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1. Introduction

The shortest loop traced out by a billiard ball in an acute triangle is the pedal
subtriangle, connecting the feet of the altitudes.

In this paper we prove a similar result for loops in the fundamental polyhedron
of a Coxeter group W, and use it to study the spectral radius λ(w), w ∈ W for the
geometric action of W. In particular we prove:

Theorem 1.1. — Let (W,S) be a Coxeter system and let w ∈W. Then either λ(w) = 1
or λ(w) ≥ λLehmer ≈ 1. 1762808.

Here λLehmer denotes Lehmer’s number, a root of the polynomial

1+ x − x3 − x4 − x5 − x6 − x7 + x9 + x10(1.1)

and the smallest known Salem number.

Billiards. — Recall that a Coxeter system (W,S) is a group W with a finite gener-
ating set S = {s1, ..., sn}, subject only to the relations (sisj)mij = 1, where mii = 1 and
mij ≥ 2 for i 	= j. The permuted products

sσ1sσ2 · · · sσn ∈W, σ ∈ Sn,

are the Coxeter elements of (W,S). We say w ∈ W is essential if it is not conjugate into
any subgroup WI ⊂W generated by a proper subset I ⊂ S.

Research supported in part by the NSF.
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FIG. 1. — The shortest billiard loop in the (3, 4, 7)-triangle

The Coxeter group W acts naturally by reflections on V ∼= RS, preserving an
inner product B(v, v′). Let λ(w) denote the spectral radius of w|V. When λ(w) > 1, it
is also an eigenvalue of w. We will show (§4):

Theorem 1.2. — Let (W,S) be a Coxeter system and let w ∈ W be essential. Then we

have λ(w) ≥ infSn λ(sσ1sσ2 · · · sσn).

Here is the relation to billiards. In the case of a hyperbolic Coxeter system (when
(V,B) has signature (p, 1)), the orbifold Y = Hp/W is a convex polyhedron bounded
by mirrors meeting in acute angles. Closed geodesics on Y can be visualized as loops
traced out by billiards in this polyhedron. The hyperbolic length of the geodesic in
the homotopy class of w ∈ π1(Y) = W is given by log λ(w). Thus the theorem states
that the essential billiard loops in Y are no shorter than the shortest Coxeter element.

As a special (elementary) case, the shortest billiard loop in the (p, q, r)-triangle
in H2 is the pedal subtriangle representing w = s1s2s3; see Figure 1.

The Hilbert metric on the Tits cone. — To prove Theorem 1.2 for higher-rank
Coxeter groups (signature (p, q), q ≥ 2), we need a generalization of hyperbolic space.
A natural geometry in this case is provided by the Hilbert metric on the Tits cone.

The Hilbert distance on the interior of a convex cone K is given in terms of the
cross-ratio by dK(x, y) = (1/2) inf log[a, x, y, b], where the infimum is over all segments
[a, b] in K containing [x, y]; it is a metric when K contains no line. We will show (§2)
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that the translation length of a linear map T preserving K satisfies

inf
x∈K◦ dK(x,Tx) = log λ(T),

provided λ(T) = λ(T−1).
The Tits cone W · F ⊂ V∗ is the orbit, under the dual action of W, of a simpli-

cial cone F which forms a fundamental domain for W. When (W,S) is hyperbolic or
higher-rank, K =W · F contains no line, so dK is a metric. At the same time, log λ(w)

is the translation length of w in the Hilbert metric on K, so this geometry can be used
to study eigenvalues.

We propose (PK◦, dK) as a natural generalization of the Klein model for pro-
jective space to higher-rank Coxeter groups (§3). Once this geometry is in place, the
proof of Theorem 1.2 is based on the fact that a loop representing an essential elem-
ent w must touch all the faces of the fundamental domain F (§4).

The bicolored eigenvalue. — Next we give a succinct lower bound for the spectral
radius of Coxeter elements.

The Coxeter diagram D of (W,S) is the weighted graph whose vertices are the
set S, and whose edges of weight mij join si to sj when mij ≥ 3. If D is a tree (such as
one of the familiar spherical diagrams An, Bn, Dn or En), then the Coxeter elements
w ∈W range in a single conjugacy class. When D has cycles, however, many different
conjugacy classes (and different values of λ(w)) can arise.

When every cycle has even order (so D is bipartite), a special role is played by
the bicolored Coxeter elements. These are defined by w =∏

S1
∏

S2, where S = S1�S2

is a two-coloring of the vertices of D.
All bicolored Coxeter elements are conjugate. The value of λ(w) they share can

be computed directly, as follows. Let α(W,S) be the leading eigenvalue of the ad-

jacency matrix of (W,S), defined by Aij = 2 cos(π/mij) for i 	= j and Aii = 0. Let
β = β(W,S) ≥ 1 be the largest root of the equation

β + β−1 + 2 = α(W,S)2,

provided α(W,S) ≥ 2. Set β(W,S) = 1 if α(W,S) < 2. Then λ(w) = β(W,S) for all
bicolored Coxeter elements.

The above definition of the bicolored eigenvalue β(W,S) makes sense for any Cox-
eter system, bipartite or not. We will show in §5:

Theorem 1.3. — For any Coxeter system (W,S), we have

inf
Sn

λ(sσ1sσ2 · · · sσn) ≥ β(W,S).

In particular the bicolored Coxeter elements, when they exist, minimize λ(sσ1sσ2 · · · sσn).
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In the hyperbolic and higher-rank cases, it is easy to see that β(W,S) > 1; thus
every Coxeter element has infinite order. The same conclusion is well-known to hold
in the affine case, so we obtain:

Corollary 1.4. — A Coxeter group W is infinite iff every Coxeter element sσ1sσ2 · · · sσn∈W
has infinite order.

This Corollary was first established in [How].

Minimal hyperbolic diagrams. — There is a natural partial ordering on Coxeter
systems that is conveniently visualized in terms of diagrams: we write (W′,S′)≥(W,S)

if the diagram D′ is obtained from D by adding more vertices and edges and/or in-
creasing their weights. A useful feature of the invariant β(W,S) is that it is a mono-
tone function: we have

(W′,S′) ≥ (W,S) �⇒ β(W′,S′) ≥ β(W,S),

by elementary properties of positive matrices.
Now suppose w ∈ W′ satisfies λ(w) > 1. Then (W′,S′) has indefinite signature,

and therefore it dominates a minimal hyperbolic Coxeter system (W,S). In §6 we will
show:

Theorem 1.5. — There are 38 minimal hyperbolic Coxeter systems, and among these we

have inf β(W,S) = λLehmer.

By monotonicity of β, we have

λ(w) ≥ β(W′,S′) ≥ β(W,S) ≥ λLehmer,

completing the proof of Theorem 1.1.

Small Salem numbers. — The results above suggest using β(W,S) as a measure
of the complexity of a Coxeter system. We conclude in §7 with a few connections
between the simplest Coxeter systems and small Salem and Pisot numbers.

Let Ya,b,c denote the Coxeter system whose diagram is a tree with 3 branches of
lengths a, b and c, joined at a single node. For example E8 = Y2,3,5. We will show:

• The smallest Salem numbers of degrees 6, 8 and 10 coincide with λ(w) for
the Coxeter elements of Y3,3,4, Y2,4,5 and Y2,3,7. (These are the hyperbolic
versions of the exceptional spherical Coxeter systems E6, E7 and E8.)

• In particular λLehmer = λ(w) for the Coxeter elements of Y2,3,7.
• The set of all irreducible Coxeter systems with β(W,S) < λPisot consists ex-

actly of Y2,4,5 and Y2,3,n, n ≥ 7. Here λPisot ≈ 1. 324717 is the smallest Pisot
number; it satisfies x3 = x+ 1.
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• The infimum of β(W,S) over all higher-rank Coxeter systems coincides with
λPisot.

• There are exactly 6 Salem numbers < 1. 3 that arise as eigenvalues in Coxet-
er groups. Five of these arise from the Coxeter elements of Y2,3,n, 7 ≤ n ≤ 11.
(On the other hand, there are in all 47 known Salem numbers less than 1. 3.)

• The second smallest known Salem number, λ ≈ 1. 188368, arises as λ(g) for
g ∈ O+(II17,1), but does not arise as λ(w) for any w in the index two Cox-
eter group W ⊂ O+(II17,1). Here II17,1 denotes the unique even unimodular
lattice of signature (17, 1).

At the end of §7 we connect the study of β(W,S) to the many known results
on the leading eigenvalues of graphs.

Notes and references. — E. Hironaka showed that Lehmer’s number is the smallest
of an infinite family of Salem numbers that arise as roots of Alexander polynomials of
certain pretzel knots [Hir]. We observed that these Salem numbers are also the leading
eigenvalues of Coxeter elements for the diagrams Yp1,...,pn , and were led to formulate
Theorem 1.1.

