimes an isolated point, the empty set ∅ of K (M), and one considers the space
K (K (M)) ∪ {∅}.
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In this work, we consider the space Diff1(M) of C1-diffeomorphisms of M en-
dowed with the C1-topology.

1.2. Generalized iterates

In this section we will discuss how to generalize the following relation between
points of M: y is a forward iterate of x by f if there exists n ≥ 1 such that f n(x) = y.
We will give several examples at Section 1.5.

1.2.1. We are interested by relations that are closed for the topology of M.
This leads to the following natural notion of weak iterate, first introduced by Ar-
naud [A1] and Gan and Wen [GW].

Definition 1. — A point y is a weak iterate of x by f (one denotes it by x ≺ y) if for any

neighborhoods U of x and V of y, there exists n ≥ 1 and a point z ∈ U such that f n(z) belongs

to V.

Sometimes one localizes the dynamics:

– Let W be an open set. If x and y belong to W, one defines the relation x ≺W y
if for any neighborhoods U and V of x and y, there exists n ≥ 1 and a point
z ∈ U such that f n(z) belongs to V and such that the segment of orbit
(z, f (z), ..., f n(z)) is contained in W.

– Let K be a compact set. If x and y belong to K, one defines the relation
x ≺K y if for any neighborhood W of K one has x ≺W y.

If X is a compact set, the relation x ≺ X will mean that for any point x ′ ∈ X , we
have x ≺ x ′. One defines in the same way the relations x ≺W X and x ≺K X .

The relations ≺,≺W,≺K are in general not transitive (cf. Example 1 of Sec-
tion 1.5). We prove that the relation ≺K is closed:

Proposition 1. — Let us consider a sequence of compact sets (Kk) and two sequences (xk)

and ( yk) in M such that xk ≺Kk yk for each k. If (xk), ( yk) converge towards x, y and if (Kk)

converges towards K in the Hausdorff topology, then x ≺K y.

Proof. — One considers two neighborhoods U and V of x and y respectively and
W a neighborhood of K. For k large, xk belongs to U, yk to V and W is a neighbor-
hood of Kk. Since xk ≺Kk yk, there exists a segment of orbit that crosses U and then
V and is contained in W what was to be shown. �


The relation ≺K is invariant by f , by f −1 and moreover x ≺K y implies x ≺K

f ( y). We also have the following property:
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Proposition 2. — Let f be a diffeomorphism and K a compact set. Let x, y be two points

in K such that x ≺K y. If f (x) �= y then f (x) ≺K y holds also.

Proof. — Let W be a neighborhood of K and U, V be two neighborhoods of
f (x) and y respectively. Since f (x) is different from x, one may assume that U and V
are disjoint. Using the relation x ≺K y, there exists a segment of orbit (z0, ..., zn) in W
with n ≥ 1 such that z0 belongs to f −1(U) and zn to V. Since U is disjoint from V,
z1 does not belong to V and n is larger than or equal to 2. Hence (z1, ..., zn) is a finite
segment of orbit (not reduced to a point) contained in W such that z1 belongs to U
and zn to V. This shows f (x) ≺W y. Since W is any neighborhood of K, we have
f (x) ∈ K and f (x) ≺K y. �


1.2.2. When we consider perturbations of the dynamics, one may want to
work with a relation which is semi-continuous with respect to the map f . Introduc-
ing the pseudo-orbits, one obtains8 the following definition.

Definition 2. — A point y is a chain-iterate of x by f (one denotes it by x � y) if for any

ε > 0, there exists an ε-pseudo-orbit (z0, ..., zn) (with n ≥ 1) such that z0 = x and zn = y.
Let E be any9 subset of M. If x and y belong to E, one defines the relation x �E y if for any

ε > 0, there exists an ε-pseudo-orbit (z0, ..., zn) (with n ≥ 1) contained in E such that z0 = x
and zn = y.

These relations are clearly transitive. Moreover the relation x ≺K y implies the
relation x �K y (the converse is false, see Example 1). The following proposition shows
in particular that if the set E is closed, then the relation �E is closed.

Proposition 3. — Let us consider a sequence ( fk) of diffeomorphisms that converges towards

f ∈ Diff1(M). One also considers a sequence of compact sets (Kk) and two sequences (xk) and

( yk) in M such that for each k, the point yk is a chain-iterate of xk by fk . If (xk) converges towards

x and ( yk) towards y and if (Kk) converges towards K in the Hausdorff topology, then y is a chain-

iterate of y by f .

Proof. — One fixes ε > 0. For k large enough, dH(Kk, K), d(xk, x), d( yk, y) and
the C0-distance between fk and f are small. We consider a η-pseudo-orbit of fk in Kk

8 Since we are interested here by the semi-continuity property of the relation with respect to f , one could
define the following relation: y is a “generalized iterate” of x by f if there exists a sequence ( fk) which converges
toward f for an appropriate topology, two sequences of points (xk) and ( yk) which converge in M toward x and y
respectively, and a sequence of integers (nk) such that for each k, we have nk ≥ 1 and f nk (xk) = yk. The definition
of “chain-iterates” which uses pseudo-orbits appears naturally when one considers rather random perturbations of
the dynamics. It is easier to work with the definition of chain-iterate since it has the advantage to involve only the
initial dynamics f (and not to depend on the choice of a topology on the set of the dynamical systems).

9 We do not distinguish here between the cases where E is open or closed. The reason is that if one considers
an ε-pseudo-orbit that joints two points x, y of E and that can be chosen arbitrarily close to E, then, for any ε′ > ε,
there also exists an ε′-pseudo-orbit that joints x to y and that is contained in E′. It is obtained by “projecting” the
points of the first orbit to the set E.
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that connects xk to yk. For η small enough, it is shadowed by an ε-pseudo-orbit in K
that connects x to y what was to be shown. �


1.3. Different kinds of recurrence

We now discuss the various definitions for a compact invariant set K to support
recurrent dynamics.

1.3.1. The sets that satisfy the strongest form of recurrence are the periodic
orbits. Since one looks for a notion which is closed for the Hausdorff topology, one
considers all the compact sets that are limit of periodic orbits in the Hausdorff top-
ology. This collection defines an element of K (K (M)) ∪ {∅} which is denoted by
Per( f ).

1.3.2. In the introduction, we defined the notion of weakly transitive set10:

Definition 3. — A closed set X ⊂ M which is invariant by f is weakly transitive if for

any neighborhood W of X , and any open sets U, V which intersect X , there exists n ≥ 1 and

a point z ∈ U such that f n(z) belongs to V and such that the segment of orbit (z, f (z), ..., f n(z))
is contained in W.

This can be compared to the classical definition of transitivity: X is transitive

if for any open sets U and V which intersect X , there exists n ≥ 1 and a point
z ∈ U∩X such that f n(z) belongs to V. By Proposition 1, the set of weakly transitive
sets is closed in K (M). Hence, this is an element of K (K (M)) which is denoted by
WTrans( f ).

One can give an equivalent definition using the relation ≺X : the set X is weakly
transitive if and only if for any points x, y in X , we have x ≺X y.

1.3.3. Replacing ≺X by the relation �X in the definition of weakly transitive
set, one gets another definition:

Definition 4. — A closed set X ⊂ M which is invariant by f is chain-transitive if for

any points x, y in X one has x �X y.

By Proposition 3, the sets of chain-transitive sets is closed in K (M), defining an
element of K (K (M)) which is denoted by CTrans( f ). Moreover, it is upper-semi-
continuous with respect to f : if ( fn) converges towards f in the C0-topology, then, the
upper-limit of the compact sets CTrans( fn) is contained in CTrans( f ).

10 Note that a slightly different notion of weak transitivity was proposed in [A1]: it requires only that for any
open sets U, V which intersect X , there exists n ≥ 1 and a point z ∈ U such that f n(z) belongs to V. In particular,
the union of two different periodic orbits, contained in a same transitive set, satisfies this last condition but not our
definition of weak transitivity.
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Note that the chain-recurrence classes defined at Section 0.4 are the chain-transitive
sets that are maximal for the inclusion. Two chain-recurrence classes are disjoint or
equal since they also are the equivalence classes for the following relation in R( f ):
for any points x, y ∈ R( f ), we define x �� y if x � y and y � x.

From the construction, we always have the inclusions

Per( f ) ⊂ WTrans( f ) ⊂ CTrans( f ).(1)

In general they do not coincide (cf. Examples 2 and 3).
In dynamics, one also often considers the collections of transitive sets, and of

limit sets (the accumulation points of orbits). The collection of periodic orbits is con-
tained in the collection of transitive sets which is contained in the collection of limit
sets. All of them are contained in WTrans( f ). In general neither the collection of
limit sets, nor the collection of transitive sets are closed; moreover, there is no relation
with Per( f ) for the inclusion (cf. Examples 0 and 2).

1.4. The generalized orbits

Similarly to the various definitions of generalized iterates, one now introduces
different generalizations of the orbits.

1.4.1. In the strongest form, one simply considers the collection of invari-
ant compact sets that are limit of closure of orbits by f and one obtains an element
Orb( f ) of K (K (M)).

1.4.2. The invariant compact sets that are limit of finite segments of orbits in
general produce a different element FOrb( f ) ∈ K (K (M)) (see Example 3).

1.4.3. More generally, from any definition of generalized iterates, one derives
a definition of generalized orbit: a set K is a generalized orbit if for any pair of point
x, y in K, one is a generalized iterate of the other. In particular one gets the following
definitions:

Definition 5. — An invariant compact set X is a weak orbit (resp. an extended orbit)
if for any points x �= y in X one has x ≺X y or y ≺X x (resp. one has x �X y or y �X x).

The notion of extended orbit was introduced by Takens in [T2]. His definition
is equivalent to ours: E is an extended orbit if and only if for any ε > 0, the compact
set E is approximated in the Hausdorff topology by the closures of ε-pseudo-orbits.

By Propositions 1 and 3, the sets of weak orbits and of extended orbits are closed
for the Hausdorff topology, defining two elements of K (K (M)) that we denote by
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WOrb( f ) and EOrb( f ) respectively. We always have the inclusions

Orb( f ) ⊂ FOrb( f ) ⊂ WOrb( f ) ⊂ EOrb( f )(2)

but in general these sets do not coincide.
It is also useful to introduce the generalized segments of orbits: in the defin-

ition of the elements of FOrb( f ), WOrb( f ) and of EOrb( f ), one may also con-
sider compact sets that are not necessarily invariant by f . This defines the following
elements of K (K (M)):

Seg( f ) ⊂ WSeg( f ) ⊂ ESeg( f ).(3)

The elements of WSeg( f ) will be called the weak segments of orbits; those of ESeg( f ),
the extended segments of orbits.

By Proposition 3, the sets EOrb( f ) and ESeg( f ) vary upper-semi-continuously
with respect to the dynamics f . For FOrb( f ) and Seg( f ), we have:

Proposition 4. — The maps f �→ Seg( f ) and f �→ FOrb( f ) are lower-semi-continu-

ous.

Proof. — Let X be any element of Seg( f ). It is arbitrarily close to a segment of
orbit {x, f (x), ..., f n(x)} for the Hausdorff topology. For g close to f , the orbit {x, g(x),
..., gn(x)} belongs to Seg(g) and is close to {x, f (x), ..., f n(x)}, hence, close to X , show-
ing the lower-semi-continuity of f �→ Seg( f ). One obtains the result for FOrb( f )

just by noting that FOrb( f ) coincides with the subset of Seg( f ) whose elements are
invariant by f . �


Note also that we have the inclusions

Per( f ) ⊂ Orb( f ) ⊂ FOrb( f ) ⊂ Seg( f ),

WTrans( f ) ⊂ WOrb( f ) ⊂ WSeg( f ),
CTrans( f ) ⊂ EOrb ⊂ ESeg( f ).

1.5. Examples

0. Among all the elements of K (K (M)) ∪ {∅} defined above, Per( f ) is the
only one that can be the empty set: this happens for instance with the irra-
tional rotations of the circle. In this case, the collection of transitive sets (here
the whole circle) is not contained in Per( f ).

1. Let f1 be an orientation-preserving diffeomorphism of the circle T1 having
three semi-stable fixed points p1, p2 and p3 (see the first example of Figure 1)).
The set Per( f1) equals {{p1}, {p2}, {p3}}. Up to reordering the three fixed



PERIODIC ORBITS AND CHAIN-TRANSITIVE SETS OF C1-DIFFEOMORPHISMS 103

FIG. 1.

points, one has p1 ≺ p2, p2 ≺ p3 and p3 ≺ p1 but the other relations between
these points are not satisfied: in particular p1 ≺ p3 is false showing that in
this case ≺ is not transitive and that ≺ and � may differ.

2. Let f2 be a diffeomorphism of the torus, foliated by circles (Ct)t∈T1 , such that
(see the second example of Figure 1)):
– On one circle, C0, the induced dynamics coincides with the former ex-

ample.
– On the circles Ct �= C0 the dynamics is conjugate to a rotation.
– The rotation number ρt on the circles Ct is monotonic in t.
In this example, the elements of Per( f2) = WTrans( f2) are the periodic
orbits of f2 and each circle Ct. In particular C0 is in Per( f2), but is not
a limit set; the set C0 is weakly transitive but is not transitive. Note also that
despite C0 is weakly transitive for f2, the dynamics f1 induced by f2 on C0 is
not weakly transitive.
The set CTrans( f2) is larger: it contains for example the whole torus.

3. Let f3 be a surface diffeomorphism which coincides with the identity outside
an open disk D. In D, f3 has a fixed point p. Any other orbit in D converges
towards p in the past and accumulates on the whole boundary of D in the
future (see the third example of Figure 1)). On this example, the boundary
of D belongs to FOrb( f3) but not to Orb( f3). The boundary of D belongs
to WTrans( f3) but not to Per( f3).

1.6. Properties of weak orbits

1.6.1. Weak orbits and periodic points. — The periodic orbits are the simplest
weak orbits. We analyze here the other weak orbits. (Recall that a diffeomorphism
satisfies Condition (A) if for any integer n ≥ 1, the fixed points of f n are isolated.)

