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AFFINE QUIVERS AND CANONICAL BASES

G. LUSZTIG

Introduction

Let U be the quantized enveloping algebra attached by Drinfeld and Jimbo to a
symmetric generalized Cartan matrix (see [D]); let L^L^ 00 U° (x) U~ be its triangular
decomposition.

In [L], a purely geometric construction of U^ =U° (x) U~ (as a Hopf algebra) was
given in terms of perverse sheaves on the moduli space of representations of a quiver;
the construction gave at the same time a canonical basis of U~ with very favourable
properties. (This amounts, in principle, to a geometric construction ofU, since by
DrinfekTs quantum double construction [D,§13], the Hopf algebra U can be
reconstructed in a simple way from the Hopf algebra U^.)

In the generality of [L], the simple perverse sheaves which enter in the canonical
basis of U~ are only defined in an abstract way, but are not known in a concrete
form, except in the simplest case (type A, D, E) when they are exactly the simple
perverse sheaves corresponding to orbits.

One of the aims of this paper is to describe in concrete terms the simple perverse
sheaves which form the canonical basis in the affme case (that is, the case of a
symmetric affine Cartan matrix).

According to an observation of McKay [MK], there is a natural 1 — 1 correspon-
dence between symmetric affme Cartan matrices and finite subgroups F of SL(p),
where p is a two dimensional C-vector space.

We will show that the construction of U^ given in [L] can be reformulated in
the affme case entirely in terms of the corresponding finite group F. Thus, in the
affme case, U^(and hence, as explained above, U) are constructed directly in terms
ofr.

We now describe the content of this paper in some detail. Let F be as above;
assume that F contains the non-trivial element c in the centre of SL(p).

Section 1 is concerned with the study of affine roots in terms of the representation
theory of F; some results in [DR, § 1] are recovered.

In section 2 we give a new treatment of the known theory of representation of
affine quivers, emphasizing its connection with the corresponding finite subgroup of
SL (p); I believe that this is simpler than the earlier treatments.

For type A^, this theory is due to Kronecker [Kr], who attributes some partial
results to Weierstrass. Kronecker's work was concerned with the classification of linear
pencils of bilinear forms on a pair of vector spaces. This is equivalent to classifying,

Supported in part by National Science Foundation Grant DMS 8702842.



112 AFFINE QUIVERS AND CANONICAL BASES

for any two finite dimensional C-vector spaces M^ M~, the orbits of the natural
action of GL^M^) x GL(M~) on the vector space of all C-linear maps

(a) M^p^M".

It is also equivalent to the problem of classifying orbits of pairs of linear maps from
M'^ to M~ under the action of the same group, which are just the isomorphism
classes of representations of an affme quiver of type A^.

The classification of (indecomposable) representations of arbitrary affme quivers
was given in [GP], [N], [DF], [DR], [R3]. In these references the finite group F is not
present. The theory becomes much simpler if everything is developed in terms of r.
In particular, the problem of classifying representations of an affme quiver is the same
as classifying the orbits of GL^M^ x GLr(M~) on the space of F-equivariant linear
maps (a), for any pair M+, M~ of F-modules on which c acts as the identity (resp.
minus identity). Hence this problem can be regarded as a F-equivariant version of the
problem studied by Kronecker.

Section 3 collects together some definitions and results of [L] in a form suitable
for the purposes of this paper. It also contains a new result (3.6) which is a prerequisite
for section 4.

Section 4 is concerned with the study of certain Lagrangian varieties introduced
in [L]; we classify the irreducible components of these Lagrangians in the setup of
section 2 and show that they index a basis of the (non-quantum) U~ . (This last fact
has been conjectured in [L, 12.14].)

The case of cyclic F has a special role in the theory; it is studied in section 5,
which includes the case where F has odd order (excluded in the rest of the paper).

In section 6 we describe explicitly (enumerate) the perverse sheaves which form
the canonical basis of U~ in the affine case, by indicating their support and the
corresponding local systems in the framework of section 2; this is the main result of
the paper.

Let us now replace Y by a closed, reductive, infinite subgroup of SL(p). (There
are three such F up to conjugacy: a maximal torus, its normalizer, or the full SL(p).)
This leads to an infinite graph: of type A^ (infinite in both directions), of type D^,
or of type A^ (infinite in one direction, finite in the other). Most results of this paper
extend in an obvious way to the infinite case. In fact, some of the difficulties present
in the finite case disappear in the infinite case, so that the infinite case is actually
simpler.

I wish to thank Ringel for useful discussions and also for explaining to me the
results of [DR].

Connections with earlier work. The fact that the algebra U~ can be constructed
in terms of affme quivers has been first shown by Ringel; a brief announcement of
his results is in [R2]. The details of his construction are not yet written up, except for
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affine type A, discussed in his preprint [R4], which I have received one year after
submitting this paper. RingeRs construction is quite different from ours; it does not
lead to a canonical basis.

This paper has been influenced by ideas in Kronheimer's paper [K]. In [K],
Kronheimer has studied the action of GL^ (M) on the space of F-equivariant maps (a)
in the case where M = M + =M - is the regular representation of F, and used this to
show that the corresponding two-dimensional Kleinian singularity admits a hyper-
Kahler structure.

1. Roots

1.1. Throughout this paper, p denotes a fixed two dimensional C-vector space with
a given non-degenerate symplectic form <( , ).

Let r be a finite subgroup of the special linear group SL (p) which contains the
unique non-trivial element c in the centre of SL(p).

By a r-module we understand a finite dimensional C-vector space with a given
linear action of r. Note that p is naturally a F-module.

Let I be the set of isomorphism classes of simple F-modules. For each iel we
assume given a simple F-module p^ in the class i.

Following McKay [MK], we regard I as set of vertices of a graph as follows.
For any i^j in I, we set T}=Honir(p, ® p, p .̂). We have dim T} = dim V, e { 0,1,2}. If
dimT}=0, then ;, j are not joined in the graph; if dimT}= 1, then i,j are joined by
exactly one edge; if dim T}=2 (which only happens when F = { l , c } ) , then i,j are
joined by exactly two edges.

This is an affine Coxeter graph. Hence the corresponding (affine) roots are defined.
The purpose of this section is to reexamine the (known) properties of affine roots
from a non-standard point of view, namely from the point of view suggested by
McKay's correspondence.

1.2. For two F-modules M, M7 we define (M: M')=dim Hon^M.M'). We also
define

(M,M')=(M(x)C2 : M')-(M®p: M7)

where C2 is taken with the trivial F-action.
Let ^T be the Grothendieck group of F-modules. The elements pi (ie I ) form a

Z-basis of ^F.
Note that (:) and ( , ) extend uniquely to symmetric bilinear pairings ̂ F x ^F -> Z.
Now (M,M) is an even integer for any Me^F (since (p,, p;)=2). We have
(a) (M,M)^0 for any Me^F and
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(b) (M,M)=0 if and only if M=nr for some integer n where r=C[F], regarded
as a r-module for the left translation.

Indeed, if M, M' e ̂ T, we have

(c) (M.M^lF]-1 ^ tr(Y,M)tr(y-1 , M')(2-tr(Y, p)).
y e F

Now 2-tr(y, p)eR^o and tr(y, M) tr(v-1, M)eR^o for all 7, and (a) follows. We
also see that (M, M)=0 if and only if for each y^ l we have tr(Y,M)=0, and (b)
follows.

If M is a r-module, we denote by M* the dual space of M with its natural
r-module structure; this defines a homomorphism M -> M* of ^T onto itself.

1.3. Let R be the set of all vectors oce^F such that (a, a) =2. The elements of R
are called roots.

We denote by ^F+ the subset of ^F consisting of elements which can be
represented by actual r-modules. We have

(a) Rc=^r\u(-^r\) .
Otherwise, we can find aeR and two r-modules M, M' which are non-zero and

disjoint such that a=M-M'. We have (M,]Vr)= -(M® piM^O. Moreover, since
M, M' are disjoint, neither of them can be an integer multiple ofr; using 1.2 (a), (b),
it follows that (M,M)>0, (M',M')>0 and, these being even integers, we have
(M,M)^2, (M'.M7)^. Thus 2=(a,a)= (M,M)+(M\M /)-2(M,M /)^2+2+0, a
contradiction; this proves (a).

By (a), we have a partition

(b) R = R + U R _

where R + = R H ^ r + and R _ = R U ( - ^ r + ) .
The elements of R+ are said to be positive roots. For example, p ^ e R + for all

;el.

1.4. For 8= ± 1, let I8 be the set of all ;el such that the central element ceF (of
order two) acts on p, as multiplication by §. We have a partition I=I1 U I~1 .

Consider the homomorphism v: ̂  F -> Z given by v (M) = tr (c, M).
Let +R+ be the set o f a l l a e R + such that v(a)>0. Similarly, let ~R+ be the set

of all oceR+ such that v(a)<0; let °R+ be the set of all oceR+ such that v(cx)=0.
Thus we have a partition

R + = ~ R + U +R+ U °R+.
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1.5. If M is a r-module and 5 = ± 1, we denote by M5 the 8-eigenspace of c: M -> M.
Then we have a r-module decomposition IV^M1®]^"1. Note that p = p ~ 1 . Now
M \—> M5 extends by linearity to virtual representations; hence it may be regarded as a
homomorphism ^ F -> ̂  F.

We define a homomorphism c§: ̂  r -> ̂  F by

(a) C5(M)=MS-M-5+M5(x)p.

If Mi satisfies Mi=Mi~5 , we have c§(Mi)= -Mi. On the other hand, if M^
satisfies M| (x) p=M^® C2, then c^(M^=M^. Now for any M we have
2 M = M i + M ^ with M^, M^ as above. (We have M^M"5® C^M5® p and
M^ == M5 ® C2 + M5 (g) p.) It follows that

(b) c j=l .

Moreover, using the fact that (M^, M^O for any M^, M^ as above, we see that

(c,(M),c,(M'))=(M,M')

for any M, M7. In particular, we have

(c) C5(R)c=R.

From the definitions we have

(d) v(c,(x))=-v(x)

and

(e) dim (eg (x)) = dim (x) + 2 8v (x)

for all xe^r. (Here dim denotes the dimension of a virtual module.)

1.6. Let M e R + . The following conditions are equivalent.
(a) c^MeR..
(b) M=pi for some ^el~ 5 .
(c) C5M=-M.
Indeed, if (a) holds, then ((^^^M^^F. hence M^O. Thus we have

M=^riipi where ; runs over I"8 and n^ are integers ^0. For f, i ' distinct elements of
i

I"5 we have (p,, p,/)=0; hence 2=(M,M)=^2^2 . It follows that n,=\ for some

index ; and n^=Q for all other indices, so that M= p^.. Thus, (b) holds.
Conversely, if (b) holds, then from the definition we have c§ M = — M so that (c)

holds. The fact that (c) implies (a) is obvious.
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1.7. For any iel and any reN, we set

(a) aO ' , r )=C(_ i ) r - i5 . . .c_5C§p,e^r

where 8 is such that ;el5 and the product has r factors.
We have

(b) ^r)=p,(S)(Srp@Sr-lp)

where S'1 p denotes the r-th symmetric power of p (as a F-module) with the convention
that S~1 p=0. This follows immediately from the definition, by induction on r, using
the identity S' p ® p = S'"1 p © S^1 p.

From (b) we see that

(c) v(a0,r))=(-iyv(p,».

From (b), (c) and 1.5 (c) we see that

(d) aO^e^ i f f e ^ - ^ , and oc(^r )e-R+ if zei^-^

Proposition 1.8.- ((2) 7/';, f e l ̂  r, r'eN, H^ have ^(i,r)=^(i\r) if and only
ifi=i' and r = r ' .

(b) +R+ consists of the elements d(i,r)for various reN and fel^1^.
(c) ~ R + consists of the elements cn(i,r)for various reN and zei^"1^.
We first prove (a). Assume that a(f, r)=a(r, r7) and that zei5, ^el5'. We may

assume that r ^ r . We have v (a (;, r))=v(a0", r')), hence, from 1.7 (c),
(— ly 8 dim p i = = ( — I/ ̂ 'dim p^ / . The two sides of this equality must have the same
sign: (- iy8=(- iy'87. Therefore from our assumption and the definition it follows
that aO'.r—r^o^.r'—r7). Thus we are reduced to the case where r ' = Q .

If r>0, then both oc(^r)1 and a(^r)~ 1 are non-zero (they are, up to order,
p, (x) S' p, p, 00 S'"1 p). On the other hand, a (F, 0)~5' = 0. Hence a (;, r) cannot be equal
to a0",0) for r>0. Thus we have r=r=Q. This clearly implies i=i'\ (a) is proved.

We now prove (b). Let oce '^"R^. We define a sequence of roots oc[s] (s=Q, 1, . . .)
by aCT^oc, oc^^c^^soc^-1] for s^\. It is enough to show that there exists s^O
such that Qi[s]=pi for some z'el^1^.

From 1.5 (d), (e), it follows by induction on s that, for any s^O, we have
v (a [s]) = (- I)5 v (a) and dim a [s] = dim a - 2 s v (a).

The last quantity is >0 for ^=0 and is <0 for sufficiently large s (since v(a)>0).
Hence there exists an s^O such that dima[^]>0 for ^ = 0 , 1 , . . . , s and
dimoc[^+l]^0. We then have oc[5-]eR+ and oc [^+ l ]eR_ . We have
C(_ i ) s+ i a [^ ]eR_ , hence, by 1.6, a[^]=p, for some iel^^. Thus, (b) is proved.

We now prove (c). Let a e ~ R ^ . If Ci (a)eR_ then, by 1.6, we have a=p, for
some ; G l ~ 1 so that a==oc0',0), as required. Assume now that Ci(oc)eR+. By 1.5 (d),
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we have v(Ci(a))= -v(a)>0, hence Cl (a )e + R+. By (6) we have Ci(a)=a0',r) for
some reN and some fel^1^. We then have a=Ci (a(z,r))=a0',r+ 1). This proves (c).

1.9. In this subsection we assume that F is cyclic of order In. Let Me^F; we can
write M=^p,p^ from the definitions we see that (M,M)=^(^-j^)2 where the sum

i
is taken over all edges of the graph attached to F in 1.1 and i, j denote the two ends
of an edge. We see that M e R precisely when there are two edges such that \p, -pj \ = 1
and for all other edges we have pi=py If n=l it follows that R+ consists of the
elements ^ p , + ( ^ + l ) p ^ and (^+ l )p ,+^p^ for various .yeN, where l={ i , i ' } , in
particular, °R+ is empty.

We now assume that ̂ 2. Then the corresponding graph is a 2^-gon with set of
vertices I.

If M=Y,Pi Pi is in R+, then the previous argument shows that there is an integer
i

a^O such that the sets J={iel\p,=a} and J'= [iE\\p,=a+ 1} have the following
properties:

(a) J, J' are non-empty;
(&) J, J' form a partition of I;
(c) the full subgraphs < J ), < ] ' ) with vertices J or J7 are both connected.

(Conversely, given a^O and J, J' with the properties just described, they define a
positive root.) The following fact is easily verified:

(d) We have M e °R+ if and only if J and J7 have even cardinals.
We now show the following.
(e) I fMe°R+ , thenM^M*.

Indeed, assume that M = M*. Now p, -> p* defines an involution of I which takes
any edge of our graph to an edge; clearly, this involution has exactly two fixed points,
and they are not joined by an edge. Since M=M*, this involution must map J into
itself and J' into itself, where J, J ' are as above. Hence it defines graph automorphisms
of <( J ) and ( J7) which are both non-trivial (since the two fixed points on I are not
joined). Since < J ) i s a graph of type A^ and m is even (see (d)) our graph automor-
phism has no fixed points on J. Similarly it has no fixed points on J'. This contradicts
the fact that it has fixed points on I.