It is conjectured that λLehmer is the smallest Salem number, and more generally
that it has minimal Mahler measure among all algebraic integers (other than roots of
unity). This conjecture is confirmed by Theorem 1.1 for those algebraic integers λ(w)

that arise via Coxeter groups. Many Salem numbers can also be realized as eigenval-
ues of automorphisms of even, unimodular lattices [GM], but it is unknown if λLehmer

is a lower bound for the Salem numbers that arise in this way. See [GH] for a recent
survey on this topic.

Basic references for Coxeter groups include [Bou], [Ha1] and [Hum]. See [A’C],
[BLM], [Co] and [How] for related work on eigenvalues of Coxeter elements. Con-
nections between Salem numbers and growth-rates of reflection groups in H2 and H3

are studied in [FP], [Fl], [CW] and [Par]. The pedal triangle is discussed in [RT, §5].
(The existence of billiard loops is an open question for obtuse triangles; see [HH].)

For the convenience of the reader, we have included short proofs of key results
from the literature and a summary of the needed background on Coxeter groups.

I would like to thank D. Allcock, B. Gross and E. Hironaka for many informa-
tive and useful discussions.

2. Translation length in the Hilbert metric

Let V be a finite-dimensional real vector space. Let K ⊂ V be a closed, convex
cone, such that the interior K◦ of K is nonempty and K contains no line. Let T :
V → V be a linear automorphism of V with T(K) = K, and let λ(T) denote the
spectral radius of T.
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In this section we introduce the Hilbert metric dK on K◦ and study the translation

length

δ(T,K) = inf
x∈K◦

dK(x,Tx).

We will show:

Theorem 2.1 (Hilbert length). — The translation length of T in the Hilbert metric satisfies

1
2

log max (λ+, λ−, λ+λ−) ≤ δ(T,K) ≤ log max (λ+, λ−),

where λ± = λ(T±1) .

Corollary 2.2. — The translation length is given by δ(T,K) = log λ(T) provided

λ(T) = λ(T−1).

The Hilbert metric. — Let K ⊂ V be a closed convex set containing no line. Let
[x, y] ⊂ K denote the segment joining x, y ∈ K. The cross-ratio of 4 collinear points
is given by

[a, x, y, b] = | y− a|
| y− b| ·

|x − b|
|x− a|

for any norm | · | on V.
The Hilbert metric on K◦ is defined by

dK(x, y) = 1
2

inf log[a, x, y, b],

where the infimum is over all a, b ∈ K such that [x, y] lies in the interior of [a, b] with
the same orientation. Compare [H], [Ha2], [Bus, p. 105], [BK, IV.28]. It is easy to
see that dK induces the usual topology on K◦.

Examples. — Let K = [A,B] ⊂ V = R; then dK coincides with the Riemannian
metric

(B− A) |dx|
2|x− A||x − B| ·

More generally, if K ⊂ Rn is the closed unit ball, then K◦ coincides with the Klein
model for hyperbolic space Hn, and the Hilbert metric agrees with the hyperbolic met-
ric of constant curvature −1. (The factor of 1

2 in the definition of dK compensates for
the transition between the Poincaré and Klein models.)
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Straightness. — Since the Hilbert metric restricts to a Riemannian metric on any
segment in K◦, we have the following crucial straightness property:

dK(x, y)+ dK( y, z) = dK(x, z)(2.1)

for any y ∈ [x, z].

Contraction principle. — Linear maps φ are contracting for the Hilbert metric:
that is, if φ : V→ V′ is a linear map that sends K into K′, then we have

dK′(φ(x), φ( y)) ≤ dK(x, y).

In this respect the Hilbert metric behaves like the Poincaré metric from complex an-
alysis.

x

z

w

a b
y

c

d

f

e

p

FIG. 2. — The triangle inequality

Triangle inequality. — We sketch a proof that dK is a metric. Since K contains
no line, dK(x, y) = 0 iff x = y. The triangle inequality is verified by Figure 2. By
convexity, given x, y, z ∈ K◦, K contains at least the quadrilateral L whose diagonals
are the maximal segments [a, b] and [c, d] containing [x, y] and [ y, z]. Let [e, f ] denote
the maximal segment through [x, z] in L, and let p be the intersection of the lines
through [a, c] and [b, d]. (If these lines are parallel we take p at infinity.) Projection
from p sends y to a point w in [x, z]. Since projection between lines preserves cross-
ratios, we see that [a, x, y, b] = [e, x,w, f ] and thus

dK(x,w) ≤ dL(x,w) = dK(x, y).

Similarly dK(w, z) ≤ dK( y, z). Finally from the straightness property we obtain

dK(x, z) = dK(x,w)+ dK(w, z) ≤ dK(x, y)+ dK( y, z).
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p

FIG. 3. — Balls of radius (log 2)/2 centered at p ∈ R2
+ in the balanced metric (inner) and the Hilbert metric (outer)

The balanced metric. — Here is a variant of the Hilbert metric with useful prop-
erties. A segment [x, y] ⊂ K extends by α > 0 if the segment with the same center but
(1+ 2α)-times longer, namely

[a, b] = [x + α(x − y), y+ α( y− x)],
is also contained in K.

The balanced metric on K◦ is defined by

d∗K(x, y) = inf{log(1+ α−1) : [x, y] extends by α.}.
The proof of the triangle inequality is similar to the case of the Hilbert metric (see
[BW, Lemma 2]).

The balanced metric is simply the Hilbert metric subject to the condition that
[a, b] has the same center as [x, y]. Thus it enjoys the same contraction principle. Not-
ing that [−α, 0, 1, 1+ α] = (1+ α−1)2 we have:

1
2

d∗K(x, y) ≤ dK(x, y) ≤ d∗K(x, y).(2.2)

One advantage of the balanced metric is the product formula:

d∗K1×K2
((x1, y1), (x2, y2)) = max

(
d∗K1

(x1, y1), d∗K2
(x2, y2)

)
,

which makes it suitable for proofs by induction. For example, a Hilbert ball in K = R2
+

is a hexagon, while a balanced ball is a square (Figure 3).
A disadvantage of the balanced metric is that the straightness property (2.1) fails.

Translation length. — We now assume, as in the beginning of this section, that
K⊂V is a closed convex cone containing no line, and K◦ 	= ∅.

Let T : V → V be a linear map such that T(K) = K. Then T induces an
isometry of K◦ in both the balanced and Hilbert metrics. Let

δ∗(T,K) = inf
x∈K◦

d∗K(x,Tx).

Concentrating first on the balanced metric, we will show:
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Theorem 2.3 (Balanced length). — The translation length of T in the balanced metric is

given by δ∗(T,K) = log max (λ(T), λ(T−1)).

Eigenvectors in K. — As a first step in the proof, we show:

Theorem 2.4. — Let T : V→V be a linear map satisfying T(K)=K. Then λ(T)>0
is an eigenvalue of T, with a corresponding eigenvector v ∈ K.

Proof. — Since T(K) = K, T is invertible. Using the generalized eigenspace
decomposition of T on V⊗C, we obtain a T-invariant splitting V = X⊕Y such that
the spectrum of (T|X) lies on the circle |z| = λ(T), while λ(T|Y) < λ(T).

Choose a norm | · | on V. Since K◦ 	= ∅, there exists a vector u = (x, y) ∈ K
with x 	= 0. Then we have

|Tn(x)| � λ(T)n|x|  |Tn( y)|
as n → ∞. It follows that any accumulation point w of the sequence Tn(u)/|Tn(u)|
lies in K ∩X. Since K is a cone, the entire ray R+ · w is also contained in K ∩X.

The set of all rays contained in K ∩ X determines a nonempty, T-invariant sub-
set P(K∩X) ⊂ PX. Since K is closed, convex and contains no line, P(K∩X) is a com-
pact, convex disk. Therefore T : P(K∩X)→ P(K∩X) has a fixed point [v]. We have
Tv = αv and |α| = λ(T) since v ∈ X. Since K contains no line we have α > 0 and
thus α = λ. #�

Corollary 2.5. — We have δ∗(T,K) ≥ log max (λ(T), λ(T−1)).

Proof. — Let λ = λ(T). Let T∗ : V∗ → V∗ be the dual of T, and let K∗ = { f ∈
V∗ : f (K) ≥ 0} be the dual cone to K. Since the interior of K is nonempty and K
contains no line, the same properties obtain for K∗.

By the preceding Theorem, there is a nonzero f ∈ K∗ such that T∗( f ) = λf .
Then f : V→ R satisfies:

f (Tv) = λf (v) and f (K) ⊂ [0,∞).

By the contraction principle, δ∗(T,K) is bounded below by the translation distance
δ∗(T′,K′) = | log λ| of T′(x) = λx on V′ = R with K′ = [0,∞). Applying the same
reasoning to T−1 gives the Corollary. #�

For the reverse inequality it is convenient to prove a slightly more general state-
ment that allows K to contain a line.

Lemma 2.6. — Let K ⊂ V be a closed convex cone with K◦ 	= ∅. Let T : V→ V be

an automorphism preserving K, and suppose

1+ α−1 > max (λ(T), λ(T−1)).

