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THE ARITHMETIC THEORY OF LOOP GROUPS
by Howarp GARLAND

To my father, Max Garland, on the occasion of his seventieth birthday

o.1. Introduction.

We let R denote a commutative ring with unit, and %; the ring of all formal
Laurent series

2 aqt',  ageR,

>,
with coefficients in R. We let 2 denote a field, so that %, is also a field. For any
commutative ring R, with unit, we let R* denote the units in R. We let G, denote
the group of %,-rational points of a simply connected Chevalley group G, which we
take to be simple. We let

op: L XL~k

denote the tame-symbol (see § 12, (12.20)). Then as one knows from the work of
Matsumoto, Moore, and Steinberg (see [13], [18], and [20]), there is, corresponding
to ¢y, a central extension

(0.1) 1>k —>Gi—Gg —1,

of Gg,. Our first goal in this paper is to develop a representation theory for the
group G} (here, & may have arbitrary characteristic). These representations will
be infinite-dimensional, with representation space defined over the field 2. They are
constructed using the representation theory of Kac-Moody Lie algebras (see [10], [11],
[12], [15], [8], §§ 3, 6, and see § 3 of the present paper). Thus, let B=(By);;_1, ... ¢
be a symmetrizable Cartan matrix and let g(B) be the corresponding Kac-Moody Lie
algebra (see § 3, for the definitions). Roughly speaking, one constructs g(B) by
mimicking the Serre presentation, with B in place of a classical Cartan matrix corre-
sponding to a (finite-dimensional) semi-simple Lie algebra. In general, g(B) is in
fact infinite-dimensional.

Partially supported by NSF Grant # MCS76-10435.
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6 HOWARD GARLAND

Returning to the group G{, one may then take the point of view that the Lie
algebra of Gf is a g(B), for a suitable choice of B. More precisely, let g denote the
Lie algebra of the Chevalley group G, and let A denote the set of all roots of g (relative
to a Cartan subalgebra §). Let «;, ..., o, (/=rank g) denote the simple roots in g
(relative to some fixed order). For ease of description, we have assumed g is in fact
simple, and we let «, denote the highest root of A (relative to our fixed order). Let
oy 1=—09, and let A denote the (/+1)X(£+1) matrix K=(Kij)“=1’_w,+1, where
K,-j=2(oz,-, o) (e, )4 4, j=1, ..., {+1. We refer to such an A as an affine Cartan
matrix, and note that an affine Cartan matrix is a symmetrizable Cartan matrix. Then
the Lie algebra of GT is a k-form of g(A).

For % a field of characteristic zero, Kac and Moody initiated a representation
theory for g(B), B equal to a symmetrizable Cartan matrix (see § 6) (!). Moreover, in
the special case when B=A is an affine Cartan matrix one can prove the existence
of a Chevalley lattice for each of these Kac-Moody representations with dominant
integral highest weight (see [7], § 11, and also § 6 of the present paper, which may be
considered a continuation of [7]). This Chevalley lattice then allows one to develop
a representation theory over an arbitrary field %, and in this way we obtain the desired
representations for the group Gf.

Moreover, our theory being Z-rational, then even when Z=R or G (), we can
use the existence of a Chevalley lattice to develop a theory of arithmetic subgroups I’
of G}, and prove the existence of a fundamental domain for I', using Siegel sets!
(8§ 17-21). We will expand on this description later on in the introduction.

It should be mentioned at the outset that the present formulation of our theory
substantially differs from the original version in an earlier manuscript, and owes a
great deal to the insight of the referif:. Thus, in the original version, given Gg, (k
an arbitrary field), tge algebra g(A) corresponding to Gg,, and a Kac-Moody
representation © of g(A), corresponding to a dominant integral highest weight A (see
§ 6 for the definition), we constructed a central extension G} of a quotient of Gg,.
The referee explicitly computed the symbol of G} and found it to be a power of the
tame symbol! (see § 12, Theorem (12.24)). Incidentally, one can always use G} to
construct a central extension E’(G_gk) of Gg,, rather than of a quotient of Gg,, by
taking a suitable fiber product.

The referee also gave an elegant cohomological interpretation of the Kac-Moody

algebra g(A) (8§ 1-3, below). Thus, let & be a field of characteristic zero, and let
k[t t*] be the ring of finite Laurent polynomials

K
2 aqt’,  aek,

1
i=1,

(Y It was in this context that V. Kac proved his celebrated character formula (see [11]).

(3) Throughout this paper we let Z, Q, R, and C denote the rational integers, rational numbers, real
numbers, and complex numbers, respectively.
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THE ARITHMETIC THEORY OF LOOP GROUPS 7

where 7,<i, are integers. Let §=Zk[¢, 1 ']®,q, regarded as a Lie algebra over %
(so § is an infinite-dimensional Lie algebra over k: we call it the loop algebra (of g)).
Then the referee proved that H*(§; &), the 2nd Lie algebra cohomology of § with respect
to trivial action on %, has dimension one. The referee’s proof is given in § 2. The
idea is to compute the “symbol” of an arbitrary central extension; i.e., to develop a
Lie algebra analogue for the theory of Matsumoto, Moore, and Steinberg ([13], [18]
and [20]). The Lie algebra version is simpler.

On the other hand Kac and Moody knew that g(x) was a central extension of
9 (g simple) with one-dimensional center. It then follows easily that g(K) is the
universal covering § (see § 1, Definition (1.6)) of @ (see § 3, Theorem (3.14)). Also, if
one replaces § by §°=g®,%,, then (as observed by the referee) the argument of
§ 2 can be adopted to construct a universal covering §°D§ of §°, but now with §°
universal in an appropriate category (see § 5, Remarks (5.11)). The universality of §°
then allows one, by Galois descent, to construct a central extension 1 of a semi-simple
Lie algebra [ over .%,, which splits over an unramified Galois extension %, of %, (see
Theorem (C24) of Appendix III, and see the Remark following Theorem (Cz2g4)).

Next, consider the group of % -rational points L of a semi-simple, simply
connected, linear algebraic group L which is defined over .%,, and which splits over
the unramified extension %, of %,. We let Gy, denote the %, rational points of
L. Analogous to the situation for Lie algebras, one might ask whether one may
construct from the central extension G}, of Gg,., a central extension L of L, by Galois
descent. Of course one would expect that such a construction could be effected from
a suitable universal property of the tame symbol. Indeed, when %’ is a finite field, one
could probably construct L by using Moore’s theorem on continuous K, of %, (see,
e.g., Milnor [14], Appendix). However, in Appendix III of this paper, we rather
consider the case when chark=o0, and then we take a different approach: In order
to construct the group L, we utilize the universality property of §, and we utilize the
Kac-Moody representations of g(x), which correspond to dominant integral highest
weights (these representations extend from g to §°). However, we must now allow g
to be semi-simple and then give a suitable definition for A.

Now we had said that we develop a representation theory for the groups Gj.
Indeed, for each dominant integral highest weight A, we obtain such a representation,
and we obtain a corresponding image G} of G} (see Definition (7.21) for the definition
of G}). We define an Iwahori subgroup £CG} (see Definition (7.24)). Roughly
speaking, the subgroup  corresponds to the pullback of an Iwahori subgroup of Gg,
(see [9], [5], and the remark at the end of § 7).

In §§ 11, 13, 14, we construct a Tits system (G2, #, N, S) (see Theorem (14.10)).
Again, roughly speaking, this Tits system is the pullback of the Tits system of [g]
(though our N is smaller).

In § 9, 10, 12, we obtain explicit information about the group G}, considered
as a central extension of the %-rational points of a classical Chevalley group. In
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8 HOWARD GARLAND

particular, in § 12, we associate to G2, a central extension EA(ng) of Gg,, and
compute the symbol of this central extension (see Theorem (12.24)). This symbol
turns out to be a power of the tame symbol. It follows easily from this, and from the
definition of the group E*(Gy,), that we obtain a homomorphism from Gj onto G},
i.e., a representation of Gf. 1In § 15 we compare the G} as A varies.

Now let 2=R or C (from § 16 on, with the exception of the appendices, we
pretty much restrict to the case when £=R or C). Let V} denote the representation
space corresponding to the dominant integral highest weight A for g(x). Then V3
has a Chevalley lattice V} (so in particular, V;CV} is a Z-submodule such that
V2=£k®,V}) and V] has a positive-definite, Hermitian inner product { , } which
is coherent with V} in the sense that {v,, v,}eZ, for v,,v,€V} (see [7], § 11, 12, and
see §§ 6, 9 of the present paper). We let J=Z when 2=R, and we let J be the ring
of integers in a Euclidean, imaginary quadratic field, when 2=0C (see Remark (v)
following the statement of Theorem (19.3)). We set V3 =J®,V} and let I' (resp. K)
be the subgroup of G}, consisting of all elements which leave V} (resp. { , })
invariant. We take the point of view that K CG) is the analogue of a maximal
compact subgroup, and letting # play the role of a parabolic subgroup, we prove the
existence of an Iwasawa decomposition G}=K.Z, in § 16 (see Theorem (16.8) and
Lemma (16.14)). We then use this Iwasawa decomposition to define the notion of
a Siegel set (see Definition (19.2), and the definition of G® (¢>0), preceeding
Lemma (20.10)).

Now in § 3 we introduce the degree derivation D=D,, ; of g(1~X). From
§ 6 we then know that D acts on each V2, and then in § 17 we define the auto-
morphism ¢®, cek, of V). It is apparent from the definitions of ¢® and G}, that
¢® normalizes G}, cek. Then using our Siegel set, we construct a fundamental
domain for [' acting on Gle ™, r>o0 (see Theorem (20.14)). Our proof of
Theorem (20.14) is modeled on the proof of Theorem (1.6), of [1]. However, in
the infinite dimensional case it takes extra work to prove the existence of minima.
Actually we pass from toa subgroup IA‘O, to construct the fundamental domain in
Theorem (20.14). Even for [y, our fundamental domain is not exact. However,
for T'y, one obtains a sharp description of the self intersections when 7 is sufficiently
large (see Theorem (21.16) and its Corollary 1—these results are analogues of the
Harish-Chandra finiteness theorem and of the theorem of ‘transformations at oo’
in the classical theory of fundamental domains). Our proof of Theorem (21.16) is
related to that of the corresponding result in [1] (see e.g., Theorem (4.4) of [1]).
However, we must now contend with the existence of infinitely many Bruhat cells.

We may give an alternative point of view for the above theory of fundamental
domains. Thus, for 7>o0, let I',=¢ "[';¢®. We may then take the point of view
that we are constructing a fundamental domain for T, acting on G} (see Corollary 1
to Theorem (21.16), and the paragraph preceding that Corollary). Finally, if

E=ePeh(e ™,
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THE ARITHMETIC THEORY OF LOOP GROUPS 9

where G7F (r) is as in Corollary 1 to Theorem (21.16), then by that corollary and the
paragraph preceding it, we have that éf‘(,:f};, and we obtain a sharp description
of the self intersections. Moreover, we may naturally regard S as a Siegel set
constructed with K,=¢PRe™"®, r>o0, in place of K.

The paper is organized as follows: In §§ 1-3 we construct the universal covering
of § when g is simple; we show in § g (still assuming g simple) that g(X) is the universal
covering of §. In § 4 we define the Chevalley form g,(A) of g(K), as in [7]. In
§ 5 we introduce completions of the algebras § and g(K) In § 6 we introduce
the Kac-Moody representation theory of Kac-Moody algebras, and the Chevalley
lattice 'V of [7], in the g(x)-representation space V* corresponding to a dominant
integral highest weight ». In § 7 we define the Chevalley group G} (% a field of
arbitrary characteristic, and A a dominant integral highest weight). We also intro-
duce the Iwahori subgroup #CG}. In § 8 we study the adjoint representation of
G}. In § 9, 10, and 12, we study the groups G} as central extensions of classical
Chevalley groups, and explicitly compute the symbol. In §§ 11, 13, and 14, we
construct the Tits system (G2, .# N,S) (see Theorem (14.10)). The proof given
here that (G2, .#, N, S) is a Tits system, is different from the proof we gave originally,
and follows a suggestion of J. Tits. Thus, in § 11, we apply the results of [4], and
construct a donnée radicielle with valuation. When charZ=o0, a similar (but on
the surface, slightly different) Tits system had been constructed by Marcuson in [12].
Also, with some restriction on %, such a Tits system had been constructed by Moody
and Teo for the adjoint group (see [17]). Both the construction of Marcuson and
of Moody-Teo were valid in the context of general Kac-Moody Lie algebras, while
our Tits system is valid only for Kac-Moody algebras corresponding to affine Cartan
matrices. However, our construction complements that of Marcuson, in that we
make no restriction on the field £, and it complements that of Moody and Teo, in that
we make no restriction on £ and work with nonadjoint groups.

In § 15 we study the relation among the G2, as A varies. Finally, in §§ 17-21,
we construct the fundamental domain for the arithmetic group I',. In§ 17 we prove
the existence of minima of certain matrix coefficients of V} (k=R or C) on T', orbits.
In § 21, we prove our theorem on self intersections (Theorem (21.16)). We mention
that as a consequence of Theorem (21.16), ', and f‘, are not conjugate in G}
(k=R or C) for r>o0 sufficiently large (see Corollary (3) to Theorem (21.16)).

In Appendix I, we prove Lemma (11.2). Also, Lemma (A.1) of Appendix 1
is used to prove (17.1). In Appendix II, we consider the case when % is a finite
field, and formulate a conjecture about the special representation of Gg,, relating
this representation to a suitable V} (this conjecture is an analogue to the known
theorem for finite Chevalley groups, relating the Steinberg representation to a highest
weight module). (Added in proof. — J. Arnon recently proved a slightly modified
version of this conjecture.)
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10 HOWARD GARLAND

As it stands, our theory is a theory for Chevalley groups Gg,, and their Lie
algebras. In Appendix III we begin investigating how to extend our results to
non-split groups. Thus, assume charkZ=o0, and as before, let L. be the group of
Z-rational points of a linear algebraic group which is semi-simple and defined over .%,.
Assume further that L splits over an unramified Galois extension %, of Z,. Let Gg,,
denote the group of % -rational points of L. Following a suggestion of the referee,
we show (by universality!) that at the Lie algebra level, we can lift Galois automor-
phisms from the Lie algebra of Gg, to that of the central extension Gi. We
then use this Lie algebra result and representation theory, to obtain a similar
result at the group level, and then, by Galois descent, construct a central extension L
of L. Our method of construction of i, here, is somewhat different from the method
of construction proposed by the referee. As we mentioned earlier, one could probably
also construct L. when £ is a finite field by using Moore’s theorem (see Milnor [14],
Appendix).

If =R or C, and if L is actually defined over &, then the referee has extended
the Iwasawa decomposition of § 16 to L and to L. Thus the stage is set for beginning
the extension of our reduction theory for arithmetic groups to the non-split case.

It is now apparent that the restrictions on the field Z vary in the course of the
paper. In § 1, 2, 3, the meaning of % is always made explicit, and for the most part,
we assume in these sections that charkZ=o. In §§ 4, 5, 6, the meaning of 2 is made
explicit. In §§ 7, 8, and 10-15, no restriction is made on the field & (so & may have
arbitrary characteristic). From § 16 through the final section, § 21, we assume % is
R or C. In Appendix I, no restriction is made on 2. In Appendix II, we assume %
is finite. In Appendix III, we assume charZ=o.

As we have mentioned, we are indebted to the referee for communicating the
universality results of §§ 1, 2, and 3, the relation in § 12, between the central extension G}
and the tame symbol, and the implications these last results have for extending our
results to the non-split case. We are also indebted to J. Tits for a long and detailed
correspondence and many suggestions. We extend to both, our hearty thanks. Also,
we wish to thank D. Belli for her patient and painstaking efforts in typing the
manuscript.

1. General remarks on central extensions of Lie Algebras.

In this section we describe Lie algebra analogues of some of the results in
Moore [18], Chapter I. At the outset we make the notational convention that C,
R, Q, and Z denote the fields of complex numbers, real numbers, rational numbers
and the ring of rational integers, respectively. We let a denote a Lie algebra over a
field 2. By a central extension of a by a Lie algebra b, we mean an exact sequence of
Lie algebras (over &):

(r.x) 0o—>b—>e>a—o0,
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THE ARITHMETIC THEORY OF LOOP GROUPS It

such that b is in the center of e. If
(x.2) 0—>b'—>e¢' >a—>o0

is a second central extension of a, then by a morphism from the central extension (1.1)
to the central extension (1.2), we mean a pair of Lie algebra homomorphisms (¢, ),
¢:e—>e’, ¢:b—>b’, such that the diagram

b — ¢

(x.3) e Y

is commutative.
We say a Lie algebra is perfect, if it is equal to its own commutator subalgebra.

Definition (x.4). — We call the central extension (1.1) a covering of a, in case ¢ is
perfect. In this case, we will also call ¢ or ™ (or the pair (e, =)) a covering of a, and we will
say that e (or the pair (e, ™)) covers a.

Remark. — If the Lie algebra a admits a covering, then a is perfect.

Lemma (x.5). — If (1.1) is a covering of a, then there is at most one morphism from the
central extension (1.1) to a second central extension of a.

Proof. — Assume (¢, ¢) and (¢’, ¢’) are morphisms from the central exten-
sion (1.1) to the central extension (1.2). Thus, in particular, we also have a
commutative diagram (1.3) with (¢’, ¢’) in place of (¢, §). For x, yee, we consider

(e—o") (% 0] =o([x2]) —¢'([x, 1)
=[e(*); 2(W)]—[¢"(*), 9'(1)]
=[o(*) —¢'(x), 2())]+[0'(*), () —¢'())]

:0,

where the last equality follows from the fact that ¢(2)—¢’(2)eb’, for all zee, this
last assertion following from our assumption that (1.3) is commutative both for (¢, ¢)
and for (¢’, ).

Definition (x.6). — We say that a covering of a is universal, if for every central exten-
ston of a, there is a unique morphism (in the sense of central extensions) from the covering to the
central extension.

Remark. — In view of Lemma (1.5), it suffices, in order to verify that a given
covering is universal, to show that for every central extension of a, there exists a
morphism from the given covering to the central extension. Uniqueness then follows
automatically from Lemma (1.5).
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12 HOWARD GARLAND
The following proposition is an immediate consequence of Definition (1.6):

Proposition (x.7). — Any two universal coverings of a are isomorphic as central
extensions.

Of course, by Lemma (1.5), the isomorphism is unique.
Now let V be a vector space over %, and let Z2(a, V) denote the vector space
over k, of all skew-symmetric, bilinear maps

Sfraxa—V,
such that

(18) f([x:.y]a Z) _f([x3 Z]a.y) +f([y’ Z], x)=0 X, ), 2€Q.

We let B2%(a, V) denote the vector space of all f, as above, such that there exists a linear
map g:a—V, with

Swo)=g([x0]), xpea
Then the Jacobi identity implies that B2(a, V) CZ2%(a, V), and we set

H?(a, V)=7%(a, V) /B*(a, V).
We call Z2%(a, V) (resp. B2(a, V), resp. H2(a,V)) the space of 2-cocycles (resp.
2-coboundaries; resp. the second cohomology group of a) with respect to V (regarded as a

trivial a-module). It is well known that H2(a, V) parametrizes (suitably defined)
equivalence classes of central extensions

0—>V—>e¢—>a—o.

We briefly recall how one constructs such a central extension, given an element f
in Z%(a, V). We let

and if £=(x,0), n=(y,w)eq; (so x,y€a, v, weV) we define the bracket [£, n]eq;
by
(19) [&) Y)]:<[xa,y]:f(x’.y))'

It follows directly from the cocycle identity (1.8) that this bracket satisfies the Jacobi
identity, and so with this bracket, a, is a Lie algebra, and the exact sequence

P &
0—->V—>aq—>a—o,

where ¢ is the inclusion, and @& the projection from q; onto its first factor, is a central
extension of a.

In the next section we shall give an explicit construction of the universal covering,
in a special case. We have already noted that if the Lie algebra a admits a covering,
then a is perfect. Conversely, we have:
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THE ARITHMETIC THEORY OF LOOP GROUPS 13

Lemma (x.10). — If a is perfect, then a has a unmiversal covering.

Progf. — We let W'=A2q denote the second exterior power of a, and we let
ICW’ denote the subspace spanned by all elements

[x,y]/\z——[x, Z]’U"“[% Z]/\x: X, ), 2€.

We then set W=W'/I, and let «(x, )eW denote the image of xAyeW’. From the

definition of I, one immediately sees that « satisfies the cocycle identity (1.8);
ie., acZ?(a, W).

We let
(x.xx) 0->W-—>q,—~>a—>0
denote the corresponding central extension.

If feZ3%*, V) and
(x.12) 0—-V—>aq—>a—>0
is another central extension of a, we consider the map ¢':W-—V defined by
V(a(x ) =f(%,3), %yea. We then define ¢':a,~a, by ¢'(x u)=(x (), req,
ueW.

It is easily checked that (¢’, {’) is a morphism from the central extension (1.11)
to the central extension (I1.12).