1.10. For general F, we define °^ F as the subgroup of ^ F consisting of all M such
that v (M) = 0.

Assume now that F is cyclic of order 2 n^4. We shall write the trivial one-
dimensional r-module as p^ with fod. Let L\ L" be the two F-stable lines in p.
Then L7, L" are naturally one-dimensional F-modules and we have L'=p^, I/^p^//
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for well-defined elements i ' ^ i "o i I; these are exactly the elements of I which are
joined with ;o in our graph. Note that

{ p J ^ e I } = { L / 0 J | 0 ^ 7 ^ 2 n - l } = { L / / ® J | 0 ^ ^ 2 ^ - l } .

Let ^F (resp. °^rr) be the subgroup of ^F generated by the elements
L^^+L^^^O-esp. L^^+L7^27^) for O^'^-l.

The following properties are easily verified.
(a) ^r^^r+^r.
(b) o^f^^}o(Sff^={sr\seZ}.
(c) (M'.M^-O for any M'e^F and M^e^'T.
(d) The homomorphism * : ̂  F -^ ̂  F maps ̂  F onto 0^" F.
We now define °R+ (I/) (resp. °R+ (L") to be the intersection °R+ 0 ̂ T (resp.

^n^r).
From the results in 1.9 we see that
(e) °R+ (I/) consists of the (distinct) elements

2 r + 2 m-1

^ L^^'e^r;
j=2r

°R+ (L") consists of the (distinct) elements
2 r + 2 m-1

^ L'^^e^r;
J=2r

(here r is any integer in [Q,n- 1] and m^ 1 is an integer not divisible by n).

1.11. We still assume that F is cyclic of order 2^4. Let Meo(S^ be such that
M*=M and (1:M) is even. By I . IO(^) , we can write M=a /+a ' / where oc'e^T
and oTe^r (notation of 1.10) From M=M* we deduce a'-a'^a'*-^; using
1.10 (d), we see that both sides of the last expression are contained in o(Sl^ C} °^"Y
hence, by 1.10(b), they are of the form sr for some integer s. We have the following
equalities modulo 2:

s=(\: sr)=(l: o0-(l: a"*)^!: oQ+(l : oQ=(l: M)=0.

Thus we have s=2sf for some integer s ' . Replacing a\ oc" by a '—^r , oc^+^r
respectively, we see that we may assume that ^=0 so that oc'^oc7*.

1.12. In this subsection we assume that F is not cyclic, but that it has a normal
subgroup FI which is cyclic of index 2. Then F^ must have order 2 n^4. We
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shall use the notation of 1.10 for r\ instead ofF; in particular, L', L" are the two
^-stable lines in p and ̂ T^ ^"Y^ are the corresponding subspaces of °^rV

Let ^ be the subgroup of ^ F consisting of those M such that tr (y, M) = 0 for
any yeF-F^ and for y=c. Let ^^=o^f^. Taking induced representations gives a
homomorphism

(a) Ind:^i->^.

We show that
(b) this is an isomorphism preserving the inner product (,).

Let Me^ and let M^ be its restriction to r\. By assumption we have

^l^l"1 Z t r (y ,M)=(l :M)-(a :M),
yeF-F i

where a is the non-trivial one-dimensional F-module on which r\ acts trivially.
It follows that (1: M) = (o: M), hence (1: M^) = (1 + a: M) = (1: M) + (a: M) is an even
integer. If yeF-Fi, then ^ x ^ ~ l = x ~ l for all xer\. It follows that Mi=Mf . We
can therefore apply 1.11 to M^; we see that there exists oc' e ̂  such that M^ = a' + a'*.
This shows that M and Ind(a') have the same trace at all elements of r\ - { c } ; from
our assumptions they also have the same trace (zero) at c and at elements of F — r ^
so they are equal. Thus the map (a) is surjective.

Next we assume that a, pe^i are mapped by (a) to the same element. It follows
that a+a*=P+p* as elements of °^r\. Then oc-P= -a*+p*; using 1.10(d), we
see that both sides of the last equality are contained in o(Sf^^ r}°^"r^ hence, by
1.10(b), they are of the form sr for some integer s which must satisfy ^r*= — s r .
(Hence, r is relative to r\.) It follows that s=0, so that a=P. Thus the map (a) is
injective hence an isomorphism.

Finally, let oc, pe^. In the following formulas inner products refer either to F
or r\:

( Inda®p: Indp)=((oc+a*)®p: (P + p*))/2 = (a 0 p: P+P*).
(Ind a: Ind P) = ((a + a*): (P + ?*))/2 = (a: P + ?*).

Hence

(Inda,Indp)==(a, P+P*)=(a,P).

(The last equality follows from 1.10 (d), (c).) Our assertion is verified.

1.13. We now consider a general F. Let F be the set of points L in the projective
line P(p) whose isotropy group FL (a cyclic group) in F has order >2. Then F is a
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finite set. There is a canonical involution L \—> L of F defined by the requirement that
L, L are distinct and FL=FL. This involution commutes with the action of r on P(p).

Let 9E be a set of representatives for the F-orbits on F. We may assume that the
following condition is satisfied: if L e 9E and L is not in the same F-orbit as L, then L
e3C.

For Le^\ we shall denote by ̂  the subspace of ^TL defined as ̂ F in 1.10
(but replacing F, L' by I\, L); note that F^ is a cyclic group of order ^4. Let
IndL: ^L -^ °^ F be the induction homomorphism. Let i^^ be its image.

Proposition 1.14. — (a) For any Le^ ̂  homomorphism Ind^ ^ infective and it
preserves the inner product (,).

(b) We have ^ ^Y^r.
L e ^ T

(c) IfL, Ue^ are distinct then i^^ is orthogonal to i^^' for (,).
(d) For any Le^, we have reY^-
Let FL be the normalizer of F^ in F. Then either F^ = F^ or F^ has index two

in FL. Let ^ be the subspace of ^F^ generated by the elements M such that
tr (c, M) = 0 and tr (y, M) = 0 for all y e F^ - F^. Let Ind^ ̂  °^ F be the homomorphism
given by inducing from r^ to r. Let ̂  be its image.

Let T be a maximal subset of ̂  with the following property: if L, L' are distinct
elements o[ T, then r^, F^ are not conjugate in F. Then, if LeS" and Le^\ we
haveL^.

The following result will be needed in the proof of 1.14.

Lemma 1.15. — (a) For any Le^, the homomorphism Ind^ is injective, and it
preserves the inner product (,).

(b) We have ^ -T^^r.
L e ^ T '

(c) IfL, L1' eT are distinct, then Y^ is orthogonal to i^i'for (,).

Let MG^L- T^he character of Ind^M) is zero at c and at elements ofF which
are not contained in a conjugate of F^; its value at an element jeF^- [ 1, c] is equal
to tr(Y,M). From this we see immediately that Ind^ preserves ( , ) and that (c) holds
(we use 1.2 (c) and the fact that in that formula we may omit the term Y= 1).

We also see that if Ind^M) is zero then the character of M is zero at all elements
of FL— { 1 } and, clearly, also at 1, so that M=0; thus (a) is proved.

We now prove (b). We consider the following statement:
(d) For any MG^F and any LeF there exists M'e^r^ such that

tr (Y, M) = tr (y, Ind^ (M')) for all y e F^ - { 1 } and tr (y, M7) = 0 for all y e F^ - F^.
Granting this, we see that the sum over Le^7 of the elements Ind^M7) provided

by (d) is an element M^e^F such that M77, M have the same character values at
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all elements ^1, hence M^M^+^r for some integers Since both M" and ST are
contained in ̂  -T^ (b) follows.

L

It remains to prove (d).
If r is cyclic, there is nothing to prove. If r is a quaternion group of order 8,

the verification of(d) is an easy exercise, left to the reader. Hence we may assume
that r is non-cyclic, of order ^ 10 and that (d) is already known when F is replaced
by one of its proper subgroups.

Consider first the case where FL is a proper subgroup of F so that (d) is known
to hold for (FL, L) instead of (F, L). Let M^ be the restriction of M to F^. Then
MLG^FL. By our assumption we can find M'e0^^ such that tr(y. M')=0 for all
Y e FL - FL and tr (y, M) = tr (y, M') for all y e I\ - { 1 , c}. Then clearly M7 is as required
in (d) (for F, L).

Next we consider the case where FL=F. Then F is a binary dyhedral group of
order ^12. We may assume that Le^7. For any L ' e S " with L'^L, we have that
r^T^r, hence, by the previous argument, (d) holds for F, L\ Hence we can find
HL/e°^r such that ̂  ^ ^ satisfies tr (7, M) = tr (7, ?) for all yeF-r^ and

L' :L ' ^L

t r ( Y , H ) = O f o r a l l Y e r V - { l } .
Let M'^M-?. Then tr(Y,]VT)=0 for all yer-rY and ^(Y.M^t^Y.M) for

all Y^FL- { 1 } . Hence M' is as required; (d) is proved. The lemma follows.

1.16. We now prove 1.14 (a). If FL-IY, then 1.14 (a) follows from 1.15 (a). If
FL^FL. ^en the homomorphism in 1.14 (a) is the composition of the homomorphism
in 1.15 (a) with one as in 1.12 (a), so that 1.14 (a) follows from 1.15 (a) and
1.12(b).

We now prove 1.14 (b). If 1^=1 ,̂ then Le^ and ^I^^L+^L by 1.10 (a).
If FL^FL then ^L-^L (by 1.12 (b)). Thus ^ ^= Z ^L so that 1.14 (b)
follows from 1.15(b). Lear ' Lear

We now prove 1.14 (c). From the proof of 1.14 (b) just given and from 1.15 (c)
we see that it is enough to show that Y^ ^L are orthogonal for ( , ) whenever L, L
are both in 9E. In this case, ^=r^=r^=r^ is a cyclic group and the desired result
follows from 1.15 (c) and 1.10 (c).

Finally, 1.14 (d) follows immediately from definitions. This completes the proof
of 1.14.

The following result gives, in conjunction with 1.8, a complete parametrization
of the set R+.

Corollary 1.17. - For any Le 9E we define °R+ (L) to be the intersection °R+ H ̂
and we define an integer n^ ̂  2 by \ F^ | = 2 n^.
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(a) We have a partition °R+ = U L e ̂  °R+ (L).
(b) For any Le^, the set °R+ (L) consists of the (distinct) elements

2 r + 2 m-1

[i(L,r,m)= ^ IndLL^'e^r
J-2r

(/^r^ r ^ any integer defined up to a multiple of n^ and m^\ is an integer not divisible
by n^).

Let ae°R+. By 1.14 (b), we can write 0 0 = ^ ^ where o^e^L-
L e ^

Using 1.14 (c) we have 2= (a, a)=^(aL, a^). The last expression is a sum of
L

even integers ^0; it follows that there exists Le^ such that (o^, ociJ=2 and
((XL/, OL') = 0 for I/ 7^ L. By 1.2 (b) we have oc^ = s^ r for some integer s^ hence
aL/e^L (see 1 • 14 (d)). It follows that ae-T^ so ^at ae°R+(L). Next we assume
that pe^CDr^R+CL7) with L^I/ in 9E. By 1.14 (c) we then have (P, P)=0
contradicting (P, P)=2. This proves (a). Now (b) follows immediately from 1.10 (e),
1.14 (a), 1.14 (c). The corollary is proved.

Corollary 1.18. — The inclusions define an isomorphism

®Le^(^L/Zr)^°^r/Zr.

This follows immediately from 1.14 (b), (c) and 1.2 (b).

1.19. The involution * : ̂  r —> ̂  Y clearly maps R+ onto itself. From the definitions
we see that this involution leaves stable each of the subsets +R+, ~R+,°R+. Moreover,
ifLe^, and FL^FL, we have |A(L, r, m)*=^i (L, r, m)\ i fLe^, and FL=FL, we have
|^(L, r, m)*=|^(L, r, m).

2. Indecomposable representations of affine quivers

2.1. Given 8 = = L 1 , we define Q(8) to be the following orientation of our graph
(in 1.1): an edge joining i^j is oriented from i toy if ^'el8 andyel"8 (see 1.4); this is
well defined since T}=0 (see 1.1) when i, j are both in I1 or both in I~1 . Our graph
together with the orientation Q (5) is an affine quiver.

Let SS^ be the (abelian) category of representations of this affine quiver with the
orientation 0(8).

We recall that an object of SS^ is an I-graded C-vector space V = ® V ^ together
with linear maps x, ̂  j : V^ -> \j for any oriented edge / —>j. A morphism from (V, x, _ j)
to (V7, x[ _^ j) is a collection of linear maps y ^ : V^- -> V^ (ie I) such that VjX^ ^ •= x[ ^ ,y,
for all ;' ->j. The objects of SS^ are also called representations of the affine quiver.
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The classification of indecomposable objects of ^ is known. For type A^ it is
due to Kronecker [K]; for the other types, see [GP], [N], [DF], [DR], [R3].

In this section we shall reexamine this classification from a non-standard point
of view, namely from the point of view suggested by McKay's correspondence.

This point of view leads to simpler proofs than in the references cited. (However,
some of the methods we use are inevitably the same as in those references.)

2.2. We define a category ^s as follows. An object of this category is a pair (M, A)
where M is a F-module and AiM^p-^M'^sa F-linear map. Note that giving A
is the same as giving a collection Ag(<?e p) of linear maps M5 -> M"5 depending linearly
in e and satisfying y (A^ (x)) = \^ (y (x)) for all y^F, e e p , xeM5. (A^ is related to A
byA,(x)=A(x®60.)

A morphism from (M, A) to (M, A) is a F-linear map (p: M -> M such that
(p (A^ (x)) = A^ ((p (x)) for all x e M8 and all e e p.

The categories ^5 and 3S6 are equivalent. An equivalence can be obtained by
attaching to an object (V==®, V,; x .̂) of ^ the object (M, A) of ^§ defined as
follows. We take M = ® , V , O O p , (with F acting trivially on V,). The i, ̂ -component
of A (for zei^yel"5) is the linear map

Z ^-^®^^v,®(p,®p)^v,®p,

where i ->j runs over the oriented edges joining ;, j and y, ̂  ^ is a fixed basis of T} in
1-1 correspondence with this set of edges. In particular, the category ^§ is abelian.

2.3. We now discuss duality. Let M=(M, A) be an object of ^5. We associate to M
the object M*=(M*, A*) of ^~5 where M* is as in 1.2 (so that (M*)^ is naturally
the dual space (M^)* to M11) and, for any ee p, A^ : (M-5)* ̂  (M5)* is the transpose
ofA^M^M"5 .

This extends naturally to an equivalence of the category %75 with the category
opposed to ( S~ 8 . We have M**=M.

2.4. We want to define two (full) subcategories ̂ , ̂  of ^§. Let M=(M, A) be
an object of (gb. Let A 7 : M5 -^ M"5 ® p be the F-linear map defined by

A7 (x) = A^ (x) ®e^- A^ (x) (x) ̂

for all xeM5; here e^ e^ is any basis of p such that <^, e^ )= 1.
We say that M is an object of ̂  (resp. of ̂ ) if A is surjective (resp. A7 is

injective). Note that

Me^<^M*e^5.
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2.5. Let M=(M, A) be an object of <^5. Note that kerA is a r-module equal to
(kerA)"5 and that coker A' (where A' is as in 2.4) is a F-module equal to (coker A')5.