Then there exists an x ∈ K◦ such that [x,Tx] extends by α.
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Proof. — The proof will be by induction on dimV. If dimV = 0, the Lemma
holds for all values of α > 0 by taking x = 0.

Now suppose that dimV > 0 and that the Lemma has been established for all
vector spaces with dimV′ < dimV. Observe that any T-invariant subspace S ⊂ V of
positive dimension yields a quotient map f : V→ V′ = V/S, and an automorphism
T′ of V′ making the diagram

V
T−−−→ V

f

� f

�
V′

T′−−−→ V′

commute. Since the spectrum of T′ is contained in that of T, and dimV′ < dimV,
the Lemma provides an x′ in (K′)◦ = f (K◦) such that [x′,T′(x′)] extends by α. Lifting
to V, we obtain y, z ∈ K◦ such that [ y, z] extends by α and T( y) = z + s for some
s ∈ S.

We apply this observation in two ways to complete the proof. First, suppose
K ⊂ V contains a line. Let S be the maximal subspace contained in K. Then [ y, z]
and [ y, z+s] extend by the same amount, so [ y,T( y)] extends by α and we are done.

Second, suppose K ⊂ V contains no line. It is convenient to assume that λ =
λ(T) ≥ λ(T−1) (if not, replace T by its inverse); then λ ≥ 1. By Theorem 2.4 there is
an eigenvector v ∈ K such that Tv = λv. (If v were in K◦ we could finish the proof by
taking x = v; but frequently v lies in ∂K.)

Let S be the subspace R · v ⊂ V. By the observation above, we have y, z ∈ K◦

such that [ y, z] extends by α and T( y) = z+ mv for some m ∈ R.
Let x = y +Mv where M  0. Since y lies in K◦ and R+ · v ⊂ K, we have

x ∈ K◦. We claim that for M sufficiently large, [x,Tx] extends by α. To see this, we
compute:

x + α(x − Tx) = y+ α( y− T( y))+M(v + α(v − T(v)))
= y+ α( y− z)− mv+M(1+ α− αλ)v
= y+ α( y− z)+ (Mβ − m)v

where the coefficient β = 1+ α− αλ is positive by our assumption that 1+ α−1 > λ.
Therefore we have

(Mβ − m)v ∈ R+ · v ⊂ K

when M is large enough. On the other hand, y + α( y − z) lies in K since [ y, z]
extends by α. Since K+K ⊂ K, we have x + α(x − Tx) ∈ K.

A similar argument shows Tx+ α(Tx − x) ∈ K. Thus [x,Tx] extends by α. #�
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Proof of Theorem 2.3 (Balanced length). — By Corollary 2.5 we have

δ∗(T,K) ≥ log max (λ(T), λ(T−1)).

Since d∗K(x,Tx) ≤ log(1 + α−1) when [x,Tx] extends by α, the preceding Lemma
provides the reverse inequality. #�

Proof of Theorem 2.1 (Hilbert length). — Using the comparison (2.2) between the
Hilbert metric and the balanced metric, the Theorem 2.3 immediately yields

1
2

log max (λ+, λ−) ≤ δ(T,K) ≤ log max (λ+, λ−)

where λ± = λ(T±1).
When λ+ and λ− are both > 1, the lower bound can be strengthened to

1
2 log λ+λ−, as follows. Proceeding as in Corollary 2.5, there exist eigenvectors f± ∈ K∗

such that (T∗)±1f± = λ± f±. Define f : V → R2 by f (v) = ( f+(v), f−(v)), and
T′ : R2 → R2 by T′(x, y) = (λ+x, λ−1

− y). Then f ◦ T = T′ ◦ f , and f (K) = K′ = R2
+.

By the contraction principle, we have

δ(T,K) ≥ δ(T′,K′) = 1
2

log(λ+λ−),

completing the proof. #�

3. Coxeter groups and the Tits cone

This section summarizes geometric properties of Coxeter groups. Basic refer-
ences for this material are [Bou] and [Hum]; see also [Vin1], [Ha1].

Our main interest will be hyperbolic and higher-rank Coxeter groups. For such
groups, we observe that the Hilbert metric on the interior of the Tits cone K◦ is well-
defined and invariant, and passes to the space of rays PK◦. Thus (PK◦, dK) serves as
a generalization of the Klein model for hyperbolic space to the case of higher-rank
Coxeter groups.

Coxeter systems. — Let W be a group generated by a finite set S, and let m(s, t)
denote the order of st ∈W. Assume m(s, s) = 1 and m(s, t) ≥ 2 for all s 	= t in S.

The pair (W,S) is a Coxeter system if the generators S, together with the relations
(st)m(s,t) = 1 for all s, t ∈ S, give a presentation for W. Then W itself is a Coxeter group.

Let V = RS be the real vector space with one basis element es for each s ∈ S.
Define a symmetric bilinear form B : V× V→ R by

B(es, et) = −2 cos(π/m(s, t)).
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There is a natural geometric action of W on V preserving the form B, given on the
generators s ∈ S by

s · v = v− B(es, v)es;
that is, by letting s acts via reflection through the hyperplane normal to es. The rep-
resentation W→ O(V,B) is faithful.

The quadratic form B(v, v) on V is equivalent over R to one of the standard
forms

x21 + · · · + x2p − x2p+1 − · · · − x2p+q

on Rn; its signature is (p, q). The radical is defined by

rad(V) = {v : B(v, v′) = 0 ∀v′ ∈ V};
it satisfies dim rad(V) = n− p− q.

Remark: when (st) has infinite order, one drops the relation (st)m(s,t) = 1 and
sets B(es, et) = −2.

Eigenvalues. — Let λ(w) denote the spectral radius of w ∈ W acting geometri-
cally on V. Clearly s|rad(V) = I for all s ∈ S, so the same is true of w. Moreover B
descends to a non-degenerate quadratic form on V/rad(V), preserved by w. It follows
that det(λI− w) is a reciprocal polynomial, and in particular that

λ(w) = λ(w−1).(3.1)

The Tits cone. — The Coxeter group W also acts naturally on the dual space V∗.
The dual action is characterized by the equation

〈w · f ,w · v〉 = 〈 f , v〉,
where 〈 f , v〉 denotes the natural pairing between f ∈ V∗ and v ∈ V. The spectral
radii of w|V and w|V∗ agree.

The fundamental chamber F ⊂ V∗ for (W,S) is defined by:

F = { f ∈ V∗ : 〈 f , es〉 ≥ 0 ∀s ∈ S}.
Passage to the dual space permits a uniform treatment of the geometric action

even in the case where rad(V) 	= (0). For example, the chamber F ⊂ V is always
a cone on a simplex, while the region

{v : B(v, es) ≥ 0 ∀s ∈ S} ⊂ V

need not be.
The Tits cone is the full orbit W ·F of the fundamental chamber under the action

of W. From [Bou, V.4] or [Hum, §5.13] we have:

Theorem 3.1. — The Tits cone W · F is convex, and w(F) = F iff w = id.
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Diagrams. — The Coxeter diagram of (W,S) is the weighted graph D whose ver-
tices are S and whose edges of weight m(s, t) join s to t whenever m(s, t) ≥ 3. To make
a picture of the diagram D, we draw single lines for edges of weight 3, double lines
for edges of weight 4, and lines labeled by n for edges of weight n ≥ 5.

A Coxeter system is irreducible if the action of W on V/rad(V) is irreducible;
equivalently, if its Coxeter diagram is connected.

A general Coxeter system (W,S) reduces naturally into irreducible subsystems
(Wi,Si), such that S = �Si and W = ∏

Wi. The geometric action of W on V is the
product of the actions of Wi on Vi.

Classification by signature. — Assume the Coxeter system (W,S) is irreducible.
Then (W,S) can be classified into one of 4 types according to the signature of (V,B).
Letting n = |S| = dimV, we say (W,S) is:

• Spherical if sig(V,B) = (n, 0);
• Affine if sig(V,B) = (n− 1, 0);
• Hyperbolic if sig(V,B) = (p, 1); and
• Higher-rank if sig(V,B) = (p, q), q ≥ 2.

This classification is conveniently approached via the adjacency matrix

Ast = (2I− B)(es, et) =
{
2 cos(π/m(s, t)), s 	= t,
0 s = t.

Let α = α(W,S) denote the spectral radius of A. Since the smallest eigenvalue of the
symmetric matrix B is 2− α(W,S), we find:

(W,S) is


spherical if α(W,S) < 2,
affine if α(W,S) = 2, and
hyperbolic or higher-rank if α(W,S) > 2.

Terminology. — The term ‘adjacency matrix’ comes from the case where
m(s, t) ≤ 3 for all s, t; then Ast = 1 if s and t are joined by an edge in the Coxeter di-
agram of (W,S), and = 0 otherwise. The term ‘higher rank’ is meant to remind one
that the real Lie group SO(p, q) has real rank ≥ 2 when (p, q) ≥ (2, 2). Note that in
[Bou] and [Hum], the term ‘hyperbolic’ is used differently than here; these authors
include the additional condition that rad(V) = (0) and Hp/W has finite volume.