Now let a=[a,, a,] denote the commutator subalgebra of a,. Since a is
perfect, we have

i+W= Ay
and hence a=[a,, a,]=[4a, a].
Thus, if ¢=Wnd, then the central extension
(x.13) 0—>c¢—>d—>a—>0
is a covering of a, and if
$=1¢" restricted to ¢

@ =1¢’ restricted to a

then (¢, ¢) is 2 morphism from this central extension to the central extension (1.12).
This proves that the central extension (1.13) is a universal covering of a. m

The remainder of this section will not be needed in the sequel, but is included
to complete the analogy with some of the results in Moore [18]. Thus:

Definition (x.14). — We will say a Lie algebra a is simply connected, in case it is
true that for every central extension

0->b->e—>a— 0,
of a, there is a unique homomorphism ¢ :a->e, such that moq = identity.
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14 HOWARD GARLAND
Defimition (x.15). — If a is a Lie algebra and
U3
o—+b—>e—>a—o0

a covering of a, with e simply connected, then we call this a simply connected covering of a.
Theorem (x.16). — A covering of a is universal if and only if it is simply connected.

Progf. — Let

~

(x.x7) 0—>c>d>a—>0

be a simply connected covering of a, and let us consider a central extension (1.1) of a.
We may “lift” this central extension to @ as follows: We let ¢(2) Cexd@ denote the
subalgebra of all (x,y)eex@d, such that w(x)=w(y). The projection of ex@d@ onto
the second factor, induces a surjective homomorphism

e(a)—°>a—>o,

and it is easily checked that kernel p is contained in the center of e(a). Thus, since
G is simply connected, there is a unique homomorphism ¢:@d—>e(a), such that
pop=1identity. We let A:d—>e, denote the composition of ¢ with the projection of
¢(a) onto the first factor of exa. Itis easily checked that A(¢) Cb, and hence, if we
let p denote the restriction of A to ¢, then (A, w) is a morphism from (1.17) to (1.1);
i.e., the covering (1.17) is universal (since the morphism is automatically unique,
thanks to Lemma (1.5).
Conversely, assume (1.17) is a universal covering of a. Let

~ v ~

(x.18) 0—>d—>¢—>0a—>0
be a central extension. Since @ is perfect, Lemma (1.5) implies there is at most one
morphism from the covering

0—>0—>0a-—>0—>0
to the central extension (1.18), and hence, to prove (1.17) is a simply connected
covering, it suffices to prove (1.18) is a split exact sequence. Again using the
assumption that @ is perfect, and arguing as in the proof of Lemma (1.10), we can

show that €, =[%,¥] is perfect. But if p,=%,NDd, then the exact sequence (1.18)
will split if the exact sequence

0—>0y—>¢—>a—>0

is split; i.e., we can assume the exact sequence (1.18) is a covering. We now
consider the diagram

~V oA
¢>ad—>a—o0,
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THE ARITHMETIC THEORY OF LOOP GROUPS 15
and we set y=aov. We wish to show that kernel y is contained in the center of ?.
But if xekernely, then v(x)ecenter @&. Hence
(x.19) [x, y]ekernel v, ye¥.

Hence [xa [.J’1>)’2]]=0> )’1,)’25?,

by the Jacobi identity, (1.19), and the fact that kernel vCcenter?. But then
xecenter€, since we are assuming € is perfect. Thus

~Y
(x.20) o—>kernel y>¥—>a—o

is a central extension. Since we are assuming (1.17) is universal, there is a
morphism (¢, ¢) from (1.1%) to (1.20); i.e., we have a commutative diagram

0—> ¢ — 8 —> a —> 0

J

0 — kernel y —¢

N

We will be done, if we show that vo¢ is the identity.
But by the commutativity of the above diagram

Go(Vop)=vop =0,
and hence for xed,
g(x)=v(p(x))—xec.
If x,x,e@, then
g([x1, %)) =voo([xy, %5]) — [¥1, %3] =[g(1), vo p(%5) ]+ [¥y, g(x2) ] =0,
since g takes values in ¢. But then g is identically zero, since @ is perfect. Hence

vo @ =identity. m

Remarks. — (i) If a is simply connected, then a is perfect. Indeed, if a is not
perfect, there is a non-trivial linear map f: a/[a, a] >%, and hence, if we consider the
trivial central extension

o—>k—>a®k—a—o,
with 2—a®% denoting the inclusion, and a®k-—>a the projection, then, using f, there

are two splitting homomorphisms, and this nonuniqueness contradicts the simple
connectivity of a. (ii) If a has a simply connected covering,

0—>¢—>G—>a—o,

then @ covers every covering of a. Indeed, if

o~>b—>e—>a—o0
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16 HOWARD GARLAND

is a covering of a, we can, since a simply connected covering is universal, find a
morphism (¢, ¢) from the first central extension:

0o —> — 8§ — a — o

A
s

< O
<
<

|

o —>

We then need only check ¢ is surjective. But if e,=¢(@), then the commutativity
of the above diagram implies e¢=¢,-+b, and hence

ez[ea e]=[e0, eo] c €05

and so e=¢, and ¢ is surjective.

2. An explicit construction for the universal covering of the loop Algebra.

We let g denote a split simple Lie algebra over a field £ of characteristic zero.
Let k[t, t7*] (with ¢ an indeterminate) denote the ring of polynomials in ¢ and ¢!, with
coefficients in 2. We let

g=rk[t, t7']®,g,
we write ux for u®x (uek[t,t7'], xeg) and we define a Lie bracket on § by
(2‘ I) [uxh vx2] =ur® [xl’ xz]a
where u, vek[t,t™'], x,,x,€g, and [x,, x,] denotes the Lie bracket of x, x, in g.
We regard § with the bracket (2.1) as a Lie algebra over 2 (which of course is
infinite-dimensional). We call § the loop algebra of g. It is easy to verify that § is

perfect (since g is) and hence § has a universal covering. In this section, we shall give
an explicit construction for the universal covering

0—>¢—>g§—~>§—>0
of §, and in particular, find dim, ¢=1. To determine the covering, it suffices to give
a corresponding cocycle 7t€Z2(q, k). We must then show that the central extension

constructed from <, as in § 1, is the universal covering of @.
In order to define 7, we first define a k-bilinear pairing

ot k[t TXE[E, Y] —E.
Namely, we let
7o(u, v) =residue (udv),
for u, vek[t, t7']. For example,
- if =0
q, =) "

o otherwise.
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We have
(2.2) 0 = To(Uylla, Ug) + To(Uslty, Ug) + To(Uolls, Uy), Uy, Uy, usek[t, t1].
We let (, ) denote the Killing form on g, and we define © by
t(ux, ) =—1o(u, v) (%, 9), u,vek[t,t™'], x,yeg.

A direct verification, using (2.1) and the invariance of the Killing form, shows
that t satisfies the cocycle identity (1.8), and hence ©eZ2%(§, k). We let

”~ (T) ~
0—>k—>g§.—~g§—>o0

denote the corresponding central extension, constructed as in § 1. We shall now prove
that this central extension is a universal cover of §.
First note that if

0->b—>e>a->0
is a central extension of the Lie algebra a, if x, yea and if #’, y’ee are inverse images
of x, y, respectively (so wn(x')=4x, =(»")=y) then [x’,y’] depends only on x and y, and
not on our choice of inverse images x’, 3. We therefore denote [x', y'] by [x,5]".

Now, let g=sl,(k), the Lie algebra of all 2X2 trace zero matrices, with
coefficients in 2. Let H, E_, E_ be the Chevalley basis of sl,(&):

H=(I 0)’ E+=(O 1), E_:(O o).
0 —I 0o o I o
Let 0>Z—>§" >F—>o0
be an arbitrary central extension of §=s~12. For uek[t,t™'], we define elements uE/_,
vH' in §’ by
uE!, =ié [H, 4E,]’
uH'=[E,,uE_]".
When uz=1, we write E}, H" for 1E}, 1H', respectively. We note that
(2.3) o (uH') = uH

p(uEL)=uE_.
Thus for u,vek[t,t™'], we have
(2.4) [«H’, H'|=[uH, vH] € Z.
We set
(2.5) {u, v}=[uH', vH']|=[uH, vH]'e Z.

Also, we have from (2.3) that for uek[¢, ¢71],

(2.6) uE, =2 [H', uE,].
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18 HOWARD GARLAND

Thus, substituting the above expression for #E/ , and using the Jacobi identity, we
have

[oH', uE} ]==+1/2([[«H’, H'], »E} ]+ [H', [oH', E}]])
== 1/2[H', [2H',2EL]], by (2.4).

On the other hand, [vH', uE' ]=+2uE), mod Z, and hence the last expression in
the above computation equals

+ 1/2[H’, £ 2uvE] ].

But (2.6) implies that this equals 4+2uvE,. Thus, we have shown
(2.7) [\H', uE' =4 2wk, u,vek[t,t7"].

Next, we consider (for u, vek[t, ¢ ']):

B, o I | [l B4 0B |, by (2.7),

[l o ]

=[—wE_,E\ ]+ [é uH’, z;H,] ,
by (2.7) and the definition of vH’,
= uvH’—l—é{u, v}, by the definition of woH’, (2.3) and (2.5).
Thus, we have shown

(2.8) [«E',, vE’ ]= uvH’+é{u, v}, u,vek[t t71].
Next, for u, vek[t,t~'], we consider

[uE,, vEL] =+ [[H', uE, ], 0EL], by (2.7),

=~ ([[H, 0], uEL ]+ [H, [4B} , 0EL]]),

The first summand equals [+20E) , «E.] by (2.7), and the second summand equals
zero, since clearly [«E/ , vE)]JeZ. Hence the last expression in the above computation
equals [vE/,uE’]; i.e.,

[vEl , vE} ]=—[«E} , vE}],
and hence, since char k=0,
(2.9) [uE! , vE]=0, u,vek[t t'].
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We summarize the multiplication rules, (2.5), (2.7), (2.8), and (2.9) in
(2.10) a) [uH', vH']={u, v},
b) [vH', uE, ]=+2uE,
¢) [uE, vE'_]=uvH’+§{u, v},
d) [«E,vEl]=0, u,vek[t ¢ 1].

Lemma (2.xx). — The pairing { , } defines a skew symmetric, k-bilinear mapping from
k¢, 711 xk[t,t7'] to k. Moreover, relations (2.10) define a Lie algebra structure on §’, if
and only if { , } satisfies the relations
(2.12) {u,u}=o0

{uv, w}+{wu, v} +{ow, u}=o0, u,v, weklt, t7].

Proof. — The bilinearity and skew symmetry of { , }, and the relation {4, u}=o,
all follow from (2.5). To understand the second identity in (2.12), we consider
(u, v, wek[t, t7])

[«H', [vE! , wEL]] 4 [wEL, [«H', vE ]]4[vE., [wE%L, uH']]
=+{u, vw}+{w, uv}+{v, uw},
and hence the second relation of (2.12) is equivalent to the Jacobi identity for «H’,
vE’, wEL. As the remaining Jacobi identities follow from (2.10), we obtain the
Lemma. m
We now wish to study a skew symmetric, bilinear map

{, }: k[t 7 IXR[E, 1] >R,
satisfying (2.12). First, for uek[¢, 7], we let
M, : k[t '] = k[, 1],
denote the multiplication operator
M, (v)=uv, ovek[t, t1].
We let f,:k[t,t ']—k denote the k-linear transformation, defined by
fi@)={u, v}, vek[t t'].
We easily deduce from (2.12) that
(2.13) SooM, +f,oM,=f.,, u,vek[t t7'].

Then, applying (2.13) when u=1, we see that fi=o. Butif u,u 'ek[t,¢t"'], and

if we set v=u"'! in (2.13), we obtain

(2.14) fi=o
.f;—lz—“ﬁ‘oMu—z, u, u_lek[t, t_l].
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20 HOWARD GARLAND

Then, by (2.13), (2.14), and a straightforward induction, we obtain
(2.15) Son=fioMyn-1, nel.
Thus, for r,seZ, we have
{t, €3=fe(€) =FroMy-1(¥), Dby (2.15),
=r{t, "1},
But, interchanging r and s, and using skew symmetry of { , }, we then also have
{t, }=—s{t, T}

Thus, we have:

Lemma (2.16). — Let
{, }:R[t, T IxE[, 1]k
be a skew symmetric, bilinear pairing, satisfying the relations (2.12). Then we have
(2.17) {r,e}=3, _r{t, 7'},
or equivalently
(2.18) {u, v}=—Residue (udv){t, t7'}, u, vek[t, t71].

Remark. — In essence, Lemmas (2.11) and (2.16) imply that the central exten-
sion introduced earlier,

(2.19) 0~>k—~>g.~F—o,

is a universal cover of @, in the case when g=sl,(k). Indeed, one need only check §.
is perfect. We shall check this in general later on (in any case it is easy). We also
remark that this central extension is therefore non-trivial.

We shall now assume g split semi-simple over 2, and we let

~r ®
0—>Z—->§'—>g3—o0

be an arbitrary central extension of §. We consider the Lie algebra g, and fix a
splitting Cartan subalgebra HhCg. We let A denote the set of roots of g with respect
to h, and we let

g=5o Il g*

aEA

denote the root space decomposition (relative to §) of g. Thus ACYH, the dual
space of B, and

g*={xeg|[h, x]=a(h)x, hebh}.

For each a«eA we pick an element E,eg* and an element H,el, so that for all
aeA, we have

[Eou E—a]=Ha
[Ha’ E:l:a]z:tQE:I:a)
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THE ARITHMETIC THEORY OF LOOP GROUPS 21

(We will further normalize our choice of the E.’s in § 4). We let g(«) denote the three
dimensional subalgebra spanned by the elements E,_, and H,, and we let §(«) be the
subalgebra spanned by the elements ux, uek[t, ¢7'], xeg(x). We let

7' (0)=p"1(8 (),
so that if we let p, denote the restriction of p to §'(«), we have a central extension
(2.20) 0>Z—>F"(0) 3§ () >o.
Now for acA, we have an isomorphism from sl,(2) onto g(«) defined by the
conditions
E,»E_,
H-H,.

We then have a corresponding isomorphism @, from gig(k) onto §(a), defined by the
conditions

uE »uE

uek[t, t1].
uH HuH,

We may thus regard the central extension (2.20) as a central extension of sly(%).
Then the elements #E , «H’ defined earlier, correspond to the elements

uEl =+ [H,, uE, )’

(2.21) uek[t, 1],

uH, =[E,,uE__]’
in §'(«), and if we set
{u, v}, =[uH,, vH}], u,vek[t, t 1],
then we have that the relations (2.10) are valid in §'(«), with H', E_, { , }, replaced

by H,, E_,, {, }., respectively. Of course, we may also regard these as being
bracket relations in §’.
We now wish to consider the brackets of elements (2.21) (regarded as elements
in §') as « varies. First, we consider [uH,, vEf], u,vek[t,t7'], «, BeA. Now
p(uH;)=uH,
(2.22) , u, vek[t, 7], «, BeA.
p(vEp) =vEg
Thus, we have

[uH;,vEg]=[uH;,-;-[Hg,vE‘g]], by (2.21) and (2.22)

I ’ ’ ’ I ’ ’ ’
=; [[uHa’ HB]) vEB] +E [H b} [qu“ ZJEQ]].

Now we have
[«H,, Hy]=0 mod Z
[uH,, vEg]=8(H,)uvE; mod Z,

197
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and hence the last expression in the above computation, is equal to

é[Hg, B(H,)uoE;] =B(H,)wEj, by (2.10) b).

Thus we have shown
(2.23) [uH,, vEg]=B(H,)wE;, o, BeA, u, vek[t, t71].
Next, consider («, BeA, u, vek[t, t7]):
[«H,, vHy]=[[E,, «E’ ], vHg], by (2.21) and (2.22),
=[[Eq, vHg], uE” J+[E;, [E_,, vH{]],
by the Jacobi identity,
=[—a(Hp)oE,, uE” ]+ [E,, a(Hg)usE_ ], by (2.23),

— — o(H,) (wH, +§{v, ulh)+ cx(HB)(uvH; +§{1, uv}m),

by (2.10), ¢),
—“(Ha)

ZT{IJ} u}aa by (2'17)'

On the other hand, we may interchange the roles of « and f in the above compu-
tation, and we thus obtain:

(2.24) [, by = 20 gy 4, BC g
As a Corollary of (2.24), we obtain:
(2.25) I (s B0, then {uo)= 0 (u, ),

(where ( , ) is also used to denote the inner product on bh* induced by the Killing

form).
Next, for «, BeA, H’ a linear combination of the Hj, SeA, u, vek[t, t7'], we

have from (2.22) and (2.23):

(2.26) [[H', «E;], vEf] = a(e(H')) [uE,, 2Eg].

On the other hand, by the Jacobi identity, the left side of the above equality equals
(2.27) [[H', vEg], «E ]+ [H', [«E,, vEg]].

Now [H', iE4] =B(o(EL))oEj, by (2.23),

and

(2.28) [uE,, vEg]=N, guE,, ; mod Z,

where N, ;€& is defined by
[Eou EB] = Na, BEa +p8°
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Hence, we have

[H', [uE,, vEg]]=(x+8) (e (H')) Ny, guoE; 45, by (2.23), (2.28),
and hence (2.27) equals

B(e(H")) [2Eg, uE,]+ (o +8) (e (H))N,, guvE; , 5.
Comparing with the right side of (2.26), we obtain

(o +8) (p(H)) [uEq, vEg] = (o +8) (e (H')) Ny, gu0E; 1 5.
If «a+—p, then we may choose H’ so that («+8)(p(H’))#0, and thus conclude
(2.29) [uE,, vE;]=N, quE; 4, a-+B+o.

We collect (2.23), (2.24), (2.29), and (2.10), ¢) and d) (with E/ , in place of
E!, H; in place of H', and { , }, in place of { , }) into:

(2.30) a) [uH,, vEg]=pB(H,)uwEq,
—a(Hy) B(Ha.)
2 : {07 u}a: 2 {u, v}ﬂa

¢) [uE,, vEg]=N, qwkE, 4, if a+B=+o,

b) [«H,, ng] =

d) [uE,, vE’]=uH, —|—é{u, oY, u,vek[t, t"1], o, BEA.
We will need

Lemma (2.31). — If ael, if a=pB,+ By, Bi, Bo€A, and if ¢y, cyek are such that
H,= C1Ha,‘|‘ csHg,
then for all uek[t, t'], we have
uH, = ¢;uHj + couHy .
Proof. — We have (in g):
H,=[E,, E_.],
N'E,=[E;, Eg],
for some Ne#*, the multiplicative group of 2. We then have
(*) N™'H,=[[Eq,, Eg], E_,]
=[[Eq,, E_,], Eg]+ [Eg [Eq,, E_,]].
If we define N; (i=1,2) in & by
[Bg, E_.]=NE_,, (=1 if i=2, and =2 if i=1),
then the last expression in (%) equals:
Ny[E_g,, Eg ]+ Ny[Eg , E_; ]=N,H; —N,H,,
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and hence
(2.32) H,=NN,H, —NN, H, .
On the other hand (see (2.21))
uH, =[E,, vE_.]’,
uHy, =[Eg, uE_g], i=1,2.
Hence N~'uH, =[[E;, E; ], uE’ ], by (2.30) ¢),
=[[Eg,, uE” ], Eg ]+ [Eg [Eg,, uE” ]]

—N,[uE’ ;,, By ]+ N,[E; , uE" ], by (2.30) ¢),
——N,uHj +NyuHj , by (2.21),

and hence uH, = NN,uH; — NN, «H, ,

and comparing with (2.32), we obtain the lemma. m
We now fix an order on the roots A, and let «;, ..., o, (/=dim ) denote the
corresponding set of simple roots. We define ¢:§—>§’ by the conditions

o(uE,)=uE,, uek[t t7'], acA,
@(uHai):uH;p uek[t, t_l]; =1, ..., 4.

Then, ¢ is a section of our central extension

~y P
0—>7Z—-§ ' —>§—o

(i.e., ¢:d—@" is a linear transformation such that po¢=identity), and, thanks to
Lemma (2.31), we have
(2-33) o(uH,)=uH,, uek[t t™'], acA.
One knows that if
(%) =o([xo])—[e(x), ¢())], % €q,

then 7,eZ%(g§, Z) and our given central extension is equivalent to the central exten-
sion (see (1.12))
(2.34) 0—>Z—>§'%—>§'—>0
defined by 7.
Moreover, thanks to Lemmas (2.11) and (2.16) and also thanks to (2.25), we

have that if B is any long root, then, in view of (2.33), we may reformulate (2.30) as
the simple assertion:

(2.35) v, (u®x, 009) = — Res(udd) (x, ),

where

K ={t, t“}a—(g;ﬁ) :
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From (2.35) we easily deduce:

Theorem (2.36). — Let ©eZ2(Q, k) be defined by:
T(u®x, v®y) =—Res(udv) (x, ), x, yek[t, 7], u, veg.
Then the corresponding central extension
(2.37) 0—>k—>§.—>3—>0

s the universal covering of §.