We associate to M two objects

KM^M^kerA, n)
CM=(M~6@ coker A\S)

of ^"^ where the notation is as follows. The map II: ke rAO^p-^M 5 is defined
by II ((x 00 e) ® e) = ( e , e ) x for x ® e e ker A c= M8 ® p and e e p;
S: M~5 ® p -> coker A' is the canonical (surjective) map.

It is clear that CMe^5 and it is easy to check that KMe^5- We may regard
K, C naturally as functors

(a) K: ̂  -> ̂ s, C: ^s -^ ̂ s.

It is easy to check that

(b) (KM)*=C(M*)

for any M as above. Clearly,

(c) If M e ̂  and M' e ̂  is a subobject of M, then M' e ̂ .

2.6. Let M=(M, A) be an object of ^s. We have CK M = (M5 © image A, A^e^5

where A ^ : M5 ® p -> image A is induced by A. Hence CKM is naturally a subobject
ofM; it admits a complement (S, 0) where S is any F-stable subspace of M"5

complementary to image A. Hence we have a canonical short exact sequence (which
is non-canonically split) in ^f8:

(a) 0 -> CKM -> M -> (coker A, 0) ̂  0.

This shows that

(b) M e ̂  <=> CK M -> M is an isomorphism.

We associate to M the element gr(M)=Me^r. From the definitions we see that

Me^^grOCIV^M^M^+M6®?

or, equivalently:

(c) M e ,̂ => gr (K M) = c, gr (M).

(see 1.5).

2.7. By 2 . 5 (c), an object of ^ is indecomposable in ^ if and only if it
is indecomposable in (€^. By duality, an analogous statement holds for ^y. Let ^
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(resp. ̂ , ̂ ) be the set of isomorphism classes of indecomposable objects of ^s

(resp. ̂ , ̂ ). The following statement follows immediately from definitions.
(a) For any ;el, Pf^p^e^5 is indecomposable; if iel\ then Pf is contained

in ̂  but not in ̂ ; ifiel~\ then Pf is contained in ̂  but not in ̂ .
We have

(b)

(c)

^^"'-{pr'l^i"8},
^^^-{Pfl^I"5}.

The left hand side of (c) is contained in the right hand side of (c), by (a). Conversely,
let M be an object in the right hand side of (c). From 2.6 (a) we see, using the
indecomposability ofM, that either M^CK M or M=(M,0) with IV^M"5. If the
first alternative holds, then M, being in the image of C, is in ̂  (see 2.5 (a)), hence
it is in the left hand side of (c). If the second alternative holds then by the indecomposa-
bility ofM, we have M^Pf for some iel~6, this is a contradiction and (c) is proved.
Now (b) follows from (c) by duality.

(d) The functor K defines a map from the set (c) to the set (b); the functor C
defines a map from the set (b) to the set (c); these two maps are inverse bijections.

Let M be in ̂ . As we have seen in the proof of(c), we have M=CK M. In
particular, K M^O. By 2.5 (a), we have KMe^5. By duality, we also see that for
any M'e^5 we have M^KCM', hence CM'^0. Assume now that KM is a direct
sum of s indecomposable objects M\, . . .,M^ of ̂ s, with s^l. Then M=CKM is
isomorphic to the direct sum of CM^, . . . ,CM^ which are all non-zero, as we have
just seen. This contradicts the indecomposability ofM. We deduce that KM is
indecomposable. This establishes the first assertion of (d); the second assertion is
obtained from the first, by duality. The third assertion is then obvious from the
previous argument.

The following is clear from the definitions.
(e) Ifie\~\ then CP^=0 andKP^O.

2.8. For any M e ̂  and any s e N, we write K5 M instead of K. . . K M (s factors K).
We define similarly CSM.

(a) For any 5-eN, and any zei^1^5, K5?^^5 is an indecomposable object of
%75
^su-

per s=0, (a) follows from 2.7 (a). Assume now that s^ 1 and that (a) is already
known for s replaced by s ' with O^'^-l. We shall write O^KT^^55. By the
induction hypothesis (applied to — 8 instead of 5) we have that ^>s-ils an indecompo-
sable object of ̂ 8. Using now 2.7 (d), we deduce that 0,=K(0,_i) is indecompo-
sable in ^s. To show that it is in ̂  it suffices, by 2.7 (c), to show that 0, is
not of the form P^, with j el. Assume that it is of this form; then gr($J=p^..
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Applying repeatedly the induction hypothesis and 2.6 (c) we see that
gr(0,)=C(_^-r+i5gr(<D,_i) for r = l , . . .,^. Hence we have gr (<D,) = oc (i,s) (see 1.7).
On the other hand, p^==a(7, 0), so that oc(;, s)=ai(j\ 0). Using now 1.8 (a), we deduce
that s=0, a contradiction; this proves (a).

The previous proof yields also the following result:

(b) grO^Pr^-aO^).

Using this and 1.8 (a) we deduce:
(c) Let S . S ' E ^ and let fel^^55, i ' e l ^ ^ ' ^ Then the indecomposable objects

K^-^5, K^P^^'5 of^ are isomorphic if and only ifi=i' ands=s.

2.9. The results in this subsection can be deduced from those in the previous section,
by duality.

(a) For any ^eN, and any fel^1^15, c5?^1^5 is an indecomposable object of
^

(b) gr(CSP[-l)s&)=^^s).

(c) Let s, ^eN and let zei^1^15, rel^1^16. Then the indecomposable objects
C^-D^ ^P;.-^'5 of^ are isomorphic if and only ifi=i' ands=s.

2.10. We define three subsets >^, <^, °^8 of ^ as follows. Let M=(M, A) be
an object of ^5. We say that MG >^5 if OM=0 for some t^\.

We say that Me^5 i f K t M = 0 for some t^\.
We say that Me0^5 i f K ^ M ^ O and CM^O for all ^eN.
(a) We have Me > ̂  if and only z/M is isomorphic to an object as in 2. 8 (a).
(b) W^ Aaz^ Me <^5 if and only ifM is isomorphic to an object as in 2.9 (a).
(c) 77^ ^&y^ >^5, <^5, Q^ form a partition of the set ^s.
If M is as in 2.8 (a), then dim M^dim IVT^dim p,>0 (see 2.8(b) and

1.7 (c)). Similarly, if M is as in 2.9 (a), then dim IV^-dim M"5^ -dim p,<0 (see
2.9 (b) and 1.7(c)).

Hence, if (a), (b) are known to hold, then the sets >^5, <^5 are disjoint and (c)
follows.

We now prove (b). If M is as in 2.8(b), then from 2 .7 (d ) we see that
K^M^P^^ 5 where fel^1^15; using 2.7(e), it follows that K^M)^.
Conversely, assume that K54^1 M==0 for some s^O. We take s to be as small as
possible. Then K5 M ̂  0. By 2.6 (a) (for K5 M instead of M) we have an exact sequence
in^-^5

0 ̂  CK5 +1 M ̂  K5 M ̂  (M,, 0) ̂  0
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where M, is a F-module such that M^Mr^"15. In our case this gives an isomor-
phism K^^KM,, 0). Using 2.7 (d), we deduce that (M,, 0) is indecomposable and
M^C^M,, 0^ Since (M,, 0) is indecomposable, it must be of the form (p,,0) for
some fel^1^"15 and we see that M is as in 2.9 (a). This proves (b). Now (a) follows
from (b) by duality.

2.11. Let M = (M, A) be an object of ̂ . We associate to M an integer

(a) a (M) = min {dim ker A^ | e e p }.

Let U be the set of all lines L c= p such that dim ker A^ = a (M) for some (or any)
e e L - { 0 }. Then U is an open dense subset in the projective line P (p) of p. We define
the pseudo-kernel of A to be the subspace Mo= ^ kerA^ ofM5; here ^ denotes
some non-zero vector in L. We set L E u

(b) &(M)=dimMo.

It is clear that

(c) a(M)<^b(M)

and

(d) a(M)=Oob(M)=0.

Now let U' be an open dense subset of P(p) such that U' c U. We show that, if we
replace U by U' in the definition of M(), we get again M():

(e) Mo= ^ kerA^.
L e U '

It suffices to show that for any LeU we have kerA^ c: ^ kerA^,. This is a
L'elT

consequence of the following statement whose verification is left to the reader. Let
M\ M" be finite dimensional C-vector spaces, and let A, B: M' -^ M" be two linear
maps such that dimker(A+^B) is independent of t for t in some Zariski open subset
T of C, containing 0. Then there exists p-^ 1 such that for any /^-element subset T' of
T - { 0 } we have kerA c: ^ ker(A+^B).

teT'

2.12. We shall prove the inequality

(a) b(CM)<^b(M)-a(M)

for any M=(M, A)e^5. We have CM^M-8 ® coker A7, S) (see 2.4, 2.5). By defini-
tion, an element xeM"8 is in the kernel ofE,, (eep) precisely when x®ee image
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(A': M5 -> M"5 ® p). Let us choose a basis ^, ̂  °^ P ̂ ^ ^at ( e^ e^ ) = 1 and such
that dimkerA =^(M). Let e^e^+le^. We see that the condition that Eg(x)=0 can
be written in the following four equivalent forms:

X (X) e^ + IX (X) ^2 = Ag^ GO ® ^2 — Ae2 0 ® ^1 ^or some ^ e M5;

x = - A^ (y) and /x = A^ (^) for some y e M5;
x = - A^ 0 and /A^ (jQ + A^ (y) = 0 for some y e M8;
x = — Ag^ (y) and A^ 0 = 0 for some y e M5.
We therefore see that the assignment

(b) y^-^(y)

defines a surjective linear map ker Ag -> ker Eg for any e=e^ + fe^.
Let 17 be the open dense subset of P (p) consisting of all lines L such that e^ ^ L,

dim ker Ag = ̂  (M) and dim ker 5g = a (C M) for some (or any) eeL-{0}. It then
follows that the assignment (b) defines a surjective linear map

(c) ^ ker A,,-. ^ ker;
L e U ' L £ U '

•CL

where e^ denotes any non-zero vector in L. By 2.11 (e) this is a linear map from the
pseudo-kernel of A onto the pseudo-kernel of 5. By our choice of e^, the kernel of
Ag is contained in the pseudo-kernel of A and is therefore contained in the kernel of
the map (c). It follows that the dimension of the pseudo-kernel of 5 is less than or
equal the dimension of the pseudo-kernel of A minus dim kerA^. This proves the
inequality (a).

2.13. Next, we note the equality

(a) a(KM)=a(M)

for any M=(M, A)e^5. We have K M^M^kerA, n), see 2.5. Let e be a non-
zero vector in p. From the definitions it follows immediately that the assignment
x^—>x (x) e is an isomorphism kerAg^kerIIg. This clearly implies (a).

2.14. LetMe^5.
(a) We have ^(C'M)^ for all s^b(M).
We argue by induction on b(M). Assume first that &(M)=0. By 2.12 (a), we

have b(M)^b(C M)^b(C2M)... hence b(CSM)=0 for all s^O. Next we assume that
b(M)>0 and that the result is already proved for all M' with b(M')<b(M). By
2.11 (d) we have a(M)>0. Hence, using 2.12 (a), we see that b(CM)<b(M). Thus,
the induction hypothesis is applicable to CM. Now let s be such that s^b(M). By
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the previous inequality we then have s— 1 ̂ b (CM); using the induction hypothesis, it
follows that ^(C5"1 CM)=0. This completes the inductive proof of (a).

We now prove the following statement.
(b) IfM is indecomposable and CM^Ofor all ^0, then b(M)=0.
From our assumption and from the results in 2.7 it follows that KC (0 M) ̂  0 M

for all ^0. Hence K^1 C^1 M^K^KCOM^K^OM for all ^0, so that
K^OM^Mfor all t^O.

Let s^Q be such that b (0s M) = 0 (see (a)). Then a(CSM)=0 (see 2.11 (d)); using
repeatedly 2.13 (a), we have that a (K8 C5 M) = a (C5 M) hence a(KSCSM)=0. As we
have seen, we have K^C5^!^^! so that a(M)=0. Using again 2.11(d), we deduce
6(M)=0.

The following statement can be deduced from (b) by duality.
(c) IfM is indecomposable and Y^M^Ofor all ^0, then 6(M*)=0.

2.15. Assume now that M=(M, A)-:^?^^5 where fel^^"15, and s^O (see
2.8 (a)). We have

(a) a (M) = dim p, and b (M) = dim M8 = (s + 1) dim p^.
We argue by induction on s. When s=0, we have M=Pf and (a) is obvious.

Now assume that s ̂  1 and that the result is already proved for s — 1 instead of s. Let
M^K5"1?^1^5. The induction hypothesis is applicable to M7 (with 5 replaced
by -5). We have M=KM' hence, by 2.13 (a) and the induction hypothesis,
a (M) = a (1VT) = dim p,. We also have M^CM, hence by 2.12 (a) and the induction
hypothesis

sdimp,=b(Mf)^b(M)-a(M)=b(M)-d{mpi

so that b(M)^(s-\-1) dim p,. On the other hand, it is clear that dim M^^M). The
last two inequalities together with the equality dimM8=(5•+ 1) dim p, (see 2.8(b) and
1.7 (b)) imply the equalities in (a).

2.16. We will define several (full) subcategories >(€\ <(€\ °^5 of ^5. Let M= (M, A)
be an object of ^5.

We say that M is an object of >^5 if 6(M*)=0 and 6(M)=dim M5.
We say that M is an object of <^5 if 6(M)=0 and &(M*)=dim M"5.
We say that M is an object of °^5 if b (M) = b (M*) = 0.
Note that

ME^^M*^^"8,
MG^^IVPe0^"5.

By 2.14 (b), (c), any object of ̂  is contained in ̂
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Now any object M=(M, A) in <^ is as in 2.9 (a) (see 2.10 (b)) hence satisfies
the hypothesis of 2.14 (b) so that 6(M)==0; its dual is as in 2.8 (a) hence we can
apply 2.15 (a) to it and deduce 6(M*)=dim M"5. Thus, we have Me <<^5.

Dually, any object in >^5 is contained in >(€^.

2.17. Let M=(M, A) be an object of °^5. Let Spec M (spectrum ofM) be the set
of all lines LeP(p) with the following property: for some (or all) e e L — [ 0 ] , the
map Ag: M5 -> M"8 is not an isomorphism of C-vector spaces. From the definition, it
is clear that Spec M is a finite set. (In particular, we have dim M^dim M~5.)

For any LeP(p) we define subspaces M[ c M5 and M^5 <= M~5 as follows. We
choose non-zero vectors e, e of p such that e e L and C e ^ Spec M and we define M[
(resp. Mi;5) to be the set of all xeM5 such that (A^A^JC^O (resp. (^,^^l)^x=0)
for some N^1. These subspaces are clearly independent of the choice of e. They are
also independent of the choise of e . Indeed, let e" be another non-zero vector such
that C e" ^ Spec M. If e" is proportional to e then it clearly leads to the same
subspaces as e ' . Assume now that e\ e" are not proportional. Then we can write
e=aef-}-bet for some a, beC so that A ^ = ^ A ^ + 6 A ^ / . Let T-A^A^ ̂ ^M5. We
have (A^Aj^al+Z^, (^1 A,f=(a^~l+b\f and (a\+bxf, (a^-^blf
have the same kernel and M^ is well defined. We see similarly that M^5 is well
defined.