Perron-Frobenius. — Since the Coxeter diagram of (W,S) is connected, the ma-
trix A is one to which the Perron-Frobenius theory applies. That is, α = α(W,S) is
a simple eigenvalue of A, and there is a positive vector v0 = ∑

ases, as > 0 such that
Av0 = αv0 and Bv0 = (2− α)v0.
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Now assume α 	= 2 and let f0 ∈ V∗ be the dual vector satisfying

〈 f0, v〉 = (2− α)−1B(v0, v)

for all v ∈ V. Then clearly f0 belongs to rad(V)⊥; that is, 〈 f0, v〉 = 0 for all v ∈ rad(V).
Moreover, we have 〈 f0, es〉 = as > 0, so f ∈ F◦. This shows:

Proposition 3.2. — Except in the affine case, F◦ meets rad(V)⊥.

Spherical, affine and hyperbolic groups. — The spherical and affine groups are well-
understood; for example, their diagrams are classified. In the spherical case the Tits
cone is all of V∗ and W is finite. In the affine case the closure of the Tits cone is a half-
space bounded by rad(V)⊥, and W =W0 � Zn−1 with |W0| <∞. By considering the
space of rays in the interior of the Tits cone, one obtains an isometric action of W on
the sphere Sn or on the Euclidean space Rn−1.

Hyperbolic and higher rank groups. — We will use the Hilbert metric on the Tits
cone to obtain an isometric action in the hyperbolic and higher-rank cases. Let K =
W · F.

Theorem 3.3. — Let (W,S) be a hyperbolic or higher-rank Coxeter system. Then the

closure of the Tits cone K contains no line.

Proof. — (From [Vin1, Lemma 15].) Let X ⊂ V∗ be the maximal subspace
contained in K. For the sake of contradiction, suppose X 	= (0). Then X⊥ ⊂ V is
a proper W-invariant subspace. By irreducibility of the action of W on V/rad(V), we
have X⊥ ⊂ rad(V), and thus X ⊃ rad(V)⊥.

Since F◦ meets rad(V)⊥, there is an f0 ∈ rad(V)⊥ and a neighborhood U of the
origin in V∗ such that

f0 +U ⊂ F◦ ⊂W · F = K.

We also have −f0 ∈ X ⊂ K. Since K is a convex cone, this implies

U = (−f0)+ f0 +U ⊂ K,

and thus K = V. Therefore W is finite and (W,S) is spherical, a contradiction. #�
Since K contains no line, the Hilbert metric dK is well-defined and we have:

Corollary 3.4. — In the hyperbolic or higher-rank case, the Coxeter group W acts isomet-

rically on K◦ in its Hilbert metric.

Since λ(w) = λ(w−1) ((3.1) above), Theorems 2.1 and 2.4 imply:

Corollary 3.5. — Let w belong to a hyperbolic or higher-rank Coxeter group. Then λ(w)≥1
is an eigenvalue of w, and

log λ(w) = inf
x∈K◦

dK(x,w · x).
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Projective models. — The Hilbert determines a W-invariant metric on the space
of rays

PK◦ ⊂ PV∗,
because the cross-ratio is projectively invariant. The space PK◦ is isometric (via pro-
jection) to the affine slice (K◦ ∩H, dK), for hyperplane H ⊂ V with H ∩K◦ 	= ∅ and
K ∩H compact.

In the case of hyperbolic Coxeter groups, W also acts isometrically on the Klein
model for hyperbolic space,

Hp = PH ⊂ PV∗,
where H is the image of the timelike cone B(v, v) < 0 under the map V→ V∗ defined
by B. In fact, when the radical is trivial and Hp/W has finite volume, Hp coincides
isometrically with (PK◦, dK). Thus we can regard (PK◦, dK) as a generalization of the
Klein model for hyperbolic space to the infinite-volume and higher-rank cases.

4. Coxeter elements

In this section we show Coxeter elements minimize translation length among all
essential elements in W.

Coxeter elements. — Let (W,S) be a Coxeter system with S = {s1, ...sn}. We say
w ∈W is a Coxeter element if

w = sσ1sσ2 · · · sσn

for some permutation σ ∈ Sn.

Essential elements. — Let WI ⊂ W denote the parabolic subgroup generated by
I ⊂ S. Then (WI, I) is also a Coxeter system. An element w ∈ W is peripheral if it is
conjugate into a proper parabolic subgroup WI ⊂W, I 	= S; otherwise it is essential.

We will show:

Theorem 4.1. — Let (W,S) be a Coxeter system and let w ∈ W be essential. Then we

have λ(w) ≥ infSn λ(sσ1sσ2 · · · sσn).

Loops in the fundamental chamber. — It is easy to see that Theorem 4.1 for general
(W,S) follows from the irreducible case. In the spherical and affine cases, λ(w) = 1
for all w ∈W and the Theorem is immediate.

Now assume (W,S) is hyperbolic or higher-rank. Then W acts isometrically and
discretely on K◦, with X = F ∩K◦ as a fundamental domain. The natural projection
map

π : K◦ → X,
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characterized by x ∈W·π(x), is a covering map in the sense of orbifolds. By convexity,
K◦ is contractible, and hence the orbifold fundamental group of X is W.

Let γ : [0, 1] → K◦ be a piecewise linear path. Breaking the domain into inter-
vals [ti, ti+1] on which γ is linear, and setting xi = γ(ti), we define its length by

L(γ) =
∑

dK(xi, xi+1).

The sum is independent of the choice of subdivision because of the triangle equality
(2.1) for collinear points.

A loop in X is a piecewise-linear path γ : [0, 1] → X with γ(0) = γ(1). A lift of
γ is a path γ̃ : [0, 1] → K◦ such that

π ◦ γ̃ = γ.

In this case γ̃ (1) = w · γ(0) for some w ∈W, and we say γ (or γ̃ ) represents w. A given
loop has many lifts, and thereby represents many elements in W.

General position. — The codimension-one faces of F are given by F(s) = { f ∈
F : f (s) = 0}, s ∈ S; the codimension-two faces, by F(s) ∩ F(t), s 	= t.

Let us say a piecewise-linear path γ : [0, 1] → X is in general position if it is
disjoint from the codimension-two faces of F and meets the codimension-one faces at
most in a finite set.

Proposition 4.2. — We have log λ(w) = inf L(γ) over all loops γ : [0, 1] → X in

general position representing w.

Proof. — Let γ represent w via the lift γ̃ . By Corollary 3.5, log λ(w) is the
minimal translation length of w in the Hilbert metric. Thus we have

L(γ) = L(γ̃ ) ≥ dK(γ̃ (0),w · γ̃ (0)) ≥ log λ(w).

Moreover, there exist xn ∈ K◦ with

dK(xn,w · xn)→ log λ(w).

Since the orbits of the codimension-one faces W · F(s) are nowhere dense, we can
assume π(xn) ∈ F◦.

Let γ̃n denote the straight line from xn to w · xn; then
L(γ̃n)→ log λ(w).

Since the orbits W · (F(s) ∩ F(t)) of the codimension-two faces of F do not separate
K◦, we can modify γ̃n slightly (introducing new bends if necessary but increasing its
length by at most 1/n) so that γn = π ◦ γ̃n is in general position. Then L(γn)→ log λ

and γn represents w, completing the proof. #�



COXETER GROUPS, SALEM NUMBERS AND THE HILBERT METRIC 167

Let γ be a loop in general position, and let t1 < t2 < ... < tm be the parameters
such that γ(ti) ∈ ∂F. Then we have γ(ti) ∈ F(gi) for a unique gi ∈ S. We say w is
a subword of g1g2 · · · gm if we have w = gi1gi2 · · · gik for some indices 1 ≤ i1 < i2 < · · · <
ik ≤ m.

Proposition 4.3. — The loop γ represents w iff w is conjugate to a subword of g1g2 · · · gm.

Proof. — Define a lift γ̃ of γ by

γ̃ (t) =


γ(t) if t ∈ [0, t1],
g1g2 · · · gk · γ(t) if t ∈ [tk, tk+1], and
g1g2 · · · gm · γ(t) if t ∈ [tm, 1].

Since gk · γ(tk) = γ(tk), the definition is consistent and γ̃ is continuous. Thus γ repre-
sents the full word g1 · · · gm. By ignoring a subset of the (ti)’s, we can similarly obtain
a lift which represents any subword of g1 · · · gm.

Now let γ̃ be a lift with γ̃ (0) ∈ X. Then γ̃ (t) = w(t) · γ(t) for some w(t) ∈W.
The element w(t) can only change when γ(t) touches a face F(gi), and then only by
composition on the right with gi. Thus γ̃ has the form above and therefore γ repre-
sents a subword of g1 · · · gm.

To complete the proof, observe that γ̃ represents w iff g · γ̃ represents gwg−1. #�

Proof of Theorem 4.1. — As discussed above, the Theorem reduces to the case
of a hyperbolic or higher-rank group.