Proof. — Thanks to (2.35), the map
(& 5) = (&, sh))

from §.=§®k to § =GO®Z (where Eel, sek) defines a morphism from the
central extension (2.37) to the central extension (2.34). Thus, to prove the theorem,
we need only prove that §, is perfect. Since § is perfect, it suffices to prove that
[@., §.] contains k. But (see (1.9)) this follows from

T(t®H,, '®H,)——% 4o,

(e, )

where we may take ac€A to be any root. m

3. Kac-Moody Lie algebras.

In this section we indicate a different method for constructing the central exten-
sion (2.97). In fact, this alternate approach is part of the very general theory of a
Kac-Moody Lie algebra associated with a symmetrizable Cartan matrix (for details
the reader may consult the papers of Kac and Moody [10], [15] and [16], and
Garland-Lepowsky [8]).

Thus if ¢ is a positive integer, then we say that an ¢X¢ matrix B=(By);;_1, ..,
is a symmetrizable Cartan matrix in case ByeZ for all ¢ and j, B;=2 for all ¢, B;<o
whenever ¢+j, and finally, there exist positive rational numbers ¢,, ..., ¢, such that

diag(qla sy qI)B

is a symmetric matrix. (If B satisfies all but the last condition it is called a Cartan
matrix, and the last condition is called the symmetrizability condition. In this paper
we shall only be concerned with symmetrizable Cartan matrices.)

Now given a field & of characteristic zero, and given a symmetrizable Cartan
matrix B, Kac and Moody have constructed a certain Lie algebra g(B) over %, and
we now proceed to describe g(B) (also see Garland-Lepowsky, [8]).

One lets g,=g,(B) denote the Lie algebra on g¢ generators ¢, f;, b; (: =1, ..., {)
with relations

(31) [hn hj]ZO, [eh]?]’:sijhi’
(%, 3j] = Bijeja [hiaJ;] =— Bijj]-‘:
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for ¢ j=1,...,¢, and with the relations
(3.2) (ad &)~ Pt (g) =0,
(ad f) "B+ (f)=o,

for i%j, 4,j=1,...,°¢
For each ¢-tuple (n,, ..., n,) of nonnegative (resp. nonpositive) integers not all
zero, define g,(n,, ..., n,) to be the subspace of g, spanned by the elements

le;, » le,s - - - le,_,»6] -1,
(resp. Uiy Uy -+ LA /i1 220D,

where ¢; (resp. f;) occurs |n;| times. Also, define g,(o, ..., 0)=h,(B), the linear
span of Ay, ..., k,, and gy(ny, ..., m)=o0 for any other /-tuple of integers. Then

QI(B) :("1’ ...],_}n,)ezf gl(nl: SR n()>
and this is a Lie algebra gradation of g,(B). The elements Ay, ..., &y, ¢, ..., ¢,
fis .., [y are linearly independent in g, (see [10], [15]). In particular, dim §,(B)=".
The space g;(0, ...,0, 1,0, ...,0) (resp. g4(0, ..., 0, —1,0, ..., 0)) is nonzero and is
spanned by ¢; (resp. f;); here 4+ 1 is in the i-th position. Also, each space gy(n,, ..., ;)
is finite-dimensional. There is clearly a Lie algebra involution 7 of g, interchanging
¢, and f; and taking A to —4h; for all =1, ..
space Qy(7y, ..., 1) onto g (—ny, ..., —ny).

The Z‘-graded Lie algebra g, contains a unique graded ideal r;, maximal
among those graded ideals not intersecting the span of k;, ¢, and f; (1<i<{) (see
[10], [15]). We let g(B) be the Z’-graded Lie algebra g;(B)/r,. The images in
g(B) of &, ¢, fi, gi(ny, ..., m) and Bh;(B) will be denoted by 4, ¢, f;, g(ny, ..., n)
and B(B), respectively.

We let D;(1<:<{/) be the i-th degree derivation of g(B); that is, the deri-
vation which acts on g(n, ..., n,) as scalar multiplication by n,. Then D,, ..., D,
span an {-dimensional subspace b, of commuting derivations of g(B). Let b be
a subspace of d,. Since d may be regarded as an abelian Lie algebra acting on the
p-module g(B) by derivations, we may form the semidirect product g¢*(B)=DbXxg
(e for “extended’) with respect to this action. We note that §°*(B)=>p®H(B) is then
an abelian Lie subalgebra of g°(B), and H°(B) acts on each space g,(n, ..., n,) via
scalar multiplication. We define aq,, ..., g,ch’(B)*, the dual space of h°(B), by the
conditions [k, ¢]=¢;(k)e;, for all hebh®(B), and all ¢=1,...,/. We note that
a(k)=B; for i,j=1,...,¢ (see (3.1)).

We now make the basic assumption that d is chosen so that ay, ...,a, are linearly
independent. This is always possible, as we may take d=Db,. (In this case, we have

.,Z. The involution % takes each

4(D;)=3; for all 4, j=1,...,¢). However, we may wish to choose d smaller than
Dy; €.g., when B is nonsingular, then d=o0 is a natural choice.
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For aebh’(B)*, define
g*={xeq(B)|[%, x]=a(h)x, for all keh*(B)}.
Note that [g% g"]Cg**? for a, beh®(B)*. Also, it is clear that ¢ (resp. f;) spans
g% (resp. g~ %) for each i=1, ...,/ and that for all (n, ..., n)eZ,
g(nls e, n[) C gn1a1+...+n,a,.

Indeed, since a,, ..., a, are linearly independent, the inclusion is an equality, and
the decomposition

g(B)=(n1 Hl ’ g(nh e ﬂ,)

coincides with the decomposition
g(B) g

We define the roots of g(B) (with respect to h*(B)) to be the nonzero elements
ach’(B)* such that g’+o0. We let A(B) denote the set of roots, A, (B) (the set of
positive roots) the set of roots which are nonnegative integral linear combinations of
ay, ..., 4, and A_(B)=—A_(B) (the set of negative roots). Then

A(B)=A, (B)UA_(B)
(disjoint union), g°=}(B),
aB)=h(®)®, [ e I

= By

a
9%

and dim g~ %=dim g% for all aeA(B). We call the elements a,, ..., a, simple roots
(this being relative to our choice of A (B)).
We let RCH°(B)* be the subspace spanned by A(B) (so a,,...,a, is a basis

for R). Then the restriction map R—}(B)* is an isomorphism if and only if B is
nonsingular.

Now, since B is symmetrizable, there are positive rational numbers ¢,, ..., ¢,
such that diag (¢;, ..., ¢,) B is a symmetric matrix. We then define a symmetric
bilinear form ¢ on R by the conditions (4, q)=¢;B;,1,j=1,...,f. Note that

15 %
gi=o0(a;, a)[2 for each i Set h, =g¢,h=0(q,a)l/2 in h(B), for i=1,...,¢
¢ ’

Then for aeR, with a= X w4, wek, define k= 2 wh; in h(B). Transfer ¢ to
i=1 i=1

a symmetric bilinear form (again denoted by o) on h(B), determined by the

conditions o(h,, h,)=0(4, ), for all 4,j=1,...,{. Then o(k;, by)=0(a, b) for

all @, beR. Also, o(g,q)= (), for all 4,7=1,...,¢, so that

o(ky, k) =o(a, b) = a(ky) = b(h;),
for all a,beR. The form o extends to a symmetric, g(B)-invariant bilinear form
(again denoted by o) on g(B), such that [x,y]=0(x,)k,, for acA(B), xeg® yeg™*®
(see [10], [15]). In particular o(e,f)=2/c(g,a), for i=1,...,¢. Also, for
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acA(B), beA(B)uU{o}, one has o(g% ¢’)=0, unless a=—b», and then ¢ induces a
nonsingular pairing between g* and g=° (see [10], [15]).

It is clearly possible to extend the symmetric form ¢ on R to a symmetric
form ¢ on §°*(B)* satisfying the following condition: For all 4eR and aebh’(B)*,
oA, a)=n(k). Fix such a form o on §°(B)*. For each i=1,...,¢, define the
linear transformation 7;: §*(B)*—~bh°(B)*, by

(3-3) (N =2A—A(A)a;.

We let W=W(B) (the Weyl group) be the group of linear automorphisms of §*(B)*
generated by the reflections 7,,i=1,...,¢. The following is proved in [8], Prop-
osition (2.10) (and is due to Kac and Moody).

Proposition (3.3). — The form o on H°(B)* is W-invariant.

Examples: (i) We let A be the ¢x¢ Cartan matrix associated in the usual way,
with a k-split, simple Lie algebra g of rank ¢. (We will call such an A a classical
Cartan matrix—we note that a classical Cartan matrix is always symmetrizable: see
below.) Then it is a theorem of Serre (see [19], Chapitre VI, p. 19) that

g=0:(A)~g(A).
For a classical Cartan matrix A, when there is no danger of confusion, we write
A, AL, b, and g for A(A), A, (A), h(A), and g(A), respectively. This notation is
consistent with that in § 2. Since A is nonsingular we may (and do) take d=o, so
we have bH'(A)=Dh, ¢°(A)=g. Also, we write E;, ..., E,, Fy, ..., F,, Hy, ..., H,,
for the generators ey, ..., ¢, fi, .- s, By, ..., hy, respectively. The Kac-Moody
construction of a Lie algebra corresponding to a symmetrizable Cartan matrix B,
automatically gives a choice of simple roots. In the case of a classical Cartan
matrix A, we denote these simple roots by o,, ..., ¢, and we denote roots in A by
Greek letters o, B, v, .... If (, ) denotes the Killing form (on g, §, and §*), and if
¢;= (%, ;) [2, then the matrix

diag(qla Y] ql)A

is symmetric. Letting ¢ denote the corresponding inner product on R (=}, in this
case) we see that ¢ and ( , ) agree as forms on b*, §, and g. We let «, denote the
highest root of g (with respect to our choice «y, ..., @, of simple roots), and we set
ap 1 =—0g. Throughout this paper, we will use A to denote a classical Cartan matrix.

(i1) We let A= (K,;j),-, j=1,...,¢+1 denote the symmetrizable Cartan matrix, defined

by the conditions
~ 2(o;, o)

v (o5 ) ’

We call A the affine Cartan matrix (associated with A) and g(A) an affine Lie algebra.
The matrix A has rank ¢, and if we take b to be the k-span of D=D, ,, the

b =1, ...,{+1I.
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¢+ 1-st degree derivation, then our basic assumption, that the simple roots a,, ..., 4,
are linearly independent on §°(A), is satisfied. We therefore make this choice for b,
and define g°(A), H°(A) accordingly.

Our next goal is to show, using a result of Kac and Moody, that g(X) is exactly
our central extension g, of the loop algebra §. Recall that teZ2(g, k) is the cocycle
defined at the beginning of § 2, and

. @
o—~>k—>g.—~g§—>o0

is the corresponding central extension, constructed as in § 1. In particular, §,=§®%,

and we let ¢ :3—g, be the injective linear map defined by ¢(€)=(£, 0), £€§. Then
¢ is a section in the sense that

(3-4) oo @ =identity.
We let ¥*Cg denote the subalgebra

= I g0 I reqg,
aEAL(A) tneZ,

where Z_ denotes the nonzero, positive integers. Since v restricted to ¥* xXW* is zero,
the map ¢ restricted to ¥* is a Lie algebra monomorphism.
We fix elements E,, eg**Cg, so that if H, =[E,,E_,], then

Q(Ha.,) =2(B, %) (%9, %) ™,

for all BeA (our choice of E_, is consistent with our choice of E, in § 2; these choices
will be further normalized in § 4). We set

(35) azCP(E1)> f;:(P(Ft): Zizq)(Hi)’ i=I, A
and we set
(3.6) 2{+1=(P(t®E—uu)> fAz+1:<P(F1®Ea,,), ;;l+1=(—Ha,,’ 2(%: “o)_l)-

We now state a theorem of Kac and Moody (see [10], [16]):

Theorem (3.%). — There is a surjective Lie algebra homomorphism 7 : g(x)»’g", and

v is uniquely determined by the conditions: w(¢)=E;, n(f)=F,, =(k)=H,, for i=1,...,¢

and (e, ,)=1t®E_, , n(f;,,)=t"'®F,, and =(k,,,)=—H,. Moreover, the kernel ¢
¢

of ™ is a one dimensional subspace of B(A). Indeed, if og= 2 me, (the m, being
’ i=1

nonnegative integers), and if we set h/=( X mh,)+kh,

i=1 *

ED(A), then k) spans c. Finally,
¢ is the center of g(K)

+

Of course the elements ¢;, f;, & in g(x), denote the generators given by the
Kac-Moody construction described earlier.

Now, in particular, Theorem (3.%) implies that we have a central extension
(3.8) 0—c—>g(A) >F—o.
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Hence, by the universal property of the central extension (2.37), we have a unique
morphism from the central extension (2.37) to the central extension (3.8); i.e., we
have a commutative diagram

~
(0]

o — k 8.
(3-9) l |

o—>c—-—>g(K)—"—>g—-—>o,

I

< R

R

where I denotes the identity, ¢ is a Lie algebra homomorphism, and of course the
map k—c is just the restriction of ¢ to &.
Lemma (3.10). — We have
V@=a VA=A ad  YE)=h,
Sor i=1, ..., ¢f+1.

Proof. — By the commutativity of the diagram (3.9), we have
(3.11) m((3)) =3()
m($(fi) =a(f£)
n(¢(h1)):8(ht)a i=1,...,{+1.
On the other hand, from the definition (3.5) and (3.6) of &, £ %, the fact that

oo =identity, and from the conditions =(¢)=E;, =(f)=F;, =n(h)=H,, i=1, ...,¢,
and w(e ) =t®E_, , n(fr1,)=1"'®F,, n(h ., )=—H,, of Theorem (3.5), we see
that

(3-12) () =a(8)

n(hl)=$(}l1)> i=1,...,f+1.
Hence, from the exactness of (3.8), we have, comparing (g.11) with (3.12):

(3-13) e=149(@) mod ¢
fi= ‘P(fi) mod ¢
h;=¢(k) mod c

But then a direct computation shows:
~ ~ A I~ 4 ~ A A .
ei:I/Q[hi’ei], ﬂ:—g[hnﬁ]s hi:[enﬁ]) =1, ...,{41.

(the crucial computation is to show that hy +1=[8115f741]). Hence, since ¢ is contained
in the center of g(A), we have:

V@) =7 [V, $@)= [h, 6] =6,

and similarly §(f£)=f;, for i=1,...,+1. But then $(h)=4([2,/])=[afl="h,
i=1,...,£+1, and this completes the proof of Lemma (3.10). m
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We can now prove:

Theorem (3.14). — The map § is a Lie algebra 1somorphism. Thus the central exten-
sion (3.8) is the universal covering of §.

Proof. — Since, by construction, the algebra §(A) is generated by the elements ¢,
fi» and h;, i=1,...,¢/41, Lemma (3.10) immediately implies that { is surjective.

On the other hand, by the commutativity of (3.9), kernel ¢ Ckernel a=*k. If
kernel 0, then ¢((o0, 1))=o0, and hence (see (3.6)) we have

$lh 1) = 9((—H,,, 2(20, %) ™")) = b((—H,,, 0)).

But —H,_ is a linear combination of Hy, ..., H,, and hence ¢((—H,, 0)) is a linear
combination of the elements ¢((Hy, 0)), ..., ¢((H,, 0)); i.e., k= ¢(Z,+,) is a linear
combination of the elements h,=(k,), ..., h,=y(k,). But since the ideal r,C gl(x)

does not intersect the span of the ¢’s, f’s, and A’s in gl(./N&), and since these elements
are linearly independent in g,(A) (as we noted earlier—see [10], [15]), we have
obtained a contradiction. Thus ¢ is an isomorphism. m

4. The Chevalley basis in the universal covering.

In [7], § 4, we introduced a Chevalley basis in the algebra g(K) By means
of the isomorphism ¢ : §,—g(A), we may then pull this basis back to a basis in §,.
In fact it is quite easy to describe the “pull back” basis in §., and then to compute
the bracket relations using the cocycle ©. We wish to give the description in the
present section.

First, we begin with a simple Lie algebra g over the field C of complex numbers.
Indeed, let g have rank ¢, and let A be the ¢x¢ (classical) Cartan matrix corre-
sponding to g. Then g=g(A) is the Kac-Moody algebra constructed from A, as
described in § 3. From the Kac-Moody construction (in this case, the Serre construc-
tion), we have a Cartan subalgebra §=}(A), the set of roots A (relative to §) and a
given set of simple roots «,, ..., o,. We then know that g(A) has a Chevalley basis
(see Steinberg, [21]). Thus, for each «cA, we have nonzero elements E, eg%
H,eh, and these elements have the bracket relations:

(41) [Ea’E—a]:Ha’ O(.EA
[E,, Eg]==+(r+1)E, .4, if «, B and «+BeA, and
oo—1B, ..., 0 ..., a4 ¢B is the B-string through «,
[E,, Eg]=o0, otherwise,
2(s, B)

[Ha> Ea]zm 8>

o, BeA.
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For the Chevalley basis of g, we take the set:
(42) ‘F:{Ea}aeAU{Hly "-’Hl}
(where H;=H,, i=1,...,¢). We note that, in particular, this basis has integral
structure constants.

Now, since the isomorphism ¢ sends  to ¢, and f£ to f;, it is easy to determine
the subspaces of §. which correspond to the root spaces of g(A). Moreover, one can
easily compute the derivation of §, which corresponds to the ¢+ 1-st degree deri-
vation D of g(A). /

If a,...,a +lebe(K)* are the simple roots and if «,= 2 m;«; is the highest

i=1

root of g (relative to the choice «y, ..., «, of simple roots) then we let LEI)"(K)‘ be

the element
¢

v=( X ma)+ap,,.

i=1
¢
Also, if a= X mu,eA, we let a(a)eh’(A)* be the element
i=1
¢
a(e) = 2 na;.
i=1

We then have (see [7], § 2):
(4-3) A (R)={a(®)}uea,wVHa(®) +mlucamnez, Vinher,
where Z, denotes the set of all (strictly) positive integers. We let
Aw(R) ={a(®) +m}seawmens
5(A) ={mheznso
and call the elements of AW(K) Weyl (or real) roots, and the elements of AI(K) imaginary

roots. We let Ay i(K) (resp. Ay i(K)) denote the set of + Weyl (resp. + imaginary)
roots.

Then, if we identify g(A) with §, by means of ¢, we have
(4-4) g?@+m— (1"®g% 0), acA(A), neZ,
g"=(t"®h,0), neZ, n*o.
Also, we have

()= { o, heh(A)

I, h=D,
and thus
scalar mult. by n, on g¥®+m™
(4-5) D=
scalar mult. by n, on g™.

Indeed, (4.3), (4-4), (4.5) follow easily from Theorem (3.7), Theorem (3.14), and
the commutativity of the diagram (3.9) (also, see [7]).
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Remark. — One can deduce the existence of D on §, directly from the univer-
sality of the central extension o—k—§.—~§—>0, and from the existence of the deri-
vation D,:§—G, defined by Dy("®x)=nt"®x, neZ, xeg. Thus D on §, is the
lift of D, on §.

We define elements £, in % acAg(A), by

£,=({"®E,,0), a=a(a)+mn.
For neZ, n=%o, we then define elements &,(n), ¢=1,...,¢, in g* by
E,(n)=t"®H,;, neZ, n¥o, i=1,...,°¢

Finally, we let
h=(H;,0), i=1,...,¢
hy oy =(—H,,, 2(x, %) %)
(so hizﬁi, t=1,...,/4+1). Then the set
(4.6) O={h}i-1,..001 9} ecav@®HE M ez nsoi=1,... 0

is a basis of §T:g(x), and is called a Chevalley basis.

One can of course compute the structure constants directly, using the cocycle 7.
In any case these structure constants are computed in [7], § 4, and are seen to be
integral. Indeed, the integrality of the structure constants boils down to showing

’

2 . . . .. .
that ( “— is an integral linear combination of %y, ..., %, when o; is a long root.
%y O

This is part of the proof of Lemma (4.10) of [7], and is derived by examining root
diagrams.

Remark. — The element (o, 1) in §.=§®% corresponds to hjzg(x). However,
if we replace the Killing form ( , ) by the form ¢, >=v( , ), where v>o is chosen
so that (H,,H,>=2 for « a long root, if we define the cocycle *" by

T (u®x, v®y)=—1(u, v)<x, 9>, u,vek[t 7], x, yeq,
(compare with § 2, after (2.2)), and if we consider §.=@§®k, in place of §., then
(o, 1)e§, corresponds to 24/ /(«, &), « a long root. Thus it is natural to construct our
Chevalley basis in g(x), by using §. and < , > in place of §, and ( , ), respectively.
Roughly speaking, a Chevalley basis in §.. is constructed by lifting an obvious choice
of Chevalley basis in §, and then adjoining the element #,,,=(—H,, 1).