Clearly, M[=0, M^^OifL^Spec M. We have a direct sum decomposition
M^OL^^. Indeed, for e\ e " , T as a above, the subspaces M[ are precisely the
various generalized eigenspaces of T. Similarly, we have a direct sum decomposition
M"^ ©i^L8-ln particular, Spec M is non-empty if M 7^0.

It is clear that, for any ^ep, and any line L in P(p), A^ restricts to a linear
map of M^ into M^5; moreover, this linear map is an isomorphism if e^ ^L.

Next we observe that F acts naturally on P(p), leaving stable the finite subset
SpecM. Note also that Y(M[)c=MS (L) and Y(ML5)cM^§L) for all yeF and all
LeP(p). Let S be the set of all subsets ofP(p) which are orbits ofF. For each
Ze^, let M^^Lez^ and Mz^eLez^5 ' Then M!. Mzs are F-stable and for
any e^ e p, A restricts to a linear map of M^ into M^5; moreover, this linear map is
an isomorphism if e^ is not contained in the union of all lines in Z. We may regard
M| ® M^5 with the restriction of the maps Ag^ as a subobject Mz of M. Then

(a) M=®ze^Mz

and for each Z, we have Spec M^ c= Z. This decomposition is functorial.
Let °^i be the full subcategory of 0%?5 consisting of objects with spectrum

contained in Z. We see that
(b) °^5 is a direct product of the categories °^(Ze^).
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2.18. We now fix Ze^ and study the category ° .̂
The number of elements of the isotropy group in r of any element of Z is an

even integer In where n=n^ 1. We define a category %^ as follows. An object of ̂
is a Z/^zZ-graded, finite dimensional C-vector space ^ ^ © r e z / n z ^ r together with a
nilpotent endomorphism ^ : V - ^ V such that ^ ( V ^ c V ^ + i for all r. Morphisms are
linear maps respecting the grading and the nilpotent endomorphism.

We will construct an equivalence of categories

(^\ °^5 ̂ yW (9z=^n•

We choose L e Z; let I\ be the isotropy group of L in r; it is a cyclic group of
A

order In. Let I\ be the group of characters Y^ -> C*.
We choose a second line L' in p such that L/^L and such that L' is fixed by F^.

(If n>\, L' is uniquely determined by these requirements; if n=\, any line in p is
fixed by F^.) We choose ^ e L — { 0 } and ^ e l / — { 0 } . Now I\ acts on L through a

A _ A
character ^eF^ and on L' through ^-1. Clearly, ^ is a generator of I\.

To an object M=(M, A) of ° ,̂ we associate an object (V, t) of %'„ as follows.
We set V=M^. This subspace of M8 is clearly F^-stable.

For any integer re[0,n— I], we denote by V^ the largest F^-stable subspace ofV
on which FL acts through the character ^ l- s)/2+2 r .

(Note that the largest F^-stable subspace of V on which F^ acts through the
character ^( l - 5 ) / 2+ 2 r + l i§ zero since the value of this character at c is (—ly 1 "^ /
^^-S.)

The Vy. form a Z/n Z-grading of V. We define t : V -> V to be the composition
V=M[ -> M^5 -> M[=V, where the first map is given by Ag and the second map is
the inverse of the isomorphism M^M^5 given by the restriction of Ag/ (this last map
is an isomorphism since e ^L).

Now A g / 4 - X - A g = A g / + ^ g : M ^ -> M^5 is invertible for any ?ieC, since we have
e + X e i L. Hence 1 + X t: V -^ V is invertible for any ^ G C. It follows that ^ : V -> V is
nilpotent.

We now show that Y^OO^^y)2 ^(YOO) f01* all xeV and all 70^.
We have yA, (x) = A^, (y x) = \ ̂ , (y x) hence 7 (A, (x)) = ̂  (y) A, (y x).
Similarly, we have y (A^ (x)) = ^ (y) ~1 Ag/ (y x). Replacing here xby t (x) we obtain

Y(A^(r(x)))==^(Y) - lA^(Y(^(x))). The left hand side is equal to Y<A,00) hence to
^ (Y) A, (Y x) = ̂  (Y) ̂  (t (Y (x))). It follows that ^ (y) A,/ (/ (y (x))) = ̂ (v)- ' A,/ (y (^ (x))).
Since Ag/ is injective on V, it follows that ^ ( y ) t ( y ( x ) ) = ^ ( J ) ~ l y ( t ( x ) ) , as claimed.

We see that (V,^) is indeed an object of ^. Now the assignment Mi-^(V^)
extends in an obvious way to a functor °^ -> ̂ .
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We now construct a functor in the opposite direction. We assume given an object
(V, t) of ̂ ; we shall associate to it an object M of °^. We regard V as a r^-module
with Y acting on V^ as multiplication by ^^l~^/2+2\ Let V be the F^-module
with the same underlying space as V but with y acting on V^ as multiplication by
^/ y i - 5 ) / 2 + 2 r - l

Let M be the induced F-module C[F] 00^]^® v/)- Then M^C^] (^[FL^
and M'^CjT] (^[FL]^' ^e m^ ^g^d V? V' naturally as subspaces of M6, M"5.
Let A i M 5 ® p-^M"5 be the unique F-linear map which extends the r^-linear map
V (x) p -> V given by x (x) (ae + be) \—> at (x) + bx. It is clear that M = (M, A) just defined
is an object of °^i. The assignment (V, t) ->M extends in an obvious way to a functor
%'„ -> ̂ i. The two functors constructed above provide the desired equivalence of
categories.

2.19. Let (V, t) be an indecomposable object of ^. On V we have a Z/nZ action:
the canonical generator of Z/nZ acts on V^ as multiplication by ^2 7 I V / - 1 r/". Let m be
the smallest integer ^1 such that ^=0. We can find xeV such that r"1^)^;
moreover, we can assume that xeV^ for some integer r (defined up to a multiple
of ri). Let (x) be the subspace of V spanned by x, tx, . . .^m-l^. Clearly, this sub-
space is /-stable, compatible with the grading and x, tx, . . .,tm~l x is a basis for it.
By the theory of (ungraded) nilpotent endomorphisms, there exists a ^-stable sub-
space V\ ofV complementary to (x^. Let Y be the set of all /-stable subspaces o fV
which are complementary to <(^c) . Thus we have V^eY. Let Y' be the vector space
of all linear maps V^ -» (x) which commute with the action of /. The graph of such
a linear map is a subspace of V i + < ( x ) = V , which is actually in Y. This gives a
bijection Y'^Y and shows that Y is an affine space. Now Y is defined purely in
terms of <(x), which is compatible with the grading; hence Y is stable under the
natural action of Zfn Z on the set of subspaces of V. A finite group acting on an
affine space must have a fixed point. Hence, there exists a subspace V^eY which is
compatible with the grading. Thus, <( x ) admits a complement which is both /-stable
and compatible with the grading. By the indecomposability of V we must then have
V = < x > .

Conversely, given an integer r, defined up to a multiple of n, and an integer m^ 1,
there is clearly a unique indecomposable object V^ ^=(V, /) (up to isomorphism) such
that for some xeV^x, tx, . . .. /w-1 x is a basis of V.

We now see that V^ ^ form a complete list of indecomposable objects (up to
isomorphisms) of ̂ .

2.20. In the setup of 2.18, we denote by M^ y ^ the indecomposable object of °^i
corresponding to V^ ^ under 2.18 (a). From the definitions, we have

gr(M,,,J=Ind^(ej:^2-m-2L0«l-^2+^)
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where L®-7 is a tensor power of L, (LeZ) regarded as a 1-dimensional r-module.
Thus, if m is divisible by n we have

gr(Mz^J=(m/^)r.

Assume now that m is not divisible by n. Then LeF and we may assume that
Le^ (see 1.13); we have

gr(Mz^J=^(L,r,m)

Ifa--! and

gr(Mz^J=^(L, -r-w+l.m)*

if 5=1 (see 1.17).
The previous results can be summarized as follows.

Theorem 2.21. - (a) For any Pe^8 we have gr(P)eR+ U { r , 2 r , . . . }.
(&) For any aeR+ there is a unique Pe^5 such that gr(P)=a.
(c) For any integer ^1, the map Pi—>Spec P from {Pe^lg^P)"^!*} to the set

of Y-orbits on P (p) is well defined; its fibre over any Y-orbit Z has cardinal equal to
half the number of elements in the isotropy group Y^ of any LeZ.

2.22. Remark. - In the language of [DR], the objects of >^8, °^5, <^ are
preinjective, regular, preprojective, respectively.

3. Preparatory results

3.1. In this section we restate some definitions and results of [L] in the special case
of affine quivers, in terms of the corresponding group Y.

Let M be a F-module. The corresponding notion in [L] is an I-graded vector
space V= @ V^ of finite dimension over C. These are related by M= ®fV^ ® p, (with
r acting trivially on Vp as in 2.3).

Let GM be the (algebraic) group of all linear automorphisms of M commuting
with the r-action. The corresponding notion in [L] is Gv^f^Aut^^). (We have
GM=GV•)

Let EM be the vector space Honir(M ® p, M). The corresponding notion in [L]
is Ev = © Horn (Vp Vj) where the sum is taken over all pairs consisting of an edge of
our graph and an orientation i—>j of that edge. (These two vector spaces may be
identified as in the construction of the equivalence of ^s and ^ in 2.3.)
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As in 2.3, giving A e Hom^ (M (x) p, M) is the same as giving a collection Ag (e e p)
of linear maps M -> M depending linearly of e and satisfying y (Ag (x)) = A ^ (y (x))
for all Y e r, ^ e p, x e M. (Ag is related to A by Ag (x) = A (x (g) ^).)

We have a natural action of G^ on E^ given by (g, A)i—^A, where
(^A) (x® ̂ ^(A^^x® e)) for xeM and ^ep. (This corresponds to an action of
Gv on Ey.)

On EM we have a non-degenerate symplectic form ( , ) defined by

<A,A>=tr(A^-A^:M-M),

where e^ e^ is any symplectic basis of p. (This corresponds to a symplectic form on
Ey as in [L, 12.1].) This symplectic form is invariant under the G^-action.

3.2. The moment map attached to the G^-action on the symplectic vector space E^
is the map v|/: E^ -> Hom^ (M, M) given by

v|/(A)=A^A,,-A^A^:M-.M,
where e^, e^ are as in 3.1. (Compare [L, 12.1] and [K]) Hence we have

v|/(A)=0^>A^A^=A^A^ for any e^ e ^ e p .

An element A e E^ is said to be nilpotent if there exists a number N ̂  2 such that for
any sequence e(\\ e(T), . . .,^(N) of vectors in p, the composition Ag^Ag^) - • -^(N) :

M -> M is zero; an equivalent definition is that there should exist a flag in M which
is A-stable.

(This corresponds to the notion of nilpotent element of Ey given in [L, 1.7, 1.8].)
We define A^ to be the set of all nilpotent elements AeE^ such that \|/(A)=0.

(Compare [L, 12.1].)
AM is a closed G^-stable subvariety ofE^ of pure dimension dim E^/2. (Compare

[L,12.3].)
Let Irr A^ be the set of irreducible components of A^.

3.3. For each ;el and each /?eN, let A^^p be the set of all AeA^ such that
(p^: M)—(p, : A(M (x) p))=p. This is a locally closed subvariety of A^, again of pure
dimension dim E^/2. (Compare [L, 12.3].) Moreover, for any p^O, and any ;el, the
union U p ' : p ^ p ^ M , i , p ' is open in A^.

3.4. Given S = ± l , we define E^ = Homr (M5 (x) p, M~5).
We can identify in an obvious way E^ with the subspace of E^ consisting of

those AeE^ which map M" 8 ®? to zero; note that A automatically maps M 8 ®?
into M~5.

We have a direct sum decomposition E^^E^ ® ̂ M1'
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Thus EM and E^1 appear as complementary Lagrangian subspaces of E^; they
are GM-stable. (Compare [L, 12.8].) In particular, < , > defines a non-singular pairing
EM ® E^5 -^ C so that EM is naturally the cotangent bundle of EM.

In particular, if Y is a submanifold of EM, then the conormal bundle of Y (a
submanifold of the cotangent bundle of E^) may be naturally regarded as a sub-
manifold of EM.

(a) If A e EM and AeE^5, then \ |/(A+A)=0 if and only if A is orthogonal with
respect to < , > to the tangent space to the G^-orbit of A (regarded as a vector
subspace ofE^). (Compare [L, 12.8 (a)].)

3.5. If N is a F-submodule of M and AeE^, we say that N is A-stable if \
maps N intoN for any ee p.

Let M.j.=(Mi, M^, . . . M^) be a sequence of isotypical F-modules such that
M^MI ® . . . ® M^ as a r-module.

A flag in M is by definition a sequence IV^M^ =) M^ =) . . . =D M^^O of
F-submodules such that for any 1= 1, 2, . . ., w, the F-module M^" ̂ /M^ is isotypical.
A flag of type M^ is a flag as above such that M^^/M^M^ as F-modules for
/=!, 2, . . ., m. (Compare [L, 1.4].) A flag as above is said to be A-stable (where
AeE^) if each M^ is A-stable.

Given AeE^ and M^ as above, we denote by XM^) fhe Euler characteristic of
the variety of A-stable flags of type M^ in M. This variety is empty unless A is
nilpotent ([L, 1.8]) hence ̂  (A) = 0 if A is not nilpotent. Let ^ '' AM -> Z be the
function whose value at any AeA^ is ̂  (A)-

Let ^M be Ihe Q-vector space of functions A^ -> Q spanned by the functions
XM^. : AM -> Z for various M^. as above. This is clearly a finite-dimensional vector space;
all functions in ̂  are constructible ([L, 10.18]) and constant on orbits of G^.

Proposition 3.6. - Given any YelrrA^, there exists a function fe^F^ such that
(a) for some open dense G^-stable subset 0 of Y we have f |o = 1 and (b) for some
closed G^-stable subset H c: A^ of dimension <dim A^ we havef=0 outside Y U H.

The result is trivial when M=0. We may therefore assume that M^O and that
the result is already proved for F-modules of dimension <dim M.

Given ;el, the intersection Y n (Up/: p^p^u, i, p ) (see 3.3) is non-empty for some
p^O, for example, for^=(p,: M) it is equal to Y. The smallest integer p^O for which
this intersection is non-empty is denoted n(i, Y). We have 0^(;,Y)^(p^: M).

According to [L, 12.6], we have n(i,Y)>0 for some iel.
Hence it is enough to prove (for an ;el which is fixed from now on) that the

proposition holds for any Y such that ^(;,Y)>0. This will be proved by descending
induction on n (;, Y) (which is bounded from above).
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Thus, we may assume that Y is such that n (;, Y) = n^ > 0 and that the proposition
is already proved for all YelrrAj^ such that n{i,\)>riQ.

By the definition of n^ we can find a F-module M' such that M is isomorphic to
the direct sum of M' with HQ copies of p^.