Lemma 1. — Let X ∈ WSeg( f ) be a weak segment of orbit of a diffeomorphism f that

satisfies Condition (A). If X is not a periodic orbit, the non-periodic points are dense in X .
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Proof. — We first claim that the periodic orbits are not isolated in X . The proof
is by contradiction: let us consider a periodic isolated point x in X ; the periodic orbit
O of x is isolated from X \O. By our assumption on X , the set X \O is non-empty
and we will see that this gives a contradiction. One can choose two neighborhoods U
and V of O and X \O respectively such that f (U)∩V and f (V)∩U are both empty.
By definition of weak segment of orbit, there exists a finite segment of orbit contained
in the neighborhood U ∪ V of X that crosses U and V. This is impossible by our
choice of U and V. This shows the claim.

Let us now consider the set Pn of periodic points contained in X with period
n. This set is closed and finite by the assumption (A) on the diffeomorphism. Since
the points of Pn are not isolated in X , the set Pn has empty interior in X . By Baire’s
theorem the complement of the union ∪nPn is dense in X . Hence, the non-periodic
points are dense. �


Proposition 5. — Let X be a weak orbit of a diffeomorphism f that satisfies Condition (A).

If X is not a periodic orbit, then for any η0 > 0 there exists a subset X of X which has the

following properties:

1. X is finite (and contains at least two points);

2. the Hausdorff distance between Cl(∪n f n(X)) and X is less than η0;

3. X has no periodic point;

4. the orbits of any two distinct points of X are disjoint.

Proof. — By compactness of X and by Lemma 1, there exists a finite subset X
of non-periodic points in X which is η0-close to X . Up to removing some points
of X, the orbit of X is η0-close to X but X intersects each orbit of X in at most one
point. This gives the result. �


1.6.2. Weak orbits and maximal invariant subsets. — Any weak orbit X , such that
≺X is an ordering, contains points y that are maximal for ≺X :

Proposition 6. — Let be X a weak orbit such that the relation ≺X is transitive. Then,

X contains an invariant closed set A such that for any x ∈ X and y ∈ A, one has x ≺X y.

Remark. — Any non-empty subset of A will also satisfy the proposition. Hence,
one may choose A minimal for the inclusion, so that the induced dynamics on A is
minimal.

Proof. — One considers the family F of closed and invariant non-empty subsets
K of X such that for any x ∈ X \ K and y ∈ K one has x ≺X y. This family is
non-empty (it contains X ) and partially ordered by inclusion. One easily checks that
Zorn’s lemma can be applied and one considers a minimal element A ⊂ X . We will
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now prove that for any points x, y in A, one has x ≺X y. This will concludes the
proof.

Let us consider two points x, y in A and assume by contradiction that x ≺X y
does not hold. One then considers the set A′ of points z ∈ A such that x ≺X z. This
set is closed (Proposition 1), non-empty (it contains ω(x)) and moreover f (A′) ⊂ A′.
It is smaller than A since y belongs to A \ A′. Since X is a weak orbit, for any point
z′ ∈ A′ and any point z ∈ A\A′ one has z ≺X z′ or z′ ≺X z. However, the second case
is impossible: by transitivity of ≺X , one would get x ≺X z so that z ∈ A′ by definition
of A′. This contradicts our choice of z. Hence z ≺X z′. For any point z′ ∈ A′ and
any point z ∈ X \ A one also has z ≺X z′ by definition of A. We proved that for any
z ∈ X \ A′ and any z′ ∈ A′, one has z ≺X z′.

Let us define A0 = ∩n∈N f n(A′). Since f (A′) ⊂ A′, the set A0 is the intersec-
tion of a decreasing sequence of non-empty compact sets. Hence, A0 is non-empty,
compact and invariant. Moreover, for any z ∈ X \ A0 and z′ ∈ A0, there exists
n ∈ N such that f −n(z) belongs to X \ A′ and f −n(z′) to A0 ⊂ A′. One thus gets
f −n(z) ≺X f −n(z′) so that z ≺X z′. Hence A0 is in the family F of compact sets de-
fined above and A is not a minimal element of f . This is a contradiction. This ends
the proof. �


1.6.3. Weak orbits that are not weakly transitive. — We now analyze weak orbits
that are not weakly transitive.

Proposition 7. — Let X a weak orbit that is not weakly transitive and such that the relation

≺X is transitive. Then, for any η0 > 0, there exist two weak orbits Xα and Xω whose relations

≺Xα
and ≺Xω

are transitive, and a point z0 ∈ X such that:

1. Xα, Xω and the orbit O(z0) of z0 are pairwise disjoint and contained in X .

2. The set Cl(Xα ∪ O(z0) ∪ Xω) is η0-close to X in the Hausdorff topology.

3. For any x ∈ Xα and z ∈ X \ Xα we have x ≺X z but the relation z ≺X x is not

satisfied.

4. For any y ∈ Xω and z ∈ X \ Xω we have z ≺X y but the relation y ≺X z is not

satisfied.

Remark. — By Lemma 1, if f satisfies Condition (A), the point z0 may be modi-
fied and chosen non-periodic.

Proof. — One first builds Xω: by Proposition 6, there exists an invariant closed
subset A of X such that for any x ∈ X and y ∈ A we have x ≺X y. One defines Xω

as the set of points y ∈ X such that for any x ∈ A, one has x ≺X y and y ≺X x. This
set is closed, invariant and contains A.

By transitivity of ≺X , for any x ∈ X and y ∈ Xω we have x ≺X y. Moreover
y ≺X x implies x ∈ Xω. We then prove that Xω is a weakly transitive set, hence
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a weak orbit (whose relation ≺Xω
is transitive). Since X is not weakly transitive, this

also shows that Xω is not equal to X .

Claim 1. — The set Xω is a weakly transitive set.

Proof. — For any two points x, y ∈ Xω, we have x ≺X y. Let us assume by con-
tradiction that the relation x ≺Xω

y is not satisfied: in particular, there are segments
of orbits that connect small neighborhoods U of x to small neighborhoods V of y,
that are contained in arbitrarily small neighborhoods W of X , but that are not con-
tained in arbitrarily small neighborhoods of Xω. When the size of the neighborhoods
U, V, W decreases, these segments of orbits have an accumulation point z which be-
longs to X \ Xω. Moreover, we obtain x ≺X z ≺X y. This implies by transitivity of
≺X that for any z̃ in Xω one has z̃ ≺X z and z ≺X z̃. Hence, by definition of Xω

(and using A ⊂ Xω), one gets z ∈ Xω which is a contradiction. �

One then builds Xα: since Xω is not equal to X , one chooses a finite set

{z1, ..., zr} in X \ Xω such that {z1, ..., zr} ∪ Xω is η0-close to X in the Hausdorff
topology. Using that X is a weak orbit, one can order this set as

z1 ≺X z2 ≺X ... ≺X zr ≺X Xω.

One denotes by B the set of points x ∈ X such that x ≺X zr . This is a closed and
non-empty set which satisfies B ⊂ f (B). The set Xα is defined as the decreasing in-
tersection Xα = ∩n≥0 f −n(B). This is an invariant and non-empty compact set.

Claim 2. — For any points x ∈ Xα and z ∈ X , the relation z ≺X x implies that
z belongs to Xα.

Proof. — For any n ≥ 0, we have f n(x) ∈ Xα ⊂ B; hence, f n(x) ≺X zr . Using
f n(z) ≺X f n(x), one also gets f n(z) ≺X zr so that f n(z) belongs to B. One has z ∈
∩n≥0 f −n(B) and thus z ∈ Xα, proving the claim. �


This claim and the fact that X is a weak orbit show that for any point x ∈ Xα

and z ∈ X \ Xα, we have x ≺X z. One also gets that Xα is a weak orbit whose
relation ≺Xα

is transitive: since X is a weak orbit whose relation is transitive, it is
enough to show that for any points x, y ∈ Xα the relation x ≺X y implies x ≺Xα

y.
The argument is similar to the proof of the first claim (One argues by contradiction:
if x ≺Xα

y does not hold, there exists a point z ∈ X such that x ≺X z ≺X y and such
that z �∈ Xα. This is impossible since z ≺X y and y ∈ Xα imply by the second claim
that z belongs to Xα.)

Let us note that Xα and Xω are disjoint. Otherwise, there would exist y ∈ B
such that for any point x ∈ Xω we have x ≺X y. As y ≺X zr by definition of B we get
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also x ≺X zr by transitivity of ≺X . We also have zr ≺X x. These two relations imply
that zr belongs to Xω. This is a contradiction.

Since X is a weak orbit and since the two invariant subsets Xα and Xω are
disjoint, the set X \ (Xα ∪ Xω) is non-empty. By the properties proven for Xα and
Xω, we have shown the items 1), 3) and 4) of the proposition. In particular, for any
x ∈ Xα, y ∈ Xω and z ∈ X \ (Xα ∪ Xω),

x ≺X z ≺X y.

One then introduces the point z0. Two cases are possible:

– either zr belongs to Xα and the point z0 is arbitrarily chosen in X \ (Xα ∪
Xω);

– or zr does not belong to Xα and one sets z0 = zr .

It follows directly from this definition that the orbit O(z0) of z0 is disjoint from
Xα ∪ Xω. We now prove that Xα ∪ O(z0) contains the set X and, by our choice of
the set X, this will imply the second item of the proposition: let us consider any point
zi ∈ X; we have zi ≺X zr . If zr ∈ Xα, the last claim shows that zi is also included
in Xα. If zi does not belong to the orbit of zr , one can apply Proposition 2: for each
n ≥ 0, we have f n(zi) ≺X zr so that zi again belongs to Xα = ∩n≥0 f n(B). In remaining
case zr �∈ Xα but zi belongs to the orbit of zr = z0: we have zi ∈ O(z0). In any of
these three cases, one has xi ∈ Xα ∪ O(z0) as required.

The proof of Proposition 7 is now complete. �


2. Connecting lemmas

In this section, we recall Hayashi’s connecting lemma and the connecting lemma
for pseudo-orbits. We then state the technical versions of the perturbation results given
in the introduction (Theorems 2 and 3).

2.1. Support of perturbations

Let f be a diffeomorphism and U a neighborhood of f in Diff1(M). Two per-
turbations g1, g2 ∈ U of f have disjoint supports if gi = f outside some open set Ui for
i = 1, 2 and U1 ∩ U2 = ∅. In this case, one defines the composed perturbation g by g = f
outside U1 ∪ U2, g = g1 on U1 and g = g2 on U2.

In general g does not belong to U . However, there exists (see the flexibility of

the lift axiom in Section 2 of [PR]) a basis of neighborhoods U of f which have this
property:

(F) For any perturbations g1, g2 ∈ U of f with disjoint supports the composed perturbation

g remains in U .
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2.2. Hayashi’s connecting lemma

In the proof of the perturbation lemmas we will use Hayashi’s connecting lemma.
The original proof appeared in [H] but other references are given in [WX,A1]. We
need a slightly more general statement than the version of [A1], in order to perturb
at the same time in different domains. However the proof is the same.

Theorem 5 (Hayashi’s connecting lemma). — Let f0 be a diffeomorphism of a compact mani-

fold M, and U a neighborhood of f0 in Diff1(M). Then there exists N ≥ 1 such that for any

z ∈ M which is not a periodic orbit of period less than or equal to N, and for any open neighborhood

U of z, some smaller neighborhood V ⊂ U of z has the following property:

For any diffeomorphism f ∈ Diff1(M) that coincides with f0 on U ∪ · · · ∪ f N−1
0 (U), for

any points p, q ∈ M \ (U ∪ · · · ∪ f N
0 (U)) and any integers np, nq ≥ 1 such that f np(p) belongs

to V and f −nq(q) to f N
0 (V) there is a diffeomorphism g ∈ Diff1(M) arbitrarily close to f which

satisfies:

– g coincides with f on M \ (U ∪ · · · ∪ f N−1
0 (U)). The diffeomorphism g0 that coincides

with g on U ∪ · · · ∪ f N−1
0 (U) and coincides with f0 elsewhere belongs to U .

– g sends a positive iterate gm(p) of p on q.

– The orbit (p, · · · , gm(p)) can be cut in three parts:

a. the beginning (p, · · · , gm′
(p)) has support in

{p, · · · , f np(p)} ∪ U ∪ · · · ∪ f N
0 (U);

b. the central part (gm′
(p), · · · , gm′+N(p)) has support in

U ∪ · · · ∪ f N
0 (U);

c. and the end (gm′+N(p), · · · , gm(p)) has support in

U ∪ · · · ∪ f N
0 (U) ∪ { f −nq(q), · · · , q}.

Obviously, the same statement holds if one shrinks the neighborhood V of z.
The main difference with [A1] comes from the fact that the integer N is uniform

(this is explicit in [We]). The statement in [A1] also considers only the case f = f0 (so
that g = g0). However, the dynamics outside U∪· · ·∪ f N−1

0 (U) is not used in the proof.
This is the reason why one can replace f0 by any map f which coincides with f0 on
U∪ · · · ∪ f N−1

0 (U). For a different formulation of the connecting lemma, see also [BC,
Theorem 2.1].

2.3. Connecting lemma for pseudo-orbits

In order to handle with the pseudo-orbits, one will use a refinement of Hayashi’s
connecting lemma which is the connecting lemma for pseudo-orbits proven in [BC].
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Theorem 6 (Connecting lemma for pseudo-orbits [BC]). — Let f be a diffeomorphism whose

periodic orbits are hyperbolic (in particular it satisfies Condition (A)). Let U be a neighborhood of

f in Diff1(M).

Then, for any compact set K ⊂ M and any neighborhood W of K, for any points x and y
in K such that x �K y, there exists a perturbation g ∈ U of f whose support is in W and an

integer n ≥ 1 such that gn(x) = y. Moreover the points x, g(x), ..., gn(x) belong to W.

This is proven in [BC] in the case K = W = M but the proof in the gen-
eral case is the same: the idea is to cover a large part of M by disjoint “perturbation
domains”, i.e. by open sets V given by Hayashi’s connecting lemma. Let us consider
a pseudo-orbit with small jumps and that connects two points x and y. The pertur-
bation domains allow to remove the jumps and build an orbit between x and y for
a perturbation of f .