Let w ∈ W be an essential element of such a group. For any ε > 0 we can
find a loop γ : [0, 1] → X in general position such that γ represents w and L(γ) ≤
log λ(w)+ ε.

Let γ(ti) ∈ F(gi) be the points of γ that meet ∂F. Then w is conjugate to a sub-
word of g1 · · · gm. Since w is essential, every element of S must occur in the sequence
(gi). Thus g1 · · · gm also contains a Coxeter element w′ as a subword, and therefore γ

also represents w′. We then have

λ(w′) ≤ L(γ) ≤ log λ(w)+ ε,

and the proof is completed by letting ε→ 0. #�

Hyperbolic groups. — For hyperbolic Coxeter systems, the proof above can also
be carried through using hyperbolic space Hp in place of PK◦.

Question. — Are all Coxeter elements essential?
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5. Bipartite Coxeter diagrams

Let (W,S) be a Coxeter system. In this section we introduce the bicolored eigen-

value β(W,S) ≥ 1 and prove it controls the eigenvalues of all Coxeter elements. We
will show:

Theorem 5.1. — Any Coxeter system (W,S) satisfies

inf
Sn

λ(sσ1sσ2 · · · sσn) ≥ β(W,S).

Equality holds if the Coxeter diagram of (W,S) is bipartite.

Corollary 5.2. — We have λ(w) ≥ β(W,S) for all essential w ∈W.

Bicolored Coxeter elements. — When the Coxeter diagram D of (W,S) is a tree
(or forest), the Coxeter elements range in a single conjugacy class in W [Hum, §3.16].

When D contains cycles, in general several conjugacy classes occur. However,
when all the cycles in D are of even order, there is still a special class of Coxeter
elements that are unique up to conjugacy.

To define these, let us say a partition S = S1 � S2 of the vertices of D is a two-

coloring if all edges of D lead from S1 to S2. A two-coloring exists iff all cycles in D are
of even order. In the terminology of graph-theory, the diagram D is bipartite.

Let D admit a two-coloring S = S1 � S2. Since there are no edges between
elements s, t ∈ Si, we have (st)2 = 1. Thus Si generates an abelian subgroup of W,
isomorphic to (Z/2)|Si|. The product σi of the elements of Si is independent of the
choice of ordering and satisfies σ 2

i = 1.
We refer to w = σ1σ2 as a bicolored Coxeter element. Its conjugacy class is inde-

pendent of the choice of two-coloring. In fact, if (W,S) is irreducible then its bicol-
ored Coxeter element is unique up to w *→ w−1, since the two-coloring of a connected
diagram is unique up to (S1,S2) *→ (S2,S1).

As noted in [A’C] and [BLM], the spectrum of the bicolored Coxeter elements
is determined by the spectrum of Ast. In particular we have:

Proposition 5.3. — Let w be a bicolored Coxeter element for (W,S). Then the spectrum

of w is contained in S1 ∪R+, and the eigenvalue(s) maximizing Re λ satisfy

2+ λ+ λ−1 = α(W,S)2.(5.1)

Proof. — It is easy to check that the adjacency matrix determines an operator
A : V→ V satisfying A = σ1 + σ2, where w = σ1σ2. Thus

A2 = 2+ σ1σ2 + σ2σ1 = 2+ w+ w−1.
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The spectrum of w is therefore the preimage of the spectrum of A2 under λ *→ 2 +
λ + λ−1. Since A is symmetric, the spectrum of A2 lies in the interval [0, α(W,S)2],
and the Proposition follows. #�

The bicolored eigenvalue. — Motivated by equation (5.1), we define the bicolored

eigenvalue β(W,S) as the unique root β ≥ 1 of the equation

2+ β + β−1 = α(W,S)2,

provided α(W,S) ≥ 2. For α(W,S) < 2 we set β(W,S) = 1. In the first case, (W,S)

has a hyperbolic or higher-rank component; in the second, all components are affine
or spherical. In the first case λ(w) is an eigenvalue of w, showing:

Corollary 5.4. — We have λ(w) = β(W,S) for all bicolored Coxeter elements.

Proof of Theorem 5.1. — Assume (W,S) is hyperbolic or of higher-rank; the
Theorem easily reduces to this case. Let α = α(W,S) > 2.

Let w = s1 · · · sn be a Coxeter element in W. We will write vectors v ∈ V as
v =∑

viei, ei = esi , and write v ≥ v′ to mean vi ≥ v′i for all i. Since sk · v = v−B(v, ek)ek ,
and B = 2I− A, we have:

(sk · v)i =
{

(A · v)i − vi if k = i,
vi otherwise.

(5.2)

Note that (A · v)i only depends on vj , j 	= i.
Let v > 0 be a Perron-Frobenius eigenvector for A; it satisfies Av = αv. To prove

the Theorem, it suffices to show

(w+ w−1)(v) ≥ (α2 − 2)v,(5.3)

since this equation implies

λ(w)+ λ(w)−1 ≥ λ(w+ w−1) ≥ α2 − 2

and thus λ(w) ≥ β(W,S).
To prove (5.3) first note that v′ ≥ v implies Av′ ≥ Av. Since α− 1 ≥ 1, we have

(sn · v)n = (α− 1)vn ≥ vn, and thus sn · v ≥ v. By induction, we have the inequalities

sksk+1 · · · sn · v ≥ v,
(sksk+1 · · · sn · v)k ≥ (A · v)k − vk = (α − 1)vk

for all k. Since sk only changes the kth coordinate of v, we have

(sk+1 · · · sn · v)i ≥ (α− 1)vi, i > k,

(sk+1 · · · sn · v)i = vi, i ≤ k.
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Applying the same reasoning to w−1 = sn · · · s1, we find

u = (sk+1 · · · sn · v)+ (sk−1 · · · s1 · v)
satisfies ui ≥ αvi , i 	= k, and uk = 2vk. On the other hand, we have

((w+ w−1) · v)k = (sk · u)k,
using again the fact that only sk changes the kth coordinate. Therefore we have

((w+ w−1) · v)k = (A · u)k − uk
≥ (A · (αv))k − 2vk = (α2 − 2)vk,

establishing (5.3) and completing the proof. #�
Corollary 5.5. — The bicolored Coxeter elements, if they exist, minimize λ(w) among all

Coxeter elements.

Geometric interpretation. — Suppose (W,S) admits a two-coloring S = S1�S2 with
corresponding Coxeter element w = σ1σ2. Then Fi = ⋂

s∈Si
F(s) is a facet of F with

a finite stabilizer in W; hence it meets K◦. Let [x, y] ⊂ X be a line segment joining F1

to F2 in (rad(V))⊥ and perpendicular to both. A loop γ that traces [x, y] twice, once
in each direction, gives a geodesic representing w; thus log λ(w) = 2L([x, y]).

In terms of the Hilbert metric on the quotient orbifold X, Theorem 4.1 implies:

Corollary 5.6. — The loop γ for a bicolored Coxeter element has minimal length among

all loops that touch all the faces of X.

Example. — Let (W,S) = 〈a, b, c : a2 = b2 = c2 = (ac)2 = (ab)3〉 be the
(2, 3,∞) triangle group. Its Coxeter diagram is

a b ∞ c.

The Coxeter element w = (ac)b is bicolored, and the corresponding segment [x, y]
joins the right angle x = F(a) ∩ F(c) of X to the opposite side F(b). The hyperbolic
length of [x, y] is given by the log of the golden mean, and therefore

λ(w) = 3+√5
2

= 2. 61803...

is the golden mean squared.
The corresponding tiling of H2 in the Poincaré model, and the geodesic stabi-

lized by w (which has [x, y] as a subsegment), are shown in Figure 4. As is well-known,
W contains PSL2(Z) as a subgroup of index two, and w2 = (

2 1
1 1

)
when suitably nor-

malized.
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FIG. 4. — The geodesic stabilized by the Coxeter element for the (2, 3,∞) triangle group

Finite covers of Coxeter diagrams. — Here is another perspective on the bicolored
eigenvalue. Let (W,S) be a Coxeter system with connected diagram D. Regarding
D as a topological 1-complex with weights on its edges, consider the 2d-fold covering
space D′ → D determined by the map

π1(D)→ H1(D,Z/2).

All cycles in D′ have even length, so the associated Coxeter system (W′,S′) admits
a bicolored Coxeter element w′ ∈ W′. Clearly α(W,S) = α(W′,S′), so we can alter-
natively define the bicolored eigenvalue of (W,S) by

β(W,S) = λ(w′).

In other words, every Coxeter system admits a bicolored ‘virtual’ Coxeter elem-
ent, whose leading eigenvalue is β(W,S).

Indiscrete groups. — The proof of Theorem 5.1 uses only the fact that the adja-
cency matrix Ast is non-negative and symmetric, so it can easily be generalized beyond
Coxeter groups. A corresponding result applies, for example, to the (possibly indiscrete)
group generated by reflections through the sides of any simplex in hyperbolic space
with interior dihedral angles ≤ π/2.
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6. Minimal hyperbolic diagrams

In this section we use the classification of minimal hyperbolic diagrams to prove
a universal lower bound for eigenvalues in Coxeter groups.