~

Notational Remark (4.7). — From now on we use g(A), and not §., to denote the
universal covering of §. Indeed, identifying g(X) with §. by means of ¢, and using
the commutativity of (3.9), we see that = :g(A)—>§ corresponds to & :§,—@. We
thus write & in place of =; i.e., in sum, we let

(4.8) 0o—-k—>g(A) >0
now denote the universal (and Kac-Moody) central extension of §.
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We now define subalgebras u*(A)C g(A) by
wrA)= IO g

a€ A (A)

On the other hand, in § g (just after (3.4)), we defined subalgebras ¥*C§. Since
kernel @ Ch(A), by Theorem (3.7) (we have set & =m), we know that the restric-
tion &* of & to u*(A), is injective. Moreover, from our description of the root spaces
in (4.4), we see that Image a* =%U*; i.e., a* defines an isomorphism
a* : ut(A) >0,

We will write u(A) (resp. W) for ut N (resp. W*), whenever convenient, and we will
identify u*(A) with i* by means of @*, whenever convenient. Thus, we may, for
example, regard "®g* n>o, acA(A), as the root subspace g%, a=a(a)+mn, of
u(A), and we may regard £, as an element of ¥* (namely, £,=¢"®E,).

We let gz(A) (resp. gz(A)) denote the Z-span of the Chevalley basis ® (resp.

of the Chevalley basis ¥). Then gz(x) (resp. gz(A)) is an integral subalgebra of
g(A) (resp. g(A)) by [7], Theorem (4.12) (resp. by [21], Theorem 1, p. 6). If R is

a commutative ring with unit, we set
QR(K)=R®ZQZ(K),
gr(A) =R®,05(A).
We let R[¢, t7'] denote the ring of Laurent polynomials i,,<2;<;,q'iti (finite sum, with
o and 7; allowed to take negative values) with coefficients ¢; in R. We let
gr=R[t, 171]®z05(A),
and observe that
Gr=R®; 0.
We note that & induces by restriction, a surjective Z-Lie algebra homomorphism
ag : Qz(x) —0z-
By (4.5) and the remark following, we then see that
D(gz(A)) C gz (A),
Dy(8z) C 8z

Hence, for any commutative ring R with unit, the operator D (resp. Dy) on gz(K)
(resp., on §) induces an operator on gp(A) (resp., on §;) which we also denote by D
(resp. Dy).
We let uj(A)=g,(A)nu*(A), and WF=§,NY*. We then have
Salus (X)) =1t
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We let I)Z(K) denote the Z-span of &y, ..., ., and hz(A) the Z-span of H,, ..., H,.
We have

02(A) =1 () @b (A) @11z (A),
8, =15 ©hy(A) O .
Moreover, the algebﬁa ug(A) (resp. X&; resp. hy(A); resp. hz(A)) is a Z-form of u*(A)
(resp. W*; resp. H(A); resp. H(A)). We let
uf(A) =R, uz (A)
TgE =R, UF
br(8) =R®; hy(A)
hr(A)=R®; by(A).
We then have direct sum decompositions
0x(R) =115 (3) ©b(A) Oug (A),
0r=T5 Ohp(A) @y .
Moreover, Gy : gz(K) —>@; induces a surjective Lie algebra homomorphism
B =103y,
3r: 0r(A) >
(recall that gn(A)=R®,§,(A), §=R®,8,), where
Sr(ba(A))=Da(A)
Ga(u (A)) =3
kernel ooz C hr(A).

Thus & restricted to ui(A) is an isomorphism which we denote by &E. We
identify uf(A) with %, by means of &z.

Finally, when there is no danger of confusion, we will write ug for uﬁ(x), and
(more simply) ug for uf(A), and g for ;.

5. Completions.

For ieZ, we define
or(A); ={regg(A)|D(x)=ix},
§R,i:{xegR|D0(x)=ix}‘

Of course, O, =1'®gg(A), i€Z,
and or(R);=t'®g(A), i€Z, i+o
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(recall we have identified ug(A) with ¥+, by means of &&). Of course, also, we have
the direct sum decompositions

(5.1) on(A) = 1 6z(A);,
~R =iIéIz§JR %)

and 8R(gR(K),-)=§R,i. If xegp(A) (resp. xe@y), if we write x=.sz,- (finite
~ 1€

sum), with xegp(A); (resp. x€@g,), if we set ¢ =inf{j|x;+0}, and

(5-2) |%]=27",

(if x=o0, we set |x|=o0), then we call |x| the norm of x. We remark that the choice
of 2 in (5.2) is arbitrary—any p>1 would do. We have

(5-3) |x+y|<sup(|x], |[»])  and |[x)]|<|x]]5|

for %, yegr(A) (resp. p)-
If R has no zero divisors, we have
|x|, reR—{o}

o, r=o.

(5-4) |r.x|=

We note that
(5-5) |og (%) <[], xEQR(K),
so that @y is norm decreasing, and hence uniformly continuous. Moreover,
(5-6) |@r(®)[=x], xeug.

We let g4(A) (resp. §<) denote the completion of gz(A) (resp. §) with respect
to the norm | |. Then gi(A) and §g have induced Lie algebra structures and the
norms | | extend to these completions. Moreover, the extended norms also satisfy
(5.3) and (5.4) (the latter, provided R has no divisors of zero). Also, by (5.5), oy has
an extension to a Lie algebra homomorphism
(5-7) Tt gh(R) 85,
and (5.5) is still valid for this extended homomorphism (so the extended op is

continuous). We let uf, (resp. %) denote the closure of ug (resp. ) in g5 (A)
(resp. §°). We then have the direct sum decompositions

ai(A) = u3@he () Oug,

dr=TE®bhp(A) @R,
and the extended homomorphism Gy (in (5.7)), when restricted to ug, defines an
isomorphism

o 1 uf—~>ug.
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This last assertion follows from (5.6). It then follows that &y in (5.7) is surjective
and

kernel(&y : g4(A) -85

is contained in Bg(A), and is equal to kernel(Sg : gp(A) —>r)-

Remarks (5.8). — (1) We let Zr=R[[f ¢7'] denote the t-adic completion of
R[4 ¢7']; i1.e., % is the ring of all formal Laurent series

(59) 6=i>2i qitia %ER,

where the sum on the right is allowed to be infinite. We note that @} is isomorphic
t0  gg (A)=LOrap(A) = L®,02(A). Moreover, if for ¢ as in (5.9), we have
¢,%0, we define |o|=2"% (we set |o|=o0). Then % is the completion of
R[t, t7*] with respect to this norm, and this norm on % induces our norm | | on
gg. (i) From the proof of Lemma (4.10) in [7], we have
ok,

(“0) “O)
Therefore, the set

{hl’ tee hh Qh:/(ao, 0‘0)}

is a Z-basis for ,(A). It then follows that 1&(2k/(a, %)) in Bg(A)=R®,h,(A),
spans kernel(&y : g3 (A) - §5) =kernel(&y : gz(A) —>Fg). If we call this kernel ¢g, we
have the two central extensions

4
= hl+1 —l" ~§1kih'i’ kiez.

(5.10) a) 0—>CR—>gR(K)‘i§§'R——>O,
b) 0—>cp—gL(A) SF—o0.

Remarks (5.11). — (i) It follows from Remarks (5.8) (ii), that (identifying
g(x) with §.=§®k, over a field & of characteristic zero) we have gz(A)=0,9Z,
where (0,1) in §;®Z corresponds to the element 2k//(ag, ®,) in gz(A). Thus
ar(A) =0z ®R, 0%(A)=85®R, and we have naturally defined sections o : 3z — gR(K),
@:@ﬁ»gﬁ(x), each defined by ¢(x)=(x,0) (x€@g, 3%, respectively). The first
section is just the restriction of the second, and hence the cocycle corresponding to ¢
on Gy is just the restriction of the cocycle corresponding to ¢ on §5. The latter is the
cocycle 1, defined by

D

7, (u®x, v®y)=—Res(u dv) (x, y , u,veLy, x, yeqz(A).
® "y P R> % JE0z

(i1) If R=#% is a field of characteristic zero, then the central extension (5.10) b) is
universal in the category of central extensions

(5.12) 0>Z—>F >q5—o0

)
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which split over a sufficiently deep congruence subalgebra of §°. More precisely,
we set O0C%, equal to the ring of formal power series

G=i§045t s GER,
and consider  go(A) C gg, (A)=0y.

By the congruence subalgebra of Gy of level n, we will mean the subalgebra of all xeg,(A),
such that x=omod". We then consider the category of central extensions (5.12)
which split over the congruence subalgebra of level z, for some 7, and we claim the
central extension (5.10) 4) (for R=£Z) is universal in this category. The argument
is essentially the same as in § 2. There is just one additional point. Thus, define
{u, v}, u,ve, exactly as in (2.5). Then in order to prove (2.18), one can argue
exactly as in § 2, once one proves that { , } is continuous on %,X %, in the sense that
if w;—u, v,—v, are convergent sequences in %, (relative to the #-adic topology) then
{u;, v;}={u, v}, for i sufficiently large. To see this, one first notes that there exists
an integer n>o0 so that {u,v}=o0, whenever u,ve@ and %, v=0mod . But then
the desired continuity is an easy consequence of this and the second identity of (2.12),
for u,v, we%,.

6. Representation theory.

In [11], Kac introduced highest weight modules for a Kac-Moody Lie
algebra g(B) associated with a generalized ¢Xx¢ Cartan matrix B. Kac’s modules
are described in [8] and [7], § 10. We refer to the latter as a general reference.
Briefly, the construction is as follows: We let

+ . a
u(&—}egw&

p*=bh’(B)@u*(B),

so u*(B), and p° are subalgebras of g°(B). For any Lie algebra a over a field %, we
let %(a) denote the universal enveloping algebra of a. We say Aebh®(B)* is dominant
wntegral, in case, (i) A(k)eZ, i=1,...,¢, and (i) A(#)>o0, i=1,...,¢. If X only
satisfies the first condition, we say A is integral. We let D=D(B) denote the family of
dominant integral linear functionals in h°(B)*. For AeD, we let M(A) denote the
one-dimensional p°-module, with p’-action defined by

h.v=2x(h)v, kebh®(B), ve M(2),
E.v=o, Eeut(B), ve M(R).
We let #*=%(p®), and set
VAW — (g (B)) ® e M(1).
Left multiplication gives V¥ a %(g*(B)) (or equivalently, g¢°(B)) module struc-

ture. As a g°(B)-module, V¥® contains a largest submodule not intersectiong the
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subspac:: 1®M(A) CV¥®  pontrivially. We let V* denote the quotient module of
VM%) by this submodule. We call V* the highest weight module with (dominant
integral) highest weight A.

We now focus on the case when B =K, the affine Cartan matrix associated with
the classical Cartan matrix A. From now on, we take g(K) to be the corresponding
Lie algebra over G. We also fix a highest weight vector vy+0 (by definition, a highest
weight vector is non zero) in the highest weight module V*. Thus we fix %0 in
M(2), and let v, denote the image of 1®v in VX

In [7], we introduced a Z-form %,(A) of %(g(A)), and the Z-form
Vi=U,(R) .1,
of V*. For p.eI)e(K)*, we let V2 denote the subspace
VA ={veV*| k.o = p(h)s, heh’(A)}.

If Vi+o0, we call p a weight of V* and we call V), the weight space (for the weight p).
We call nonzero elements of V), weight vectors (of weight p). Then (see [8]), V*is
a direct sum

Vi= IV,

nebe(A)*

of its weight spaces. We know (see [7], Theorem (11.3) and its proof) that V7 is
the Z-span of an admissible basis, i.e., of a basis Q of V* which is the union of its
intersections Q, =QnNV), with the weight spaces of V* (see [7], § 11, Definition (11.2)).
We note that if we set V} ,=V,NV}, then it is a consequence of our last assertion
that

(6.1) v;= 1_ V.,

nebe(Xy
For a commutative ring R with unit, we set VA=R®,V} and

(6.2) VA =R®,V*,.

w
From (6.1) we then have

(6.3) Vi= IV,

pebyA)*

Of course, in this direct sum, it suffices to let w vary over the weights of V.
Similarly, the Z-module By(A)=40z(A)NH(A) spans K(A), and for each

~

root acA(A) the Z-module ¢j=40a;(A)Ng* spans g°. Moreover, we have
h(&)=C@, ()
¢'=C®,q5, acAA),

and 62(A)=b,(R)@ II as.

acA(A
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If R is a commutative ring with unit, and if we set
br(A)=R®, bz(A) and gGr=R®z07,
then or(A) = I)R(A) QR
We also note that if ¢ is a Weyl root then g, as an R-module, is isomorphic to R,

while if @ is an imaginary root, then gf is a free R-module of rank ¢. When
considered as an R-module, I)R(K) is free, of rank /4 1. We also note that

(6.4) on(R);=,_ e el i o,
aeA(R)
while
(6.5) gr(A )o—I)R(A)@a I;L Ok -
aEA(A)

Alternatively, we have
0r(A)o =5 (gr(A))-
We note that gg(A) acts on V3.
Proposition (6.6). — Let {x,},_143 . . be a Cauchy sequence in ar(A) (relative to the

norm | | of (5.2)). Then for each veV}, the sequence of elements x,.v in Vi is eventually
constant.

Progf. — As we noted in [8], § 10 (and as is easily seen from the definitions), each
weight p of V* is of the form

£+1
(6.7) “:A—Elkﬂw k>0, k.
Also, we set  g5(A)=g,(A)®ZD
gR(K)=R®zg;<K>
by(A) =Dy (A)®ZD
bi(A) =R ®,b3(A),

and note that if A(D)€Z, then V3 is a module for the R-Lie algebra gﬁ(X) From
now on, we assume A(D)eZ (so D acts on V}). We set

V}={veV*|D(v) =(M(D) +j)v},

Vi, =VInVy,

Vig=R®,V},, j>o, jeZ

{+1

We say that the weight p of V* has D-level j, in case p=»A— Z k1 i, and —R, =7 ;
then, thanks to (6.7),

(6.8) vi= I Vi,
of D-level j
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and therefore

(6.9) vi= 1 V2

i<o ’
V"?\:C@zvf:z,
A I1 V2
VZ_jISIoV],Za
Vi= IV

i<o iR

Indeed, the first equality of (6.9) follows from (6.8) and the fact that V?* is a direct
sum of its weight spaces. The second equality follows from (6.8), (6.1), and the fact
that V},=C®,V},. The third equality follows from (6.1) and (6.8), and the
fourth from the third. Also, we have

(6.10) QR(K)i-VJ?:RCVT?\—l-J',R’

as one can check directly.

To prove the proposition, we may, thanks to the fourth equality of (6.9),
assume veV}p for some j<o (in Z). Then, since {,},_,,5 . is a Cauchy
sequence, we may choose 7, so that for all n>n, we have:

xn_'xn.,e ]‘I gR(K)i’

$+5>0
But from the last equality of (6.9), and from (6.10), we have
gr(A);. Vig=0 if i+j>o.
Thus, for n>n,, '
Xy o 0 =K, . 0,
and this proves the proposition. m

If xegft(K), let {x,},-193..., be a Gauchy sequence in gR(K) such that
lim x,—x. Then for veV} the proposition implies that x,.» is eventually constant.

n — 0
It is easy to see that this constant value is independent of our choice of Cauchy
sequence converging to ¥x. We set x.v equal to this constant value, and in this way we

obtain a gﬁ(x)-modulc structure on V3. We let
= : g5 (A) ~End V2

denote the corresponding representation of gﬁ(x).

Notational Remark. — We also denote the restriction of =} to gg(A) by .
When R=C, we write =" for =} and g¢°(A) for g(A).

Proposition (6.x1). — If AeD and AAK)+F0 for some i=1,...,0+1, then
= ¢°(A) >End V* s injective.
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Progf. — Choose a basis of V* consisting of weight vectors and order this basis
so that the vectors in any given weight space appear in succession. If xeg®(A), we
may write x as

X =1x —l—aEEA(K)x A

where xbeI)(K), and x%cg% acA(A), and all but finitely many #* with acA_(A)
are non-zero (however, infinitely many x* with acA +(K) may be non-zero). Relative
to the basis of V* which we have just constructed, =*(x) is represented by an infinite
matrix with a natural block decomposition, each block corresponding to a pair of
weights. Then the transformations w*(x;), =*(x*), aeA(A), correspond to various
mutually distinct blocks of the matrix representing =*(x). Thus, if =*(x)=o0, then
m(x)=0 and =*(x%)=o, for all aeA(A). Thus, if = is not injective, we may
assume w'(x)=o0 where either xeh(A) or xeg® for some aeA(K), and x+o0. We
now show:

(6.12) If = is not injective, then =*(x)=o0 for some non-zero element x
in g% aeAy(A).

By the above remark, we may assume w*(y)=o0 for some y»+o0 and either
yeb(x) or yeqg®, aelA;(A). Also, h is a nonnegative linear combination of
By ...,y . Hence h¢kernel o, since A(f)>o0 forall i=1,...,¢41, and A(%)>0
for some ¢=1,...,¢/+1. It follows that if either yef)(x) or yeg’, aeAI(K), Y0,
and = y)=o0, then one of the elements [y,¢], i=1,...,/-+1, is non-zero. Since
(kernel ) Ng(A) is an ideal, we obtain (6.12).

Thus, assume x is a non-zero element in g% aeAw(K), and 7*(x¥)=o. We
will show =* is then identically zero, and this contradiction will prove the proposition.
First, we will show we may take a to be a simple root ¢=g;, for some =1, ...,/ -+ 1.
Toward this end, we first recall that in [7], § 6, we defined for each beAy(A), an
automorphism 7 of g(A), by

7, —exp(ad &) exp(—ad &,)exp(ad &,).

Of course we may also regard 7, as an automorphism of g(x), and then by
Lemma (6.9) in [7], we have

(6.13) BB =h—b(h)ky, beAy(R), heh(A),

where &,=2h,[s(b, b), for beAW(K). On the other hand, for each i=1,...,¢+41,
we define a linear automorphism

r: b'(A) > p(A),

by

(6.14) An(R) =0 (),  hebt(R),  reh(A).

A direct computation, using (3.3) (i.e., the definition of 7, on §’(A)*) then shows that
r(h)=h—ahk, i=1,...,041, hel*(A).
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Comparing with (6.13), and setting 7;=7,, i=1,...,4+41, we see that
Fh)y=nk), i=1,...,64+1, heh(A).

Thus, if w=r; ...r,eW, and if we set @ then

“
(6.15) B(h)y=w(k), heb(A).

~ ~
T.il. . .rik,

From this, from the fact that @ preserves g;(A), and from the fact that £, is primitive
in gz(x), for each beAW(K), we easily obtain

(6.16) BE)=+Eup, beAy(A)

(here, we only need w(g?) = g""
on).

, but we will use the stronger assertion (6.16) later

Now we are assuming =n’(x)=o0 for some non-zero xeg’ acAy(A). We
choose weW such that w(a) equals the simple root ;. Then, by (6.16), we have
w(x)eg%. On the other hand, =*(x)=o0 implies =*(@w(x))=o0, since kernel =* is an
ideal in g(K); i.e., we have shown that if kernel n*+o0, then for some i=1, ...,/ 41,
we have g%Ckernel =

We let 6C{1,...,Z+1} be the subset of all j such that g%d¢kernel x*. We
let 6" denote the complement of 6. We shall now prove that 6 is empty. If not, we
may choose €0, je0®’, such that

(6.17) A,+o

(we have assumed g=g(A) is simple). We let [0] denote the set of all roots ae A(K)

which are linear combinations of the a,, with me0. We set
F= 1) g%

ag A, (A)—[0]
and we note that ¢ Ckernel x*. But by (6.16) and (6.17) we have
(g% C A.

Hence g%Ckernel 7", and this is a contradiction. Hence 6 must be empty.

Thus g%Ckernel «*, for all =1, ...,#/+1. Butthen g~ %=7(g% (by (6.16))
is contained in kernel =%, for all i=1,...,/+1. Since the elements ¢, f,
i=1,...,{+1 generate g(K), all of g(K) is contained in kernel 7% i.e., we have shown
that if =* is not injective, then =* is identically zero on g(A). But then =*(k)=o,
for =1, ...,/+1, and hence A(h)=o0, ¢=1,...,¢/+1. This is a contradiction, and
hence n* must be injective. W

7. Chevalley groups.

From now on we make the following assumptions and notational conventions:
We let g(A) denote the Kac-Moody Lie algebra over C, corresponding to the affine
Cartan matrix A. Until § 16, no restriction will be made on %, except in the first part
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of § 9. We assume AeD satisfies A(h)+0 for some i=1, ...,¢/+1. Otherwise we
continue with our earlier notation; e.g., g,(A)=k®,gz(A).

For each aeAW(K) we have defined (see § 4) &,eg93, and we now also let &,
denote 1®¢,eg;=k®;g7. Now let AeD. Then we have seen ([7], Lemma (10.4))
that for all »eV? there exists a positive integer r such that

(7.1) hoe0=0, 1=1,...,{+1.

In particular, this holds for v€V}, and hence for »€V}. Now, for aeAy(A),
Eﬁ/n!e%z(x) maps Vj to itself (see [7], § 11), and hence, for any commutative
ring R with unit, £%/n! defines an endomorphism w4(£%/n!) of VA. Indeed, we obtain
a representation nf of "ZZR(K) =d:R®z%z(K)> in V2. In particular, this is true
for R==%.