The diameter of the perturbation domains can be chosen arbitrarily small (in
particular, if a perturbation domain intersects the closed set K in Theorem 6, it should
be contained in W). Thus, if one considers a pseudo-orbit contained in K that con-
nects two points x, y ∈ K such that x �K y, one can use the perturbation domains that
intersect K to create a segment of orbit joining x to y. Since the perturbation domains
used and the pseudo-orbits considered are contained in W, the support of the pertur-
bation g and the segment of orbit between x and y for g will also be included in W as
in Theorem 6.

2.4. Global connecting lemmas

We now state the technical perturbation results proven in the paper. Their proofs
are based on Hayashi’s connecting lemma and are independent from the connecting
lemma for pseudo-orbit.

Proposition 8 (Approximation by periodic orbits). — Let f be a diffeomorphism and U
a neighborhood of f in Diff1(M). Then, there exists an integer N ≥ 1 with the following property:

If W ⊂ M is an open set and X a finite set of points in W such that

– the points f j(x) for x ∈ X and j ∈ {0, ..., N} are pairwise distinct and contained in W,

– for any x, x ′ ∈ X, we have x ≺W x ′,

then, for any η > 0 there exist a perturbation g ∈ U of f with support in the union of the open

sets f j(B(x, η)), for x ∈ X and j ∈ {0, ..., N−1}, and a periodic orbit O of g, contained in W,

which crosses all the balls B(x, η) with x ∈ X.

This proposition gives immediately the Theorem 3 stated in the introduction:

Proof of Theorem 3. — Let f be a diffeomorphism that satisfies Condition (A),
X be a weakly transitive set of f and η0 > 0 a constant. One will assume that X is
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not a periodic orbit (otherwise, the conclusion of the theorem is trivially satisfied). We
denote by W the η0-neighborhood of X in M. By Proposition 5, since Condition (A)
is satisfied, there exists some finite set X ⊂ X , such that every point z ∈ X belongs
to one ball B( f k(x), η0) with x ∈ X and k ∈ Z. Moreover the orbits of points of X
are pairwise disjoint and non-periodic.

Let us consider an arbitrarily small neighborhood U of f in Diff1(M) and a con-
stant η ∈ (0, η0) small enough, so that any closed set K ⊂ W, which intersects all the
balls B(x, η) with x ∈ X and which is invariant by a diffeomorphism g ∈ U , is η0-close
to X in the Hausdorff topology.

One now applies Proposition 8 and one obtains the perturbation g of f and the
periodic orbit O as announced in Theorem 3. �


The two next propositions will imply Theorem 2 (see Section 5.3).

Proposition 9 (Approximation by finite segments of orbits). — Let f be a diffeomorphism and

U a neighborhood of f in Diff1(M). Then, there exists an integer N ≥ 1 with the following

property:

If W ⊂ M is an open set and X = {p1, ..., pr} a finite set of points in W such that

– the points f j(pk) for k ∈ {1, ..., r} and j ∈ {0, ..., N} are pairwise distinct and contained

in W,

– for any k, � ∈ {1, ..., r}, with k < �, we have pk ≺W p�,

then, for any η > 0 there exist a perturbation g ∈ U of f with support in the union of the

open sets f j(B(pk, η)), for k ∈ {1, ..., r} and j ∈ {0, ..., N − 1}, and a finite segment of

orbit (p1, g(p1), ..., gn(p1)) of g, contained in W, which crosses all the balls B(pk, η) with

k ∈ {1, ..., r}.

Remark. — The segment of orbit built in the proof may visit the points of X in
a different order than p1, p2, ..., pr .

Proposition 10 (Asymptotic approximation). — Let f be a diffeomorphism that satisfies Con-

dition (A) and U a neighborhood of f in Diff1(M).

We consider:

– an invariant closed set A,

– an open neighborhood ŴA of A,

– a point x ∈ ŴA such that x ≺ŴA
A (i.e. for every ε > 0, there exists a segment of

orbit ( y, f ( y), ..., f n( y)) contained in ŴA which connects B(x, ε) to the ε-neighborhood

of A).

Then, for any neighborhoods U of x and WA of A, there exists a perturbation g ∈ U of f and

a point z ∈ U such that:
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– the support of the perturbation is contained in WA \ A (hence f and g coincide on A);

– the forward orbit of z by g is contained in ŴA and its ω-limit set is contained in A.

2.5. Conservative dynamics

The perturbation results stated above hold also in different settings, and in par-
ticular in the space Diff1

v (M) of C1-diffeomorphisms that preserve a volume form v,
or in the space Diff1

ω(M) of C1-diffeomorphisms that preserve a symplectic form ω.
More generally, Pugh and Robinson have given in [PR] some conditions that should
be satisfied by a space of diffeomorphisms so that the C1-perturbation techniques can
be used.

Kupka and Smale’s theorem on periodic points of generic diffeomorphisms has
been adapted by Robinson [Rob1] to symplectic and conservative diffeomorphisms: in
these settings, the periodic orbits of a generic diffeomorphism may be elliptic and not
only hyperbolic. In [ArBC], we have shown that the connecting lemma for pseudo-
orbits remains in Diff1

v (M) and Diffω(M) if one considers any diffeomorphism whose
periodic orbits are hyperbolic or elliptic. As a consequence, the generic consequences
proven here are also satisfied by the generic conservative or symplectic diffeomor-
phisms.

3. Generic properties of generalized orbits

We state and prove in this section several generic properties in Diff1(M). The
proofs will use two ingredients:

– the perturbation results (the global perturbations theorems proven in the
present paper and the connecting lemma for pseudo-orbits),

– the fact that the set of continuity points of any lower-semi-continuous (or
upper-semi-continuous) map Γ : Diff1(M) → K (K (M)) ∪ {∅} is a dense
Gδ subset of Diff1(M).

The Gδ dense subset of diffeomorphisms whose periodic orbits are all hyperbolic will
be denoted by GA. In particular, all the diffeomorphisms in GA satisfy Condition (A).

3.1. Generic comparison of weak and chain-iterates

For any compact set K, the relation x ≺K y implies x �K y. The converse is true
generically:

Theorem 7 ([BC]). — The set of diffeomorphisms such that, for any compact set K, the

relations x ≺K y and x �K y are equivalent, contains a Gδ dense subset Gchain of Diff1(M).
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In particular for any diffeomorphism f ∈ Gchain, we have the equalities

WTrans( f ) = CTrans( f ), WOrb( f ) = EOrb( f ),

WSeg( f ) = ESeg( f ).

This theorem is a direct consequence of the connecting lemma for pseudo-orbits (The-
orem 6) and has been proven in [BC] in the case K = M. For completeness we give
below the proof in the semi-local situation.

Since the relation �K is transitive for any compact set K, one deduces the fol-
lowing property. (In the case K = M, it was proven by Arnaud [A1] and Gan and
Wen [GW] as a consequence of Hayashi’s connecting lemma.)

Corollary 2. — For any diffeomorphism f in the Gδ dense subset Gchain of Diff1(M), and

for any compact set K, the relation ≺K is transitive.

Proof of Theorem 7. — For any diffeomorphism f , one denotes by R≺( f ) (resp. by
R�( f )) the sets of triples (x, y, K) ∈ M × M × K (M) such that x �K y (resp. x ≺K y)
for the dynamics of f . By Propositions 1 and 3, these sets are closed.

Claim 3. — The set R≺( f ) varies lower-semi-continuously with f .

Let us consider a triple (x, y, K) ∈ R≺( f ). There exists in R≺( f ) a pair of the
form (z, f n(z)), n ≥ 1, such that z and f n(z) are close to x and y respectively and the
segment {z, f (z), ..., f n(z)} is contained in a small neighborhood of K. One deduces
that the compact set Kf = K ∪ {z, f (z), ..., f n(z)} is close to K for the Hausdorff
topology. For any small perturbation g of f , the set Kg = K ∪ {z, g(z), ..., gn(z)} is
close to K in the Hausdorff topology and we have z ≺Kg gn(z) for the map g. Hence,
the triple (z, gn(z), Kg) is close to (x, y, K) in M × M × K (K (M)) and belongs to
R≺(g), showing the lower-semi-continuity of R≺( f ) and the claim.

Consequently, the set of continuity points of f �→ R≺( f ) is a dense Gδ subset
G≺ of Diff1(M). We set Gchain = GA ∩ G≺ where GA is the set of diffeomorphisms
whose periodic orbits are all hyperbolic. We now prove that for any f ∈ Gchain, we
have R≺( f ) = R�( f ), which implies the theorem.

Note that we always have the inclusion R≺( f ) ⊂ R�( f ). Let f be a diffeomor-
phism in Gchain, K a compact subset of M and x, y two points of M such that x �K y
for f . Let us also assumes by contradiction that the relation x ≺K y does not hold
for f . Since f ∈ G≺ is a continuity point of the map g �→ R≺(g), there exist some
neighborhoods U, V, W of x, y, K in M and a neighborhood U of f such that: for
any diffeomorphism g ∈ U , there is no segment of orbit {z, g(z), ..., gn(z)} with n ≥ 1,
that is contained in W and such that z belongs to U and gn(z) to V. However, since
f also belongs to GA, one can apply the connecting lemma for pseudo-orbits (The-
orem 6) and obtain a contradiction. �
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3.2. Generic comparison of orbits and weak orbits (proof of Theorem 4 and Criterion 2)

We will now prove that for C1-generic diffeomorphisms, any chain-transitive set
is the Hausdorff limit of a sequence of periodic orbits.

Proposition 11. — There exists a Gδ dense subset Grec of Diff1(M) such that for any

diffeomorphism f ∈ Grec we have

Per( f ) = WTrans( f ) = CTrans( f ).

In particular, we obtain the conclusion of Theorem 4.
Similarly, the extended orbits are approached by finite segments of orbits in the

Hausdorff topology:

Proposition 12. — There exists a Gδ dense subset Gorbit of Diff1(M) such that for any

diffeomorphism f ∈ Gorbit we have

Seg( f ) = WSeg( f ) = ESeg( f ),

FOrb( f ) = WOrb( f ) = EOrb( f ).

Contrary to the periodic case, we were unable to answer the following problem:

Problem 2. — Does generically the sets Orb( f ) and FOrb( f ) coincide?

A positive answer would imply that Orb( f ) = EOrb( f ) generically in
Diff1(M). Hence, Takens criterion of Section 0.3 would be satisfied, proving the tol-
erance stability conjecture. In other terms, we have shown Criterion 2.

The first proposition will be proven by using a result of F. Takens in [T1], which
is a consequence of Kupka–Smale genericity theorem [K,Sm1]: the Per-tolerance
stable diffeomorphisms are generic in Diff1(M).

Theorem 8 (Takens [T1], Theorem II). — The set of continuity points of the map f �→
Per( f ) from Diff1(M) to K (K (M)) ∪ {∅} contains a Gδ dense subset GPer of Diff1(M).

Proof of Proposition 11. — Let us define Grec = GA ∩ GPer ∩ Gchain. We consider
f ∈ Grec. By Theorem 7, we have the equality WTrans( f ) = CTrans( f ). We also
have the inclusion Per( f ) ⊂ WTrans( f ) and we will assume by contradiction that
the inequalities does not occur: Per( f ) �= WTrans( f ). Hence, there exists a weakly
transitive invariant compact set K for f which is not accumulated by any periodic
orbit. There is a neighborhood U of the point K ∈ K (M) such that Per( f ) does not
intersect U.

By Theorem 3, there is a perturbation g of f and a periodic orbit O of g that
is close to K for the Hausdorff topology, and belongs to U. This contradicts the fact



114 SYLVAIN CROVISIER

that f is a continuity point of the map g �→ Per(g). We thus showed that the set Grec

satisfies the conclusion of Proposition 11. �

The second proposition is also proven by using a continuity property. By Propo-

sition 4, the map f �→ Seg( f ) is lower-semi-continuous, so that the Seg-tolerance
stable diffeomorphisms (see the definition of T-tolerance stability at Section 0.3) are
generic in Diff1(M):

Proposition 13. — The set of continuity points of the map f �→ Seg( f ) from Diff1(M)

to K (K (M)) contains a Gδ dense subset GSeg of Diff1(M).

Proof of Proposition 12. — We define the residual set Gorbit = GA ∩ GSeg ∩ Gchain

and we consider f ∈ Gorbit. By Theorem 7 and since f belongs to Gchain, we have the
equality WSeg( f ) = ESeg( f ). We also have the inclusion Seg( f ) ⊂ WSeg( f ). Let
us assume by contradiction that Seg( f ) �= WSeg( f ): there exists a weak segment of
orbit X for f which is not the Hausdorff limit of finite segments of orbits of f . Since
f is a continuity point of g �→ Seg(g), there is a neighborhood U0 of f and a constant
η0 > 0 such that the maps g ∈ U0 have no finite segment of orbit η0-close to X for
the Hausdorff distance. We denote by W the η0-neighborhood of X in M.

Claim 4. — There is a finite subset X = {x0, ..., xr} of X such that:

1. X is η0
2 -close for the Hausdorff distance to the closure of

{ f n(x0)}n≥0 ∪ { f −n(xr)}n≥0 ∪ { f n(xk), n ∈ Z and k ∈ {1, ..., r − 1}};
2. X has no periodic point; the orbit of any two distinct points of X are disjoint;
3. for any k, � ∈ {0, ..., r} with k < �, we have xk ≺W x�.

Proof. — Similarly to the proof of Proposition 5, one builds using Lemma 1 and
Condition (A) a finite subset X̃ of X and such that

– X̃ is η0
2 -close to X ;

– X̃ has no periodic point.

Since f belongs to Gchain, the relation ≺X is transitive: one can order the set X̃ as
a sequence (x̃0, ..., x̃s) such that, for any k < � in {0, ..., s}, we have x̃k ≺X x̃�.