Let (W,S) be a Coxeter system and let

λ(W,S) = inf{λ(w) : w ∈W and λ(w) > 1}.
We set λ(W,S) = 1 if all elements of W have spectral radius one. Note that when
(W,S) is hyperbolic, log λ(W) is the length of the shortest closed geodesic on the
hyperbolic orbifold Hp/W.

We will show:

Theorem 6.1. — Either λ(W,S) = 1 or λ(W,S) ≥ λLehmer.

Recall λLehmer = 1. 17628... is the largest real root of Lehmer’s polynomial (1.1).

Minimal Coxeter elements. — We first show λ(W,S) can be computed by exam-
ining a finite number of elements w ∈W. Given a Coxeter system (W,S), let

λCox(W,S) = inf
Sn

λ(sσ1sσ2 · · · sσn).

The infimum is realized by the minimal Coxeter elements in W.

Theorem 6.2. — For any Coxeter system with λ(W,S) > 1, we have

λ(W,S) = inf{λCox(WI, I) : (WI, I) is hyperbolic or higher-rank.}
Proof. — Any element w ∈ W is conjugate to an essential element of (WJ, J)

for some J ⊂ S. If λ(w) > 1 then (WJ, J) has a hyperbolic or higher-rank component
(WI, I) with the same minimal Coxeter eigenvalue as (WJ, J). By Theorem 4.1 we
have

λ(w) ≥ λCox(WJ, J) = λCox(WI, I),

and the proof is completed by taking the infimum over all w ∈W with λ(w) > 1. #�
Monotonicity. — Coxeter systems admit a natural partial order, defined by

(W,S) ≤ (W′,S′) if there is an injective map ι : S→ S′ such that m(s, t) ≤ m(ι(s), ι(t))
for all s, t ∈ S. We write (W,S) ∼= (W′,S′) if ι extends to an isomorphism between
W and W′; otherwise (W,S) < (W′,S′). Since m(s, t) ∈ {1, 2, 3, ...,∞}, this ordering
satisfies the descending chain condition: any strictly decreasing sequence of Coxeter
systems is finite.
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The inequality on m(s, t) is equivalent to the inequality

Ast ≤ A′ι(s)ι(t)

between adjacency matrices. Now the spectral radius of Ast ≥ 0 increases as its entries
do, since λ(A) = lim ‖An‖1/n. The same is therefore true of the bicolored eigenvalue;
we have:

Proposition 6.3. — If (W,S) ≥ (W′,S′) then β(W,S) ≥ β(W′,S′).

Minimal hyperbolic diagrams. — A hyperbolic Coxeter system (W,S) is minimal if
(W′,S′) has only spherical and affine components whenever (W′,S′) < (W,S).

Proposition 6.4. — If (W0,S0) is hyperbolic or higher rank, then there is a minimal hy-

perbolic Coxeter system with (W,S) ≤ (W0,S0).

Proof. — We will write the signature of a Coxeter system as (p(W,S), q(W,S)).
Consider the set of all Coxeter systems with (Wα,Sα) ≤ (W0,S0) and

q(Wα,Sα) ≥ 1. By the descending chain condition, this set has at least one mini-
mal element (W,S). The minimal system (W,S) must be irreducible — otherwise
one of its hyperbolic or higher-rank components would be strictly smaller. By mini-
mality, q(W′,S′) = 0 if (W′,S′) < (W,S), and thus any strictly smaller system has
only spherical and affine components.

To see (W,S) is hyperbolic, pick s ∈ S and let I = S−{s}; then (WI, I) < (W,S)

so q(WI, I) = 0. Adding s back in increases the signature by at most 1, so q(W,S) = 1.
Therefore (W,S) is a minimal hyperbolic Coxeter system. #�
By Theorem 6.2 we have:

Proposition 6.5. — If (W,S) is a minimal hyperbolic Coxeter system, then λ(W,S) =
λCox(W,S).

Theorem 6.6. — Up to isomorphism, there are 38 minimal hyperbolic Coxeter systems.

Their diagrams are shown in Table 5.

Proof. — Since the affine and spherical diagrams are known, the enumeration of
minimal hyperbolic Coxeter systems is a straightforward combinatorial problem, albeit
with many cases.

As an alternative argument, we note that if (W,S) is a minimal hyperbolic Cox-
eter system, then (W,S) is irreducible and rad(V) = (0). (Indeed, rad(V) 	= (0) im-
plies RI + rad(V) = RS for some proper subset I ⊂ S, and then (WI, I) < (W,S) is
still hyperbolic, contradicting minimality.)
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Moreover, the condition that all proper parabolic subgroups of W are affine or
spherical implies that the vertices of the simplex PF ⊂ PV∗ lie inside or on the bound-
ary of hyperbolic space Hn−1. Therefore Hn−1/W has finite volume.

The hyperbolic Coxeter systems of finite covolume with trivial radical are known
and appear, for example, in [Hum, §6.8].1 There are 72 such Coxeter systems with
|S| ≥ 4. For |S| ≤ 3 there are infinitely many, namely the (p, q, r) triangle groups with
1/p + 1/q + 1/r < 1. However among these, only the (3, 3, 4), (2, 4, 5) and (2, 3, 7)
groups are minimal. Thus we obtain a list of 75 Coxeter systems containing all the
minimal ones. Removing the non-minimal elements from this list of 75, we are left
with the 38 diagrams shown in Table 5. #�

Guide to Table 5. — The first column in Table 5 gives the notation for the
Coxeter system (W,S); the second, its diagram.

The third column gives the approximate value of λ(W,S) = λCox(W,S). Note
that λ(W,S) = β(W,S) for bipartite diagrams, so it is easily computed from the ad-
jacency matrix. For the 5 diagrams which cannot be two-colored, β(W,S) is shown
in parentheses.

The last column gives the characteristic polynomial p(x) = det(xI−w) of a min-
imal Coxeter element. By Proposition 6.5, λ(W,S) is a zero of p(x).

Our notation for Coxeter systems is based in part on the standard notation An,
Bn, Dn, En spherical diagrams. To each of these spherical diagrams one can adjoin an
extending node to obtain an affine diagram. Attaching one more hyperbolic node to the
extending node by a single edge, we obtain the hyperbolic diagrams Ahn+2, Bhn+2, Dhn+2

and Ehn+2. Note that λLehmer = λ(Eh10).
The notation L4343 indicates a linear graph with four edges, whose weights are

4, 3, 4, and 3. Similarly K343 indicates a linear graph with edge weights 3, 4 and 3,
but with an additional edge of weight 3 attached to the penultimate node. We denote
by Qn a loop of n edges, one of which is doubled, and by X5 and X6 a pair of star-
shaped diagrams in no particular series.

Proof of Theorem 6.1. — Suppose λ(W,S) > 1. By the preceding results and
the bicolored bound (Theorem 5.1), there is a hyperbolic or higher-rank subsystem
(WI, I), I ⊂ S, and a minimal hyperbolic diagram (W′,S′) ≤ (WI, I) such that

λ(W,S) = λCox(WI, I) ≥ β(WI, I) ≥ β(W′,S′).

Inspection of Table 5 shows β(W′,S′) ≥ λLehmer for all minimal hyperbolic Coxeter
systems, completing the proof. #�

1 In the first printing of this book, X5 is missing a weight on one of its edges.
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Coxeter system λ(W, S) det(xI− w)

Ah4 2.36921
(2.26844)

1− x− 3x2 − x3 + x4

Ah5 2.08102 (1+ x)(1− x − 2x2 − x3 + x4)

Ah6 1.98779
(1.96355)

1− 2x2 − 3x3 − 2x4 + x6

Ah7 1.88320 (1+ x)(1+ x + x2)(1 − 2x+ x2 − 2x3 + x4)

Ah8 1.83488
(1.82515)

1− x2 − 2x3 − 3x4 − 2x5 − x6 + x8

Bh5 1.72208 (1+ x)(1− x − x2 − x3 + x4)

Bh6 1.58235 1− x2 − 2x3 − x4 + x6

Bh7 1.50614 (1+ x)(1− x − x3 − x5 + x6)

Bh8 1.45799 1− x2 − x3 − x5 − x6 + x8

Bh9 1.42501 (1+ x)(1− x − x3 + x4 − x5 − x7 + x8)

Dh6 1.72208 (1+ x)2(1− x − x2 − x3 + x4)

Dh7 1.58235 (1+ x)(1− x2 − 2x3 − x4 + x6)

Dh8 1.50614 (1+ x)2(1− x − x3 − x5 + x6)

Dh9 1.45799 (1+ x)(1− x2 − x3 − x5 − x6 + x8)

Dh10 1.42501 (1+ x)2(1− x − x3 + x4 − x5 − x7 + x8)