We define a linear map I^M'^^M as follows. Let/'e^^'- We must specify
the value of i (//) at a point A e AM. Consider the variety B consisting of all A-stable
r-submodules N of M which are isomorphic to M'. If N e B we choose an isomorphism
of r-modules N^M\ This induces an isomorphism A^ -> AM . Composing/': AM -> Q
with the last isomorphism gives a function A^ —> Q whose value at the restriction A |̂
is denoted J ' (N)eQ. (This is independent of the choice of isomorphism N^M' since
// is constant on G^'-orbits.) Now Ni—>7'(N) is a constructible function on B; hence
we may associate to it the linear combination of Euler characteristics

^ ^Euler{NGB|7 ' (N)=^};
ae Q

this number is by definition i(/7) (A). (Compare [L, 12.10].) From the definition it
follows that

(c) i (/'): AM -> Q is a function in ^^ with support contained in U AM, i, p;
p^nQ

(d) if A e AM, i, no (so ̂ ^ B above is a single point N) then i (/') (A) =f (E) where
SeAM'.i.o corresponds to A^ under some isomorphism of F-modules N^M\

Now let

Yo^YnAM^-Yr^ u AM,^/).
P' •• P'^no

This is an open dense subset of Y and an irreducible component of A^, i, no'
According to [L, 12.5] there exists an irreducible component YQ of A^/ , o such

that for any AeYo, we have SeYo (where 5 is related to A as in (d)).
Let Y7 be the closure of YQ in A^/; this is an irreducible component of A^/.
Since dim M^dimM, there exists /'e^yr ^^ ^at tor some open dense G^'-

stable subset 0' ofY we have/7 \Q.= 1 and such that for some closed G^-stable subset
FT c: AM' of dimension <dimA^/ we have/^0 outside Y' U H7.

Let HO=H' r\^M',i,o'-> ^is is a closed, G^'-stable subset ofA^^o of dimension
<dim AM'.

Replacing if necessary 0' by O7 0 Y^, we may assume that 0' c: Yo.
Let OQ (resp. Ho) be the set of all A e A M , i , n o with the following property: any

3 e AM', 1,0 related to A as in (d), lies in O'(resp. in Ho). Then Oo is an open, dense,
GM-stable subset of Yo and Ho is a closed GM-stable subset of AM, i, no °^ dimension
< dim AM.

Consider \{f')e^^. By (c), (d) we have
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(e) i CO |oo = 1. the support of i CO is contained in (Yo U Ho) U ( U AM, i, p\
p>riQ

We have

U AM^-UY
p : p > r i 0

where Y runs over the irreducible components of A^ such that ^(z',Y)>^o. By our
assumption we can find, for any such Y, a function / [Y] e ̂ ^ satisfying the require-
ments of the proposition with 0 [Y] c= Y and H [Y] of dimension < dim A^. The
restriction of i (/') to 0 [Y] is a constructible function; since 0 [Y] is irreducible, there
exists an open dense G^-stable subset 0^ [Y] of 0[Y] and a number a^eQ such that
the restriction of i(/7) to 0^ [Y] is the constant function a^. We may assume that the
sets Oi [Y] for various Y are disjoint.

Let

/^(n-Z^Y/m.
Y

Using (e) and the definitions we see that/has the required properties. The proposition
is proved.

3.7. The previous proof gives an/with integral values.

3.8. For any YelrrA^ we have a linear function Ty.'^M-^Q; lt associates to
/e y^ the (constant) value of/on a suitable open dense subset of Y. We can now
define a linear function from ^^ to the Q-vector space of Q-valued functions on
IrrA^. This linear function is surjective, by 3.6. (This actually holds for any quiver,
with the same proof.) In particular, we see that

(a) l l r r A M ^ d i m ^ M -

3.9. Let u~ be the -part of the enveloping algebra corresponding to the (affine) Lie
algebra associated to our affine Coxeter graph. This is the Q-algebra defined by
generators F^ O'el) and relations

NE(-l) p fN + l )F?F.FN + l - p =0
p=o \ P )p=o \ P /

for any i^j (with N=dimT}, see 1.1).
Consider the Q-vector space JF= ©^ ^M where the sum is over a set of represen-

tatives for the isomorphism classes of F-modules; the choice of representatives is
immaterial since ̂ ^ is canonically isomorphic to ^^ whenever M, M' are isomorphic.
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There is a unique Q-algebra structure on '̂, together with a surjective algebra homo-
morphism u~ -> SF such that

(a) F^...F^/(^!....J)^XM,

(see 3.5) for any sequence M^.=(Mi, M^ . . . MJ of isotypical F-modules with Mp
isomorphic to the direct sum of Sp copies of p, for all p. (See [L, 12.11].)

For any r-module M, we define u^ to be the subspace of u~ spanned by the left
hand sides of (a) such that ^ Sp = (p,: M) for all i. These give a grading

p : i p = i

u~ = ®M^M ^d our homomorphism u~ -> gF clearly respects the gradings. Hence we
have

(b) dimu^^dim^^

for any M.
By the Poincare-Birkhoff-Witt theorem, we have the equality of formal power

series

(c) ^dlmu^XdlmM= ]~[ (l-X^^nO-X5^1)"11^1.
M o c e R - ^ s

(The second product is the contribution of the "imaginary" roots.)

4. Irreducible components of a Lagrangian variety

4.1. In this section we study the set of irreducible components of a Lagrangian
variety A^,; we give a combinatorial description of this set, in the setup of section 2.

We first prove a result about vanishing of certain Ext1-groups.

Proposition 4.2. - Let M^ M^e^5 be as follows:
(a) M^K^-^5, M^K^P^-1^8 with s, ^'eN, s^s\ and fe^-^8 ,

i ' e ^ - ^ ' ^ o r
(b) M^C^-1^ M^C^P^1)5'8 with s, ^eN, ^^ and fel^1^15,

re^-l)5^15, or
(c) M^C^-1^, M^K^P^1)5'5 m^ ^ ^eN, and fe^-1^15, re^-1^8, or
(d) M,e°^\ M^-K^P^^5 w^ ^eN, a^ i ' e l ^ ^ ' ^ or
(e) M^C'Pr1^5, M^e0^ withse^ and i^-^'^ or
( f ) Mi, M^e0^5 w^A disjoint spectra.
Then

Ext1 (Mi, M^=0.
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4.3. In preparation for the proof of 4.2 we note the following. Let

0 -> IVT ̂  M ̂  M" -> 0

be a short exact sequence in ̂ . Then the corresponding sequence

0-.C1VT -.CM-. CM" -.0

is exact in ^-5.
This follows easily from the definitions, using the snake lemma in homological

algebra. Similarly, if

o -̂  ivr -. M -. ivr -> o
is a short exact sequence in %^, then the corresponding sequence

is exact in

0 -> K M/ -. K M -^ K M" -> 0
?-8

4.4. We show that any exact sequence

0 -> M' -. M -. M" -. 0

in ^5 such that either
(a) M ' ^ P f w i t h / G l - 8

or
(b) I \r=Pfwith ;el5,
is split.
Indeed, let M=(M, A), IVr=(M7, 3) and let W be any F-submodule of M

complementary to M1. In both cases, W defines a subobject of M, complementary
to M7.

4.5. We now prove 4.2. Consider a short exact sequence in ^s

(a) 0 ̂  K5' P;. 71 )5'§ -^ M -^ M i -^ 0

where ^eN, rel^1^'5 and M, is as in 4.2 (a), (c) or (d). We want to show by
induction on s ' that this exact sequence is split. For s ' = 0 this follows from 4.4; hence
we may assume that s'^\ and that our assertion is already proved for s-\, -5
instead of s , 5.

Now all terms of (a) are contained in ̂ . For the first term this follows from
2.5 (a) (since s ' ^ l ) . For M^ this follows from 2.5 (a), if M^ is as in 4.2 (a) (since
s^s'^\\ from 2.9 (a), if M^ is as in 4.2 (c); finally, if M^e0^, then it is in ̂
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(see 2.7 (b)). Now the middle term of (a) is automatically in ̂  since the other two
terms are there.

Using now 4.3, we see that by applying C to (a) we get an exact sequence

O^CK^P^^CM^CMi-^O.

Since K5'-1?!-1^^ by 2.8 (a), we see from 2.6(b) that

CK5 P^1^ ^K5 -1 p^"1)5 §

hence the previous exact sequence is

(b) 0 -> K8 -1 P [71 )5' -^ C M -^ C M i ̂  0.

This is an exact sequence of the same type as (a); note that, if M^ ̂ 'P^^5 is as in
4.2(a), then CM^K5-1 P^55 (and s - l ^ s ' - l ) , if M, is in ̂  then CM, is in
°^~6 (see 2.10, 2.16).

By the induction hypothesis, the exact sequence (b) is split.
Now all terms in (a) are fixed by KC (by the result dual to 2.6(b)); hence

applying K to the exact sequence (b) gives us back the exact sequence (a). Since (b) is
split, it follows that (a) is split and our assertion is proved by induction. Thus 4.2 is
proved in the cases (a), (c), (d). Now 4.2 in cases (b), (e) can be obtained from the
cases (a), (d) by duality.

Next, assume that

O-^M^M-^Mi-^O

is an exact sequence in ^5 with Mi, M^ in °^5. From the definitions it follows
immediately that M^e0^8 and using 2.17 (b) we see that the assertion of 4.2 holds
in case (f).

4.6. Now let Mi=(Mi,Ai) , M^=(M^^) be two objects of ^§. We define a
linear map ^Hom^M^, M^) ̂  Hon^M^ ® p, M^5) by associating to any
(peHonir(Mi, M^) the map

^((p): x (x) 6^cp(Ai (x (g) e))-^ (cp(x) (x) e)

for all xeM^ and e e p .
By the definition of morphisms in ^§ (see 2.3), the kernel of T is exactly

Horn (Mi, M^). Next we define a linear map

^ : Homr(M5! ® p, M^-5) -^ Ext1 (M^ M^)

as follows. To a F-linear map r L M ^ O O p - ^ M ^ 5 we associate the extension
0 -> M^ -^ X -^ Mi where X = (X, A) e ̂ s is given by X = M i © M^ and
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A: X^p-^X"5 is given by a 2 x 2 matrix with entries Ai, IT, A^ 0. The maps
M^ -^ X and X -> M^ are the obvious ones. It is easy to see that ^V' is a linear map
and that its kernel is exactly the image of ^¥.

Proposition 4.7. — The sequence

0 -^ Horn (Mi, M^) -^ Homr(Mi, M^) ̂  Hon^M^ (x) p, M^5) ̂  Ext1 (M^ M^) -> 0

constructed in 4.6 is exact.
This is a special case of a result of Ringel [Rl], valid for any quiver.

4.8. Assume that we are given a r-module M and an element AeE^. Let T be the
tangent space to the G^-orbit of A (translated so that it contains zero) and let T7 be
the set of vectors in E^8 which are orthogonal to T under (,). Consider the exact
sequence in 4.7 for M^ = M^ = (M, A). It is clear that

(a) T is the image ofl?.
From 4.7 it then follows that
(b) T^Ex^aM.AUM.A))*.

4.9. Assume now that we are given a line L in p whose stabilizer F^ has order
2 n^4, and that M=(M,A) is an object in 0%7S with spectrum contained in the
r-orbit Z of L. Then M is isomorphic to a direct sum of indecomposable objects
Mz, r m (see 2.20) where r runs over Z ^ / n Z and m ̂  1. Let /(r, m) be the number
of times Mz y ̂  appears in the decomposition. We say that M is aperiodic if for
any m^ 1 there exists some r e Z / n Z such that/(r, m)=0. Assume that M is aperiodic.
Let T, T7 be as in 4.8, and let EeT. We will show that

(a) A + E e EM is nilpotent.

Under the equivalence of categories constructed in 2.18, M corresponds to an
object (V, t) of ̂  and we clearly have

(b) Ext1 (M, M) ̂  Ext1 ((V, t\ (V, t))

where the last Ext is taken in ^. This last Ext-group can be inserted (just like the
first one) in an exact sequence as in 4.7 for a cyclic quiver. (The exact sequence in
4.7 makes sense for any quiver). Hence the following analogue of 4.8 (b) holds:
Ext1 ((V, 0, (V, 0)* is isomorphic to the vector space S consisting of all linear trans-
formations a: V -> V such that a (V^) <= V^_ i for all r (notation of 2.18) and t a = a t.
Combining this with (b) and 4.8 (b) we deduce that

(c) dimS=dimT.
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We now define a map S-^T by the method in 2.18. Let V\ e, e be as in 2.18.
(Recall that ¥=¥' as a vector space.) We may assume that (M, A) is constructed
from (V, t) as in the end of 2.18. Recall that M[=V, ML^V. Let aeS. There is a
unique F-linear map a: M~5 ® p -> M5 which extends the F^-linear map V ® p -> V
given by x ® (ae^-be')\—>aa{t(x))^-ba(x'). One verifies that aeT. It is clear that
the map ah-xj from S to T7 is injective; by (c), it is an isomorphism. In particular,
we must have 5 = = CT for some a e S.

The aperiodicity assumption implies that a is nilpotent as an endomorphism
of V (this is a property of cyclic quivers, see [L,§15]). Again with the notation
of 2.18, we have ML==V® V7. For any e^ e p, (A+S) : M -> M maps M^ into itself;
more precisely from the definitions we have (A+S)^(x, xt)=(a(t(xr)), t(x)) and
(A+5)^(x, x)=(o(x), x) for all x, x 'eV^V. Since t, a are commuting nilpotent
endomorphisms of V, it follows that a composition of sufficiently many endomor-
phisms (A+3)^, (A+S)^, will map M^ to zero. Since M is spanned by the F-translates
of ML, we see that A+SeE^ is nilpotent. This proves (a).

4.10. Assume now that we are given a line L in p whose stabilizer F^ equals { 1, c]
and that M=(M, A) is an indecomposable object in 0^5 with spectrum equal to the
r-orbit of L. Let e, e be a basis of p such that e e L. Let / be the unique element of
E^ such that f(x (x) e) = 0, f(x ® e) = A (x ® e ) for all x e M[.

Let T, T' be as in 4.8, and let 3eT. Assume that </, 5 > =0. We will show that
(a) A + 3 e EM is nilpotent.

Under the equivalence of categories constructed in 2.18, M corresponds to an
object (V, t) of %^; here t is necessarily a regular nilpotent endomorphism of V.

Just as in 4.9, we have dim T7 == dim S, where S is the vector space of all linear
transformations a: V -> V commuting with t.

As in 4.9, we define a map S -> T by the method in 2.18. Let V7 be as in 2.18.
(Recall that V=V as a vector space.) We may assume that (M, A) is constructed
from (V, t) as in the end of 2.18. Recall that M[=V, M'^V'. Let aeS. There is a
unique F-linear map a: M"8 (x) p -> M6 which extends the r^-linear map V7 (x) p -^ V
given by x (x) (ae-^be')^a^(t{x'))^-b^(x'). One verifies that aeT. It is clear that
the map a ̂ -> a from S to T' is injective; by (c), it is an isomorphism.

In particular, we must have S=a for some o-eS. Since t is regular nilpotent and
a commutes with t, we see that a is a sum of a nilpotent endomorphism with y times
the identity, where yeC.

We now show that our assumption (/, S)=0 implies that y=0. For any x eV
we have Sg/ (x) = a (x'); hence (/^S^^—^/SJ^^^a^). For xeV we have
(/^ Eg/ —f^ 3g) (x)=0. Thus /g E^/ —f^ 5g leaves stable ML and its trace in there is equal
to tra=y dim V. Now /g S^ —/^ Eg is F-equivariant hence it must also leave stable
ML for any L7 in the F-orbit of L and its trace in there is again y dim V. It follows
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that <(/, S)=^ dim M/2 and therefore y=0. We now see that a is a nilpotent
endomorphism. From this point on the proof of (a) continues exactly as in 4.9.

4.11. Assume now that we are given an object M=(M, A) of ^s. From the results
of section 2 we see that there exists a direct sum decomposition M= ®^^M(/z) where
M (K) = (M (h\ A (/?)) e ̂ § and integers ho^h^^h^^h^^h^. such that the properties
(a), (b), (c), (d) below are satisfied.