Note that all the points of X̃ can not belong to a same orbit: otherwise f would
have a finite segment of orbit contained in X which is η0

2 -close to X for the Haus-
dorff topology, contradicting our assumptions on X and η0. By Proposition 2, we see
that for any k, � ∈ {0, ..., s}, if x̃k is an iterate of x̃0 and x̃� is not an iterate of x̃0 then,
we have x̃k ≺X x̃�. This shows that, up to reordering the set X, one may assume that
the iterates of x̃0 contained in X̃ are the first elements of the sequence {x̃0, ..., x̃s}. In
particular, the points x̃0 and x̃s do not belong to a same orbit.
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One now removes from X̃ some points and defines a smaller set X ⊂ X̃ so
that x̃0 and x̃s belongs to X, the points of X have different orbits and any point in X̃
has some iterate in X. One can order X as a sequence (x0, ..., xr) such that x̃0 = x0,
x̃s = xr and such that, for any k < � in {0, ..., r}, we have xk ≺X x�. The set X is
not invariant by f , but by Proposition 2, the whole orbits of the points x1, ..., xr−1, the
positive orbit of x0 and the negative orbit of xr are contained in X .

The set { f n(x0), n ≥ 0} ∪ { f −n(xr), n ≥ 0} ∪ { f n(xk), n ∈ Z and k ∈ {1, ...,

r−1}} is contained in X and contains X̃. Hence, it is η0
2 -close to X for the Hausdorff

distance. �


By the first property of the claim, there exists a neighborhood U of f contained
in U0 and a constant η ∈ (0, η0) such that any finite segment of orbit {z, g(z), ..., gn(z)}
with g ∈ U and z ∈ B(x0, η) which intersects all the balls B(xk, η) with xk ∈ X, inter-
sects all the balls B(x, η0) with x ∈ X .

By the two other properties of the claim and Theorem 9, there is a perturbation
g of f0 in U and a finite segment of orbit S = {x0, g(x0), ..., gn(x0)} of g contained
in the η0-neighborhood W of X which intersects all the balls B(x, η) with x ∈ X. In
particular, S is η0-close to X for the Hausdorff distance. This contradicts the choice
of U0 and η0, proving the equality Seg( f ) = WSeg( f ) for f in Gorbit.

Since the elements of FOrb( f ) and WOrb( f ) are the elements of Seg( f ) and
WSeg( f ) respectively that are invariant by f , one also gets the equality FOrb( f ) =
WOrb( f ) for f ∈ Gorbit. �


3.3. The weak shadowing property (proof of Theorem 1)

For any ε > 0, we consider the set of finite segments of ε-pseudo-orbits. Taking
the closure in K (M) we get a set ESegε( f ). The family (ESegε( f ))ε>0 is ordered
for the inclusion and the intersection ∩ε ESegε( f ) coincides with ESeg( f ).

For any diffeomorphism f in the residual set GOrb given by Propositions 11
and 12 and any δ > 0 we consider ε > 0 such that the Hausdorff distance in
K (K (M)) between ESeg( f ) and ESegε( f ) is less than δ

2 .
Let {z0, ..., zn} be any ε-pseudo-orbit of f . It belongs to ESegε( f ), hence there

exists an element K ∈ ESeg( f ) such that the Hausdorff distance between K and
{z0, ..., zn} in K (M) is less than δ

2 . By Proposition 12, the set K also belongs to
Seg( f ) so that there exists a finite segment of orbit {x, f (x), ..., f m(x)} which is
δ

2 -close to K. This shows that {z0, ..., zn} and {x, ..., f m(x)} are δ-close for the Haus-
dorff distance.

One can consider similarly for each ε > 0 the set of periodic ε-pseudo-orbits
{z0, ..., zn} with n ≥ 1 and zn = z0. Their closure in K (M) defines the set
CTransε( f ). By Proposition 11, one can make a similar argument as above with the
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sets Grec, (CTransε( f ))ε>0, CTrans( f ) and Per( f ) instead of GOrb, (ESegε( f ))ε>0,
ESeg( f ) and Seg( f ) to get the second part of Theorem 1.

Hence, Theorem 1 holds with the Gδ and dense subset Gshadow = Grec ∩ Gorbit

of Diff1(M).

3.4. Tolerance stability properties

We were unable to decide if the continuity points of the map f �→ Orb( f ) are
generic in Diff1(M) (which is the original Zeeman’s tolerance stability conjecture) but
we get the property for all the other sets introduced in the paper:

Proposition 14. — There is a residual subset of Diff1(M) whose elements are Per-,

FOrb-, Seg-, CTrans-, EOrb-, ESeg-, WTrans-, WOrb- and WSeg-tolerance

stable.

Proof. — For Per, this was proven by Takens (see Theorem 8 above), the case
of FOrb and Seg comes from the fact they depend lower-semi-continuously in the
dynamics (Proposition 4) and the case of CTrans, EOrb, ESeg from the fact that
they vary upper-semi-continuously with the dynamics (Proposition 3).

The remaining sets: WTrans, WOrb and WSeg are always controlled by the
other ones (using the inclusions (1), (2), (3)). Since generically the inclusions (1), (2), (3)
are equalities and since we have already proven the proposition for the six first sets,
one deduces the proposition for the last ones. �


3.5. Approximations of aperiodic classes (proof of Corollary 1)

Let f be a diffeomorphism in GA ∩ Grec and let E be a aperiodic class of f . In
order to prove Corollary 1 we show that E is the limit of a sequence of homoclinic
classes for the Hausdorff topology. We fix some ε > 0.

We recall an upper-semi-continuity property of the chain-recurrence classes.

Lemma 2. — There exists a neighborhood U of E such that any chain-recurrence class E′

of f which intersects U is contained in the ε-neighborhood of E.

Proof. — One proves the lemma by contradiction. Let (En) be a sequence of
chain-recurrence classes which converges (for the Hausdorff topology) towards a com-
pact set K, that intersects E but is not contained in E. By Proposition 3, K is chain-
transitive and contained in a chain-recurrence class. But K intersects E and the chain-
recurrence classes are disjoint or equal. So, K is contained in E, which is a contradic-
tion. �
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By Proposition 11, there exists a periodic orbit O of f ∈ Grec, which is close
to E in the Hausdorff topology: O is contained in U and E is contained in the ε-
neighborhood of O. Since f belongs to GA, the periodic orbit O is hyperbolic.

The chain-recurrence class E′ which contains O intersects U and, by Lemma 2,
is contained in the ε-neighborhood of E. The homoclinic class H which contains O
is included in E′, hence in the ε-neighborhood of E. Since H contains O, we also get
that the ε-neighborhood of H contains E. We thus found a homoclinic class H of f
which is ε-close to E for the Hausdorff distance. Consequently, E is accumulated by
homoclinic classes.

We proved Corollary 1 with Gaper = GA ∩ Grec.

4. Approximation of weakly transitive sets by periodic orbits: proof of
Proposition 8

In this part, one considers a diffeomorphism f and a neighborhood U of f in
Diff1(M). By shrinking U if necessary, one may assume that it satisfies the Condi-
tion (F): for any perturbations g1, g2 ∈ U of f with disjoint support, the composed
perturbation also belongs to U .

The connecting lemma (Theorem 5) associates to f and U some integer N ≥ 1
that will be fixed from now on and used all along this part.

In order to prove Proposition 8, we consider in M a finite set X and an open
set W that verify the assumptions of the proposition. We also choose a constant η > 0.
All the segments of orbits we will consider in the following will be contained in W.

4.0. Sketch of the proof of Proposition 8

The main ingredient of the proof is Hayashi’s connecting lemma. The natural
idea is the following: one cyclically orders the points of X = {p1, p2, ..., pr}. At each
of these points pi, one can apply the connecting lemma and associate two neighbor-
hoods Vi ⊂ Ui (contained in W): these neighborhoods may be chosen contained in
arbitrarily small balls B(pi, ε2) and B(pi, ε1) respectively, centered at pi and of radii
0 < ε2 < ε1. Using the definition of weak iterate, one chooses for each i a segment
of orbit Zi (contained in W) that connects Vi to Vi+1 (where the subscripts are taken
modulo k) and then tries to use the connecting lemma to connect all the Zi together
by perturbing f in each of the domains Ui and their N−1 first iterates: the composed
perturbation g belongs to U thanks to the Condition (F); moreover, if the domains Ui

have been chosen small enough, one would get a periodic orbit that intersects all the
balls B(pi, η) and that is contained in W.

Several difficulties arise in this naive approach. A first problem appears when
a segment of orbit Zi intersects a neighborhood Uj of index j different from i and
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i + 1: the perturbation with support in Uj may break the segment Zi and we are not
sure anymore to get a periodic orbit for the composed perturbation g. To over-pass
this problem, one notes that in this case the segment of orbit Zi, that connects the
neighborhoods of pi and pi+1 together, also intersects the neighborhood of pj : it may
not be necessary to consider the segments Zj−1, Zj and to perturb f around pj in order
to create a periodic orbit with the required support. More precisely, one will choose
a smaller set X′ ⊂ X of points where the connecting lemma will be applied. One
orders it as X′ = {x0, ..., xs} and one chooses the neighborhoods Vi ⊂ Ui at each point
xi and then the segments of orbits Zi connecting Ui to Ui+1. As explained above, each
segment Zi may intersect a small neighborhood of several points in X (not only xi and
xi+1): the set of points that are “visited” by Zi will be denoted by Xi,i+1. Although X′

is smaller than X, one can hope to create a periodic orbit that visit all the points of
X if we have

X = X′ ∪ X0,1 ∪ · · · ∪ Xs−1,s ∪ Xs,0.(4)

In order to prevent any segment of orbit Zj to intersect the domains Uj with j �=
i, i + 1, one will choose X′ with the smallest possible cardinality s.

We now meet a second difficulty: when one applies the connecting lemma in
a domain Ui to the segments of orbits Zi−1 and Zi, one gets a new segment of orbit
that connects Ui−1 to Ui+1, and that is contained in Zi−1 ∪(⋃

0≤k≤N f k(Ui)
)∪Zi. How-

ever, it should be noted that the connecting lemma can realize some shortcuts: some
parts of the orbits Zi−1 and Zi may be forgotten; hence, the new segment of orbit
may not visit the neighborhood of some of the points of Xi−1,i ∪ Xi,i+1. As a conse-
quence, the periodic orbit that one builds may miss some of the points of X, even if
the condition (4) is satisfied. To avoid this difficulty, one requires that among all the
segments of orbits that connect Ui to Ui+1, the orbit Zi minimizes the cardinality of
the set Xi,i+1 of points it visits. By doing that, any shorter segment of orbit will visit
exactly the same set Xi,i+1.

We now give the plan of the proof:

First step (Section 4.1). The construction of the minimizing sets Xi,i+1 is done be-
fore choosing the orbits Zi, and the set X′: more precisely, one introduce a minimizing
visit set Xx,x ′ for each pair x �= x ′ in X.

Second step (Section 4.2). One then chooses the set X′ = {x0, ..., xs}. In the best
case, each set Xi,i+1 does not contains any point xj ∈ X′ with j �= i, i + 1, so that Zi

and Uj will be disjoint. In general, it is not possible to have this property, but we show
(Proposition 16) that one can always have half of it: for each i, j ∈ {0, ..., s} such that
i + 1 < j, the point xj does not belong to Xi,i+1.

Third step (Section 4.3). From the second step, we have to ensure that for each
j < i < s, the neighborhood Uj does not intersect the segment of orbit Zi. This is done
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in Proposition 17 where one builds inductively the neighborhoods Vi ⊂ Ui and the
segments of orbits Zi. One starts with the largest indices i = s, s − 1, ..., 0.

Fourth step (Section 4.4). It now remains to perturb in each domain Ui in order
to connect all the Zi. One obtains a segment of orbit that visits all the points of the
set X.

However, the most delicate part of the proof consists in proving that this segment
can be closed and that one can obtain a periodic orbit:

– As explained, the segment of orbit Zs should be chosen at the beginning of the
third step, so that, the domains Uj , with j ∈ {1, ..., s −1} can be build disjoint
from Zs. One problem is the following: Zs should connect Vs to the open set
V0 but V0 will be constructed only at the end of step 3 ... This paradox is
solved by noting (Corollary 4) that the set Y ⊂ {x0} ∪ X0,1 of points in X
that are not contained in X1,2 ∪ · · · ∪ Xs−1,s is non-empty. In the simplest
case x0 belongs to Y. Hence, if one chooses a priori the neighborhoods V0

and U0 equal to B(x0, ε2) and B(x0, ε1), they will be disjoint from the orbits
Z1, ..., Zs−1; so, without breaking the orbit at intermediate iterates, one can
close the orbit by perturbing in U0.

– In general, this set Y may not contain the point x0. One has to choose a new
point xs+1 in Y where the orbit will be closed: the choice of this point is
not given a priori, but will depend on the construction of all the segments
Z1, ..., Zs−1. For this reason, at the beginning of the construction, one has to
consider all the possible choices for xs+1: for each point y ∈ Y, one defines
two neighborhoods Vy ⊂ Uy and one introduces a segment of orbit Zy that
connects Vs to Vy. This allows in the following to take the other neighbor-
hoods Uj disjoint from all the Zy. At the end, one chooses xs+1 in Y and one
defines Zs = Zxs+1 , Vs+1 = Vxs+1 and Us+1 = Uxs+1 . A perturbation in Us+1 will
connect the orbit Zs+1 to the orbit Z0 and close the orbit.

– Note that we have to ensure that the orbit Z0 crosses the neighborhood Vs+1

in order to perform this last perturbation. By our construction, the neighbor-
hoods Vs+1 and Us+1 can be chosen a priori equal to the balls B(xs+1, ε2) and
B(xs+1, ε1) respectively. In other terms, the points of X0,1 should be at dis-
tance less than ε2 from Z0. This was not the case for the other segments of
orbits Zj , with j ∈ {1, ..., s −1}: the points in Xj,j+1 are at distance less than η

from Zj . This shows that several scales should be considered in the proof:
• In order to obtain the minimizing property of the sets Xi,i+1, the (larg-

est) scale η given in the statement of the proposition will be replaced by
a smaller constant ε0 > 0.