Eh8 1.40127 (1+ x+ x2)(1 − x2 − x3 − x4 + x6)

Eh9 1.28064 (1+ x)(1− x3 − x4 − x5 + x8)

Eh10 1.17628 1+ x− x3 − x4 − x5 − x6 − x7 + x9 + x10

TABLE 5. — The 38 minimal hyperbolic Coxeter diagrams (Continued on next page)
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Coxeter system λ(W, S) det(xI− w)

K343 2.08102 (1 + x)(1 − x− 2x2 − x3 + x4)

K3433 1.88320 (1 + x)2(1− 2x + x2 − 2x3 + x4)

K44 2.61803 (1 + x)2(1− 3x + x2)

K53
5 2.15372 (1 + x)2(2− 3x −√5x + 2x2)

K533
5 1.91650 (1 + x)(2 − x−√5x− x3 −√5x3 + 2x4)

L33433 1.58235 1− x2 − 2x3 − x4 + x6

L34333 1.40127 1− x2 − x3 − x4 + x6

L353
5

1.84960 2+ x −√5x − 2
√

5x2 + x3 −√5x3 + 2x4

L4343 1.88320 (1 + x)(1 − 2x+ x2 − 2x3 + x4)

L443 2.08102 1− x − 2x2 − x3 + x4

L5333
5

1.36000 (1 + x)(2 − x−√5x+ 2x2 − x3 −√5x3 + 2x4)

L534
5

1.91650 2− x −√5x − x3 −√5x3 + 2x4

L54
5

2.15372 (1 + x)(2 − 3x−√5x + 2x2)

L633
6

1.72208 1− x − x2 − x3 + x4

L73
7

1.63557 (1 + x)(1 + x+ x2 − 4x cos2 π/7)

Q3 3.09066
(2.89005)

(1 + x)(1 − 2x−√2x + x2)

Q4 2.57747 1− x − x2 − 2
√

2x2 − x3 + x4

Q5 2.43750
(2.3963)

(1 + x)(1 − 2x+ x2 −√2x2 − 2x3 + x4)

X5 2.61803 (1 + x)3(1− 3x + x2)

X6 2.61803 (1 + x)4(1− 3x + x2)

TABLE 5. — (Continued)
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7. Small Salem numbers

In this section we conclude by detailing some connections between the simplest
Coxeter systems and small Salem and Pisot numbers.

Salem and Pisot numbers. — An algebraic integer λ > 1 is a Pisot number if its
conjugates (other than λ itself) satisfy |λ′| < 1. Similarly, an algebraic integer λ > 1 is
a Salem number if its conjugates satisfy |λ′| ≤ 1 and include 1/λ. (We allow quadratic
Salem numbers.)

It is known that the Pisot numbers form a closed subset P ⊂ R, homeomorphic
to the ordinal ωω, and that every Pisot number is a limit of Salem numbers (see e.g.
[Sa]). The smallest Pisot number, λPisot ≈ 1. 324717, is a root of x3 = x+ 1, while the
smallest accumulation point in P is the golden mean,

λGolden = 1+√5
2

≈ 1. 61803,

a root of x2 = x + 1. All Pisot numbers λ < λGolden + ε are known [DP].
The Salem numbers are less well-understood. It is conjectured that λLehmer ≈

1. 17628, a root of the 10th degree polynomial discovered by Lehmer and given in
(1.1), is the smallest Salem number [Leh], [GH]. The catalog of 39 Salem numbers
given in [B1] includes all Salem numbers λ < 1. 3 of degree ≤ 20 over Q [B3]; it will
be sufficient for the applications below. At present there are 47 known Salem numbers
λ < 1. 3, and the list of such is known to be complete through degree 40; see [B2],
[Mos] and [FGR].

Salem numbers from Coxeter groups. — A Coxeter system (W,S) is crystallographic

if W preserves a lattice V(Z) ⊂ V.
A Coxeter system is crystallographic iff every cycle in its diagram contains an

even number of edges with weight 4 and an even number with weight 6, and no edge
weights other than 3, 4, 6 and ∞ occur in the diagram [Hum, §5.13].

Proposition 7.1. — Let (W,S) be a hyperbolic crystallographic Coxeter system, and suppose

w ∈W satisfies λ(w) > 1. Then λ(w) is a Salem number of degree at most |S| over Q .

Proof. — Since w acts by an automorphism of V(Z) ∼= Z|S|, λ = λ(w) is an al-
gebraic integer of degree at most |S|. Since V is hyperbolic, w has exactly two eigen-
values outside the unit circle, namely λ±1. All the other conjugates λ′ of λ also occur
as eigenvalues of w, so they satisfy |λ′| ≤ 1. Finally 1/λ must be a conjugate of λ,
because the product of all conjugates of λ is an integer dividing det(w) = ±1. #�

Corollary 7.2. — If (W,S) is hyperbolic, crystallographic, and bipartite, then β(W,S) is

a Salem number.
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Note. — The Coxeter system Ah2n is hyperbolic, crystallographic but not bipar-
tite, and in fact β(Ah2n) fails to be a Salem number for n ≥ 5 (it has 2 conjugates
outside the unit circle).

Since Coxeter elements minimize λ(w), they provide a geometric source of small
Salem numbers. For example, from Table 5 one can verify:

Proposition 7.3. — The smallest Salem numbers of degrees 6, 8 and 10 coincide with the

eigenvalues of Coxeter elements for Eh8, Eh9 and Eh10. In particular, β(Eh10) = λLehmer.

Note these 3 diagrams are the hyperbolic versions of the exceptional spherical dia-
grams E6, E7 and E8.

Pisot numbers as limits. — A sequence of Coxeter systems can give a geometric
form to a sequence of Salem numbers converging to a Pisot number. To give examples
of this phenomenon, let Ya,b,c denote the Coxeter system whose diagram is a tree with
3 branches of lengths a, b and c, joined at a single node. For example, Eh8 = Y3,3,4,
Eh9 = Y2,4,5 and Eh10 = Y2,3,7.

Theorem 7.4. — As n→∞, we have

β(Ahn)→ λGolden from above,

β(Bhn)→ λPisot from above,

β(Dhn)→ λPisot from above, and

β(Y2,3,n)→ λPisot from below.

The values of β above, excluding the subsequence β(Ah2n), are all Salem numbers.

Proof. — The sequences of Coxeter systems above are all hyperbolic, crystallo-
graphic and (excluding Ah2n) bipartite, so β(Wn,Sn) ranges through Salem numbers.
The limiting behavior of the β(Wn,Sn) is calculated in [Hof] for the case of Ahn; the
other cases are similar. #�

Infinite diagrams. — We remark that the diagrams for Bhn, Dhn and Y2,3,n all
converge to the infinite diagram Y2,3,∞ if we use the triple-point as a basepoint. Simi-
larly, Ahn converges to Y2,∞,∞. Suitably interpreted, we have β(Y2,3,∞) = λPisot and
β(Y2,∞,∞) = λGolden. See [MRS] for more on Pisot numbers and infinite graphs.

Proposition 7.5. — If an irreducible Coxeter system satisfies 1 < β(W,S) ≤ λGolden then

its diagram is a tree.

Proof. — If the diagram is not a tree then (W,S) ≥ Ahn or (W,S) ≥ Qn for
some n. In the first case we have β(W,S) ≥ β(Ahn) > λGolden. In the second case we
have β(W,S) ≥ β(Qn), and one can check that β(Qn) > 2 for all n. #�
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Small Coxeter systems. — Using Theorem 7.4 we can enumerate the Coxeter
systems (W,S) that are sufficiently close to spherical, in the sense that β(W,S) is suf-
ficiently close to 1.

Theorem 7.6. — The only irreducible Coxeter systems with

1 < β(W,S) < λPisot

are Y2,4,5 and Y2,3,n, n ≥ 7.

Proof. — Suppose 1 < β(W,S) < λPisot. By Proposition 7.5, the diagram D of
(W,S) is a tree.

We claim D has at least one vertex of degree 3 or more. Indeed, there exists
a minimal hyperbolic Coxeter system with (W′,S′) ≤ (W,S) and hence β(W′,S′) <
λPisot. Referring to Table 5, we find

(W,S) ≥ Eh9 = Y2,4,5 or
(W,S) ≥ Eh10 = Y2,3,7.

In particular, D contains a copy of the Y2,3,5 diagram, possibly with higher weights.
Next we claim all the edges of D have weight 3. Indeed, an edge of weight 4 or

more implies (W,S) ≥ Bhn for some n, which is impossible because β(W,S) < λPisot.
In fact the tree D consists of 3 branches joined at a single node; otherwise (W,S) ≥
Dhn for some n, which is impossible because λ(Dhn) > λPisot.

Thus (W,S) = Ya,b,c for some a ≤ b ≤ c. We have (W,S) = Y2,4,5 if (W,S) ≥
Y2,4,5, since otherwise we would have

β(W,S) ≥ min (β(Y3,4,5), β(Y2,5,5), β(Y2,4,6)) > 1. 36 > λPisot.