(a) For any h such that ho<h<^h^ we have M^^K'P^58 for some s=s(h)^0
and some fel^^55; moreover, if h^h'^h^, then s(h)^s(h').

(b) For any h such that h^<h^h^ we have M^^C'Pt"1^5 for some s=s(h)^0
and some ^'el^1^15; moreover, if h^<h^h\ then s (h) ̂ s (/?').

(c) For any /? with h^ <h^h^ we have M^e0^5; it is non-zero and its spectrum
is a single F-orbit with isotropy group of order ^4 for h^ <h^h^ and of order 2 for
h^<h^h^. Moreover, if h^<h<h'^h^ then M(/?), M(/?7) have disjoint spectra.

(d) For h^ho or h>h^ we have M(/z)==0.

We now make the following assumption on M:

(e) For any h with h^<h^h^ M(/z) is aperiodic. For any h with h^<h^h^
M(/z) is indecomposable.

For each h with h^<h^h^ we choose a line L/, c= p in the spectrum of M(A).
Choose a vector ^ 'ep outisde all these lines L^, and choose a vector ^ep , linearly
independent from e\ Let z^eC be such that e+z^e eL^. Let/^ be the unique element
of EM ̂  such that f^ (x ® e} = 0 and /^ (x ® e} = A (h) (x ® e) for all x e M (/Q^. Then
f^ is like/in 4.10 (for M(A), L^, ^+z^^, e instead of M, L, e, e')\ indeed, we have
f^(x® (e-\-z^e'))=Q for all xeM(h)^. We may regard/,, as an element of E^ (equal
to zero on M (h')6 (x) p for any h' =^h).

In this setup, we have the following result:

Proposition 4.12. — Associate T, T to A as in 4.8. L^ SeT7 be such that
(/^, E)=0/or ^2c/z A m7/z h^<h^h^. Then A+E is a nilpotent element ofE^.

The grading M=®/,M(/Q of M gives rise to a bigrading E^1 = ©^^E^ (A, A7)
where EM 1 (A, A') = Homr (M (h) +1 (x) p, M (h') +1).

We consider, for each h > h ' , the exact sequence 4 .7 for Mi=M(/z) and
M^ = M (A7). The Ext1 term there is zero, by 4.2, hence the map
^Hon^M^), M (h')) -> EM (h, h') is surjective. The last map Y is the restriction of
the map with the same name T: Honir (M, M) -> EM; it follows that the image of the
last map which, by 4.8 (a), is just T, contains E^(/z, h') for all h>h'. In fact, the same
holds, even for h=h\ except when h^<h^h^ (by the same argument).
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Now the annihilator in E^5 (with respect to ( , )) of the sum of the E^(A, h')
over {(h, h')\h^h'}-[{h, h)\h^<h<^h^} is equal to the sum of the E^5^, h') over
{(^hf)\h>hf}U{^h)\h,<h^h,}.

Hence T (and so also S) is contained in the last sum. In particular, S maps any
M(/Q~5® p into the sum of the M(h')8 over [h' \h'<^h}, if h^<h^h^ and into the
sum of the M (h')^ over { h' \ h' <h}, for the other values of h.

Let us now define some r-submodules M[h]= @h' |/i'aM(/0 for heZ. We have
. . . c: M [h— 1] c= M [h] cz . . . The previous statement can be reformulated as follows:

S maps MIT?]"5® p into M[/?]5, if h^<h^h^ and into M^-l]5, for the other
values of h.

For h^ < h ̂  h 3, we see that S induces a r-linear map
M^/M^-l l '^p^M^/M^-l]5 or, equivalently, M(/0~8 (x) p -. M(/z)5; this
map is denoted S (h).

We clearly have that A maps M^)"5® p into M^)"8 for any h, hence it maps
M^]5® p into Mt/z]"5 for any h. Combining this with the analogous property of 5,
we deduce that:

A + E maps M [h] (x) p into M [h] for any h.
Hence A 4- S induces for any h a r-linear map M [A]/M [h — 1] ® p —> M [A]/M [h — 1]

or, equivalently, an element of E^ ̂ . If this element is nilpotent for any h, then, from
the definition of nilpotency, it would follow easily that A + S is nilpotent. But from
the previous discussion we see that this induced element is A(/z)+S(A) if h^<h^h^,
and A (A) for the other values of h.

If h^ < h ̂  h^ then A (/z) + 5 (h) is nilpotent, by the discussion in 4.9. If h^ < h ̂  ̂ 3,
then A (A) + S (A) is nilpotent, by the discussion in 4.10; indeed, our assumption implies
that (/,,, E(/?))=0. If ho<h^h^ or h^<h^h^ we have A(A)eE^^ and all elements
of EM(^) are obviously nilpotent in EM(^). This completes the proof.

4.13. Given a F-module M, we consider the set ^(M)5 of all pairs (a, X) where
a:^5-^, ?i=(?4^?4^ . . . ̂ \) is a sequence of integers ^1, and the properties
(a)-(d) below are satisfied.

(a) a has finite support.
(b) Let Z be any F-orbit in P (p) such that the stabilizer of a line in Z has order

2 n'^4. For any m^ 1, at least one of the numbers

^(Mz,o,m). <^(MZ,I,J, . • . ,CJ(Mz^-i,J

is zero. (Notation of 2.20.)
(c) Let Z be any F-orbit in P (p) such that the stabilizer of a line in Z has order 2.

For any m ̂  1, we have a (M^ o, m)= 0- (Notation of 2.20.)
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(d) We have Eo(P)gr(P)+^.r=M in ^F.
P j

Given (a, X) e y (M)5, we consider the subset X (a, X) of E^ consisting of all
elements A such that (M, A) is isomorphic in ̂  to

©pP^^M^o,^ ®. . .©M^o,^)

for some distinct F-orbits Z^, . . ., Z^ as in (c).
In this setup we have the following result:

Proposition 4.14. - (a) X(a, ?i) is open, dense, smooth in its closure X(a, ?i). //
is also irreducible of dimension equal to q plus the dimension of any G^-orbit it contains.

(b) Let ^ (a, \} be the conormal bundle ofX (a, ?i) c= E^, regarded as a sub-variety
°f^ {^e 3.4). Then ^T(a,?i) is an irreducible component of A^ (^ 3.2).

(c) y (a7, ?i') ^ an element of y (M)8, distinct from (a, ?i) ^^
^(a.^^a'.r).

The proof of (a) is routine and will be omitted; but the necessary ingredients can
be found in the following proof of (b).

Let AeX(a, ?i). We can find a decomposition of (M, A) as in 4.11. We will use
the notation of 4.11 relative to this decomposition.

We will define a smooth submanifold D of E^, whose points are parametrized
by vectors y=(y^eCq, here, the index h is such that h^<h<^h^ and q is the number
of such indices.

For each y as above we define an element A^eE^ by assembling together elements
A^/QeE^ for all heZ. For h^<h<^h^ A^/Q is the unique F-linear map
M (/O5 ® p -^ M (h) ~8 such that A^ (h), = A (h), - y^ A (A),/ and A^ (h\, = A (A),, on vectors
^ M (/O^. (The subscript 4 refers to A.) We have (M (h\ A^ (A)) e 0^5 and its spectrum
is the r-orbit of the line C(e+(z^y^)e).

For all other h, we set A^/^AfTQ. By definition, D={Ay\yeCq}. Note that D
is an affme space containing A; we have A=A°. Clearly, D is contained in
X(a, X) c= EM. The tangent space to D at any point ofD, translated to zero, is a
vector subspace Do of E^ independent of the chosen point. It is clear that

(d) the vectors/^ of 4.11 form a basis of Do.

We now associate T, T to A as in 4.8. Let SeE^5 be such that S is orthogonal
under < , > to the tangent space to X(a,?i) at A. Then 5 is orthogonal to T (the
tangent space to the GM-orbit of A at A) and to Do (the tangent space to D at A)
hence ScT and S is orthogonal to the f^ in (d). Using now 4.12, it follows that
A + E e EM is nilpotent. Thus, the conormal bundle of X (a, ?i) is contained in the set
of nilpotent elements of E^. It is also contained in the inverse image of 0 under the
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moment map (see 3.2) since X(a, ?i) is a union of GM-orbits (see 3.4 (a)); hence it is
contained in A^. By definition, the conormal bundle of X(a^) is the closure in E^
of the conormal bundle ofX(a, ?i); hence it is also contained in A^ (which is closed).
It is irreducible, by (a), and being a conormal bundle it has dimension equal to dim
EM/2. But dim AM-dim E^/2 (see 3.2) and (b) follows.

Now (c) follows immediately from (a).

4.15. We now consider the formal power series

n^l^M)5^111^,
M

where M runs over a set of representatives for the isomorphism classes of F-modules.
From the definitions and from 2.21, we see that

n= Y[ (i-x^^x Y[ (^(i-x111"1^1-^))-1

a e R + - O R + L, w r

— n ̂ dim 4 (L'rf m) rr (i — x'111" ̂ (L ' r f m^-1^
r r

x^((l-XS '^ l)-nL-xsnLl^l(l-xs l^ l)-"L)^^^)x t l^ l,
L,s ^0

where (with notation of 1.17), L runs over S\ m runs over the integers ^1, not
divisible by n^ r runs over Z/n^ Z, s runs over the integers ^ 1, and p (t) is the number
of partitions of /. Note that dim |LI (L, r, m) = m \ r n^ ̂  We have

n= n (i-x1111"")-1 ]~[ (i-x^11101)-1

a e R + - ° R + a e ° R +

x rK^^^^nc^^^^^rKi-x^^^nci-x51^)-1 ,
L 'm L,s L,s s

n= n (i-x^T'no"^^1)1^1
a e R " no-x-'^-no-x51^)-1,

s s

where n=^n^ Thus,
L

(a) n= H ( l -X d i m a ) - l ] - [ ( l -XS I ^ I ) - I I I + l ,
a e R ^
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since

(b) ^-l)=\l\-2.
L

(The identity (b) follows from 1.18 by comparing dimensions.) Using 3.9(c), we
obtain II^^dim^ x^"^; using the definition of n, we deduce

(c) ^ (dim^-l-^WD^O
M : d i m M = d

for any rf^O.

Theorem 4.16. — (a) The algebra homomorphism u~ —> 3F {see 3 .9) is an isomor-
phism.

(b) For any Y-module M, the map (a, ^)h-^J^(a, K) (see4.\4) is a bijection
^(M)5^ Irr AM.

(c) For any Y e Irr A^, ^r^ ^ a unique function /y e ̂ M IS1MC^ ^a^ /(9r 5'ow^ open
dense G^-stable subset OofYwe have f\o= 1 and such that for some closed G^-stable
subset H c AM of dimension <dim A^ we have f=0 outside Y U H.

(d) The functions fy (for Ye Irr A^) form a Q-basis of SF^.
For any M, we have

(e) |^(M)§ |^ |IrrAM|<dim^M^dim^M;

(the first inequality follows from 4.14; the second one is 3.8 (a); the third one is
3.9 (b)). In particular, dim u^—\y (M)51 ̂  0. Introducing this in the equality 4.15 (c),
we deduce that dim u^ = \ y (M)51 for all M. This implies that all inequalities in (e)
are equalities.

The map u^ -> ̂ ^ in 3.9 is surjective; the two spaces involved have the same
dimension, hence our map is an isomorphism and (a) follows. (A different proof of (a)
is given in [L, 12.13].)

The map in (b) is injective, by 4.14; since the two finite sets involved have the
same number of elements, our map is bijective and (b) follows.

Consider the surjective homomorphism from 3F^ to the space of all functions
Irr AM ->Q given in 3.8. The two vector spaces involved have the same dimension
hence our map is an isomorphism and (c), (d) follow. The theorem is proved.

4.17. The previous theorem provides a natural basis of u~~ and of ^ indexed by the
irreducible components of the various varieties A^ and also in purely combinatorial
terms, namely in terms of the sets e99 (M)5.
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Corollary 4.18. — The variety A^ is Lagrangian.
Indeed, the map in 4.16(b) being surjective, means (by 4.14) that any irreducible

component of A^ is a conormal bundle; the corollary follows. (The corollary holds
for any quiver, with a different proof.)

5. Cyclic quivers

5.1. In this section we will make a change in our general assumptions: namely V
will now be a cyclic subgroup of SL (p) not necessarily containing c. We assume that
| r | =N> 1. All definitions in 1.1-1.3 extend without change; the affine Coxeter graph
is now a polygon with a possibly odd number of vertices.

We will show that most results in the earlier sections hold in this case as well.

5.2. We shall fix a F-stable line L in p. Then we can identify Z/NZ with I by
r i—^L®^ regarded as a F-module in the obvious way. Consider the set of all pairs
(r, m) where r is an integer defined up to a multiple of N and m is an integer ^ 1 not
divisible by N. This set is in 1-1 correspondence with the set of positive roots R+ by

(r,m)^o^= ^ L ;̂

this is proved by the argument of 1.9.

5.3. The definition of the orientation Q(8) given in 2.1 is not applicable here.
Instead, we define an orientation Q^ °f our graph as follows: we have i->j if i,j el
correspond to r, r +1 e Z/N Z respectively. (This is ambiguous if N == 2; in that case
we orient the two edges from i^j so that one is i->j and the others is j -> i.)

The category ^ defined in 2.18 is then a full subcategory of the (abelian)
category of representations of this affine quiver (with the orientation Q^)-

Note that giving a finite dimensional Z/^z Z-graded C-vector space V = © V^ is
the same as giving a F-module. (We make r act on V so that on any V^ it acts via
the character given by L® r.)

Let End^ (V) be the space of all linear maps t: V -> V such that t(Vy) c= V^+i for
all r. Let Auto (V) be the group of all automorphisms of V preserving the grading.

If (V, t) is an object of ̂  we denote by gr(V, t) the F-module V.
Let ^ be the set of isomorphism classes of indecomposable objects of ^^ As

in 2.19, Sf consists of the objects V^ where r is an integer defined up to a multiple
of N and m is an integer ^ 1. From the definitions we see that

(a) For any Pe^ we have gr(P)eR+ U { r , 2r, . . . }.
(b) For any aeR+ there is a unique Pe^ such that gr(P)=a.
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(c) For any integer s^\, the set {Pe^ |g r (P)=^r} has cardinal equal to N.

5.4. Given a F-module V we denote by y (V) the set of all functions a: Sft -> N such
that properties (a), (b), (c) below hold:

(a) a has finite support.
(b) For any m ̂  1, at least one of the numbers

^(Vo,^o(V^),...,a(V^,J

is zero.
(c) We have ^a(P)gr(P)=V in ^F.

p
Given ae^(V) we define X(a) to be the set of all ^eEndi(V) such that (V, t)

is isomorphic in ̂  to ©pP0^. This is a single Autg (V)-orbit in End^ (V).

5.5. All definitions and results in section 3 except those in 3.4 remain valid without
change. The following is a substitute for 3.4 in the present case: for V as above, we
may identify naturally Ey with the cotangent bundle of End^ (V).

We have the following result. (See [L, 15.5].)
(a) If a e c99 (V), then the closure (in Ey) of the conormal bundle of X (or) is an

irreducible component J^ (a) of Ay.

5.6. We consider the formal power series

n^l^C^lx^"^
v

where V runs over a set of representatives for the isomorphism classes of F-modules.
From the definitions and from 5.3, we see that

n-ncno"^"^ ^"^n^^^'rK1""^111101''")"1))
m r r r

xfKo-x^^-x^o-x^)-^

where m runs over the integers ^ 1, not divisible by N, r runs over Z/NZ, s runs
over the integers ^ 1.