• The (smaller) scales ε2 < ε1 give the size of the domains Vy ⊂ Uy chosen
a priori for the connecting lemma at points of Y.
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• One has also to control the points that are visited at scale ε2 by the segment
Z0. For this purpose, the endpoints of Z0 will be taken close to x0 and x1

(see Section 4.1): the scale here is ε3 ∈ (0, ε2).
– The choice of the point xs+1 is the remaining difficulty. The last perturba-

tion connects Zs to Z0 in Us+1 which is in general different from U0. For
this reason, the minimizing properties of the set X0,1 can not be used here
to guarantee that after perturbation, the orbit visit all the points of X0,1: in
particular, when one perturbs in U1, the connecting lemma shortcuts the seg-
ment of orbit (contained in Z0) between Us+1 and U1, so that some points in
X0,1 may be missed. This is why at Section 4.4 the perturbation in U1 will be
performed before choosing the point xs+1.

4.1. Visited sets

In this section, we give several definitions that will be used in the following
proofs. In particular, for any points x �= x ′ in the set X given above, we introduce
a subset Xx,x ′ ⊂ X: it contains the points in X that, in some sense, can not be avoided
by the orbits which come close to x and then to x ′.

We will study the orbits that approach X at different scales ε ∈ (0, ε0] where
ε0 is a small constant in (0, η) that will be chosen at Proposition 15. As we have ex-
plained in 4.0, four different scales ε0 > ε1 > ε2 > ε3 will be needed in the proof. Re-
call also that the integer N ≥ 1 has been fixed above by Hayashi’s connecting lemma.

Definition 6. — Let x, x ′ be two distinct points in X and U, U′ two neighborhoods of x
and x ′.

A finite segment of orbit (z, f (z), ..., f n(z)) contained in W connects U to U′ if z ∈
f N(U) and f n(z) ∈ U′.

Such a segment of orbit ε-visits some y ∈ X if some iterate f k(z) with k ∈ {0, ..., n}
belongs to B( y, ε). We denote by X(z, · · · , f n(z), ε) ⊂ X the set of points which are ε-visited

by the segment of orbit (z, ..., f n(z)) and by N(z, · · · , f n(z), ε) the cardinality of this set.

The segment of orbit is said to ε-visit (resp. ε-visit exactly) some set Y ⊂ X if Y ⊂
X(z, · · · , f n(z), ε) (resp. Y = X(z, · · · , f n(z), ε)).

Note that the assumptions made in Proposition 8 on the set X ensure that for
any choice of U and U′, there always exists a segment of orbit connecting these neigh-
borhoods.

We now introduce the minimizing sets Xx,x ′. There is some freedom in the con-
struction and their choice is not unique, but will be fixed in the following sections.

Proposition 15. — There exist a constant ε0 ∈ (0, η), and for each distinct points x, x ′

in X, an integer N(x, x ′) and a set Xx,x ′ ⊂ X of cardinality N(x, x ′) having the following property.
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For any ε ∈ (0, ε0), and any distinct points x, x ′ ∈ X, there are two neighborhoods

U(x, x ′, ε) and U′(x, x ′, ε) of x and x ′ respectively such that:

– any segment of orbit (z, f (z), ..., f n(z)) that connects U(x, x ′, ε) to U′(x, x ′, ε) ε-visits

at least N(x, x ′) points in X;

– for any neighborhoods U ⊂ U(x, x ′, ε) and U′ ⊂ U′(x, x ′, ε) of x and x ′, there exists

a finite segment of orbit that connects U to U′, that is disjoint from X and that ε-visits

exactly the set Xx,x ′.

Proof. — Let us choose two distinct points x, x ′ ∈ X, some neighborhoods U, U′

of x and x ′ and a constant ε ∈ (0, η). We consider N(U, U′, ε) the minimum of
N(z, · · · , f n(z), ε) over all the orbits (z, · · · , f n(z)) that connect U to U′. Taking U or
U′ smaller, this number increases, but is bounded by the cardinality of X. Thus, there
exists some maximal number N(x, x ′, ε) such that for any U and U′ small enough,
N(x, x ′, ε) is equal to N(U, U′, ε).

Note that one can assume that all the segments of orbits we used to connect U
to U′ are disjoint from X: the first point z may be replaced by any other point z̃ in
a small neighborhood of z; the new segment of orbit (z̃, · · · , f n(z̃ )), with the same
length, will connect again U to U′ and ε-visit the same set. As X is finite, one can
adjust z̃ in order that its orbit avoids X.

As ε > 0 decreases, the number N(x, x ′, ε) decreases also. The minimum of
N(x, x ′, ε) over all ε will be denoted by N(x, x ′). We choose now the constant ε0 ∈
(0, η) small enough so that for any x and x ′ in X, and any ε ∈ (0, ε0] we have
N(x, x ′, ε) = N(x, x ′).

As X is finite, there are only finitely many possible sets X(z, · · · , f n(z), ε) with
cardinality N(x, x ′). Hence, there exists Xx,x ′ ⊂ X with cardinality N(x, x ′) such that
for any ε ∈ (0, ε0) and any neighborhoods U and U′ of x and x ′, some orbit connects
U to U′ and ε-visits exactly the set Xx,x ′ .

For any ε ∈ (0, ε0), the neighborhoods U(x, x ′, ε) and U′(x, x ′, ε) of x and x ′

are chosen such that N(U(x, x ′, ε), U′(x, x ′, ε)) = N(x, x ′). �

In order to justify our choice of minimizing sets Xx,x ′ , we state the following

corollary.

Corollary 3. — Let us consider any ε ∈ (0, ε0], any x, x ′ ∈ X, any small neighborhoods

U ⊂ U(x, x ′, ε), U′ ⊂ U′(x, x ′, ε) of x and x ′, any segment of orbit Z = (z, · · · , f n(z))
that connects U to U′ and ε-visits exactly the set Xx,x ′ . Then, any sub-orbit Z′ of Z, that connects

U(x, x ′, ε) to U′(x, x ′, ε), ε-visits exactly the set Xx,x ′ .

Proof. — The set Ξ of points that are ε-visited by Z′ has cardinality at least
N(x, x ′) by definition. On the other side Ξ is contained in the set Xx,x ′ of points that
are ε-visited by Z. This concludes the proof since Xx,x ′ has cardinality N(x, x ′). �
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Choice of the scales. — By having chosen the constant ε0 small enough, one may
first assume that:

a. All the balls f k(B(x, ε0)) with x ∈ X and k ∈ {0, ..., N} are pairwise disjoint.

We will use later four different scales 0 < ε3 < ε2 < ε1 < ε0 for the balls visited by
the connecting orbits. We choose them inductively: let us assume that εi has been de-
fined. For each x ∈ X, the connecting lemma at x associates to Ux = B(x, εi) a smaller
neighborhood Vx of x. We choose 0 < εi+1 < εi so that for each x ∈ X, the ball
B(x, εi+1) is contained in Vx and in both sets U(x, x ′, εi) and U′(x ′, x, εi) for each
x ′ ∈ X \ {x}.

From this choice, the following additional properties are satisfied:

b. For every x ∈ X, the connecting lemma may be applied at x with the time N
and the neighborhoods B(x, εi+1) ⊂ B(x, εi).

c. For every x, x ′ ∈ X and any neighborhoods U ⊂ B(x, εi+1), U′ ⊂ B′(x ′, εi+1),
there exists a finite segment of orbit that connects U to U′, that is disjoint
from X, and that εi+1-visits exactly the set Xx,x ′ .

4.2. Combinatorics of X

We choose here the set X′ ⊂ X of points where the connecting lemma will be
applied.

Proposition 16. — There exists a sequence X′ = {x0, · · · , xs} (s ≥ 1) of distinct points of

X such that the visited sets Xk,k+1 = Xxk,xk+1 satisfy the following properties:

1. X = {x0, · · · , xs} ∪ X0,1 ∪ · · · ∪ Xs−1,s.

2. For any 2 ≤ k ≤ s, the point xk does not belong to

{x0, x1, · · · , xk−1} ∪ X0,1 ∪ X1,2 ∪ · · · ∪ Xk−2,k−1.

Proof. — One first chooses arbitrarily some point x0 ∈ X. Each time the point xk

(for k ≥ 0) has been defined one considers inductively any point xk+1 in X\({x0, · · · , xk}
∪ X0,1 ∪ · · · ∪ Xk−1,k) unless this last set covers already all X (this means k = s). �


In Proposition 16, the set X′ is not unique. The next corollary shows that some
choices are better.

Corollary 4. — If the set X′ in Proposition 16 has the smallest cardinality s, then, the set

Y = ({x0} ∪ X0,1) \ ({x1, ..., xs} ∪ X1,2 ∪ ... ∪ Xs−1,s)

is non-empty.
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Proof. — Let us suppose that the corollary is not satisfied: the set {x1, · · · , xs} ∪
X1,2 ∪ · · · ∪ Xs−1,s contains all points in X. Thus, the smaller sequence (x1, · · · , xs)

also satisfies properties (1) and (2) of Proposition 16, which is a contradiction since s
is minimal. �


Notation. — We will denote the set Xk,k+1 by Xxk,xk+1 and Xxs,y by Xs,y for any
k ∈ {0, ..., s − 1} and y ∈ Y.

4.3. Choosing orbits and neighborhoods

We explain in the next proposition how to choose inductively, at each point in
the sets X′, Y ⊂ X, a pair of neighborhoods V ⊂ U where the connecting lemma
may be applied and some segments of orbits that connects these neighborhoods (see
Figure 2).

Proposition 17. — Let X′ = {x0, ..., xs} and Y be the subsets of X given by Proposi-

tion 16 and Corollary 4. Then, there exists

– a family of open sets Uk ⊂ B(xk, ε2) for each k ∈ {0, ..., s} and Uy = B( y, ε1) for

each y ∈ Y,

– a family of smaller open sets Vk ⊂ Uk for each k ∈ {0, ..., s} and Vy = B( y, ε2) for

each y ∈ Y,

– a segment of orbit Zk that connects Vk to Vk+1 for each k ∈ {0, ..., s − 1},
– a segment of orbit Zy that connects Vs to Vy for each y ∈ Y,

such that the following properties are satisfied:

FIG. 2.
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1. The open set V0 is contained in B(x0, ε3) and U1 in B(x1, ε3).

2. The connecting lemma may be applied to the neighborhoods Vk ⊂ Uk and to the neighbor-

hoods Vy ⊂ Uy with the time N.

3. For any y ∈ Y, the orbit Zy does not intersect the sets U� with � ∈ {1, ..., s − 1};
moreover, it ε0-visits exactly the set Xs,y.

4. For any k ∈ {1, ..., s − 1}, the orbit Zk does not intersect the sets U� with � �= k, k + 1
nor the Uy for y ∈ Y; moreover, it ε0-visits exactly the set Xk,k+1.

5. The orbit Z0 does not intersect the sets Uk with k ∈ {2, ..., s}; moreover, it ε2-visits

exactly the set X0,1.

Proof. — We first set for any y ∈ Y,

Uy = B( y, ε1), Vy = B( y, ε2),

and at xs, we define

Us = B(xs, ε2), Vs = B(xs, ε3).

By Proposition 15, one chooses next for each y ∈ Y a segment of orbit Zy that con-
nects Vs to Vy and ε0-visits exactly Xs,y. This is possible by our choice of the scales ε1

and ε0.
We now define by induction the sets Vk ⊂ Uk and the orbit Zk for k ≥ 1. Let

us assume that all the sets V� ⊂ U� and the orbits Z� for k ≤ � ≤ s have been
constructed for some k ≥ 2. Since the orbits Z�, with k ≤ � ≤ s and Zy, with y ∈ Y
can be chosen disjoint from X (by the second item of Proposition 15), one can choose
a neighborhood Uk−1 ⊂ B(xk−1, ε2) of xk−1 disjoint from

Zk ∪ · · · ∪ Zs−1 ∪
⋃
y∈Y

Zy.

The connecting lemma at xk−1 associates to the neighborhood Uk−1 an open neighbor-
hood Vk−1 ⊂ Uk−1. By Section 4.1, we choose a segment of orbit Zk−1 that connects
Vk−1 to Vk and ε0-visits exactly Xk−1,k.

After s steps, the open neighborhoods V1 ⊂ U1 of x1 have been defined. One
may require in the last step of the previous induction that U1 ⊂ B(x1, ε3).

One now chooses a neighborhood U0 ⊂ B(x0, ε2) of x0 disjoint from

Z1 ∪ ... ∪ Zs−1.

The connecting lemma associates to U0 an open neighborhood V0 ⊂ U0 ∩ B(x0, ε3).
One then introduces a segment of orbit Z0 that connects V0 to V1 and ε2-visits exactly
the set X0,1.
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The first two properties of the proposition are clearly satisfied by this construc-
tion. The set of points that are visited by these segment of orbits Zk and Zy is also
controlled.

By our choice of Uk, for any k ∈ {1, ..., s−1}, the open set Uk does not intersect
the orbits Zy with y ∈ Y and for any k ∈ {0, ..., s − 2}, the open set Uk does not
intersect the orbits Z� with � ∈ {k + 1, ..., s − 1}.

For any k ∈ {3, ..., s}, the open set Uk does not intersect the orbits Z� with � ∈
{1, ..., k − 2}: indeed, Z� ε0-visits exactly the set X�,�+1; by Proposition 16 xk does not
belong to X�,�+1 so that Z� does not ε0-visit xk ; moreover Uk is contained in B(xk, ε0).

Similarly, Uk with k ∈ {2, ..., s} does not intersect Z0 since this orbit ε2-visits
exactly X0,1 which does not contain xk and since Uk ⊂ B(xk, ε2) by construction.

We end by noting that for any y ∈ Y, the open set Uy does not intersect Z� with
� ∈ {1, ..., s −1}: this is due to the fact that Z� ε0-visits exactly the set X�,�+1 and that
by Proposition 16, the point y does not belong to X�,�+1. This gives the property since
Uy is contained in B( y, ε0). �


4.4. Connecting the orbits: the end of the proof of Proposition 8

The end of the proof has now two main steps: we first choose a point xs+1 in
Y and then apply the connecting lemma at each point xk with k ∈ {1, ..., s + 1} in
order to connect together the orbits Z1, ..., Zs and Zs+1 = Zxs+1 . Before the first step,
we need however to perform a first perturbation at x1 that connects Z0 to Z1.

In this section, the orbits Zk will be written in the form (zk(0), ..., zk(nk)) and
the orbits Zy in the form (zy(0), ..., zy(ny)).