We note also that a similar situation holds for the adjoint representation. As
usual, for E,neg(x), we set ad(g)(n)=[&, m]. We then obtain a corresponding
representation of %(g(A)) which we still denote by ad. For example, if £, neg(A),
then

n-times
ad(&")(n)=[E[E...[& =]...]].

~

Then ad(&}/n!) maps g5(A) to itself, and hence for any commutative ring R with unit
we define an endomorphism adg(£l/n!) of gR(K). Indeed, we obtain a represen-
tation adg of % (A) on gu(A).

For sek, we then have from (7.1) that

Xia,-(s):dfngosnﬂl)c\(gg:a,-/n!)’ i=1,...,f+1,
is a well-defined endomorphism of V;. Moreover, we have
(7’2) Xiai(sl+32)=X:l:ai(sl)le:ai(‘y.‘a)’ sl,s2€k) i=1, "'>[+I'
Thus each y,,(s) has an inverse (namely y,,(—s)) and hence y,,(s) is a k-vector
space automorphism of V.

We let End,(V2) (resp. Aut,(V})) denote the k-vector space endomorphisms (resp.
automorphisms) of V). For yeAut,(V}) and BeEnd,(V}) welet Ad(y)(B)=yBy "
We shall show that, for Eeg,(A),

(7.3) Ad( () (R(E) = B s"mA(ad(EL o)) (Bnite sum),

B sek, i=1, ...,¢{+1.
We note that only finitely many of the expressions ad(g},/n!)(E) are non-zero.
Thus, for beAy(A), we may define an endomorphism #,(s) of g,(A), by

Y, (5)(8) = §Os" ad(&2/n!)(E), se€k, i=1,...,f+1.
Analogous to (7.2) we have
(7-4) (51 82) =¥ (1) % (85),  S15 S2ER, 1=1, ..., £+1,
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and so %,(s)"'=%,(—s), and %,(s) is an automorphism of gk(x). We may rewrite
(7.3) as
(7-3') Ad(xy () (e (8)) =T (Z 10, (5)(B)),  Eequ(A), sek, i=1, ..., ¢+41.

We prove (7.8’) by regarding it as a formal identity in s, and computing the deriva-
tives of both sides with respect to s. The (formal) nth derivative of the left side is

(7-5) Ad(74 4(5)) (i ((ad € )" (8))),
and the (formal) nth derivative of the right side is
(7.6) (Y0 (5) (ad £ )" (8)))-

We see that the expressions (7.5) and (7.6) are equal when s=o0. This implies (7.3'),
and hence (7.3).

Now for each i=1,...,/+1, we define r'eAut(Vy) by
7 = Yy (1) A— gy (— 1) 2 (1)
On the other hand, in § 6, we defined automorphisms 7,, beAW(K), of gz(x).

Tensoring with £ we then obtain automorphisms of gk(x), which we again denote by
7. Asin § 6, we set 7;=7,, i=1,...,¢{+1. Clearly

7 =%,(1)Z_(—1)%,(1),

and hence (7.3') implies

(7-7) Ad() (@) =m=(F(E),  Eeg(A), i=1,..., ¢ 41
From this and from (6.16) we have

(7.8) Ad() (mh(E) =£mh(Er)s  i=T, « .., 41, aeAy(A).
If

(7.-9) w=r ... rijeW,

we set

(7.9) wh=r)...1.

A priori, w* depends on the expression (7.9) for w in terms of the 7’s. In any case,
we have from (7.8) that

~

(7.10) Ad(w") (1 (E)) =+ 7 (Bu)>  2€Aw(A).

Now if aeAy(A), then a=uw(q) for some weW, and i=1,...,¢/+1. Thus, if
we write @ as in (7.9), and then consider the corresponding w* given in (7.9’), we
have from (7.10) that

(7.11) 7 (8a) =+ Ad(0*) (m (5,).-
It then follows from (7.1), that we have the
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Lemma (7.12). — For all veV2, acAy(R), there exists an integer r>0, such that
(7.13) E.v=o.

Thus, if we set
(7.14) tls)= Z s"mh(Efnl),  sek, aeAw(A),
then the sum on the right is a well-defined element of End,(V}). Moreover, (7.11)
implies

Aals) = 1" oy (£ 5) () 7,

and it follows from (7.2) that

(7.15) Ka(s1t52) = a5 alsz),  a€Bw(R), 53, €k,
and of course this implies, as before, that y,(s)eAut,(V2), for each sek.
We have:

Lemma (%7.16). — Let acA(A). For all veV}, there exists an integer j,, so that if
Jj>Jo and a=a(a)+J, then E,.v=o.

Proof. — This lemma is a consequence of (6.9), (6.10), and the fact that if
a=a(a)+ji, then EaegR(K)j. [

Corollary. — Let acA(A). For all veV?}, there exists an integer j,, so that if j> j,
and a=a(a)+ji, then
(7.77) Ya($) -2 =0,
Jor all sek.

In § 5, we have set F=R[[t,t']] equal to the ring of all formal Laurent
series with coeflicients in the commutative ring R with unit (see (5.9)). We have
also, in § 5, defined a norm | | on %. We let

O=0Og={xeL | |#|<1}
P={xe0 | |x|<1}
0=0—-2.

Then 0 is the ring of formal power series in %; (the “integers” of %), the set & is
the (unique) maximal ideal of @, and @* is the group of units in 0.

We will now consider %,; i.e., we take R to be the field % (which is nof, we recall,
necessarily of characteristic zero). If we are given o(f)e%;, where

(7.18) c(t):jgjoqjtj, g€k,
and if «eA(A), we define y2(o(f))=7x,(c(t))eAut,(Vy) by
(7.19) XQ(G(t))=Xa(0(t))=’.§j°Xa(a)+ﬁ(%~)-

We drop the superscript A when there is no danger of confusion.
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By the Corollary to Lemma (7.16), x,(c(¢)) is a well defined automorphism
of V2, and using the fact that
[Ea(oz)-l-ju ga(a) +j’u] =0, j: j,ez,
and using (7.15), we obtain

(7-20) %a(01()) 1a(02(1)) = 2a(02(8) +-02(1)),  @i(t) e, i=1, 2, aeA(A).

The following definition is fundamental in this paper:

Definition (7.21). — We let G =G} =G}A) CAut V} denote the subgroup generated
by the elements y,(o(t)), xeA(A), o(t)e%,. We call G the (complete) Chevalley group
over k (with respect to ).

For «acA(A), and o(t)eS, with o(tf)+0, we set
(7.22) w,(6(t)) = wa(0(t)) = xa(6(£)) A ou(— (1) ™) 2a((8)),
k(o () = hy(a(t)) = w, (o (£)) (1) .

We drop the superscript A, when there is no danger of confusion. Also, for
aEAW(K), sSER, s+o0, we set

(7.23) 10 () = 10(5) = 2%a(5) 1o — 5~ 2a5)s
B(5) = h(s) = w,(s)a0,(1) .

Again, we omit the superscript A when there is no danger of confusion.
We then have the following important

Definition (7.24). — We let I CG  denote the subgroup generated by the elements y,(o(£))
where either acA, (A), o(t)e@® or acA_(A), o(t)eP, by the elements h,(c(t)), o(t)el”,
acA, (A), and by the elements ha’”(s), sek* (B*=y4k—{0}). We call # the Iwahori
subgroup of G.

Remark. — Obviously our definition of Iwahori subgroup is analogous to, and
motivated by the corresponding notion introduced by Iwahori, Bruhat and Tits
(see e.g., [5]). We shall make the relationship more precise later on (see §§ 13, 14,
below).

8. The adjoint representation.

In § 7 we defined, for each aeAw(K), a one-parameter group of auto-
morphisms y,(s), sek, of V), and a one-parameter group of automorphisms %(s),
sek, of g,(A). In analogy with the way we defined the automorphisms 7,(s(f)),
aeA(A), o(t)eS, in terms of the y,(s), we now wish to define automorphisms %, (s(¢))
of g/(A), in terms of the #,(s). We also wish to show that the y,(c(¢)) and %,(s(t))
are related by an appropriate analogue of (7.3").
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First we note the following generalization of (77.3’) (the proof being the same
as for (7.3"):
(8.1) Ad(1()) (R (E) = m(%(5) (B)),  Eegu(A), aeAy(A), sek.
Next, we note that relative to the norm | | on g,(A), defined in § 5, the auto-
morphism %,(s), acAy(A), sek, of gk(K), is bounded; i.e., there exists C>o so that
%) E)<ClE|, for all  Eegy(A).

Hence %,(s) has a unique extension to a bounded operator on g,ﬁ(K), and we denote
this extension also by %(s).

Now let o(t)e%, be given as in (7.18), and let acA(A). We define the
endomorphism %,(s(t)) of g¢(A) by

(8.2) #(60)= 11 9, ,,(0).

Of course we must show that #,(o(t)) is well defined. But if v;egfc(x), and if for
1>7,, we set

7= 11 %(a)ﬂ(%))(”’)),

125240

then the sequence v, i=j,,jo+1, ... is convergent (relative to | |). Moreover,
from (7.4) we have

(8.3) P (01(1) Y (02(0)) =¥ (01(t) + 03(1), i) e, i=1, 2, aclA(A).
Thus %, (c(t)) " *=%,(—0(t)), and %,(s(¢)) is an automorphism of g,i(x), for
aeA(A), o(t)e,.
Actually, for the same reason that % (s(¢)) is well defined, we have:
(8.4) Let «eA(A). If ot), i=1,2,..., is a sequence in %, and if
lim; 6;(¢) = o(t) €%,
(relative to the norm | | on %), then for all v;eg,ﬁ(X), we have
limy(%, (6i(%))) (1) = (%(s(2))) (m)
(relative to the norm | | on g,f(x))
Similarly, from the Corollary to Lemma (7.16), we have
(8.4) Let acA(A). If g(¢), i=1,2,... is a sequence in %, and if
lim; 6;(t) =06(t) e,
(relative to the norm | | on %), then for all »eV}, we have
lim; ¥, (03(2)) (2) = 2(5(8)) (2),
in the sense that, for 7 sufficiently large,
22(03(8)) () = %(0(2)) (2).
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We note that Lemma (7.16) implies that the action of g2(A) on V? is continuous
in the sense that

(8.5) If g, i=1,2,..., is a sequence in g,ﬁ(x),
: if lim; &, =£eg;(A) (relative to the norm | |),
and if 0eV}, then for ¢ sufficiently large,

E.o=E.0.

Now let acA(A), o(t)e%,, and choose a sequence o;(f), i=1,2,..., in
k[t ¢7'], such that lim; o;(f)=0(¢) (relative to | |). Then for Eegi(A), veVy,
Ad y,(0(2)) (m(8)) -0 =lim; Ad 5, (0,(t)) (i (€)) .2, by (8.4)
=lim; m(%,(c,(£))€) ., by (8.1)
= mp(limy (%, (0,(£))8)) .0, by (8.5)
=m(%(c(1)E).v, by (8.4),
and we thus have proved:
Lemma (8.6). — If acA(A), o(t)e,, and Eeg,ﬁ(x), then:
(8.7) Ad y,(a(#)) (73 (€)) = 7, (% (o (2))E).
When there is no danger of confusion, we will write % for %,. We then have
8 =82(A)-

For each aeA(A) and o(¢)e#, we define an automorphism Z(c(tf)) of g (A) by
Z,(6(t)) = exp(ad o{)E).

On the other hand, as we observed in Remark (5.8) (see (5.10)) we have the
central extensions (for R =k):

38 o oo ®) Eho,
b) o, gi(B) % g (4) o,
Moreover, as we noted in Remark (5.11), we have
6i(R) =G @k =go(A) Ok,
and @, is just the projection onto the first factor. From this, one easily sees that

8Ic(exp q ad Ea(a)+jt(7))) =(exp q ad tj®Eo:) ("‘N)k("))))
n€gy(A), jeZ, acA(A), gek.

Then, from this, from (8.4) and its obvious analogue for Z(s(t)), and from the
continuity of o, we obtain:

(8.9) F(G(o(1) ()= Zu(o(0))Bu(n),  «eA(A), o(t)e?, negi(A).
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Recall from § 1, that g,ﬁ(x) is said to be perfect if
(8.x0) [6:A), gi(A)]=gi(A).

Lemma (8.1xx). — If x:ggo(A) > gu(A) is a Lie algebra automorphism (regarding
8« (A) as a Lie algebra over k), and if g,ﬁ(x) is perfect, then there is at most one Lie algebra
automorphism »' : g,ﬁ(X) — gﬁ(x), such that
(8.12) ako%'=%oak.

Proof. — Assume «'": g,i(x) - g,ﬁ(x) is a second automorphism satisfying (8.12)
(with x”” in place of x’). Then set x,=x"o(x')"!, and note that

ako}(o:ak.
It then follows from Lemma (1.5) and our assumption that g¢(A) is perfect ((8.10)),
that »,=identity. m
We let G, =G, #(A) CAut(gy(A)) denote the group of automorphisms
generated by the automorphisms Z,(c(t)), ccA(A), o(t)e¥. We let
Gua(A) C Aut(gi(A))

denote the subgroup generated by the automorphisms % (s(t)), «cA(A), o(t)eZ.
For any automorphism % EGM(K), we have that % maps ¢, into itself (and in fact
is the identity on ¢, since ¢, is in the center of g,ﬁ(X)), and hence % induces an auto-
morphism £ of g4 (A); i.e., there is a unique automorphism £ of gg(A) such that

(8.13) S W () =Z(S(n), megi(A).
In this way we obtain a homomorphism

U Gad(x) — Gy, 2(A),

~

where for #eG,;(A), the image Z=®'(¥) is defined by (8.13). But then by
(8.9) and the fact that (by definition of G, (A)) the %, (c(t)) generate G,(A), we
have that @’ is the unique homomorphism from Gad(x) to G4 #(A), such that

(% (a(1) =Z,(c(t)), acA(A), o(t)eZ.
Then, by Lemma (8.11), @ is injective. Thanks to the fact that (by definition of

G4, ¢(A)) the Z,(o(t)) generate G,y &(A), it is also surjective. Thus if g,ﬁ(x) is
perfect, we have:

Lemma (8.14). — There is a unique group isomorphism (D’:Gad(x) — G,y o(A)
of Gu(A&) onto Gy o, such that

¥ (%,(0(1)) = Z,(c(1), 2€A(A), o(t)eZ.

Remark. — We have given the proof except to note that the uniqueness follows
from the fact that the %, (c(f)) generate G,,,,(K).
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9. Schur’s Lemma and an important identity.

For the first part of this section we consider the special case when 2=C. We
fix AeD and, as specified at the beginning of § 7, we always assume that A(h)+o0 for
some i=I,...,{+1. From Proposition (6.11), we then have that

7 : ¢°(A) - End V*

~

is injective, and we therefore identify g¢°(A) with its image n‘(g”(x)). In Defi-
nition (7.21), we introduced the group G =GACAut V. We now prove:

Lemma (9.1) (Schur’s Lemma). — If geEnd V* commutes with x, for eack xeg(A),
then g is a scalar multiple of the identity.

Proof. — In [7], § 12, we proved the existence of a positive-definite, Hermitian
inner product {, } on V* and of an involutive, conjugate-linear, anti-auto-

morphism * of g(A) (where for xeg(A), we let x* denote the image of x under *) such
that the weight spaces of V* are mutually orthogonal, such that

(92) {x'vl) 1)2}:{111, x‘.v2}, U1, vzev}\» er(K))
and such that
(9-3) u* (&) =u¥(A).

Moreover, we saw in [7], § 12, that * has an extension to an involutive, conjugate-
linear, anti-automorphism (again denoted by *) of %(g(x)) Again, if ue%(g(A)),

*

we let u* denote the image of ¥ under *.
Now,

~

(9-4) VA=2(g(A)).2,,

since, e.g., V* is a quotient of V¥¥, Thus, to prove Lemma (9.1), it suffices to
prove that g.y, is a scalar multiple of v,. But for this, it suffices to prove that for any
weight w=#A of V?, and for vueVﬁ, we have

(9-5) {g-v0, 7,}=0.
However, we may write v, as
0, =1u.7,
where ue%(u_(x)) is a linear combination of products of elements of u”‘(x).

Thanks to (9.3), »* is a linear combination of products of elements of u+(x), and
hence

(9.6) u'.vy=o0.
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But then

{g'vm vu.}={g°vo’ u'vo}:{u*° (g-”o)a vo}: by (92)
={g.(u".v,), vy}, since g commutes with g(x),
=0, by (96)9
and this proves (9.5), and hence the Lemma. m
In § 7 (formula (7.20)), we showed that y,(s(¢)) is additive in o(¢). We shall
now use Lemma (9.1) to prove a second important identity for the y,(o(f)). Thus,
let «, BeA(A), with a+B+o0, and let o;=0c;(t), ¢=1,2, be elements of %, where

we now allow % to be an arbitrary field. For automorphisms A, B of V}, we let
(A, B) denote the commutator ABA™!'B~1,

Lemma (9.7%7). — We have

(9-8) (Xa(01)5 %8(02)) = HXia+ja(%‘Gicg)a

where the product on the right is taken over all roots ia—+jB, 1,j€Z, 1i,j>0, arranged
in some fixed order, and the c;’s are integers which depend on «, B, and the fixed order, but not
on R, oy, 5. Furthermore c,, satisfies

(E,, Ea]zcuEa+a§
i.e., the integer ¢y, coincides with +(r+1), in (4.1).

Proof. — First, assume o, o, are Laurent polynomials in ¢ and ¢ %,
(9-9) oy =Zg;t!
G2=ijtj)

where the sums on the right are finite, and the p’s and ¢s are complex numbers.
We let R=Z[p,, ¢], denote the ring obtained by adjoining the p’s and g¢’s to Z.
Then VCV?%, and the automorphisms y,(c,) and yg(o,), defined in (7.19), leave V}
invariant.

Now thanks to (8.7) and Lemma (8.14), we have

@’ 0 Ad(xu(01)) = Z, (1),
@0 Ad(yp(03)) = Z;(03)-

Also, thanks to [21], Lemma (15), page 22, we have that Lemma (9.7) holds
for Z (o,), Z4(0y) in place of yx,(6;), xp(os), respectively. It then follows from
Lemma (8.14), that Lemma (9.%) holds for %,(c,), %(c,) in place of x,(c1), %a(c2),
respectively (note that gﬁ(x) is perfect, since A=C). Then it follows from
Lemma (9.1) that Lemma (9.7) holds for y,(s;) and yg(s,;) modulo scalars (given
our special choice of o6;, o,). Thus there is a complex numbers y=v(qs,, 0,), such
that

(Xa(o1)> Xﬂ(62)) (HXmHa(_c«;jGiGg)) =v(oy, 0y)1,
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where I denotes the identity operator. However, the left side of this equation
leaves V} invariant, and defines an automorphism of V}. It follows that y(o;, 63)
is a unit of R. Now choose the p’s and ¢;’s to be algebraically independent over Z.
Then we must have y(oy, 0p)=x+1. Specializing the p’s and ¢’s to be zero, we
find v(oy, 6)=1. Again, by specializing, we see that in fact Lemma (9.7) holds
over any field %, provided oy, o, are of the form (9.9), with the expressions on the
right being finite sums. But then, thanks to (8.4’), we obtain Lemma (9.7). m

10. Relations with the work of Matsumoto, Moore, and Steinberg.

In this section we wish to apply (7.20) and Lemma (9.7) to show that G}
is a central extension of a classical Chevalley group. More precisely, if A is a
classical Cartan matrix, we let Gg,=Gg,(A) be the abstract group generated by
symbols Z/(s), acA(A), oe€%, so that one has the defining relations:

A) Zi(o+7)=Z(0)Z(x), acA(A), o,7c 5,
B) (ZUo), Zile)= ML Ziplegsiod),  at—p,
i +jBEA(A)

(where the order of the right-hand product, and the ¢; are as in Lemma (9.7)),
provided A is not the 1X1 matrix A=(2), in which case (B) is vacuous. But, if for
any «cA(A) and non-zero o€, we set w,(o)=Z(0)Z (—0o 1)Z/(s), then
for A=(2), we have: '
B) () 2, ()l (0) " = Z. o(— o),
and finally, if we set £, (c)=w,(c)w,(1)"", then
Q) K (or) =h(o)B,(7), o, e
Alternatively, if G denotes the Chevalley group scheme over Z, such that Gg is the
simply connected topological group corresponding to A, then Gg,, defined above, is
isomorphic to the group of % rational points of G (see [20]). Moreover, if we
define E(Gg,) to be the group generated by objects 15(s), «€A(A), ce%, which,
for y%(c) in place of Z(o), satisfy the relations A) and B) (or B’), if A=(2)), but
not C), then clearly there is a unique homomorphism

cpe : E(G.?k) —éG.?k’
such that

¢*(xz(0)) =2Z{(c), o€, acA(A).
Moreover, Steinberg in [20], shows that E(Gg,) is the universal covering, in the sense
of Moore [18], of Gg,. We also have

Lemma (x0.1). — There is a unique homomorphism
¥ : E(Gg,) >G},
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such that
Y(xa(0)) =x.(0), aeA(A), cef.