Note that dim a^ ^=m. We have

n= n (l-xdima)- l^(l-xmN)^(l-xsN) -N^(l-xsN2),
a e R + m s s

n= n (l-xdimot)- l^(l-xsN)-N+l .
ae R+ s
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Using now 3.9 (c) (which is valid in our case), we obtain

(a) ^ (dim^y-|^(V)|)=0
V : d i m V = d

for any d^O. (Compare 4.15 (c).) The following result is entirely analogous to 4.16.

Proposition 5.7. — (a) There is a natural algebra isomorphism u~ —^ y.
(b) For any T-module M, the map ah-^(a) (see 5.5 (a)) is a bijection

^(V)^IrrAy.
(c) 3F has a canonical basis, defined as in 4.16(c), (d), naturally indexed by the

elements of IVY Ay.

The proof is the same as that in 4.16 except that the first inequality of 4.16 (c)
is now deduced from 5. 5 (a) and instead of using 4.15 (c) we now use 5.6 (a).

5.8. Let V be a F-module. For any aey^V) we denote by P^ the simple perverse
sheaf on End^ (V) whose support is the closure ofX(a) and whose restriction to X(a)
is C (up to shift).

Let Py be the set of isomorphism classes of simple perverse sheaves on End^ (V)
in the class defined in [L, §2], for a cyclic quiver.

Theorem 5.9. — For any Y-module V, the map ai-^P^ is a bijection ^(V^Py.
According to [L, 13.6], the singular support of any PePy (a closed subvariety

of the cotangent bundle Ey of End^ (V)) is a union of irreducible components of Ay.
In particular, the conormal bundle of the support of P is an irreducible component
of Ay. From the description of the components of Ay given in 5.7 (b) it follows that
the support of P is the closure of X(a) for some ae^(V). The restriction of P to
some open dense subset of X(a) must be an irreducible local system (up to shift).
Since P is Auto (V)-equivariant, this open set can be assumed to be Auto (V)-stable
(hence equal to X(a), which is a single orbit) and the local system on it is equivariant
(hence equal to C, since the isotropy groups of points in X(or) are connected). Thus,
we have P=Po.

We see that there is a well-defined map Py -> y (V) given by P \—> a, where P == P^;
this map is obviously injective.

By [L, 10.17], we have d im^y^lPy (where Uy is as in 3.9) and by 5.7, we
have dim ^y=|^(V)|. It follows that |Py|=|^(V)|. Hence the injective map
Py -> y (V) above must be a bijection. (The surjectivity of our map could also be
deduced from results in [R4]. This would avoid reference to [L, 10.17].) The theorem
follows.
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6. Perverse sheaves

6.1. Let r be as in 1.1.
The quantized enveloping algebra corresponding to u~ has a canonical basis,

defined in [L] in terms of perverse sheaves. The purpose of this section is to describe
explicitly (or enumerate) these perverse sheaves, in the case of affine quivers, by
indicating their support and the corresponding local systems. (Such an explicit descrip-
tion is not known in the generality of [L].)

6.2. We begin by a result about vanishing of certain Horn-groups; this is in some
sense complementary to 4.2.

(a) If M^.M^e^ 5 are as in 4.2, and if they are not isomorphic, then
Hom(M2,Mi)=0.

The proof is almost the same as that in 4.5. Let /: K^P^"1^ s-)-MI be a
morphism in ^5, where ^eN, f'el^1^ s and M^ is as in 4.2 (a), (c) or (d); if M^ is
as in 4.2 (a), we assume in addition that s>s. We want to prove by induction on s
that/=0. For s'=0, this follows immediately from the fact that M^e^ (as m 4.5).
Hence we may assume that s ' ^ \ and that our assertion is already proved for s — 1,
— 8 instead of s , 8. Then/is a morphism in ̂  (as in 4.5). As in 4.5, applying C
to / leads to a morphism C/: CK5 P^"^5 5 -> CM^ of the same type as /, and
CK^Pi.r^^K5'-1?;.-1^5. Hence, by the induction hypothesis, we have C/=0.
Now, as in 4.5, both K^P^1^'8 and M^ are fixed by KC. Hence /-KC/-0.

Thus, (a) holds if M^, M^ are as in 4.2 (a), (c), (d). By duality, it also holds
if Mi, M^ are as in 4.2 (b), (e). Finally, it also holds if M^, M^ are as in 4.2 (f),
using 2.17 (b).

The following result gives a canonical filtration for any object of ^s.

Proposition 6.3. — Let M==(M, A)e<^§. There are uniquely defined subobjects
M c: M" ofM such that IVTe >(€\ IVr/IVFe0^6, M/M'e <^5.

The existence of the subobjects M', M" as above follows from the results of
section 2. From 4.2 it follows that we can find subobjects N, N' of M such that
M^M'eNandIV^IVreN7 .

Now let Mi c M7/ be two subobjects of M like M\ M". We must prove that
Mi-M7, W[=W.

We can again find subobjects N^, N^ of M such that M' /=Mi©Ni and
Mi =M// @ N'i. From the definitions, it is clear that M'^M[, N^N^, N'^N^. Hence
there exists an automorphism h of the object M which carries M\ N, N' respectively
onto M'i, NI, N'i.

Now h is given with respect to the direct sum decomposition M = M' @ N @ N7

by components (morphisms from one summand to another). By 6.2, the components
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corresponding to (M\ N), (1VT, N7), (N, N') are zero. Hence h maps M and M' @ N
into themselves. It follows that M\=M\ ]VT/=]VT, as required.

6.4. Let M be a r-module and let M^=(M^ M^ . . . MJ be a sequence of iso-
typical F-modules such that M ^ M i © . . . ® M ^ as a r-module. Let E^ be the
(smooth) variety of all pairs consisting of an element A e E^ and a flag of type ]VL in
M, stable under A (see 3.5). Associating to such a pair the corresponding element A
gives a (proper) morphism n: E^ -> E^.

By the decomposition theorem for perverse sheaves, the direct image complex
7i, (C) on E^i is a direct sum of simple perverse sheaves on E^ with shifts; let P^ § be
the set of (isomorphism classes of) simple perverse sheaves which arise in this way
(for various M^.). (Compare [L, §2].) This is a finite set. All objects of PM,§ are
G^-equi variant.

Let v be an indeterminate. If n is as above, r is an integer and P e PM §, let
/7 (P ,M^r)eN be the number of times that P[r] appears in a decomposition
of7c,(C) as a direct sum of simple perverse sheaves with shifts; let d(M )=dimE^.

6.5. Following Drinfeld and Jimbo, we consider the quantized enveloping algebra
U~ attached to our affine Coxeter graph. It is the algebra over Q(z;) with generators
F^.O'eI) and relations

N+l

^ (-inN+l-^FJF^4-1-^
p=o

for any i^j (with N=dimT}, see 1.1); here we set

r i T-T vk~v~k - ,- [a-^a'\[4-n——-^ k^]———.
k=i v-v W[[a^

Let FM be the Q(z;) vector space with basis PM,§. Let F= ©M^ the sum ^ over
a set of representatives for the isomorphism classes of F-modules (the choice of
representatives is immaterial since F^ is canonically isomorphic to F^/ whenever M, M'
are isomorphic).

From [L, §3, §9] it follows that there is a unique Q (zQ-algebra structure on F,
together with a surjective algebra homomorphism

(a) U ~ - ^ F

such that

(b) F^i. . .F^],. . .[.J,)^ ;>>(P, M^ r)^^ )P
P rP r
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for any sequence M^.=(Mi, M^ . . ., MJ of isotypical r-modules such that Mp is
isomorphic to the direct sum of Sp copies of p^ for all p\ P runs through P^, § where
M = M i ® . . . ® M ^ .

For any F-module M, we define U^ to be the subspace of U~ spanned by the
left hand sides of (b) such that ^ Sp = (p,: M) for all /. These give a grading

p : ip = i

^~=@MVM and our homomorphism U~ -> ̂  clearly respects the gradings. Hence
we have

(c) dim UM ̂  dim F^
for any M.

6.6. We shall denote by T the set of F-orbits Z in P(p) such that the stabilizer of
a line in Z has order 2. This is an open dense subset in the variety of all F-orbits
inP(p).

Let M be a F-module and let a: ̂  -^N be a function satisfying 4.13 (a), (b),
(c) and the property (a) below.

(a) ^ a(P)gr(P)+7?r=M in ^F for some/^0.
Pe^ 6

Let X (a) be the subset of E^ consisting for all elements A such that (M, A) is
isomorphic in ^f5 to

©pp^eM^ie—eM^o,!
for some distinct F-orbits Z^, . . . ,Zp in 3".

Then
(b) X (a) is a locally closed, smooth, irreducible subvariety of E^ of dimension

equal to p plus the dimension of any G^-orbit it contains (a special case of 4.14 (a)).
We call X(a) the ^-stratum of E^.
We now define a finite covering

X(a)^X(a)

as follows. Let X(a) be the variety consisting of all pairs (A, Z^, Z^ . . ., Zp) where
AeX(a) and Z^, Z^, . . . . Zp is a sequence of distinct elements of S ' such that the
spectrum of M" (A)/M7 (A) e °^5 is the union of Zi, Z^ . . . , Z ,̂ and possibly other
F-orbits outside T\ Here, M'(A) c: M" (A) are the subobjects of (M, A) provided
by 6.3; they remain in fixed G^-orbits, when A varies in X(a).

Note that Z^, Z^ . . ., Zp are uniquely determined by A up to order; hence the
natural map X(a) -^X(a) given by (A, Z^, Z^, . . ., Zp)\—>A is a principal covering
with group Sp, the symmetric group in p letters. (By convention, Sp has one element
ifp=0.)
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Any irreducible representation % of Sp gives rise, via this covering, to a local
system JS?^ on X(o).

Let P^ ^ be the simple perverse sheaf on E^i whose support is the closure of X (a)
and whose restriction to X(a) is JS?^ (with a shift).

Proposition 6.7. — The perverse sheafP belongs to P^ §.
The proof will be given in 6.14.

Lemma 6.8. - For a^y Y-module M, ̂  perverse sheaf C (m7/z a .y/n//) belongs
^PM,5.

We can find a sequence M^.==(Mi, M^ . . . MJ of isotypical F-modules such
that for some m'^m we have M^M^ ®. . . M^ and M'^M^+i ®. . . M^, and
such that (M^: M^/)=0 for all A -^ h ' . Then each M^ is isomorphic to a unique
r-submodule of M and will be identified with it. It is clear that there is exactly one
flag of type M+ in M, namely

IV^M^ =D M^ =) . . . =D M^^O,

where M^^M^ ® M^^ ®. . . If ^m7, then (M^^^O, while if p^m\ then
(M^^"5^]^''5. In both cases, we see that M^ is A-stable. Hence in our case, the
map n: E^ -> E^ (see 6.4) is an isomorphism, so that TT, (C)= C. The lemma follows.

6.9. Assume now that we are given a line L in p whose stabilizer F^ has order
2 ̂ 4, and that M=(M,A) is an object in 0<^5 with spectrum contained in the
F-orbit Z of L. Assume also that M=(M, A) is aperiodic.

Choose L', e, e as in 2.18. Let (9 c: E^ be the G^-orbit of A and let P be the
simple perverse sheaf on E^ whose support is the closure of (9 and whose restriction
to (9 is C (up to shift). We will prove the following result.

(a) P belongs to P^ 5.
Let S be the (locally closed) subvariety of E^ consisting of all elements 5 such

that (M, 3)e°%l.
Let S be the variety of all pairs (M^, 0) consisting of a F^-stable subspace M^

ofM and of a vector space isomorphism <1>: M^M^8 such that the properties (b),
(c), (d) below are satisfied:

(b) M= ®^Y(ML) where 7 runs over a set of representatives for the cosets F/FL;
(c) the r^-module ML belongs to the subspace ̂  °f ^FL (see 1-13);
(d) yd) (^^(Yr^Yx) for all xeM[ and yeY^.
(Here, M^1 =ML 0 M11 and ^ is the character by which r acts on L.)
Note that there is a natural action of G^ on S.



G. LUSZTIG 155

For any SeS there are associated subspaces M^ and M^5 (see 2.17) and Sg/
defines an isomorphism like 0 above.

This defines a natural GM-equivariant morphism S -> S and shows that S is non-
empty.

Given two elements of S, we get two r^-submodules of M; these are isomorphic,
by 1.14 (a). It follows easily that the G^-action on S is transitive.

Let s= (ML, 0)eS be the image of A in S; let G^s-be its stabilizer in G^ and let
S' be the fibre of S -> S over s.

By definition, for any SeS', the subspaces M[, M^5 associated as in 2.17 to S,
are independent of the choice of S. We set V= M^.

As in 2.18, the C-vector space V is naturally Z/^Z-graded: V= @r^r (using the
action ofF^). To any SeS7, we associate a nilpotent linear map ^ : V - > V by the
procedure of 2.18 (applied to 5 instead of A). As in 2.18, we see that 5 \—> t establishes
an isomorphism of S ' onto the variety of nilpotent endomorphisms in End^ (V).

If^eGM,s-, then the restriction o f g t o V is an automorphism ofV preserving the
grading. This gives an isomorphism of G^s-onto Auto(V).

Let IQ : V -> V be the nilpotent endomorphism corresponding to A and let GQ be
its orbit under Auto(V). Let Po be the simple perverse sheaf on Endi(V) whose
support is the closure of (9^ and whose restriction to (9^ is C (up to shift).

Our aperiodicity assumption implies that Po is a perverse sheaf in the class defined
in [L, §2], for a cyclic quiver. (See 5.9.)

More precisely, let 3S be the variety of all sequences V = : = V O = ^ V 1 = ) . . . = ) V N = 0
where, for each p , V^ is a codimension p subspace of V, compatible with the grading.
Let OS be the set of all pairs consisting of an element teEnd^ (V) and a sequence (V^)
as above such that ^(V^) c: V^ for all p. Let KQ be the second projection of^ onto
Endi (V) and let (Tio); (C) be the direct image of C. Then

(e) some shift of Po is a direct summand of (7io); (C).
Now any subspace W of V, compatible with the grading, gives rise to a

r-submodule W= ®yY(W © Q(W)) of M, where y runs over a set of representatives
for the cosets r/r^. Applying this to each member of a flag in V gives an iso-
morphism of^ onto the variety B' of all sequences of F-submodules
M ^ M ^ I D M ^ I D . . .^M^-0 such that each M^ is generated by M^UM^
(t^M^OM^-M^UMi:5 and each M^/M^^ is of the form gr(Mz^i) for
some r (see 2.20).

Let B' be the variety of all pairs consisting of a sequence in B' and an element
of S', leaving stable each term of that sequence. Let n ' : B' -> S' be the canonical
projection. Let ( 9 ' be the G^ 5—orbit of A and let P' be the simple perverse sheaf on S'
whose support is the closure of ( 9 ' in S7 and whose restriction to ( 9 ' is C (up to shift).
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Then (e) can be reformulated as follows:

(f) some shift of P' is a direct summand of (n')^(C).
Now let B be the variety of all sequences of F-submodules

M = M^ =3 M^ =3 . . . =) M^ = 0 such that each M(P)/M(P+1) is of the form gr (M^ ^ i)
for some r (see 2.20).