4.4.1. Perturbation at x1. — The point p1 = z0(0) has some positive iterate
z0(n0) in V1. The point q1 = z1(n1) has some negative iterate z1(0) in f N(V1). Hence,
one can perturb f by the connecting lemma in the set U1 ∪ · · ·∪ f N(U1). This defines
a new diffeomorphism g1 ∈ U and an integer m0 ≥ 1 so that the positive orbit of
z0(0) now contains z1(n1) = gm0

1 (z0(0)).
By the connecting lemma, the new orbit (z0(0), · · · , gm0

1 (z0(0))) can be cut in
three parts:

a. an initial part (z0(0), · · · , gna
1 (z0(0))) which connects V0 to U1 and has sup-

port in

Z0 ∪ U1 ∪ · · · ∪ f N(U1),

b. some central part (gna
1 (z0(0)), · · · , gna+N

1 (z0(0))) with support in

U1 ∪ · · · ∪ f N(U1),
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c. and the last part (gna+N
1 (z0(0)), · · · , gm0

1 (z0(0))) which connects U1 to V2 and
has support in

U1 ∪ · · · ∪ f N(U1) ∪ Z1.

We will also denote gna
1 (z0(0)) by p and set m1 = m0 − na.

Lemma 3. — The initial part (z0(0), · · · , p) ε2-visits exactly the set X0,1.

Proof. — By Proposition 17, V0 ⊂ B(x0, ε3) and U1 ⊂ B(x1, ε3). By definition
of the scales ε2 and ε3, by Corollary 3, and since Z0 was assumed to ε2-visits exactly
the set X0,1, this is also the case for any sub-orbit of Z0 which connects V0 to U1.
In particular, this is the case for the initial part (z0(0), · · · , gna

1 (z0(0))) which contains
such a sub-orbit. �


Lemma 4. — Every sub-orbit of the last part (gN
1 (p), · · · , gm1

1 (p)), which connects U1 to

U2, ε0-visits exactly the set X1,2.

Proof. — The same argument as in the proof of the previous lemma shows that
any sub-orbit of the last part (gna+N

1 (z0(0)), · · · , gm0
1 (z0(0))) which connects U1 ⊂

B(x1, ε1) to U2 ⊂ B(x2, ε1) ε0-visits exactly the set X1,2. Indeed, such a sub-orbit con-
tains a sub-orbit of Z1 which ε0-visits exactly the set X1,2. �


4.4.2. Choice of xs+1 ∈ Y. — In this section, we define the point xs+1 ∈ Y. This
allows to define Us+1 = Uxs+1 , Vs+1 = Vxs+1 and Zs = Zxs+1 . The other sets Vy, Uy and
orbits Zy with y ∈ Y \ {xs+1} can then be forgotten.

Lemma 5. — There exists a point xs+1 ∈ Y and an integer nq ∈ {1, ..., na} such that

the segment of orbit (g
−nq

1 (p), ..., p) connects Vs+1 = Vxs+1 to U1. Moreover, this segment of orbit

satisfies the following properties:

1. It does not intersect the open sets Uk ∪ ... ∪ f N(Uk) for k ∈ {2, ..., s}.
2. Any sub-orbit of the form (g−�

1 (p), ..., p), � ≤ nq, that connects Us+1 = Uxs+1 to U1

ε0-visits Y \ {xs+1}.
Proof. — Let nb ∈ {0, ..., na} be the largest integer such that (gnb

1 (z0(0)), ...,

gna
1 (z0(0))) intersects every set f N(B( y, ε0)) with y ∈ Y. This exists since (z0(0), ...,

gna
1 (z0(0))) ε2-visits Y ⊂ X0,1 by Lemma 3.

Note that since nb is maximal, gnb
1 (z0(0)) belongs to some unique set f N(B( y, ε0))

with y ∈ Y. One defines the point xs+1 by setting xs+1 = y.
By definition, nb is also the largest integer such that gnb

1 (z0(0)) belongs to
f N(B(xs+1, ε0)) but since the orbit (z0(0), ..., p) ε2-visits X0,1, there exists a smaller in-
teger nc ∈ {0, ..., nb} such that gnc

1 (z0(0)) belongs to f N(B(xs+1, ε2)). (There may be
several choices for nc.) One sets nq = na − nc.
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By construction, the orbit (g
−nq

1 (p), ..., p) connects Vs+1 = Vxs+1 to U1 since Vxs+1

= B(xs+1, ε2) by Proposition 17.
By Proposition 17, for any k ∈ {2, ..., s}, the open set Uk is contained in B(xk, ε2).

Since the set that (g
−nq

1 (p), ..., p) ε2-visits is contained in X0,1 and since xk does not
belong to X0,1 by Proposition 16, we deduce that (g−nq

1 (p), ..., p) does not intersect
Uk ∪ ... ∪ f N(Uk).

Let us consider now a segment of orbit of the form (g−�
1 (p), ..., p) that connects

Us+1 = Uxs+1 to U1. Since gnb(z0(0)) is the last point of the sequence (g−na
1 (p), ..., p)

that belongs to f N(B(xs+1, ε0)), one gets that the orbit (g−�
1 (p), ..., p), which intersects

Us+1 ⊂ B(xs+1, ε0), contains the orbit (gnb
1 (z0(0)), ..., gna

1 (z0(0))). By our choice of nb,
one gets that (g−�

1 (p), ..., p) intersects every set f N(B( y, ε0)) with y ∈ Y. This shows
that this orbit ε0-visits every point of Y \ {xs+1}. �


4.4.3. Inductive assumptions. — One will now perturb quite independently in the
open sets Uk for each 2 ≤ k ≤ s +1. However one needs to choose carefully the order
of these perturbations. Thus, we inductively build (see below) a sequence of perturbed
maps gk , (1 ≤ k ≤ s) in U such that the following properties are satisfied:

1. gk+1 is a perturbation of gk with support in

Uk+1 ∪ · · · ∪ f N(Uk+1).

2. Some positive iterate gmk
k (p) of p by gk hits zk(nk); the negative iterate g−nq(p)

of p belongs to f N(Vs+1).
3. In the segment of orbit (p, · · · , zk(nk)) by gk, every sub-orbit that connects

U1 to Uk+1 ε0-visits exactly the set

{x2, ..., xk+1} ∪ X1,2 ∪ · · · ∪ Xk,k+1.

Moreover, such an orbit does not intersect the sets U� ∪ ... ∪ f N(U�) with
� ∈ {k + 2, ..., s + 1}.

4. In (g
−nq

k (p), · · · , p), every sub-orbit of the form (g−m
k (p), · · · , p) that connects

Us+1 to U1 ε0-visits all the points in Y\{xs+1}. Moreover, it does not intersect
the sets U� ∪ ... ∪ f N(U�) with � ∈ {2, ..., s}.

4.4.4. Definition of the perturbations gk+1. — In order to define gk+1 from gk , let
us consider again the point p. Recall that it does not belongs to Uk+1 ∪ · · · ∪ f N(Uk+1)

and has some iterate gmk
k (p) in Vk+1.

Since the segment of orbit orbit Zk+1 under f does not intersect the support of
the perturbation gk of f , it is also an orbit of gk that goes from zk+1(0) ∈ f N(Vk+1) to
qk+1 = zk+1(nk+1) ∈ Vk+2.
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One can apply the connecting lemma at xk+1 on the map gk between the points
p and qk+1. This defines a new diffeomorphism gk+1. Since the support of this new per-
turbation is disjoint from the previous one, gk+1 is contained in U (recall Section 2.1).

Some positive iterate of p under gk+1 hits now qk+1. Since the former orbit
p, · · · , zk(nk) (resp. zk+1(0), · · · , zk+1(nk+1)) did not intersect the set Uk+2 (resp. the
set U1), any sub-orbit Z′ of (p, · · · , qk+1) By gk+1 that connects U1 to Uk+2 inter-
sects Uk+1 by the connecting lemma. Thus, Z′ contains some sub-orbits of the orbits
p, · · · , zk(nk) and (zk+1(0), · · · , qk+1) by gk which connect U1 to Uk+1 and Uk+1 to
Uk+2 respectively. This implies by item (3) of Section 4.4.3 for gk and by Corollary 3
that Z′ ε0-visits exactly the set

{x2, · · · , xk+2} ∪ X1,2 ∪ · · · ∪ Xk+1,k+2.

The orbit under gk from g
−nq

k (p) to p remains unchanged since it does not in-
tersect the support of the new perturbation. Hence, property (4) of Section 4.4.3 still
holds. This ends the construction of the perturbed maps gk, 0 ≤ k ≤ s.

4.4.5. The last perturbation gs+1. — One builds finally a perturbation gs+1 of gs

with support in Us+1 ∪ · · · ∪ f N(Us+1) in order to close the orbit (g
−nq
s (p), · · · , p, · · · ,

zs(ns) = gms
s (p)).

Let us define np = ms in order to apply Theorem 5. Recall that p does not
belongs to Us+1 ∪ · · · ∪ f N(Us+1) and has some forward iterate g

np
s (p) in Vs+1. The

point q = p has also some backward iterate g
−nq
s (q) in f N(Vs+1).

One more time, one applies the connecting lemma (Theorem 5), at xs+1 on the
map gs between the points p and q. This defines a new diffeomorphism gk+1. Since the
support of this new perturbation is disjoint from the previous one, gs+1 is contained in
U (recall Section 2.1).

4.4.6. Conclusion of the proof. — The map gs+1 sends by positive iterations p
on q = p so that p now is periodic. This orbit (by gs+1) contains some sub-orbit of
(p, · · · , gms

s (p)) by gs connecting U1 to Us+1. Hence, by property (3) of Section 4.4.3
the orbit of p ε0-visits the set

{x2, · · · , xs+1} ∪ X1,2 ∪ · · · ∪ Xs,s+1.

Moreover it contains also a sub-orbit (g−n
s (p), · · · , p) of (g

−nq
s (p), · · · , p) that

connects Us+1 to U1. By property (4) of Section 4.4.3, it must ε0-visits all the points in
Y\ {xs+1}. Note also that p belongs to B(x1, ε0). This shows that the orbit of p ε0-visits
also x1.

By Proposition 16 (1) and the definition of Y, the periodic orbit we have built ε0-
visit every point in X: it intersects every ball B(x, η) with x ∈ X. On the other hand,
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the periodic orbit is made of segment of orbits Zk and Zy and of points contained in
the support of the perturbations. By construction, the periodic orbit is thus contained
in the open set W introduced at the beginning of Section 4. This ends the proof of
the Proposition 8.

5. Proof of the other perturbation results

5.1. Approximation by finite segments of orbits (proof of Proposition 9)

As in Section 4, one considers a diffeomorphism f and a neighborhood U of f
in Diff1(M) which satisfies Condition (F). An integer N ≥ 1 is given by the connecting
lemma. Let W ⊂ M be an open set containing a finite set X = {p1, ..., pr} that satisfies
the assumptions of Proposition 9. We also choose a constant η > 0.

The proof of the proposition is very similar but simpler than the proof of Propo-
sition 8. One difficulty in the proof of Proposition 8 was to close the orbit. This jus-
tified the introduction of the set Y and the delicate choice of the point xs+1 (see Sec-
tions 4.2 and 4.4.2). In this section, only two scales ε1 < ε0 in (0, η) will be used (see
Section 4.0).

As in Section 4.1, one considers finite segments of orbits contained in W. One
defines a set Xx,x ′ ⊂ X for each pair (x, x ′) of points in X such that x ≺W x ′. Then,
one adapts Proposition 16:

Proposition 18. — There exists a sequence (x0, · · · , xs) (s ≥ 1) of distinct points of X
with the following properties:

1. x0 = p1.

2. xk ≺W xk+1 for any 1 ≤ k ≤ s − 1;

3. X = {x0, · · · , xs} ∪ X0,1 ∪ · · · ∪ Xs−1,s;

4. for any 2 ≤ k ≤ s, the point xk does not belong to

{x0, x1, ..., xk−1} ∪ X0,1 ∪ X1,2 ∪ ... ∪ Xk−2,k−1.

Proof. — By assumption, the set X is ordered by ≺W. One sets x0 = p1. Our
hypothesis implies that for any x ∈ X \ {x0} we have x0 ≺W x.

One builds the sequence (xk) inductively and assumes at each step that

xk ≺W x for any x �∈ {x0, · · · , xk} ∪ X0,1 ∪ · · · ∪ Xk−1,k.(5)

Each time the point xk has been defined, one can order

X \ {x1, · · · , xk} ∪ X1,0 ∪ · · · ∪ Xk−1,k

as a sequence ( p̃1, p̃2, · · · , p̃m) such that p̃i ≺W p̃j for each 0 ≤ i < j ≤ m (there may
be several possibilities) and one chooses xk+1 = p̃1. Then the inductive Assumption (5)
is clearly satisfied. �
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In order to conclude the proof of Proposition 9, one chooses inductively (as k
decreases):

1. some neighborhoods Vk ⊂ Uk ⊂ B(xk, ε1) of xk that satisfy the connecting
lemma at xk,

2. a segment of orbit Zk = (zk(0), · · · , zk(nk)) connecting Vk to Vk+1 that ε0-
visits exactly the set Xk,k+1 and that is contained in W.

One may assume that Zk is disjoint from any U� with � �= k, k + 1. Then, one sets
p = p1 = x0 so that p belongs to V0.

Since z0(0) belongs to f N(V0), the connecting lemma between the points f −1(p)
and f (z0(0)) builds a perturbation g0 ∈ U of f with support in U0, ..., f N−1(U0) and
such that f N(p) = z0(0). Hence, the segments of orbits Zk with k ∈ {1, ..., s−1} do not
intersect the support of this perturbation. One now builds a sequence of perturbations
(gk)1≤k≤s−1 in U such that

1. gk+1 belongs to U and is a perturbation of gk with support in

Uk+1 ∪ · · · ∪ f N−1(Uk+1);

2. gk sends p on zk(nk) = gmk
k (p);

3. in the orbit (p, · · · , gmk
k (p)) of gk, every sub-orbit of the form (p, · · · , gm

k (p))
that intersects Uk+1 ε0-visits exactly the set

{x0, · · · , xk+1} ∪ X0,1 ∪ · · · ∪ Xk,k+1.