Proof. — If A=(2), then the Lemma follows from Lemma (9.7) and
from (7.20). We are thus left to prove the Lemma in the case when A=(2). We
let A; denote the 2Xx2 classical Cartan matrix

2 —1
el )
—1 2
and, as in § 3, we let E;, E,, F,, F,, H;, H, denote the generators of g(A,).

Similarly, we let E, F, H denote the generators of g(A). We then have an
injection t: g(A)—g(A,), defined by the conditions

y(B)=E,, W(F)=F, «(H)=H,;
then . defines an injection
T: C[t, t7]@g(A) > Ct, 1] ®g(A,),

where T=1I®., and I denotes the identity map of C[z,¢7*]. In turn, 7 induces an
injective Lie algebra homomorphism
©:g(R)>g(Ay).

~ ~

Using the identification of g(A) (resp. of g(A,)) with the universal covering of

§(A)=4CIt, £]®g(A) (resp. of §(A)=yClt, -]®g(A,) given by Theorem (3.14),

we can give a simple, explicit description of ©. Thus let ¢>o0 be defined by:
¢(X,Y)=(X,Y),, X, Yeg(A),

where ( , ) (resp. ( , ),) denotes the Killing form of g(A) (resp. of g(A;)). Asin § 2,

we identify the universal covering of §(A) (resp. of §(A,)) with F(A)®C (resp.

with §(A,)®C). We then define v by:

(r0.2) T, d)=(V(E),cd), Eeq(A), deC.
One checks directly that
©(02(A)) C ga(&y).

On the other hand, if A,eD(A,), then A, the restriction of A, to §*(A), is in D(A), and
every element of D(K) can be obtained as such a restriction. As in § 6, we fix the
“highest weight” vector v, in V*. It follows from a result of Kac (see [11] and [8],
Remark on page 61) that #(g(A)).7, is the g(A) module V*. Moreover, from [7],
§§ 11, 12, one sees that

Vy=VhnV*
Thus, for any field %, we obtain an imbedding
(A&, &) : GHA)>Gl(&)).
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To prove the Lemma for G}(A), we must prove relation B’). But this now follows
from the existence of the imbedding L(K, A,), from Lemma (10.1) applied to G,fl(xl)
(which we have proved) and from Matsumoto [13], Lemma (5.1) (or Steinberg [20]). ®

11. Relations with the work of Bruhat and Tits.

We now consider the group E(Gg,) defined in § 10. Following Steinberg [20],
we can introduce a BN-pair structure on E(Gg,). However, here we also follow a
suggestion of Tits and first introduce a donnée radicielle ([4], § 6.1) in E(Gg,).
Thus, for each acA(A), we let U denote the subgroup of all elements y%(c),
ceY,. We set
wi(0) = 2a(0) 1 u(— 0 ) 1a(0),  aeA(A), ceL—{o} =,
and we set
k(o)=wt(o)wi(1)" Y, «cA(A), ceZ.
We let T° be the subgroup of E(Gg,) generated by the elements A (c), acA(A),
ceZ—{o}=%. We let M, «acA(A), denote the right coset of T°

M. =T w(1).

Proposition (xx.x). — The system

(Te’ (U; ] M;)a € A(A))

is a donnée radicielle of type A(A), as defined in [4], § 6.1.

Thus this system has the following properties (from [4], 6.1.1):

(DR 1) T is a subgroup of E(Gg,), and for each «aeA(A), U; is a subgroup
of E(Gg,), and U contains more than one element.

(DR 2) For «, BeA(A), the group of commutators (U;, Ug) is contained in the
group generated by the Uj,, o for p,geZ, p>o0, ¢g>o0 and pa+gBeA(A).

(DR 4) For «eA(A), M. is a right coset of T¢, and one has

U ,—{1}CcU, M, U,

where 1€E(Gg,) denotes the identity.
(DR 5) For «, BeA(A), and neM;, one has
wUpn ™" = U5,
where 7,(B)=B—2(a, B)(x, )" o
(DR 6) If U?% (resp. U’) denotes the group generated by the U;, «cA,(A)
(resp. A_(A)) one has T°U’.NnU* ={1}.

Remarks. — We have omitted (DR g) of [4] since this property only applies to
nonreduced root systems. Also, we note that the donnée radicielle (T*, (Uy, M;),can)
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is gemerating in the sense of Bruhat and Tits; i.e., T° and the subgroups U generate
E(Gg,). Indeed, the subgroups U; generate E(Gg).

Proof (of Proposition (11.1)). — (DR 1) This is clear from the definitions.
(DR 2) This follows from the definition of the U and from B), at the beginning
of § 10, as applied to the yx;(s) in place of the Z;(s). Incidentally, though at first
glance B) only applies to the case a+—f, we note that (DR 2) is in fact a tautology
if «a=—B. (DRg4) The first assertion just comes from the definition of M;. For
the second assertion of (DR 4), we apply Matsumoto [13], Lemma (5.2) (k):
1oa(—0)=y—o V(e ) yi(—06""), o+0, which follows from the definition
of wi(c™'). (DR 5) This is just a consequence of (7.2) and of (7.3), (¢) in
Steinberg [20] (also, see Matsumoto [13]). (DR 6) We define U,, «cA(A), to
be the subgroup of Gg, consisting of the elements Z,(c), oc€Z. We let U,
(resp. U_) denote the group generated by the U,, acA (A) (resp. A_(A)) and we
let T be the subgroup of Gg, generated by the elements 4,(s), acA(A), ceZ. We
then consider the homomorphism ¢°:E(Gg,) - Gg,, defined in § 10. We have

@e(UZ):Ua’ 'IEA(A):

¢*(Uy)=Uy,

¢*(T*)=T.
Moreover, ¢° restricted to U’ is injective (see Steinberg [20], (7.1) and Matsu-
moto [13]). Hence, in order to prove (DR 6), it suffices to prove TU, NnU_={1},
where 1 now denotes the identity in Gg,. But this is an easy consequence of the
representation theory of Gg, (we can assume TU, represented by upper, and U_ by

strictly lower triangular matrices), and is well known. m
For acAy(A), we let

r.: B'(A) > p*(A)"
(5°(A)* = dual space of (X)) be defined by
7‘a(p') = (‘L_P‘(ha)aa

where, as in § 6, after (6.13), we set

~

h,=2k,[c(a, a), acAyx(A).
In Appendix I, at the end of this paper, we shall prove:

Lemma (11.2). — Let acAy(A), and let p. be a weight of V?*, then:
(1) If veVh, (see (6.2)), there exists v'€V} ., ;, such that

w,(s) . o=s""hly' | sek.
(ii) hy(s), sek* acts diagonally on V% . as multiplication by s*.
(See (7.23) for the definition of w,(s), Ak,(s), with aeAW(K), sek*.)
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Recall, that at the beginning of § 7, we assumed A(k)+o0 for some i=1, ..., 1.
It then follows from Lemma (11.2) that w,(1) is not the identify automorphism
of V2 (just apply w,(1) to a highest weight vector and use (i)). Hence G} has more
than one element. But G} is generated by the elements y,(c), acA(A), ceY, (see
Definition (7.21)). Hence the homomorphism

¥ : E(Gg,) ~Gt,
of Lemma (10.1) is surjective. Since G}+1, as we just noted, we have
(xx.3) kernel ¥* +E(Gg,).

In G} we let T denote the subgroup generated by the elements k,(c), acA(A),
ce%;. We let U:, «cA(A) denote the subgroup consisting of the elements y, (o),
o€, and we let U% (resp. U) denote the subgroup generated by the U2, acA, (A)
(resp. A_(A)). The homomorphism ¥*°: E(G_gk)»@,f satisfied (and was uniquely
determined by) the conditions

P (xa(0)) =%a(0), acA(A), ceZ.
It follows that

(1x.4) (U;) =Ug,
¥ (Uy)=U%,
Pe(Te) =T

Moreover, thanks to Proposition (11.1), and to Bruhat-Tits [4], Proposition (6.1.12),
we obtain a BN-pair in E(Gg,), given by the pair of subgroups (B’, N°), where
B*=T°U?% and N° is the subgroup generated by the wj(s), acA(A), ce%,. But
then from Bourbaki [3], Theorem 5, p. 30, and from (11.3), above, we have

(xx.5) kernel W C T®.
For «eA(A), we let M} denote the right coset of T*
M2 =Tw,(1).
The following proposition is then essentially a corollary of our above remarks and of

Proposition (11.1):

Proposition (xx.6). — The system
(Tl, (UQ: M;)aEA(A))
is a donnée radicielle of type A(A).
Proof. — Properties (DR 2), (DR 4) and (DR 5) follow from the corresponding
properties for (T°, (U, M;),capn), and then applying the homomorphism ¥*. For

property (DR 6), we note that if geT*U% NnU%, then we may choose g €U’
and g"”€T°U’ such that

F(g)="1"(g")=¢.
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Then, thanks to (11.5), we have
g=g'"t, tekernel ¥° CT".

But U”nT°U’ ={1}, and hence g'=i1. Therefore g=%*(g')=1, where, in this
last equality, 1 denotes the identity element of G}. This proves (DR 6).

It only remains to prove (DR 1), and for this, it suffices to show that U? contains
more than one element. Indeed, if €%, and o+o0, then y,(c)+1. Forif y,(c)=1,
then y;(o)ckernel ¥°. But then, by (11.5), we would have y%(c)eT? hence
Z,(6)=¢°(yo(0))eT =¢°(T*?), and this is only possible if Z/(c)=1 (with 1 now
denoting the identity in Gg ). This, in turn, implies oc=o0, a contradiction (see
e.g. Steinberg [21], Corollary 1, p. 26). m

(xx.7). Remark. — It follows from the observations in the proof of Prop-
osition (11.6), that each of the maps
o 74(0)
6 7(0)

o 2(0) oed,
is injective.
We let v:%—>Ru{w}
be the t-adic valuation. Thus, if

o= X gl'ce, a4, *o0,

>4
then v(o) =1y,
while v(0) = c0.

For each aeA(A), we define functions
: U, —>Ru{o0},
: U >RU{ w0},
ve: U,~>RU{0},
by Va(1e(0) =Va(2a(0)) = Vo Zi(0)) =V(0), ocE€H.
We let M, denote the right coset of T,
M, =Tw,(1).

\

!> ]

V]

It is then known that the system

(T’ (Ua’ Ma)aeA(A))
is a donnée radicielle of type A(A) (see Bruhat-Tits [4], § 6.1.3). We make the

notational convention that v, (resp. U*, resp. M%) may denote any one of vi, v} or v,
(resp. U2, U or U,, resp. M2, M2 or M,). Similarly, we let T* denote either T°, T

or T.
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We now prove:

Lemma (1x.8). — The family (vi)qcan) & a valuation in the sense of Bruhat-
Tits [4], § 6.2, of the donnée radicielle (T, (Uy, M), can))-

That is, the (v;),can satisfy the following conditions (each v, mapping U;
into Ru{w}):
(Vo) For each acA(A), the image of v} contains at least three elements.
(V1) For each «cA(A) and ieRU{w}, the set Uj,=v, '([4, ©]) is a subgroup
of U; and one has Uj , ={1}.
(V2) For each «eA(A) and meM], the function

u—>v*_(u) —v: (mum™!
o o

is constant on U* ,—{1}.
(V) Let «, BeA(A) and ¢, jeR; if B¢—R, «, then the group of commu-
tators (U

wi» Up,;) is contained in the group generated by the
*
po+ g8, pi+ gj?

where p, ¢ are strictly positive integers and pa + gBeA(A).
(Vs) If acA(A), ueUl, and u',u"'eUC

Ve o () ==V (u).

Remark. — We have omitted (V4) of [4] since that condition only applies to root

and if # uu'’'eM*, then one has
)

[ %)

systems which are not reduced.

Proof. — For Gg, and the donnée radicielle (T, (U,, My)eaw), with
valuation (v,)yea(s), the Lemma is proved in Bruhat-Tits [4], (6.2.3) (4). But then
consider the homomorphism

¢ : E(Gg,) >Gg,-

As we noted in the proof of Proposition (11.1), we have ¢°(U;)=U,, ¢°(T°)=T,
and similarly, we have ¢°(M:)=M,. Moreover, we clearly have

(1x.9) V(%) =vo(9°(3)),  xeUg.

Thus, (Vo) for E(Gg,) follows from the corresponding assertion for Gg,. By (11.7),
¢° restricted to U is an isomorphism onto U,. Hence (V1) for E(Gg,) follows
from (11.9) and the corresponding fact for Gg,. We now consider (V2) for E(Gg,).
Thus, let meM:; then the function

uve () — v (mum™"), ueU® ,—{1},
is the same as the function
U _ o (¢°(1)) — va(9° (m) ¢ (u) ¢*(m) ™),
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which is constant as ¢°(«) varies over U_,—{1}, and hence as u varies over U’ ,—{1}.
Property (V3) for E(Gg,) follows from (B), at the beginning of § 1o, but applied to
the y;(c) in place of the 2/(c), cc ¥, acA(A). Finally, (V5) follows for E(Gyg,)
from the corresponding property for Gg,, and an argument analogous to the one used
to prove (V2) for E(Gg,) (assuming (V2) for Gg).

Finally, we come to the proof of Lemma (11.8) for the (V}),¢ A and Gl
Here we use the homomorphism ¥*: E(Gg,) —~G). Thanks to (r1.4) and (11.7%)
we have that for each ae€A(A), ¥ induces an isomorphism from U’ onto U2, where,
recall,

¥ (xa(0)) =xa0)s o€
Since we clearly have
(x1.10) V(E(x)=vi(), xeUs,

we obtain (Vo) and (Vi) for G} from the corresponding properties for E(Gg).
Property (V3) for G} follows from (g9.8). Property (V2) for G} follows from (11.4),
(11.10), from the observation, made above, that ¥* induces an isomorphism on U;
(see (11.7)), and from (V2) for E(Gg,). Similarly, (V5) for G} follows from (Vs5)
for E(Gg,), from the facts just noted, and from (11.5), which implies

()71 (M;) =M.

12. Computation of the symbol.

We fix AeD (=the family of dominant integral linear functionals in I)e(K)*,
as in § 6). As specified at the beginning of § 7, we assume A(%)=+o0, for some
i=1,...,/+1. We consider the highest weight module V?, and fix a highest weight
vector 2,eV). We also let u, denote the element 1®ueVr=k®V% (where %
continues to denote a field, not necessarily of characteristic o). As we observed
in (6.7), every weight u of V* is of the form

£+1
w=A— .Eln,.ai, n,>o, neZ,
i=

We define dp(p) (the depth of u) by

{+1

dp(w)= 3 n

(see [7], proof of Lemma (10.4)).

We let vy, vy, o, ..., ,, - .. be a basis of V} consisting of vectors in the weight
subspaces V2 ;, u a weight of VA, We assume our basis ordered so that if eV} ,,
9,€Vy i, and i<j, then dp(p)<dp(u'). Moreover, for each weight p of VA, we
assume that the basis vectors in V} , appear consecutively. We will call such a basis

coherently ordered. We note that, with respect to a coherently ordered basis, the
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elements of u; (resp. u;, resp. I)k(x)) are represented by upper triangular matrices
with zeroes on the diagonal (resp. by lower triangular matrices with zeroes on the
diagonal, resp. by diagonal matrices).

We let S#;C.# denote the subgroup generated by the elements yx,(c(¢)), where
either w«eA, (A), o(t)e0®, or acA_(A), o(t)e?. From the observations of the
previous paragraph, and the definition of y,(s(¢f)) (see (7.19)) we have:

(x2.1) With respect to a coherently ordered basis, the elements of #; are
represented by upper triangular matrices with ones on the diagonal.
Next, we have
Lemma (12.2). — Let
(12.3) o(t)=q¢o+qt+...+gt+...,
g;€k, go%0, be an element of O*. Then, for acA(A), h,(c(t)) can be written as a product
b (o(t) =2ha(90),  xEHy-
Proof. — We set
o) '=g+qt+.. . Fgi+...,
where g¢jek, ¢y#o0, and in fact,
%o="9p -
Also, we set
p(t)=0c(t)— 4o
a0 =c""()—
We then have:
(12.4) ho(0(t)) =w,(a(t))w,(1)™"  (see (7.22)),
=%a(6()) %l — () ) 2a(a())wo (1)~ (also by (7.22)),
—Xa( (t))Xa<qO)x—a( ( ))X.—ac(_q()_l)Xa(p(t))Xa(qO)wa(I)_l
(
(

_Xa(p t))X—a(—(I(t))x“(q")xa(%)x—a(*90_1)Xa(P(t))Xa(%)wa(I)—l
= Xa(B(8)) A a(— 9(8)) =9 1, (p(£)) "Wl (g5), DY (7.22),

where for %, g in a group, we set g"=hgh~'. Also, a direct computation using (7.3),
(7.11), and the following consequence of (7.11) already noted in § 7, preceeding (7.15):

Ka(8) = 0" g (£ 5) (") 77,
shows that
(x2.5) Ad 7,(5)(=}(®) = Z s"wi(ad(Zfa!)(E)), (fnite sum),
B sk, acAy(A ) Eeg (A )

But then, another computation, using (12.5), yields
Ad w,(9) (m(Ea)) =— ¢ (E_ o) 140
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for gek*=k—{o}, a=a(x)+jrcA(A), j+o in Z. From this last equality, we have
Xa(P(D)™ ) =1 o(— 5 °p(2);

Similarly, y_,(—q(#))**~ %) =y.(2q(t)), and it thus follows that

(i) Za(B(8)) 7 a(— () =005, (p(2)) "0 =

(1i) LB (8)) O a(— (1)) o0 o= w0 (p (1)) 2ol

where if «eA,(A), the expression (i) is clearly in 4;, and if «acA_(A), the

expression (ii) is clearly in .#;. Calling y the common value of (i) and (ii) and using
the expression (12.4) for 4,(s(f)), we have

ha(a(2)) =2h2(40)s

and this proves Lemma (12.2). m

Corollary. — For o(t)e0*, with
o(t)=qo+q:t+ ... +4jtj+ cee
and for acA(A), we have
(x2.6) ha(o(0)) 29 = ).

Proof. — We note that £k,(qy) =k, (%), and apply Lemma (11.2),
Lemma (12.2), and (12.1). m
We now wish to compute

hy(a(@)t )R, () " R (a(f) "y,  aeAL(A), o(t)el
Thanks to (12.6), it suffices to compute

by (a(8)t )k, () " 0,
But we write o(¢) as in (12.3), and then, as we noted in the proof of Lemma (12.2),
we have

o) =gt agtt...+gt+ ..., g=q" gck.
We write ¢ for o(t), and recall that we defined (in the proof of Lemma (12.2))
p(t), ¢(t) by

c=¢qo+p(t),

ot =gy +q(t).
We then have

ot =gt +B(t)

o tt=g, 't+q(t),
where P)=pt)t te0,

g(t)=q(t)te O
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We have

(12.7) wo(ot™ ) =xo(ot™ N p—a(—0" ) xu(at™), by (7.22),
=%a(B(8)) a9t ) % al— T () % al— 96 O) (B (1)) (2027 Y)
= 2%a(B(0)) 2 o(— T(8)) 0w, (got™ ) 1 (B (8))
= %a(B(8)) % o(— T (£)) %0y, (B (2)) 520 e, (got7Y).
Now of course

X(B(1))eSy (recall aeA (A)).

We wish to also show:

(12.8) Lo = T (1) 00070, o, (B () el Ny
However, thanks to Lemma (10.1), and to Matsumoto [13], Lemma (5.1) (b):
(12.9) wg(01) % a(02)wg(0y) "t =5 s(n07 20y),

where n=41 or —1, oy,0,6%, BeA(A). From (12.9), it follows that
(12.10) Lal B 8) ) = 5o 45 2 P(1)) €5
On the other hand, also by (12.9),

X—a(—q~(t))w_a(d)=Xa(—")(6t)*2i(t))a L‘Ek*,

where again, n=+1 or —1. But, since §(¢f)e0, «cA (A), we see that this last
element is again in ;. But, on the other hand, we have:

e a( =T O) N =y o (0t) o — T )t (=T (B) Hale™ )t —ct).
Since y_,(ct)eSF;, we therefore obtain:
- =TT e Sy, ek,
and setting ¢=-—g¢; ', and recalling (12.10), we get (12.8).
But then £, (a(¢)t VA, (1)t 0,
= w, (o ()t )ww, (1) Trawy (1), (t71) " ez, by (7.22),
=w,(a ()t w,(t7) " .0,
= Zw,(qt Nw, (™) "y, ZeSy,
thanks to the expression (12.7) for w,(o(¢)¢"!) and to (12.8). But for cek*
w, (667 = Yalot ™) %o a(— ¢ ) xalet™?)
=1a(O)Xa(— ¢ ale) =04(c),  a=a(x)—.
Hence ,(got™")w,(t™") ! =w,(¢,)w,(1) " =4,(4,), and hence
k(o) ), (1) " o0y = Zh,(q,) .v,= )" Z.v,, by Lemma (11.2)
=g,
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since Ze.%;, so we can apply (12.1). Combining this last computation with (12.6),
we obtain

ko(a ()8 (E71) " ho(a(2)) vy =g et oy, = gpa,

where
a=a(e)—t and =—?;\’(,i));
i.e., we have for acA _(A), o(t)el",
O R I L

We also note that
(12.12) haie (5 ) a(96) - 70 = 45’05
On the other hand, if %(g,(A))=k®%,(A), then
V> =k@®VE=k®Uy(A)v, = %(g,(A))v, (see § 6),
and hence, thanks to Lemma (8.6) and to Lemma (8.11) we have from (12.11) and
(12.12) (note that /(g ")ha(d) =ha(gs ) ha(got™ A (¢7)77)

(12.13) ho(a(8)E ) ho(E71) T b (0 (8)) ™" = Ry (9o ) Bal0)
=T, aed,(A), o()= T ¢f, go,

where I denotes the identity operator on V3, and o is defined as in (12.11).