Similarly, (W,S) = Y2,3,n, n ≥ 7, if (W,S) ≥ Y2,3,7, since otherwise we would have

β(W,S) ≥ min (β(Y3,3,7), β(Y2,4,7)) ≥ 1. 40 > λPisot.

To see these Coxeter systems qualify, just note that β(Y2,3,n) < λPisot for all n by Theo-
rem 7.4, and β(Y2,4,5) < λPisot by Table 5. #�

Corollary 7.7. — We have λPisot = inf{β(W,S) : (W,S) has higher rank}.
Proof. — Since Y2,4,5 and Y2,3,n, n ≥ 7 are hyperbolic Coxeter systems, we have

β(W,S) ≥ λPisot if (W,S) has higher rank. To show this bound is best possible, let
Y2,3,n ∨ Y2,3,n be the diagram obtained from two copies of Y2,3,n by identifying the
nodes at the ends of the branches of length n. Let (Wn,Sn) be the associated Coxeter
system (the ‘double’ of Y2,3,n). Then it is straightforward to check that β(Wn,Sn) →
λPisot and sig(Wn,Sn) = (pn, 2) for all n  0. Thus λPisot is a limit of β(W,S) for
higher-rank Coxeter systems. #�
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λ Salem polynomial Coxeter data

1.17628 1+ x− x3 − x4 − x5 − x6 − x7 + x9 + x10 β(Y2,3,7)

1.21639 1− x4 − x5 − x6 + x10 Y2,3,7

1.23039 1− x3 − x5 − x7 + x10 β(Y2,3,8)

1.26123 1− x2 − x5 − x8 + x10 β(Y2,3,9), Y2,3,7

1.28064 1− x3 − x4 − x5 + x8 β(Y2,3,10), β(Y2,4,5)

1.29349 1− x2 − x3 + x5 − x7 − x8 + x10 β(Y2,3,11), Y2,3,7

TABLE 6. — The 6 Salem numbers < 1. 3 that can arise as λ(w)

Corollary 7.8. — Let (W,S) be a Coxeter system, and suppose w ∈W satisfies

1 < λ(w) < λPisot.

Then λ(w) is a Salem number.

Proof. — We may assume (W,S) is irreducible and w is essential; then 1 <
β(W,S) ≤ λ(w) < λPisot, so (W,S) is either Y2,4,5 or Y2,3,n, n ≥ 7. All these Coxeter
systems are hyperbolic and crystallographic, so λ(w) is a Salem number. #�

Realizing small Salem numbers. — As remarked above, there are 47 known Salem
numbers < 1. 3. By the preceding Corollary, λ(w) is also a Salem number whenever
1 < λ(w) < 1. 3 < λPisot. Using the catalog of small Salem numbers, we can identify
which ones occur.

Theorem 7.9. — Let (W,S) be a Coxeter system, and suppose 1 < λ(w) < 1. 3, w ∈W.

Then λ(w) coincides with one of the 6 Salem numbers given in Table 6, and these all arise.

Guide to Table 6. — The first column in Table 6 gives the approximate value of
the Salem number λ; the second, the irreducible Salem polynomial S(x) it satisfies; and
the third, one or two ways in which λ arises in Coxeter groups as λ(w). For example,
λ ≈ 1. 26123 arises as λ(w) = β(Y2,3,9) for any Coxeter element w in Y2,3,9, and as
λ(w′) for a suitable (non-Coxeter) element w′ in Y2,3,7.

Automorphisms of lattices. — To aid in the realization of Salem numbers via Cox-
eter groups, we quote a result from [GM].

Let O(IIp,1) denote the orthogonal group of the unique even, unimodular lattice
of signature (p, 1), and let O+(IIp,1) be the subgroup of index two preserving one
sheet of the hyperboloid v · v = −1. It is known that O+(II9,1) is isomorphic with the
Coxeter group Y2,3,7 in its geometric representation [Vin2], [CS, Ch. 27].

A Salem polynomial is unramified if |S(−1)S(1)| = 1.

Theorem 7.10. — Let S(x) be an unramified Salem polynomial of degree 8n + 2. Then

S(x) = det(xI− g) for some g ∈ O+(II8n+1,1).
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Proof of Theorem 7.9. — Let (W,S) be a Coxeter system with 1 < λ(w) < 1. 3,
w ∈ W. As remarked above, λ = λ(w) is a Salem number. We may assume w is
essential; then 1 < β(W,S) < λ. Since

β(Y2,3,n) ≥ β(Y2,3,12) ≈ 1. 30227

for n ≥ 12, Theorem 7.6 implies (W,S) is isomorphic to Y2,4,5 or to Y2,3,n, 7 ≤ n ≤ 11.
Let d be the degree of λ over Q . Since λ is a Salem number, d is even; and we

have d ≤ |S| by Proposition 7.1.
Suppose (W,S) is isomorphic to Y2,4,5. Then the condition d ≤ |S| = 9 leaves

only one possibility for λ, namely the degree 8 Salem number given in Table 6. In
fact, in the catalog of Salem numbers in the range [1, 1. 3] given in [B1] (known to
be complete through degree 20), every other number has degree 10 or more.

Now suppose (W,S) is isomorphic to Y2,3,n, 7 ≤ n ≤ 11, and d > 8. Then
|S| = n + 3, so d = 10, 12 or 14. If d = 12 then we have λ ∈ [β(Y2,3,9), 1. 3], and
if d = 14 then λ ∈ [β(Y2,3,11), 1. 3]. Referring to the catalog again, we find there are
no Salem numbers of the required degrees in these ranges. Thus d = 10. There are
5 Salem numbers of degree 10 in the range [1, 1. 3], and these complete the list of 6
numbers given in Table 6.

To conclude, we check that all 6 Salem numbers arise via Coxeter groups. Five
of them can be recognized as the Coxeter eigenvalues β(Y2,3,n), 7 ≤ n ≤ 11. (The
degree 8 number also arises as β(Y2,4,5).) Four of the degree 10 numbers in Table 6
are unramified; by Theorem 7.10, these arise as λ(g) for g ∈ O+(II9,1), and hence as
λ(w) for w in Y2,3,7. All 6 numbers in the table are covered by at least once by these
constructions, completing the proof. #�

FIG. 7. — The Coxeter diagram for W ⊂ O+(II17,1)

The second smallest Salem number. — After Lehmer’s number, the second smallest
known Salem number is λ ≈ 1. 188368, with unramified minimal polynomial

S(x) = 1− x+ x2 − x3 − x6 + x7 − x8 + x9 −
x10 + x11 − x12 − x15 + x16 − x17 + x18.

It is known that reflections in the roots of II17,1 generate a Coxeter subgroup W of
index two in O+(II17,1) [Vin2], [CS, Ch. 27]; its diagram is shown in Figure 7. Com-
bining Theorems 7.9 and Theorem 7.10 we obtain:
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Corollary 7.11. — The Salem number λ ≈ 1. 188368 arises as λ(g) for g ∈ O+(II17,1),
but not as λ(w) for any w in the Coxeter subgroup W ⊂ O+(II17,1).

In fact one can take g = g1g2, where g1 comes from the order 2 symmetry of the Cox-
eter diagram of W, and g2 is the bicolored Coxeter element of a Y2,3,7 subdiagram.

Graph theory. — We remark that the study of Coxeter systems via the values of
β(W,S) contains, as a special case, the study of graphs G via the leading eigenvalues
α(G) of their adjacency matrices.

For example, Shearer has shown the values of α(G) (even when restricted to
trees) are dense in the interval [

√
2+√5,∞) [Sh]. It follows that the values of

β(W,S) are dense in [λGolden,∞). On the other hand, graphs with α(G) <
√
2+√5

have been classified, and it seems likely that a similar classification can be completed
for Coxeter systems with β(W,S) < λGolden.

A survey of work on the leading eigenvalues of graphs can be found in [CR].
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[Bou] N. BOURBAKI. Groupes et algèbres de Lie, Ch. IV–VI. Hermann, 1968; Masson, 1981.
[B1] D. BOYD. Small Salem numbers. Duke Math. J. 44 (1977), 315–328.
[B2] D. BOYD. Pisot and Salem numbers in intervals of the real line. Math. Comp. 32 (1978), 1244–1260.
[B3] D. BOYD. Reciprocal polynomials having small measure. II. Math. Comp. 53 (1989), 355–357.
[Bus] H. BUSEMANN. The Geometry of Geodesics. Academic Press, 1955.
[BK] H. BUSEMANN and P. J. KELLY. Projective Geometry and Projective Metrics. Academic Press, 1953.
[CW] J. W. CANNON and Ph. WAGREICH. Growth functions of surface groups. Math. Ann. 293 (1992), 239–257.
[Co] A. J. COLEMAN. Killing and the Coxeter transformation of Kac-Moody algebras. Invent. Math. 95 (1989),

447–477.
[CS] J. H. CONWAY and N. J. A. SLOANE. Sphere Packings, Lattices and Groups. Springer-Verlag, 1999.
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