The orbit (p, · · · , gmk−1
s−1 (p)), for the last perturbation g = gs−1, ε0-visits all the points

of X and is contained in W as required.
The support of the perturbation g is contained in the balls f j(B(xk, η)) with j ∈

{0, ..., N − 1} and k ∈ {0, ..., s − 1}.

Remark. — From the conclusion of the proof, one sees that one gets a stronger
statement for Proposition 9: let x ∈ {p1, ..., pr} be the last point visited by the orbit
(p1, ..., gn(p1)) (i.e. choosing n minimal, one may have gn(p1) ∈ B(x, η)). Then, the
support of the perturbation g of f is only contained in the balls f j(B(pk, η)) with j ∈
{0, ..., N − 1} and k ∈ {1, ..., r} such that pk �= x.

5.2. Asymptotic approximation (proof of Proposition 10)

Let f be a diffeomorphism that satisfies Condition (A) and U a neighborhood
of f in Diff1(M) that satisfies Condition (F). In order to control an infinite half orbit,
one will perform an infinite sequence of perturbation:
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– from the relation x ≺ŴA
A, one introduces a sequence of intermediary points

( yn) such that

x ≺ŴA
y1 ≺WA y2 ≺WA · · · ≺WA A;

– one then perturbs at each point yn in order to connect all these points to-
gether.

For the second step of the proof, one should check the convergence of the se-
quence of perturbation: one considers a decreasing sequence of neighborhoods (Vk) of
Id in Diff1(M) which satisfy the property (F).

(F) For any perturbations ϕ and ϕ′ of Id in Vk with disjoint support, the composed pertur-

bation ϕ ◦ ϕ′ belongs to Vk .

Hence the set Uk of diffeomorphisms g of the form ϕ ◦ f with ϕ ∈ Vk is a neigh-
borhood of f which satisfies the property (F). One will assume that ∩kVk = {Id} and
Cl(U0) ⊂ U .

The connecting lemma associates to each pair ( f ,Uk) an integer Nk ≥ 1.

5.2.1. Intermediary points. — We consider a closed invariant set A.
The following lemma allows to introduce intermediary points for the stable set:

Lemma 6. — For any neighborhoods Wi ⊂ We of A and any point y ∈ We such that

y ≺We A, there exists y′ ∈ Wi \ A such that y ≺We y′ and y′ ≺Wi A. Moreover, the forward orbit

of y′ is contained in Wi.

Proof. — Let us take a smaller neighborhood V of A such that Cl(V) ⊂ Wi.
One considers for any k ≥ 1, a finite segment of orbit (zk

0, ..., zk
n(k)) in We such that

zk
0 belongs to the ball B( y, 1/k) and zk

n(k) to the 1/k-neighborhood of A. For k large
enough, zk

n(k) belongs also to the set V. One then considers the first point zk
m(k) of the

orbit (zk
0, ..., zk

n(k)) such that (zk
m(k), ..., zk

n(k)) is contained in V.
One can extract a subsequence of (zm(k))k and assume that it converges to a point

y′ ∈ Cl(V)\A. The sequences (zk
0, ..., zk

m(k)) are contained in We and show that y ≺We y′.
Similarly, the sequences (zk

m(k), ..., zk
n(k)) are contained in Wi and show that y′ ≺Wi A, as

required. Since the sequences (zk
m(k), ..., zk

n(k)) are contained in Cl(V), since (zk
m(k)) con-

verges to y′ and since zk
n(k) becomes arbitrarily close to the invariant set A, the differ-

ence n(k)−m(k) goes to infinity and the forward orbit of y′ is contained in Cl(V) ⊂ Wi.
�


We now introduce as in the statement of Proposition 10 two open neighbor-
hoods WA ⊂ ŴA of A, with Cl(WA) ⊂ ŴA, and a point x ∈ ŴA such that x ≺ŴA

A.
We choose a neighborhood U of x. One may assume that U ⊂ ŴA \ A.

We build the open sets where the perturbations will be performed:
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Proposition 19. — There exist three sequences (Uk)k≥1, (Vk)k≥1 and (Wk)k≥0 of open sets

and a sequence of finite segment of orbits (zk
0, zk

1, ..., zk
n(k))k≥0 such that:

1. (Wk) is a decreasing sequence of neighborhoods of A such that W0 ⊂ ŴA, W1 ⊂ WA

and ∩kWk = A.

2. The orbit (zk
0, zk

1, ..., zk
n(k)) is contained in Wk \ Wk+2.

3. The connecting lemma may be applied to the open sets Vk ⊂ Uk with the time Nk for f
and the neighborhood Uk; moreover, the iterates Uk, f (Uk), ..., f Nk(Uk) are all contained

in Wk and have their closure disjoint from Wk+1.

4. The points zk
n(k) and zk+1

0 are contained in Vk+1; the point z0
0 belongs to U.

Proof. — In the proof, it will be useful to introduce also the open sets V0 =
U0 = U (however the connecting lemma will not be used for (V0, U0)) and to builds
a sequence ( yk)k≥0 such that

– yk ∈ Vk, moreover yk ≺Wk yk+1 and yk ≺Wk A;
– when k ≥ 1, the point yk is not a periodic point of period less than or equal

to Nk;
– when k ≥ 1, the forward orbit of yk is contained in Wk.

We now start the construction. The first open set W0 is chosen equal to ŴA.
One sets y0 = x.

The constructions are then done by induction on k: one assumes that yk, Uk, Vk,
Wk and (if k ≥ 1) (zk−1

0 , zk−1
1 , ..., zk−1

n(k−1)) have been defined and one builds Uk+1, Vk+1,
Wk+1 and the sequence (zk

0, zk
1, ..., zk

n(k)).
One first chooses a neighborhood Wk+1 of A whose closure is contained in Wk

and disjoint from the closures of the iterates Uk, ..., f Nk(Uk) and (if k ≥ 1) from
(zk−1

0 , zk−1
1 , ..., zk−1

n(k−1)). Recall that by assumption (A) on f , the periodic points of period
less than or equal to Nk+1 are finite and hence isolated. One thus can choose Wk+1

such that Wk+1 \A does not contain any periodic point of period less than or equal to
Nk+1. One also chooses Wk+1 in a 1/(k + 1)-neighborhood of A. For k = 0, one can
assume that W1 is contained in WA.

One can then apply Lemma 6 to the point y = yk and to the open sets We = Wk

and Wi = Wk+1. This defines a new point yk+1 whose forward orbit is contained
in Wi. Moreover yk ≺Wk yk+1 and yk+1 ≺Wk+1 A. As yk+1 belongs to Wk+1 \ A, it is
not a periodic point of period less than or equal to Nk+1.

Since the forward orbit of yk+1 is contained in Wk+1 and since yk+1 is not a pe-
riodic point of period less than or equal to Nk+1, one can build two neighborhoods
Vk+1 ⊂ Uk+1 of yk+1 where the connecting lemma can be applied with the time Nk+1

to f and the neighborhood Uk+1. Choosing Uk+1 small enough, one can assume that
the closure of the iterates Uk+1, ..., f Nk+1(Uk+1) are all contained in Wk+1 and are dis-
joint from A.
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By the relation yk ≺Wk yk+1, there exists a finite segment of orbit (zk
0, zk

1, ..., zk
n(k))

contained in Wk such that zk
0 belongs to Vk and zk

n(k) belongs to Vk+1. By this induc-
tion, all the required properties are satisfied. We get A = ∩kWk since Wk is contained
in a 1/k-neighborhood of A. �


5.2.2. Infinite sequence of perturbations. — One sets z = z0
0. We then define a se-

quence of intermediate perturbations.

Proposition 20. — There is a sequence of perturbations (gk) of f and an increasing sequence

of integers (nk) larger than 1 such that:

1. g0 = f and n0 = 0.

2. For k ≥ 1, gk = ϕk ◦ gk−1 and ϕk is a perturbation of Id with support in Uk ∪ ... ∪
f Nk−1(Uk). Moreover ϕk belongs to Vk .

3. For � ∈ {0, ..., k − 1}, the orbit (gn�

k (z), gn�+1
k (z), ..., gn�+1

k (z)) by gk is contained in

W� \ W�+2.

Proof. — The sequence is built inductively and will satisfy the following addi-
tional property:

– There exists an integer mk > nk such that gmk
k (z) belongs to Vk+1.

– The orbit (gnk
k (z), ..., gmk

k (z)) is contained in Wk \ Wk+2.

We define g0 = f and n0 = 0. By g0, the point z has a forward iterate f n(0)(z) =
z0

n(0) in V1. One sets m0 = n(0). The inductive assumptions are satisfied for k = 0.
We now assume that the perturbation gk , the integers (n�)�≤k and the integer mk

have been defined. We explain how to define the perturbation gk+1 and the integers
nk+1 and mk+1.

The forward orbit of gnk
k (z) has an iterate gmk

k (z) in Vk+1 and the backward orbit
of zk+1

n(k+1) has an iterate zk+1
0 in Vk+1. Moreover these segments of orbits are contained

in Wk \ Wk+3. One can apply the connecting lemma at the sets Vk+1 ⊂ Uk+1 to
(gk,Uk+1) since gk and f coincide on Uk+1..., f Nk+1(Uk+1). The new perturbation is of
the form gk+1 = ϕk+1 ◦ gk and ϕk+1 ◦ f belongs to Uk+1. Hence, ϕk+1 ∈ Vk+1.

By the new diffeomorphism gk+1, the point gnk
k (z) has a forward iterate gmk+1

k+1 (z)
equal to zk+1

n(k+1), in Vk+2. There also exists an iterate gnk+1
k+1 (z) with nk < nk+1 < mk+1 such

that:

– The segment of orbit (gnk
k+1(z), ..., gnk+1

k+1 ) is contained in the union of
{gnk

k (z), ..., gmk
k } with the open sets Vk+1, f (Vk+1), ..., f Nk+1(Vk+1). Hence, it is

contained in Wk \ Wk+2.
– The segment of orbit (gnk+1

k+1 (z), ..., gmk+1
k+1 ) is contained in the union of

{zk+1
0 , ..., zk+1

n(k+1)} with the open sets Vk+1, f (Vk+1), ..., f Nk+1(Vk+1). Hence, it
is contained in Wk+1 \ Wk+3.
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By construction, the orbits (z, gk(z), ..., gnk
k (z)) and (z, gk+1(z), ..., gnk

k+1(z)) coin-
cide. Hence, the inductive assumption are verified for k + 1. �


We can now conclude the proof of the proposition:

End of the proof of Proposition 10. — We are now ready to introduce the perturba-
tion g. Since for i < j, the supports Ui ∪ ... ∪ f Ni−1(Ui) and Uj ∪ ... ∪ f Nj−1(Uj) of the
perturbations ϕi and ϕj are pairwise disjoint, since Vj ⊂ Vi and since Ui satisfies prop-
erty (F), the perturbations ϕ� ◦ ϕ�+1 ◦ · · · ◦ ϕk with k ≤ � belong to Vk. This shows that
the sequence (ϕ0 ◦ ... ◦ ϕk)k converges in the C1-topology towards a diffeomorphism
ϕ ∈ Cl(V0). In other words, the sequence (gk) converges towards a diffeomorphism
g ∈ Cl(U0) ⊂ U .

The diffeomorphism g coincides with ϕk ◦f in Uk ∪...∪f N−1(Uk) and with f else-
where. Consequently, g is a perturbation of f with support contained in W1 ⊂ WA and
which coincides with f on A. From property (3) of Proposition 20, the orbit (gn(z))n≥nk

of z by g is contained in Wk. One deduces that the forward orbit of z by g is con-
tained in ŴA and that its ω-limit set is contained in A. This ends the proof of Propo-
sition 10. �


5.3. Approximation by full orbit (proof of Theorem 2)

Let f be a diffeomorphism that satisfies Condition (A) (the periodic points are
“isolated”), U a neighborhood of f in Diff1(M) that satisfies Condition (F) (allowing
the composition of perturbations with disjoint supports), X a weak orbit and η0 > 0
a small constant.

If X is weakly transitive, there exists a perturbation g ∈ U and a periodic orbit
O of g which is at distance less than η0 from X in the Hausdorff topology, by The-
orem 3. This proves Theorem 2 in this case. Hence, we will assume that X is not
weakly transitive.

It is simpler to create and to control a forward (or a backward) orbit rather than
a full orbit. Hence, the idea of the proof will be to first decompose a subset of X as
a union Xα ∪ O(z0) ∪ Xω by using Proposition 7 and then to create indenpendently
a forward orbit that is close to Xω and a backward orbit that is close to Xα for the
Hausdorff topology.

5.3.1. Reduction to half orbits. — The following proposition is an analogue of
Theorem 2 for half orbits and “generalizes” Proposition 10.

Proposition 21. — Let f be a diffeomorphism that satisfies Condition (A) and U a neigh-

borhood of f in Diff1(M). We consider:
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– a weak orbit Xω whose relation ≺Xω
is transitive,

– a neighborhood Ŵω of Xω,

– a point z0 ∈ Ŵω \ X such that z0 ≺Ŵω
Xω.

We assume moreover that:

(*.1) The points z0 and Xω are contained in a weak orbit X .

(*.2) We have z0 ≺K̂ω
Xω where K̂ω is a compact set contained in X ∩ Ŵω.

(*.3) For any y ∈ Xω and z ∈ X \ Xω, the relation y ≺X z is not satisfied.

Then, for any η0 > 0, for any neighborhoods Uz0 of z0 and Wω of Xω, there exist a per-

turbation gω ∈ U of f with support in Wω, a point zω ∈ Uz0 and an iterate gnω
ω (zω) such

that

– the forward orbit of zω by gω is contained in Ŵω,

– the closure of the forward orbit of gnω
ω (zω) is η0-close to Xω for the Hausdorff topology.

Of course, one gets a similar statement for backwards half orbits if one applies
the previous proposition to f −1.

The proof of the proposition is postponed to the next section. The idea is to
approximate the set Xω by a finite segment of orbit Zb (by using Proposition 9). By
the connecting lemma, one can connect a point zω, close to z0, to the first point of Zb,
by a finite segment of orbit Za. By a last perturbation (given by Proposition 10), one
can control the forward orbit of the last point in Zb: it stays in a small neighborhood
of Xω and accumulates on a subset.