We now consider the group (A},ﬁ from the point of view taken in § 10. Thus, we
recall from § 10, that the y,(s) in place of the Z/(c), acA(A), ceY,, satisfy the
relations (A), (B) ((B’) if A=(2)) at the beginning of § 10. But then, if we
divide G} by the subgroup C generated by the elements k,(o;0,)k(65) 1h,(0y) "%,
aeA(A), oy, 6,65, (this subgroup is central by Lemma (10.1) and by Steinberg [20]),
the resulting quotient group, G}k say, is also a quotient group of Gg,. Indeed, we
have surjective group homomorphisms

1 Gi—>G,,

T G_?keG}k,
defined by the conditions

T (Xa(0)) =%u(0) G

7y(Z; () =%a(0) G,

for «eA(A), oe¥,. By Steinberg [20], Theorem (3.2), we have that kernel(r,) is
finite and central. We have already noted that C=kernel =, is central in G}.
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We let E*(Gyg,) Cé,fo_gk denote the subgroup of all elements (g;, g5), g.€G2,
826Gy, such that:

(x2.14) 71 (81) =m5(g2).-
Then, thanks to (12.14), we have a commutative diagram
G
EXGyy) ~----Z---->G%,
o} y
Gg,

where ¢, =9, @,=¢} (we drop the superscript A when there is no danger of
confusion) are induced by the projections of (A},t‘ng,k onto the first and second
factors, respectively. We let m=m;,09, =m,0¢,; then since kernel(w,) and kernel(mw,)
are central in G} and in Gg,, respectively, we have

kernel(r) C center(El(G_yk)).

We now fix a long root acA_(A), and we let
C*=kernel g,.
Then, by Moore [18], Lemma (8.4), the central extension
1 >G> EXGg,) 3 Gy, > 1
is determined by the function b3( , ) from %'x.% to C» defined by
(x2.15) ba(o, 7) =k (o)l () (o)™, o, e = Z,—{o},
where for ce %
k; (0) = (hy(0), k;(0)) €EX(Gg)).
We note that
h(0)h(7) = hy(o7), o, T,

thanks to (C), at the beginning of § 10. Hence, we have

(12' 16) b;\(c, T)z(ba(ca T)a I)a
where
(12.17) by(o, 7) = hy(0) he(7)he(07) Y, 0, TEZ.

We let M denote an abelian group (in which we write the group operation
multiplicatively) and we let 2 denote a field. Following Matsumoto [13], we let
S(k*, M) (k*=k—{0}) denote the group of all mappings

c:R"Xk"—>M
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satisfying the following relations for x,y, zek™
(12.18)  (S1) c{x, 2)e(wy, 2) =c(x, y2)e(, 2);
(82) (1, 1)=1;  ¢(%p)=c(x"} ™ ");
(S3) ¢(x,9)=c(x, (1—x)y), if ax=*1.

We let S°(%*, M) CS(%*, M) denote the subgroup of those c¢eS(k*, M) which are
bilinear; i.e., ¢(xy, 2)=c(x, 2)c(, 2), c(2, x9)=c(2, x)c(2,9), x,9, zEk".

Lemma (12.19). — Let acA_(A) be a long root; then C*=kernel ¢, is generated
by the elements bl(c, ), o,ve%y, and we have bX( , )eS°(Zr, Ch).

Proof. — The first assertion follows from Lemma (8.2) in Moore [18].
When Gy, is not of symplectic type; i.e., when A is not the classical Cartan matrix
corresponding to the symplectic group, then the second assertion follows from Matsu-
moto [13], Theorem (5.10). Also, Theorem (5.10) of [13] asserts that in any
case, bi( , )eS(Z:, CY). Thus, to complete the proof of the lemma, we need only
prove that bX( , ) is bilinear in the symplectic case. By (12.16), this is equivalent to
showing that &,( , ) is bilinear in the symplectic case (note that, also by (12.16), we
know that b,( , ) is bilinear in the non-symplectic case).

In the symplectic case we consider the subgroup H of G} generated by the
elements ¥,(61(£)), %_a(0a(t)), 61(t), ou(t)e,. Passing to a suitable H subrep-
resentation of V) (generated, over Z, by the highest weight vector and the subalgebra
corresponding to the subgroup H), we may in fact assume that Gg,=SL,y(Z) and
that A is the 1x1 Cartan matrix A=(2). But then, arguing as in § 10, we may
imbed g,(A) into gk(Kl) where

2 —I
wel
—1I 2

is the classical Cartan matrix corresponding to SL,. We may also assume V} is
obtained from a highest weight module for gk(xl), as the g,(A)-submodule generated
by a highest weight vector. We may then use the known bilinearity assertion
for SLg, to obtain the desired assertion for SL,. m |

We let

ep: L X L~k
denote the tame-symbol, defined by

(12.20) ep(61, 69) =(—1)"*"C((61) 5;) (0)),

where we recall that v denotes the ¢-adic valuation on . It is known that
eo( , )eSY(Z, k") (see Milnor [14], Lemma (11.5), p. 98). Indeed, one can easily
check bilinearity (which then implies (S1) of (12.18)) and property (S2) of (12.18),
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directly. Property (S3) is also easily checked by noting, thanks to bilinearity, that
it suffices to check ¢p(o, 1—0)=1, for ce%, o+1. One can in turn check this
by setting ¢=0't", ¢’e0*, and separately considering the cases m>o0; m<o; m=o,
6(0)=1; m=o0, o(0)*1I.

Now we have observed that b,( , ) is bilinear (by (12.16) and Lemma 12.19),
and thanks to (12.13), we know that

(x2.21) by(a(#), t7') is a non-zero scalar multiple of the identity operator
on V3, for all o(f)e0".

In fact, we have:

Lemma (12.22). — For all oy, 6,65, b,(01, 0s) is a scalar multiple of the identity
on V1.

Proof. — If we write

;=0 ™, oel, i=1,2,

then we see from the bilinearity of &,( , ), from property (S2) of (12.18), and
from (12.21), that it suffices to prove the lemma for
(1) b.(01, 02), 01, 0260,
(i) bo(t, t7Y),  by(4, 8).
But, in case (i), each of the operators %,(s,), %,(6s), h,(6165) is upper triangular with

respect to a coherently ordered basis (Lemma (12.2)). Then, we can use (12.6) to
show

(12.23) by(01, 02) =T, 6y, 63€ 0",
We note that since for ceS°(%*, M),

c(1—x, x)=c(1—x, 1—(1—x)),
for xe%’, x=+1, the relation (S3) of (12.18) implies
(S3") c(1—x,x)=1, 2%, x*1.
But then

bo(t, ™) =b,(t(1—t~1),¢™1), by (Sg’) and bilinearity,

=b,(t—1, t')=non-zero scalar multiple of the identity,

by (12.21).

On the other hand
ba(t, £)=by(t, £¢77)
=b,(t, £?)b,(t, t~"), by bilinearity
=b,(t, t)2b,(t, t*), by bilinearity.
Hence by(t, t)=b,(t, 1)1,
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and hence b,(¢, t) is also a scalar multiple of the identity. This concludes the proof
of Lemma (12.22). m

By Lemma (12.22), we may identify 4,( , ) with an element of S°(Z’,%").
By (12.13), we have
2 (k)
(% )
for o(t)=qo+qt+ ... +¢#+ ..., gock’. On the other hand,
ex(o(?), t"l)—_—c(t)—1(0)=qo—1,
and so by(a(t), ) =cp(a(t), t71)°, o(t)el".

bo(a(t), £ =g7 %, o=—

Similarly, ¢;(oy, 65)=1, for oy, c,e@*, as one sees from the definition. Hence
*
by(01, 03) =c¢1(01, 02)%, 01, 030"

But then, arguing exactly as in the proof of Lemma (12.22), we see:

Theorem (12.24). — If w=—2A(k))(a, «)~Y, for acA_(A) a long root, then:
by(01, 02) =0n(01, 03)¢; 01, 026 Z.
In particular, we may take A=2,, where
0, t=1,...,1¢,
(2.25)  w={” T
Then w=—1, and

by(01, 63) =cp(0y, 52)_1-

We thus have:

Theorem (12.26). — If AeD, and A(B)+o0 for some t=1, ...,¢+1, then there
is a unique homomorphism

®*: EM(Gg,) > ENGy),
such that
DM (x*(0(2), Z(o(1))) =(xs(c(®), Z(a(t))), BeA(A), o(t)e L.
Proof. — For any A\, we set
Z(a(1)=(xs(c(®), Z5(a(2))), o(t)eL, BeA(A).

Now let @Fr=@™(ZM(s(t))) be a word in the Z(s(f)), such that Fr =1
in EA"(G_?,‘). To prove the theorem, it then suffices to show that the corresponding
word @ in E"(G_?k), is equal to the identity.
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Indeed, let #° be the corresponding word in the x3(o(f)), in E(Gg). We
have the commutative diagram

PA" EAO (G.?k)

E(G.?k) ?2}0
(pe
£77
where for AeD (A(k)+0, some i=1,...,¢/+1), we let p* be defined by the
conditions

*(ua(c(M) =23 (s(t)), BeA(A), s() e,

noting that p* is well defined since the 2{(s(t)) (in place of Z(s(t))) satisfy the
relations (A), (B) ((B’) when Gg,=SLy(%)) of § 10. Then

9(Z) =30 p™(¥) = o3"(¥™) =1,

and so %‘°ckernel ¢°. But then #° is a product of elements #&%(c)k:()h (o)™ 2,
o, 7€, (and inverses of such elements) in E(Gg,) (see Moore [13], Lemma (8.2)).
Hence @*=p™(%°) (resp. #*=p*(#*)) is the corresponding product of ele-
ments b)(c,7) (and inverses of such elements) (resp. of elements b2(s,t) (and
inverses of such elements)). But @#*=(I, 1), where I denotes the identity operator
on Vi, and 1 denotes the identity in Gg,. It follows from Theorem (12.24), and
from our choice of Ay, that #* is the identity in E"(G_gk). ||

13. The Tits system.

We begin by summarizing some of the material in Bruhat-Tits [4], § 6. Recall
that in Lemma (11.8) of the present paper, we proved that the family (v;),caw is
a valuation of the donnée radicielle (T* (Uj, Mj),can)- The elements of A(A)
may be identified with elements of hg(A)*, the real dual space of hgz(A). For
each vebhy(A), for seR’ (=the set of non-zero, positive real numbers), and for each
valuation (uh)ecaw (0 wi=pls 2, or g,) of (T% (Ui, Mi),caw), we define a
new valuation ({;),can) PY

(13.1) Vi) =su(0)+a()  acA(A), ueUy.

We will denote a valuation (w),ecan simply by p* (e.g. we will denote (v;),eanm
by v*). We then write (13.1) more simply as

(x3.1") ¢ =sp* +o.

Thus the additive group bhg(A) acts on the valuations of (T (Uj, M}),can)>

via (13.1°) (with s=1). We call two valuations in the same orbit of this hg(A) action,
équipollentes.
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On the other hand, consider the group N* generated by T* and by the M3,
x€A(A). We note there exists a homomorphism

% : N*—>W(A),
such that for all aeA(A), neN*, one has

(13.2) nU,n~ ' =Ug, B="p(n)(a)-

Moreover, we have °p(M})=r,, where r, is the reflection on hgz(A)* defined by
2 (a, 1) .

(133) ra((“') =P o, V'GI)R(A) ’
(o, o)

(see Bruhat-Tits [4], § 6.1.2 (10)).
If neN*, and if w="p(n)eW(A), then, as noted in (13.2), we have

ntune Uy, for ueUs, acA(A).

Given a valuation p'=(w,)scaw ©of (T% (Uy, My)eecaw), and neN*, we define
a new valuation n.p*=4{* by

(13.4) Yolt) =l (n ™ Mum),  a€A(A), ueUs.
As noted in Bruhat-Tits [4], (6.2.5), (1), one easily checks that
(13.5) n(su*+0) =s(n.u)+(n) (0),  seR,, vehy(A), neN".

We let A denote the set of valuations équipollentes to v*. But of course we may
identify A with Hhg(A), and then furnish A with the inner product structure ( , )
on hy(A), given by the Killing form. We note that if p*cA, then it is natural to
let p*—v* denote the corresponding element of BHg(A).

For achg(A)’, and meR, we let a,,, (or ‘a,,, if we wish to make the depen-
dence on the valuation v* explicit) denote the half space

@y m={x€A|a(x—Vv)+m>o0}.

We define the affine roots of A to be the half spaces a, ,, «€A(A), meZ, and we let
denote the set of affine roots. We let

ECExA(A)

denote the subset of all pairs (a, «), where a=a,,, for some meZ. We let oda,,,
the boundary of the half space a,,, ®x€A(A), meZ, be defined by

0ay ,={x€A|a(x—v*)+m=o0}.
Recalling that A inherits the inner product ( , ) from pg(A), we let
Tum ' A=A,

denote the orthogonal reflection with respect to the hyperplane éda, ,,.
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Quoting Proposition 6.2.10 in [4], we have:

Proposition (x3.6). — The space A is stable under the action of N* defined in (13.4).
For neN*, we let p(n) : A—>A denote the mapping p(n) : x—n.x, x€A. Then p(n) is an
automorphism of the Euclidean space A, and the canonical image of p(n) in Aut(hg(A)) (the
group of lincar automorphisms of Hr(A)) is *p(n). Moreover:

() For each meZ, «cA(A) and neM;,=M;nU* v; ' (m)U*,, the mapping p(n) is
the orthogonal reflection 1, ,,.
(ii) For a=a,,, a«cA(A), meZ, we lee U,=U,,. Then, if neN", one has

p(n)(a)€Z,
and
nUpn ' =Ty -
We let T, CN* denote the subgroup
To=p""(1),
where 1 denotes the identity automorphism of A. We have:

Lemma (13.7). — The group T, reD, A(k)+o0 for some i=1,...,¢+1, is the
group generated by the elements h,(c(t)), a€A(A), o(¢)e, and by the elements Izam(s), sek’.

Proof. — Denote by T* the group generated by the elements k,(c()), aeA(A),
o(t)e@, and the elements kam(s), sek*. TUsing the identity

(x3.8) () =0 ()0 ()7, s,

(which may be checked directly from the definitions) we see that h"ﬁ .9 eN* sek".
Also, the relation

(13.9) @o(6) % (7)2a(6) T =Yy (167 °7)5
&, BEA(A)’ o, TEZ:, 7]=7)(°‘a B)=i I,
(/‘=2(B, “) (“$ a’)_la 7)(“: "B)zy)(“> B),

(see Matsumoto [13], Lemma (5.1), Steinberg [20], (7.2), and apply our
Lemma (10.1), implies the relation

(r3.70) ko(0) 1a(7)ha(0) 71 =p(0” %), d=2(a, B)(x «) 7
o, €L, «, BEA(A).

But (13.8) implies
hay (8) =h_ o (st)h_ 4 (2) ~L o sek,
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and (13.10) then implies lzam(s)eTf;. On the other hand, (13.10) also clearly

implies that the elements £,(c(¢)), «€A(A), o(¢)e@”, are in Th, and hence we have
proved

T cT).

Conversely, assume neTj, so we have p(n)=1. Then °p(n)=1, and hence
(by Bruhat-Tits [4], (6.1.11)) we have neT* Now T* is the subgroup of G} gene-
rated by the elements £4,(¢(¢)), o(t)e%, «cA(A). Thanks to (13.10) and to
Remark (11.7), for each xeA(A) we may define a character «:u—u* ueT?, u*e%;,
on T by

(x3.11) uy,(o)ut =y, (u*c), o€, ueT™
Thus, if p(u)=1, then
v(u*c)=v(o), for all ceY,, aclA(A).

Taking o=1, it follows, still assuming p(x)=1, that
(13.12) v(u*)=o, for all acA(A).
Now z may be expressed as a word in the 4,(c)’s and their inverses (acA(A),

ce%;), u=u(hy(c)). Let u’=u’(hi(c)) be the corresponding word in the £} (c)’s
and their inverses, in E(Gg,). Then of course

Y(u')=u

(see § 10 for the definition of ‘I"e:E(ng)—aé,?). Also, we let #'eGg, denote the
corresponding word in the %,(c)’s and their inverses. Then

o) =u'
(see § 10 for the definition of ¢°: E(Gg,)>Gg,). Now, thanks to standard results
in the theory of Chevalley groups (see Steinberg [20], (8.2)), #’ is a product

u' =hy(oy) ... h;l(c,), ceL!, i=1,...,1
Hence,

u=hy (o) ...k 1(61) mod kernel W*.
But from Moore [18], Lemma (8.2), we have that if BeA(A) is a fixed long root,
then kernel ¥* is generated by the elements A4(c)kg(7)hg(o7) ™!, o,7€%. But then
(13.13) u="¥)=h,(cy) ... h“z(cf) mod A,
where A denotes the subgroup of G} generated by the elements by(s, 7), o, 7€ .

On the one hand, each b&,(c, T)€Aut V}, is a scalar multiple of the identity
operator of V} (Lemma (12.22)). Thus we have:

(x3.14) Every element of A= ¢°(kernel ¥*) is a scalar multiple of the iden-
tity operator of V.
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We let w=h,(cy) ... h“l(c’)' Then from (13.11), (13.13) and (13.14), we have
(x3.15) u*=uf, all acA(A).
But if p(u)=1, (13.12) and (13.10) imply
v(ili[1 o{®% ) =o, aeA(A), oty 0> =2(at, o) (o, ) ™%
i.e., we have
1él<oc, a>v(c;)=0, acA(A).

Taking a«=ua,, ..., o, and using the fact that the Cartan matrix A is invertible, we
see that

therefore

u e T2,
Thus, to prove Lemma (13.7), it suffices to prove:
(13.16) ACT™,
Of course, (13.16) is equivalent to showing
(13.16') by(s, 7)eT?, o, 1.

First, if «€0’, then by(o,t )el?, by (12.13). If o,,0,€0", we have
bg(o1, 65)=1, by (12.23). We can then argue as in Lemma (12.22), to prove (13.16’),
and hence Lemma (13.7). m

Let QCA be a bounded region; then following Bruhat-Tits [4], (6.4.2), we
define an integral valued function f; on A(A) by

Ja(x)=inf{meZ|a,, D Q}.

We let

U,=UACG}
denote the subgroup generated by the union of the subgroups Ui,fn(a), aeA(A), and
we set

U):i:,g = U:L—_,Q =UZ‘EHU“.

Remark (13.17). — Let C denote the subset of all xeA satisfying the conditions

oti(x—\!)‘)ZO, i—_—l, ...,[’

oo (x—vM <1,
o, ach,(A)
Then Jole)= 1, acA_(A).
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From Remark (13.17), we see that Upg is the subgroup generated by the
elements y,(s), €0, acA (A), and by the elements y,(c), c€?, acA_(A); i.e., we
have
(x3.18) Fy=Ug.

Also, if we let P;, denote the subgroup generated by U and by Tj, then we see that
from (13.18) and Lemma (13.%),

(13.19) S =P,.

We let W be the group of affine automorphisms of A generated by the orthogonal
reflections 7, ,, a€A(A), meZ. Thanks to Proposition (13.6), we note that

WCp(NY,

and we let N’A:p"l(W). We let SCW be the set of reflections r, ,, cees Tay 05
and r_, ;; i.e., 8 is the set of reflections with respect to the walls of C. The rela-
tion (18.19), and the theorem of § 6.5 in Bruhat-Tits [4] now imply:

Theorem (13.20). — We have N*nF=T3. The quadruplet (G}, #,N*'S) is a
Tits system, where we identify W with ﬁ‘/TQ.

We recall that a quadruplet (G, B, N, S) is a Tits system if

(x3.21) (1) B, N are subgroups of G, BUN generates G, and BNN is a normal
subgroup of N.
(2) SCN/BNN)=4zW, consists of elements of order 2.
(3) sBwCBwBUBswB, seS, weW.
(4) For all seS, we have sBsq:B.