Let B7' be the variety of all pairs consisting of a sequence in B and an element
of S, leaving stable each term of that sequence. Let n": B" ->S be the canonical
projection.

We note the following fact.

(g) If (Mi, 5) is an object of o%?s and M^ is a 5-stable r-submodule o f M ^ such
that dimM^dimM^5, then (M^, 5) is again an object of °^.

Indeed, for some e^ e p we have that S^ : M^ -> M^ is an isomorphism; it restricts
to a map Ml-^M^5 which is necessarily injective, hence an isomorphism, by our
assumption on dimensions. If, in addition, (M^, 5) is assumed to have spectrum
contained in Z, then the same must hold for (M^, S).

These remarks can be applied to the members of a sequence in B, assumed to be
stable under some element EeS7; it then follows that these members form with 5
objects of o(^s with spectrum contained in Z. From this we deduce that such a sequence
must automatically be contained in B\

We then see that B^GMX GM s ^ ' in the same w^ as S = GM> < GM^^ and

C?=GM x GM s ^ ' - Therefore from (f) we deduce that
(h) some sift of P" is a direct summand of (7Q, (C),
where P7' is the simple perverse sheaf on S whose support is the closure of (P in S

and whose restriction to (9 is C (up to shift).
Now let B be the variety of all pairs consisting of a sequence in B and an element

of E^, leaving stable each term of that sequence. Let n: B -> E^ be the canonical
projection. From the definition of B it is easy to see that the image n (B) is the closure
of S in E^i. Thus S is open in n (B) and (n"), (C) can be regarded as the restriction of
(TT),(C) from 7i(B) to its open set S. From this and (g) we deduce that some shift of P
is a direct summand of (71); (C).

Now B can be decomposed in connected components; they are obtained by
specifying the isomorphism classes of the successive quotients M(P}/M(P+1) as
F-modules. Then (7i),(C) decomposes accordingly in a direct sum and some shift
of P will appear in one of these direct summands. But each of these direct summands
is, in the notation of [L, 3.5], an iterated ^-product of N perverse sheaves (up to
shift) of the form C on E^/ where M' are F-modules of the form gr(Mz^ i) for some
r; these are certainly in PM'^ by 6.8. Since some shift of P is a direct summand in
such an iterated ^-product, it is contained in P^a, by [L, 3.2, 3.4]. Thus, (a) is
proved.
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6.10. Assume now that M is a F-module isomorphic to the direct sum of p copies
ofr. Let X(0) be the open dense subset of E^ consisting of all A such that (M, A) is
isomorphic to M^ 0 , 1 ® ' - - ® Mz o i for some distinct F-orbits Z^, . . ., Zp in S K ' .
Then X(0) is the special case of X(a) of 6.6 with a identically zero. Hence the
Sp-covering X (0) -> X (0) and the local system JS?^ on X (0) corresponding to any
irreducible representation % of Sp are defined as in 6.6.

Let P be the simple perverse sheaf on E^ whose support is E^ and whose
restriction to X(0) is J?^ (up to a shift). We will show that

(a) P belongs to P^, §.
Let B be the variety of all sequences of F-submodules

^^^(0)^^(i)^_ ^^(p)^o g^ ^^ M^/M^^r as a F-module, for
k=0, 1 , . ^ . , ^ -L

Let B be the variety of all pairs consisting of a sequence in B and an element
of E^, leaving stable each term of that sequence. Let n: B -> E^ be the canonical
projection. If AeX(O) leaves stable a sequence in B, then using 6.9 (g) we see that
each member of that sequence forms, together with A, an object in 0(^5. From the
definition of X (0) it then follows that there are exactly p\ sequences in B left stable
by A and that the restriction of n defines a covering n~1 (X(0)) -> X(0) isomorphic to
X(0) —> X(0). We see therefore that some shift of P is a direct summand of TT, (C).

As in the end of 6.9, 7r,(C) is an iterated ^-product ofp perverse sheaves (up to
shift) of the form C on E^; these are certainly in PM'^ by 6.8. Since some shift o fP
is a direct summand in such an iterated ^-product, it is contained in PM,§? by
[L, 3.2, 3.4]. Thus, (a) is proved.

6.11. We now return to the setup of 6.6. Let A(0)eX(a). We can write M as a
direct sum M==®^zM(/0 where M(A) are A(0)-stable F-submodules of M so that,
for some h^^h^, the following conditions are satisfied.

(a) For any h such that h^h^, there exist s=s(h)^0 and i=i(h)el(~l)s8 such
that (M(A), A(0)) is isomorphic to a direct sum of copies of K^P^^55; moreover, if
h<h'^h^ then either s(K}<s{h') or s(h)=s(h') and i{K)^i(h').

(b) For any h such that h^ +!</?, there exist s=s(h)^0 and i=i(h)eI(~l)s+l b

such that (M(A), A(0)) is isomorphic to a direct sum of copies ofC5?^1^5; moreover,
if /?2 + 1 < h < h\ then either s (h) > s (h') or s (h) = s (/?') and i (h) ̂  i (h').

(c) For any h such that /^</^/^+ 1, we have (M(/Q, A(0))e0^5; if h^<h<^h^
then (M(A), A(0)) is non-zero, with spectrum equal to a single orbit outside S " , and
is aperiodic; if h^ <h<h' ^h^ then (M(/z), A(0)), (M(/Q, A(0)) have disjoint spectra.
Moreover, (M (/^ + 1), A (0)) is as in 6.10.

We have necessarily M (K) = 0 for large | h |.
For any h such that h^h^+l and any F-module N isomorphic to M(A), we

define the (7/,-stratum X (c^) of E^ to be the set of all 5 e E^ such that there exists an
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isomorphism of r-modules N^M(/z) which carries (N, S) to (M (/?), A (0)). For
h = h^ + 1 and any F-mdoule N isomorphic to M (7Q, we define the a^-stratum X (c^)
of E^ to be the subset X(0) of E^ as in 6.10. Clearly, the a^-stratum of N is a single
G^-orbit, if A 7^2+1.

Let B be the variety consisting of all sequences of F-submodules of M

(d) . . .M[-l] cM[0]c=M[l] c:M[2]c= . . .

such that for any h, M[/z]/M[/z— 1] is isomorphic to M(7?) as a r-module. Clearly, B
is nonempty.

Let B7 (resp. B) be the variety of all pairs consisting of a sequence (d) in B and
an element A of E^i, leaving stable each term of that sequence and such that for any h,
the restriction of A to (M [h]/M [h— 1]) is in the a^-stratum (resp. in the closure of the
a^-stratum) of E^ ̂ /M [ H - I ] '

Clearly, B7 is an open subvariety of B.
Let n: B -» E^, n ' : B' -> E^ be the canonical projections. It is clear that n is a

proper morphism.

Lemma 6.12. — (a) The restriction of n defines an isomorphism
n'-^X^^X^).

(b) B, B' are irreducible of dimension equal to dim X(a).
(c) The image of n: B -> E^( is equal to the closure of X (a) in E^.

We first prove (a). We will show only that TT'^A) is a single point for any
AeX(a). The proof will be along the lines of 6.3.

We may assume that A=A(0) as in 6.11. With notation of 6.11, we set
M ((/Q) =@h':hf^hM (TO- Then the M (W) together with A form an element of n' ~1 (A).
We now consider an arbitrary element of TI/'^A) formed by a sequence 6.11 (d)
together with A. By assumption, we have (M[h]/M[h-1], A)^(M (A), A) for all
/z^ /^+l and (M[/^+1]/M[/Z2L A)eo^s has a spectrum disjoint from that of
(M[h]/M[h— I], A) for h^<h^h^. Hence we may use the vanishing of Ext-groups
in 4.2 to conclude that for each h there exists a A-stable F-submodule M^ of M [h}
such that M [h] = M [h - 1] © M^. We have M = ® M^ and (M^, A) ̂  (M (/z). A) for all
h^h^+l. Then we have automatically (M^, A)^(M(/0, A) for h=h^+l. Hence we
can find an automorphism a of (M, A) which maps M (h) onto M^ for all h. Let
a^ ^ : M (h) -> M (/Q be the F-linear maps defined by a (x) = ̂  a^ ^ (x) for all x e M (h).

h'

Since a is compatible with A, it follows that a^ ^ is compatible with the restrictions
of A hence it defines a morphism in <^5; hence, by 6.2, it must be zero, whenever
h<h'. It follows that a(M(h)) a @n' :ht^hM(flf) =M (W). hence a "^P5 M (W) into

itself for any h. Since a is an isomorphism we have a (M ((A)) = M ((/?)). On the other
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hand, from the definition of a we have a(M((h))=M[h]. Thus M [h] = M ((/?)) for
all h, as required.

We now prove (b). We consider the second projection B' -> B (resp. B -> B); its
fibre at the point 6.11 (d) of B is denoted O7 (resp. <D). Since this map is GM-equivariant
and GM acts transitively on B, it is enough to prove that 0 and 0' are irreducible of
dimension equal to dim X(a)-dim B.

Clearly,

O^n^^ Ft HomrCMW^p.M^)-5)
h h>h'

where X (c^) are as in 6.11 and O is isomorphic to the analogous product in which
each X(c^) is replaced by its closure. This shows that $\ 0 are irreducible of the
same dimension and

(d) dimO /=^dimX(a^)+ ^ dim Honir (M (A)5 (g) p, M^7)-5).
h h>h'

By 6.6 (b) we have

(e) dim X (a) = p + dim GM - dim St^,

where St^ is the stabilizer of A in GM. Now St^ has the same dimension as its Lie
algebra; hence

dimSt^- ^ dim Horn ((M (A), A), (M(/Q, A)),
h, h'

where the Horn are taken in ^s. By 6.2 we have Horn ((M(A), A), (M(/0, A))=0 if
h<h', hence

(0 dimSt^= ^ dim Horn ((M (A), A), (M(A7), A)).
h^h'

On the other hand, dim B is equal to dim G^ minus the dimension of the Lie
algebra of the stabilizer of 6.11 (d) in GM (by the transitivity of the GM action on B).
Thus,

(g) dim B = dim GM - ^ dim Honir (M (A), M (A7)).
h^h'

From (d), (e), (f), (g) we see that the difference

dim O7 - dim X (a) + dim B

is equal to
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^dimX(<7,,)+ ^ dimHomrCMW^p.M^'r^-^-dimGM
A h>h'

+ ^ dim Horn ((M (h). A), (M(/Q, A))+dimGM
A^f t '

- ^ dim Horn? (M (A), M(/;')).

It remains to show that the last expression is zero. By 4.7, the last expression is
equal to

^dimX((7,,)-p+ ^ dimExt^lvH/O.A^MC/Q.A))
h h>h'

+^ dim Horn ((M(/Q, A), (M(/Q, A))-^dimHonir(M(/0, M(/Q),
'' /i

hence, by the vanishing of Ext-groups 4.2, to

E dim X(o,,)-p+^ dim Horn ((M(/0, A), (M(h), ̂ )-^dimG^^.
h h ^

To prove that this is zero, it is enough to observe that

dim X (a,,) = ̂  dim GM ̂  - dim Horn ((M (h). A), (M (h). A))
h

for all/; ̂ 2+1 and

dim X (CT^) =^ dim GM^)-dim Horn ((M(/;), A), (M(h), A))+^
h

for h=h^+l. These follow immediately from the definitions and from 6.6 (b). This
completes the proof of (b).

We now prove (c). Since n is proper, we see from (b) that the image of n is a
closed irreducible subset of E^ of dimension ^dimX(o). This image contains X(o),
by (a), hence it contains the closure of X(o) and therefore it has dimension equal to
dim X (o) and it must coincide with X (o). The lemma is proved.

Lemma 6.13. - Let (M (A), A (0)) be as in 6. I I (a) or (b). The G^ ^-orbit of A (0)
^E^IW is open inE^^.

By 4.8, the codimension of that orbit is equal to

dimExt1 ((M(/0, A(0)), (M(A), A(0)))

and this is zero, by 4.2.
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6.14. We now prove 6.7. We place ourselves in the setup of 6.11. For any integer h,
let X (a^) c= E^ ̂  be defined as in 6.11. Let J^^ be the local system on X (c^) defined
as C if h^h^\ and as JSfx (see 6.10) if h=h^+ 1. Let P^ be the simple perverse
sheaf on E^ ̂  whose support is the closure of X (a^) and whose restriction to X (a,,)
is J^x (up to shift). Then

(a) P^ belongs to PM^),§.
(This follows from 6.9 (a), if h^<h^h^ from 6.10 (a), if A ^ / ^ + l and from

6.13, 6.8 for h<^h^ and for h>h^ 1.)
From [L, 3.2, 3.5] it then follows that the complex

(b) . . . ^ P ^ P i ^ P o ^ P - i ^ . . . onE^

(iterated ^ product) is a direct sum of shifts of simple perverse sheaves in P^, §. Hence
it is enough to show that some shift of the simple perverse sheaf P^ is a direct
summand of (b).

We now review the definition of (b) in our case. Let <t>7 be as in the proof
of 6.12; from that proof, we have a natural map <!>' —> ]-[X(a^); we pull back under

h

this map the tensor product of the J^ and we obtain a local system on $7; this
extends uniquely to a G^-equivariant local system J?7 on B' (a smooth, irreducible
variety, which is open dense in B). Let P7 be the simple perverse sheaf on B whose
support is B and whose restriction to B' is JS?7, up to shift. Then, by definition, the
complex (b) is just 7T,P7 (up to shift).

By 6.12(b), we have dim(B-B')<dim X(or) hence dimn(B-Bf)<d\mX(o).
Thus the set X' = X (a) - (X (a) U 71 (B - B7)) is an open dense subset of X (a).

By 6.12 (a), the restriction of n is an isomorphism n-1 (X^X7.
Under this isomorphism, the restriction of the local system ^ ' to the subset

n-1 (X') of B7 corresponds to a local system on X' which can be seen to be just the
restriction of the local system J?o defining P^ ^ on X (a).

Thus, the cohomology sheaves of TT, P' restricted to X' are equal to L() | X' in one
degree and zero in all other degrees. Let P" be the simple perverse sheaf whose
support is closure of X7 and whose restriction to X' is JS?o | X7, up to shift.

Since TT; P ' is known to be a direct sum of shifts of simple perverse sheaves and
X7 is open dense in the support of 7r,P7 (see 6.12 (c)) it follows that some shift of P77

is a direct summand of 7i,P7. We have clearly P"=P^ ^. Proposition 6.7 is proved.

6.15. Let M be a F-module and let (a,?i) be an element of y (Wf (see 4.3). Recall
that ^(Xi^X^ . . . 5^). Letp=^'kj. We write %(X) for the irreducible representa-

j
tion of Sp corresponding in the usual way to partition \. (Thus, if ^=(1,, . . ., 1) then
% (k) is the unit representation.)
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Theorem 6.16. — (a) The algebra homomorphism U~ —>F (see 6.5 (a)) is an
isomorphism.

(b) For any T-module M, the map (a,X)i—^P^ ̂  (see 6.7, 6.15) ^ a bijection
^(M)^PM,S.

For any M, the map in (b) is clearly injective; hence

(C) |PM,5|^|^(M)5!.

We have

(d) dimUM^dimFM-IPM^I

(see 6.5 (c)),

(e) dim u^ ̂  dim U^

(since the Q-algebra ^- is a specialization of the Q(z?)-algebra U~), and

(f) dim^-I^M)5!

(by 4.16). Combining (c), (d), (e), (f), we see that (c), (d), (e) are equalities. The
theorem follows. (Another proof of (a) is given in [L, 10.17].)
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