The assumption (*) is technical: it simplifies the proof but it could maybe be
removed.

End of the proof of Theorem 2. — The connecting lemma applied to ( f ,U ) gives
an integer N. We denote by W the η0-neighborhood of X . We only have to consider
the case where X is not weakly transitive: using Proposition 7, there exist some weak
orbits Xα, Xω (whose relations ≺Xα

and ≺Xω
are transitive) and a point z0 such that:

1. The sets Xα, Xω and the orbit O(z0) of z0 are contained in X and are
pairwise disjoint.

2. The set Cl(Xα ∪ O(z0) ∪ Xω) is η0/2-close to X in the Hausdorff topology.
3. For any x ∈ Xα and z ∈ X \ Xα we have x ≺X z but the relation z ≺X x is

not satisfied.
4. For any y ∈ Xω and z ∈ X \ Xω we have z ≺X y but the relation y ≺X z is

not satisfied.
5. The point z0 is non-periodic (by the remark after Proposition 7).

Let K̂ω be the compact set obtained by removing from K a small open neigh-
borhood of Xα. By item 3), for any points x ∈ X \ K̂ω, the relation z0 ≺X x does
not hold. One deduces that if we have z0 ≺X y for some point y, then z0 ≺K̂ω

y. By
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item 4), this is satisfied for any point y ∈ Xω. For any neighborhood Ŵω of K̂ω (to
be defined later), the assumptions of Proposition 21 are satisfied for f by the sets Xω,
Ŵω, X and K̂ω.

One defines similarly a compact set K̂α by removing from K a small neighbor-
hood of Xω, so that the assumptions of Proposition 21 are satisfied for f −1 by the sets
Xα, Ŵα, X and K̂α where K̂α is any neighborhood of K̂α. By choosing some small
neighborhoods Wα, Uz0 , Wω of Xα, z0 and Xω, one gets the following properties:

– For any perturbation g of f with support in Wα ∪ Wω ∪ ⋃
−N≤k≤N f k(Uz0), the

η0/2-neighborhood of the orbit of any point z ∈ Uz0 by g contains the orbit
of z0 by f (by item 1)).

– The N first backward and forward iterates of Uz0 are pairwise disjoint and
disjoint from Wα and Wω (by items 1) and 5)).

The neighborhood Ŵω of K̂ω is taken equal to W\Cl(Wα) and the neighborhood Ŵα

of K̂α is taken equal to W \ Cl(Wω)

Applying Proposition 21 to f and f −1, one obtains two perturbation gω and gα

of g with support in Wω and Wα respectively, two points zω and zα in Uz0 , and two
iterates gnω

ω (zω), g−nα
α (zα). The two perturbations gα, gω ∈ U have disjoint supports

Wα and Wω, hence one can introduce the composed perturbation ĝ ∈ U . Since the
forward orbit of zω by gω is contained in Ŵω, it does not intersect Wα and for the same
reason, the backward orbit of zα by gα does not intersect Uω. Hence, these two half
orbits remain unchanged by ĝ. Moreover, there are two iterates ĝnω(zω) and ĝ−nα(zα)

with nα, nω < N in Wω and Wα respectively such that the forward orbit of ĝnω(zω) and
the backward orbit of ĝ−nα(zα) by ĝ are η0/2-close to Xω and Xα respectively.

The connecting lemma allows to perturb ĝ in Uz0 and its N first forward iter-
ates in order to connect ĝ−nα(zα) to ĝnω(zω) in an orbit which intersects Uz0 at some
point z. The new diffeomorphism g belongs to U since all the perturbations have dis-
joint supports.

The η0/2-neighborhood of the orbit of z by g contains the orbit of z0 by f .
Moreover, the forward orbit of ĝnω(zω) by gω is the same as by g and the backward
orbit of ĝ−nα(zα) by gα the same as by g. Hence, the η0/2-neighborhood of the or-
bit of z by g contains the sets Xα and Xω. Consequently (using item 2)), the η0-
neighborhood of O(z) contains X . By construction, the orbit of z by g is contained
in W, the η0-neighborhood of X . We thus proved that the closure of the orbit of z
by g and X are η0-close in the Hausdorff topology. �


5.3.2. Proof of Proposition 21. — Note that if Xω supports a minimal dynam-
ics, then, one can apply Proposition 10. One immediately gets a point zω ∈ Uz0 and
a perturbation gω ∈ U with support in Wω such that the forward orbit of zω is con-
tained in Ŵω and accumulates on a part of Xω. Since Xω is minimal, it accumulates
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on the whole set Xω. Hence, one gets the conclusion of Proposition 21 in this case.
We will now assume that Xω is not minimal.

By shrinking U , one will assume that it satisfies Condition (F). The connecting
lemma associates to (U , f ) an integer N ≥ 1. One can shrink the open set Wω so
that it is contained in the η0-neighborhood of Xω. We need some preliminary con-
structions, that are described in the next two lemmas.

Lemma 7. — There exist

– a finite set {p1, ..., pr−1} in Xω, with r ≥ 2, and a point pr ∈ (X \ Xω) ∩ Wω,

– two compact sets Kω ⊂ X ∩ Wω and K̂ω ⊂ X ∩ Ŵω,

– an invariant compact subset A ⊂ Xω that supports a minimal dynamics,

– a small neighborhood ŴA of A, contained in Wω,

such that:

1. The points f j(pk) for k ∈ {1, ..., r} and j ∈ {−N, ..., N} are pairwise distinct.

2. For any k, � ∈ {1, ..., r}, with k < �, we have p� ≺Kω
pk.

3. We have z0 ≺K̂ω
pr .

4. We have p1 ≺ŴA
A.

5. The points f j(pk) for k ∈ {2, ..., r} and j ∈ {−N, ..., N} are not in ŴA.

6. The union of A with the closure of the orbits of the points pk is η0/2-close to Xω for the

Hausdorff distance.

Proof. — By Proposition 6 and the remark which follows the proposition, there
exists an invariant compact set A ⊂ Xω which supports a minimal dynamics and such
that x ≺Xω

y for any x ∈ Xω and y ∈ A. Since Xω is not minimal, we have A �= Xω.
As in Proposition 5, there exists a finite subset {p2, ..., pr−1} ⊂ Xω\A of points that are
non-periodic, have distinct orbits and such that the union of A with the orbits of the
points p2, ..., pr−1 has a closure which is η0/2-close to Xω for the Hausdorff distance.
Since Xω is a weak orbit whose relation ≺Xω

is transitive, one may order the points
such that p� ≺Xω

pk when k < �.
We also have z0 ≺K̂ω

pr−1. As in Lemma 6, one deduces that there exists a point
pr ∈ (X \ Xω) ∩ Wω such that z0 ≺K̂ω

pr , and such that pr ≺Kω
pr−1 where Kω

is a compact set contained in Wω ∩ X that contains Xω (for instance, Kω can be
the intersection of X with any compact neighborhood of Xω). If pr has been chosen
close enough to Xω, it is not a periodic point with period less than or equal to 2N,
by Condition (A).

Let ŴA be a neighborhood of A, contained in Wω and that is disjoint from the
points the points f j(pk) for k ∈ {2, ..., r} and j ∈ {−N, ..., N}. We have p2 ≺cXω

A by
definition of A. By Lemma 6, there exists a point p1 in ŴA such that p2 ≺Xω

p1 and
p1 ≺ŴA

A. Moreover, if the point p1 is chosen close enough to A, all the points f j(pk)

with k ∈ {1, ..., r} and j ∈ {−N, ..., N} are pairwise distinct. �
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Lemma 8. — There exist a constant ε > 0 and two neighborhoods Vr ⊂ Ur of pr in

B(pr, ε), such that:

1. The balls f j(B(pk, ε)) for k ∈ {1, ..., r} and j ∈ {−N, ..., N} are pairwise disjoint,

disjoint from A, and, when k > 1, disjoint from ŴA.

2. The closing lemma may be applied to (U , f ) in the neighborhoods (Vr, Ur).

3. Let g be any perturbation of f with support in the balls f j(B(pk, ε)) (with k ∈ {1, ..., r}
and j ∈ {−N, ..., N}) and in the ε-neighborhood of A. Then, the η0-neighborhood of any

segment of orbit by g that intersects all the balls B(pk, ε) and the ε-neighborhood of A
contains Xω.

4. In the ε-neighborhood of X , there is no segment of orbit (z, f (z), ..., f n(z)) such that z
belongs to some ball B(pk, ε), with k ∈ {1, ..., r − 1} and f n(z) to the ball B(pr, ε).

Proof. — Let ε > 0 be a small constant. By items 1) and 5) of Lemma 7, for
ε small enough, the item 1) of the lemma is satisfied. Moreover, let g be a perturba-
tion of f with support in the balls f j(B(pk, ε)) and in the ε-neighborhood of A. Since
ε is small, any segment of orbit of g that intersects all the balls B(pk, ε) and the ε-
neighborhood of A contains in its η0/2-neighborhood the orbits of the points pk, with
k ∈ {1, ..., r − 1} by f . Since the dynamics of f on A is minimal, it contains also
in its η0/2-neighborhood the set A. By item 6) of Lemma 7, one deduces that the
η0-neighborhood of this segment of orbit contains Xω. One gets item 3).

The item 4) is verified for ε small enough, otherwise one would have pk ≺X pr

for some k ∈ {1, ..., r − 1} but since the points p1, ..., pr−1 belong to Xω and pr to
X \Xω, this would contradict the assumption (*) of Proposition 21. It remains to apply
Hayashi’s connecting lemma (Theorem 5) at pr in order to build the neighborhoods
Vr , Ur , contained in B(pr, ε). �


We now finish to prove Proposition 21 (and Theorem 2).

End of the proof of Proposition 21. — Let W be the ε-neighborhood of X . By
item 3) of Lemma 7, there exists a finite segment of orbit Za = (zω, f (zω), ..., f na(zω))

which is contained in W ∩ Ŵω and such that zω belongs to Uz0 and f na(zω) to Vr . By
item 4) of Lemma 8, Za does not intersect the balls B(pk, ε) for k ∈ {1, ..., r − 1}.

Let η > 0 be a constant smaller than ε and such that B(pr, η) is contained
in Vr . By items 1) and 2) of Lemma 7, one can apply Proposition 9 to f −1 for the
set {p1, ..., pr} and the open set W ∩ Wω: there is a perturbation gb ∈ U of f with
support in

⋃
1≤k≤r

⋃
1≤ j≤N

f −j(B(pk, η))

and some integer nb ≥ 1 such that Zb = (g−nb
b (p1), g−nb+1

b (p1), ..., p1) is a finite segment
of orbit which is contained in W ∩ Wω and which crosses all the balls B(pk, η).
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Let us denote by mb ∈ {0, ..., nb} the smallest integer such that g−mb
b (p1) belongs

to B(pr, ε). The iterates (g−nb
b (p1), ..., g−mb

b (p1)) can not intersect the other balls
B(pk, ε) with k ∈ {1, ..., r − 1} by item 4) of Lemma 8. Hence, the orbit
(g−mb

b (p1), ..., p1) crosses all the balls B(pk, ε) with k ∈ {1, ..., r − 1}. By the remark
at the end of Section 5.1 we deduce that it was not necessary to perturb f close
to the point pr and its N first backward iterates in order to build the orbit Zb of
gb. Thus, one can assume that the support of the perturbation gb is contained in the
union of the balls B(pk, ε) with k ∈ {0, ..., r − 1} and their N first backward iterates.
By item 1) of Lemma 8, this support is disjoint from Ur and its N backward
iterates.

One chooses now at f (p1) a small neighborhood U ⊂ B( f (p1), ε) whose N first
forward iterates by f are disjoint from A and from the segments of orbit Za by f and
Zb by gb. One considers a smaller neighborhood V ⊂ U of f (p1) such that the con-
necting lemma can be applied for ( f ,U ) in V ⊂ U with the time N.

Let us introduce a neighborhood WA ⊂ ŴA of A which is contained in the ε-
neighborhood of A and which is disjoint from the sequences Za and Zb, from the
set U and its N first forward iterates and (by item 1) of Lemma 8) from the balls
f −j(B(pk, ε)) with j ∈ {0, ..., N} and k ∈ {1, ..., r}. By Proposition 10 and item 4) of
Lemma 7, there exists a perturbation gc ∈ U of f in U whose support is contained
in WA \ A and a point p0 in f N(V) whose forward orbit Zc = {gn

c (p0), n ≥ 0} by gc is
contained in ŴA and accumulates on a subset of A. Moreover, Zc is disjoint from the
support of gb by item 1) of Lemma 8.

The perturbation gb and gc have disjoint supports, so that the composed pertur-
bation ĝ belongs to U . By construction, the sequences Za, Zb and Zc remain segments
of orbits of ĝ. One can now apply the connecting lemma a first time to ĝ in the sets
U, V between the points ĝ−nb(p1) and ĝN+1(p0) and then a second time to ĝ−1 in the
sets Vr, Ur between the points zω and p1 (by item 2) of Lemma 8). The supports of
these two perturbation are disjoint and disjoint from the support of the perturbation
ĝ of f . Hence, by composition one obtains a diffeomorphism gω in U .

Note that the segments of orbit (g−mb
b (p1), ..., p1) by ĝ was not modified by these

last perturbations. Moreover, it now belongs to the forward orbit of zω. In particular,
the point g−mb

b (p1) is now an iterate gnω
ω (zω) of zω. This also shows that the forward

orbit of zω by gω intersects all the balls B(pk, ε). By construction, the forward orbit of
zω by gω coincides after a large iterate with the forward orbit of an iterate of Zc; hence,
the forward orbit of zω by gω intersects the ε-neighborhood of A. By Lemma 8, the
ε-neighborhood of this half orbit contains the set Xω. On the other hand, by our con-
structions, the forward orbit of zω by gω is contained in Ŵω and the forward orbit of
gnω
ω (zω) is contained in Wω (which is contained in the η0-neighborhood of Xω). Hence,

the closure of the forward orbit of gnω
ω (zω) by gω is η0-close to Xω for the Hausdorff

distance. This concludes the proof of Proposition 21. �
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