From Proposition (6.4.9) and Lemma (6.4.11) of Bruhat-Tits [4], and from
the observation that (in the notation of Lemma (6.4.11) of [4]) @, is empty, it
follows that

(13.22) F=U_,THU, ,.

We also have from Proposition (6.4.9) of [4], that if one is given an order on A (A)
and forms the product

I

A
uGAi(A)Ua‘/C(a)
with respect to this order, then

(x3.23) The product map II

A . .o .
wehya) Us i Uy,c is bijective.

14. The Tits system (continued).

Our first goal is to define a certain subgroup of N* Toward this end we first
show:
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Lemma (14.x). — For meZ, «acA(A), we have
P(wa(tm‘r)) =Tems
Sor all sek”.

Proof. — Let veh(A) and set
P=v o
(see (13.1) and (13.1°)). We then have, for neN?
n.t=n.v'+p(n)(0) (by (13.5)).
But, by (13.2) and (13.9),

(x4.1") *p(w,(t"s))=r,, a€A(A), meZ, sek*.
In other words (see (13.3))
(14.2) P(w,(175)) (0) =v—a(v)H,,  veh(A).
On the other hand, by (13.4), and (14.1), with n=w,(i"s), we have
(14.3) (n.V)g(u) =V} g (w0, (") " uw,(t"s)),  BeA(A), ueU}.
But (13.9) implies:
(14.4) Wo(6) ™ A (T) We(0) = Arg(e) (M6 °7)s

with ce%y, 1%, c=2(x B)(a, )", m==+1. Indeed, by (13.9), we have
wa(G)Xa(T)wa(G)_lZXra(e)(VIG_cT), ce%y, 1€,

hence
w,(6) " xp (7)) we(6) = Ay @) (10° %),

where B'=r,(B), ' =noc"°r. But
c=2(x, 7,(B")) (@ o) " =—2(a, B) (o, @) 77,

and we thus obtain (14.4).

But from (14.3) and (14.4) we have

(14.5) w,(t"s) V =v*—mH,, aeA(A), meZ, sck’.
Hence, for n=uw,("s),
n. Y =n.v* 4+ (n) (v) =v*—mH, +(v—a(v)H,),

by (14.2) and (14.5). To prove Lemma (14.1), it thus suffices to show that the
transformation

vv—mH,— a(v)H,

is 7, ,, the orthogonal reflection with respect to the hyperplane «(s)=-—m. But this
is clear. m
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Now let aeAy(A), and assume
a=a(a)+mn, acA(A), neZ.
(See (4.3) and the subsequent definition.)

Then
0,(5) = 2a(8) L—a(—57)2als), by (7.23)
= %a("5)X—a(—E ") 1a(E"), by (7.19)
=w,(t"s), by (7.22).
In particular, for a,, ;=—a,+1, we have
(14.6) W,,, (5) =w_,(ts), s€k’,

while, for i=1,...,¢

(14'6') wa,-('y)zwai(s), at':a(“i): SER".

It thus follows from Lemma (14.1) that, for se&’,
Ty 0 t=1,...,¢

(14.7) p(wa(s))={ ™

T ay1s t={+1.

In fact, thanks to (14.6), (14.6), and (14.7), we have proved:

Proposition (14.8). — Each of the elemenis w,(s), acAy(A), sek’, is in N*, and
if NCN* is the subgroup generated by the w,(s), aeAW(K), seR*, then under p, the
set {w,,(1)}i_1, ... 141 maps bijectively onto S. In particular W =p(N).

The next lemma follows from the axioms (18.21) for a Tits system and from the
Bruhat decomposition (see Bourbaki [g], Chapter 4, § 2.3, p. 25).

Lemma (14.9). — Let (G, B, N', S) be a Tits system, and let NoCN' be a subgroup
such that the projection

w: N ->N'/(N'NnB)=W
maps N, onto W. We then have: (i) NyNB is a normal subgroup of N,. (i) The
inclusion No—>N' induces an isomorphism from N,/(NoNB) onto W. (iii) If we iden-
tfy No/(NgNB) with W, by means of this isomorphism, then (G, B, Ny, S) is a Tits system.

Proof. — Since w(Ny)=W, it follows from the Bruhat decomposition (Bour-
baki [3], Chapter 4, § 2.3, p. 25)
G= U BuB,
weW

that BUN, generates G. The other axioms for (G, B, Ny, S) follow directly from
the corresponding axioms for (G, B, N’,S). ®
From Proposition (14.8), Lemma (14.9), and Theorem (13.20), we have
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Theorem (14.310). — The quadruplet
G, 4, N, §)

is a Tits system.

We now wish to study the intersection NN.#. Toward this end, we first study £.
Thus, we let H}=H, denote the subgroup of G} generated by the elements #,(s),
aeA_ (A), sek* and by the elements Izaﬁl(s), sek*. From (14.6) we have

(14.11) by ()=, (), (1) TF=h_y (t)h_o ()71,  sek”.

But then, from (14.11) and (13.10) we deduce
Lemma (x4.32). — The subgroup H, normalizes the subgroup 5.

On the other hand, Lemma (12.2) implies that .4; and H, generate .#, and so
(14.13) S =H, %= SH,.
Also, since h,(s) =h,y(s), a€A(A), sek’, we see by Lemma (11.2), (ii), that:
(14.14) Relative to a coherently ordered basis of V}, the elements of H,

are represented by diagonal matrices, which restricted to a weight
space V), are scalar multiples of the identity.

Also, by (12.1) we have that relative to a coherently ordered basis, the elements
of J; are represented by upper triangular matrices with ones on the diagonal.
Indeed, the argument leading to (12.1) in fact shows:

(14.35) Relative to a coherently ordered basis, the elements of %, are repre-
sented by upper triangular matrices with ones on the diagonal.
Moreover, the diagonal blocks corresponding to weight spaces, are
identity matrices.

We will use this stronger conclusion a little later on. But even from (12.1)
and (14.14) we see that

(14.16) Hyn £y ={1},

and hence we have:
Proposition (14.17). — SF is the semi-direct product of H, and the normal subgroup F.

Corollary (x4.18). — The group H, is precisely the set of all diagonal elements (with
respect to a coherently ordered basis of Vi) in F. Relative to a coherently ordered basis of V7,
the group J consists of upper triangular matrices whose diagonal blocks corresponding to the weight
spaces, are equal to scalar matrices.

We are now ready to prove:
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Proposition (14.19). — The intersection NNS s equal to H,.

Proof. — Thanks to Lemma (11.2), the elements of N permute the weight spaces
of V). Thus, by Corollary (14.18), the elements of NN.# must have off diagonal
blocks zero, hence must be diagonal. Since H,CNnNJ, the Lemma now follows
from Corollary (14.18). m

We conclude this section with:

Lemma (14.20). — The group H, is the group generated by the elements h,(s),
i=1,...,04+1, sek. Moreover, H, contains h,(s) for every acAy(A), sek'.

The proof of this lemma depends on:

Lemma (14.21). — For every acAy(A), the coroot 2a/c(a, a) is an integral linear
combination of the fundamental coroots 24;[c(a;, @), i=1,...,f+1.

The proof of Lemma (14.21) is exactly the same as the proof of Lemma (4.4)
in [7] and is therefore omitted.

Proof of Lemma (14.20). — By definition, the group H, is generated by the
elements A, (s)=h,(s), «€A(A), sek’, and by the elements halﬂ(s), sek*. But
a(w)=a;, t=1,...,¢, and hence H contains the elements 4,(s), =1, ...,¢+1,
sek*. The rest follows from Lemma (14.21), and from Lemma (11.2), (ii). m

15. Comparison of the G} for different A.

As always since § 7, we let £ denote a field of arbitrary characteristic, and AeD
an element such that A(%)+o0 for some i=1,...,¢/+1. From now on we call such
an element of D normal. Then for each normal AeD we have defined the
group G}CAutV2. For each i=1,...,0+1, we let Aeh(A)* denote the domi-
nant, integral linear functional (i.e., element of D), defined by the conditions

(15.1) N(ly) =3y, nD)=o, 4j=1,...,+1

~

By restriction we may regard each ), as an element of h(A)*, the dual space
of h(A). Welet ECH(A)* denote the Z-lattice of rank ¢+1, spanned byd, ..., Appq-
Also, by restriction, each aeA(K) defines an element of I)(K)*, and we let E,C H(A)*
denote the Z-span of the restrictions of elements of A(A). Then E, is the free
Z-module of rank ¢, generated by a,, ..., a, restricted to I)(K), and since ¢(k)eZ,
i, j=1,...,£+1, we have E CE. For each normal, dominant integral rely(A)",
we let E,CH(A)* denote the Z-span of the restrictions to H(A) of the weights of V7,
From our previous observation that E,CE, we immediately deduce that E,CE.

In fact, we have:

*
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[1]

C

r

[1]

Lemma (15.2). — Let AeD be normal. Then 2CE, and B, is of finite index

f

n

Proof. — We have already noted that E,CE. Also, since over Z, E, has rank ¢,
we note that if E,CE,, then E, must have rank ¢/-+41 over Z, because A restricted
to h(A) is clearly linearly independent from the elements of Z,. Hence, since E has
rank £-1, it suffices, in order to prove the lemma, to show that =,CE,.

We let I={ie{1,...,¢{+1}|A(k)*0}. By our assumption that A is normal, I is
not equal to the empty set. Let 1,eV* be a highest weight vector. We then have
for el

&- (fiv0) =/ (6-00) + B0 =A(l) v % 0.

Thus f;.v,%0, and since, as one checks directly,

(15.3) ¢*.VACVA, ., aeA(A) and p,p+a weights of VA,
the difference A—g; is a welght of V* and hence g restricted to h(A) is in E, (for
each ieI). Now let je{1,...,f+1}—I. Then we can find a sequence j, ..., J,
in {1,...,/+41}, so that

el Js=J>
and
(15.4) o(g ,a )¥0, m=I,...,s—1I
We assume we have chosen the above sequence jj, ..., J, so that s is minimal. Then
(r5.5) )\(/sz)——-o, p=2, ...,

We define 2,eV*, ¢=r, ...,s, inductively by
vq=qu.vq_1,

where 7, is the fixed highest weight vector. We set A=A—g—...—q.
If »,#0, then v,4#0 and v eV,‘r, for r=1,...,¢q. Therefore g, ..., a;, restricted

to I)(A) are all in E,. Thus, if we make the inductive hypothesis:
(H) for ¢ with 1<¢<s, we have v +0;

then to prove the lemma, it will suffice to show that »,,,4+0 (note that we have
verified (H) for ¢=1). But

(15.6) €0y Ug="05

thanks to (6.7%), (15.3) and our minimality assumption on s (the last implying a
1<m<g). Hence

] +1=i:am’

efqu Vg1 = efq+1 .‘fJ:q+1 Uy
—h,q+1 v, by (15.6)

( ]q+1) 't
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where the last equality follows from our previous observation that if %o,
then vquﬁq. But our minimality assumption on s implies

o(a; , ajqﬂ) =0, 1<m<gq,

Im
and )‘(hfqu) =o.
Hence, A, (/qu+1) =aq (’qu,,l) >

and the latter is not equal to zero, by (15.4). Hence by V+1F 05 and o, is diffe-
rent from zero. We have already noted that this proves the lemma. m

Lemma (15.7). — If NeD is normal, then for each normal element peD, there is a
positive integer m such that E,, CE,.

Proof. — Since both E, and E, are of finite index in E (by Lemma (15.2)), &,
is in the Q:span of E,, and hence mpeE, for some positive integer m. But E,CE,
(by Lemma (15.2)); therefore E,,CE,, by (6.7) (as applied to w in place of A, and
to a weight p’ of V¥ in place of the “w” appearing in (6.7)). m

Our next point is to note that:

Lemma (15.8). — An element € of the center of Gg, is a product

E=hy(s) --- h;!(s,), Sy « s SpERY

Proof. — By Steinberg [21], Lemma 28 (d), p. 43, we have
BB (6) oo Bo(or)s  Ous ee s 06 L,

and
l .

(*) ‘chi(aj'ai):I: J=1,..,4
i=

where <a, B> =g42(«, B)(B, B)™", «, BeA(A). But then, applying the #-adic valuation v
to both sides of (*), we have

{
E‘l<°‘j’ aw(e)=0, j=1,...,¢

Hence, since the Cartan matrix A is nonsingular, we have v(¢;)=o0, =1, ...,/
and we may set s;=o,ck*. ®
We are now ready to prove:

Theorem (15.9). — Let A, Ay be two normal elements of D, and assume B, CE, .
Then there is a unique group homomorphism

m(h, h) : GGy,
of G onto G, such that
(A, N) (22 (0 (1)) = x22(0(t)),  2eA(A), o(t)e L.
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Proof. — Let
wt=w(;s(t)))

be a word in the y2(s(f)), acA(A), o(t)eZ’, and assume whr=1 in GM. Let wh
(resp. w"; resp. w’) denote the corresponding word in the y2(s(f)) in G2 (resp. in
the x5(a(?)) in E(Gg,); resp. in the Z(s(f)) in Gg,). We consider the diagram

G,&\ Gg,
"
where m;, ©, are as in § 12. We have
1=, (wh) =my(w'),
and hence »’ is in the center of Gg . But we also have the homomorphism
9% E(G.?k) g G.?k
of § 10, where ¢°(y5(c(?)))=Z;(c(t)), acA(A), o(t)eS’, and hence
¢(w) =
Then, by Lemma (15.8), there exist s, ..., s€k*, so that
(15.10) w*=hg (s) - .. kg, (s;) mod(kernel ¢°).
If we fix a long root «€A(A), then kernel ¢° is generated by the elements
(15.11) ¢a(015 03) =lo (o) k(o) lo(0160) ™Y, oy, 0 Z,

thanks to Moore [18], Lemma (8.2).
In Lemma (10.1), we defined the homomorphism ¥*: E(ng)ef},?, such that

(15.12) P (1o (0(2))) = 2o (2)),

xeA(A), o(t)eZ. We write ¥* for ¥, to denote the A-dependence. We then
have from (15.12) that

W i(ey(0y, 03)) = hi(oy) Bi(0o)hi(010) Y oy, €K, i=1, 2,
and, thanks to Theorem (12.24),
(15.13) WoX(e (o,, 05)) =tp(oy, 0) W, 6, 0,€%, i=1, 2,

where w(A)=—2N(k)(x, @)™, i=1,2, and I denotes the identity operator on V.
On the other hand, by (12.13) (second equality)

(15 . I4:) Il:(ia)(c—l)hzfa)'—t(c) = cm()‘i)l;
i.e., taking into account (15.13), we have
(15.15) W N (cy(01, 62)) = hafyy (en(01, 03) )bl o (en(o15 33)).
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Now we use (15.10) to write »® as a product
w =K (s) ... B ()0

where p° is a product of elements ¢,(s,, 6,), as defined in (15.11). We let p*,
t=1,2, be the corresponding product of elements

‘32‘(‘&: Gy) =dfh2(';z)(”'r(°1, 02)_1)/1:\(';:)—&%(0'1, G3))
in G&. We then have, from (15.15),

YeN(p)=ph, i=I, 2.
Hence whi =" N(w") = ki(sy) . . . hi(s)ph, i=1,2.

In other words, we have written w™ as a product in elements AM(s), acAy(A),

s,ek’, and w™ as the exactly corresponding product in elements AM(s,), aeAW(K),
s,ek’. Thus, if wh=1, as we assumed, then w*=1, thanks to Lemma (11.2) and
our assumption that &, CE, .

It follows that if we set
(A, A) (2(0()) =22(0(8),  aeA(A), o(t)e L,
then m(A;, A;) defines a homomorphism from G onto G+, m

We conclude this section with a few observations. First, note that in the proof
of Theorem (15.9), we showed:

(15.16) The kernel of the homomorphism
Ty - G’:\%G}k
is contained in H,.
It then follows from (15.16) and from (14.16), that

(x5.17) The homomorphism m,, restricted to the subgroup £;CG}, is
injective.

Also, we have, using Lemma (15.8):

(15.18) The kernel of the homomorphism

Ty . G_gkeG}k

is contained in the subgroup H;CGg,, generated by the elements £,(s), «eA(A),
SER".

Indeed, (15.18) results from Lemma (15.8), and from the fact (see Stein-

berg [21], Corollary 5, after Lemma 28, page 44) that kernel ,Ccenter Gg,.
Finally, we note:

(x5.19) If E, CE,, for A, A, normal elements in D, then
(%) Ay =m); +integral linear combination of ay, ..., a,;,
where m is a strictly positive integer, and one has m\€E, .
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Proof. — Clearly A\, may be expressed as in (*) with m an integer, so we need
only check m>o (m\eE, follows from the fact that E,CE,, by Lemma (15.2)).
Evaluating both sides of (%) on A/, we have:
Ag(h;) =mdy(h),
t+1
since a(h))=o, for all aeA(K). But &= X gk, ¢ >o0, and since Ay, €D are
normal, we must have m>o. i

16. The Iwasawa decomposition.

With the exception of Lemma (16.3), in this section we take =R or C.
Now it follows from § 12 in [7] (see the discussion following (12.6) in [7]) that

(x6.1) E=t_,, aeAW(K).

As a result, * leaves gR(K) Cgc(z) invariant, and hence we may regard * as an
R-linear, involutive, antiautomorphism on gk(K), k=ecither R or C. Of course,
if =G, then * is conjugate-linear.

As we discussed in § g of the present paper, we also obtain from [7], § 12, that
there exists a positive-definite, Hermitian inner product { , } on Vi (k=R or C)
such that we have (by (9.2) and (16.1)):

(x6.1') For all aeAy(A), the element £, of g,(A), regarded as an operator

on V2, is the Hermitian conjugate of £_,, with respect to { , }.

We thus let * either denote the Hermitian conjugate with respect to { , }, or
the involutive, anti-automorphism of g,(A) introduced in § g (also see [7], § 12), and
defined on gg(A) by restriction from gc(X). From (16.1) we then have

(x6.2) 1a() = %_a(5), ek, acAy(A).

Remark. — In particular, y,(s)* is defined!
We now prove:

Lemma (x6.3). — Let k be an arbitrary field. For each aeAW(K), we can define a
homomorphism

¥, : Sl(k)—~>G2

by the conditions
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We also have
a6.q)  w((_ 1))=mw

(2 04))=ho,  ge

Proof. — Once we prove the existence of ¥,, the identities of (16.4) will follow
by direct computation. In view of the well known presentation of Sl,(k) (see Stein-
berg [21], Theorem 8, § 6) it suffices to check:

a) %..(s) is additive in s (sek);

b) h,(s) is multiplicative in s (se€k*);

6‘) wa(S)Xa(?)wa(_s):X~a(_—‘y—2?’), SEk*a Sek.

However, we observed @) in (7.15), and 4) is an immediate consequence of (ii), of

Lemma (11.2). As for ¢), we first note that if a=a(x)+m, acA(A), neZ, then
%(5) = 20",
w,(s)=w,(t"s).

Also, a) and a direct computation, imply that

w,(—s)=w,(s) ™%
Thus
W, (8) Xa(3)wa(—5) = W, (¢75) 2o (8" T )1, (7)1
=x—a(nt7"s2%), by (12.9),
= Y—a(ns7%%),

where n=4+1. Indeed, by Matsumoto [13], Lemma (5.1), ) and ¢), we have in
this case that n=—1. ®m

We again assume 2=R or C, and for

(: ‘b{) eSly(k),

a b\* a ¢
we let (c d) =(5 Z)

denote the conjugate transpose. We set

ro=(5 1) r@=(} %) s
and note that, thanks to (16.2),

Y0 () =Yl (5))s  sek
Since the y_(s) generate Sly(%), it follows that

~

(x6.5) for each aeAy(A), we have ¥, (g)*=%,(g"), geSL(k).
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But then, thanks to (16.4), we have from (16.5)
(16.6) w, (1) =w,(1)"Y, aeAy(A).

Definition (16.7). — We let R=R*CG) denote the subgroup
R ={geG*|g* is defined, and equals g~'}.

Theorem (16.8) (Iwasawa decomposition). — We have
G}=Rs.
The proof of this theorem rests on the following lemma for Tits systems,
from [21]:

Lemma (16.9). — Let (G, B, N, S) be a Tits system, and let S=(1,);cy, with I a
suitable index set. For each i€, let Y; be a set of representatives for the family of cosets

Br,B/B.
If weW=N/(NNB), and if

w=7’jl...1:1~m

is an expression of minimal length for w in terms of the 1;, then

(x6.10) BuwB=Y,...Y; B.

Proof. — We make full use of the standard results on Tits systems (see Bour-
baki [g], Chapter IV), and we argue by induction on m. By assumption, there is
nothing to prove for m=1. Assume we have proved (16.10) for some m>1, and let

w=r ...0

be an expression of minimal length; then

BwB:Brj ... Br. B
1 Im

Im+1
=Y;...Y, (B, B)
~Y,...Y, Y, B

where the first equality follows from the minimality of m+41 and a standard property
of Tits systems, where the second equality follows from our induction hypothesis, and
where the last equality follows from our initial assumption concerning the Y;. m

We now prove Theorem (16.8). — We let K CSl,(k) denote the subgroup
SU(2), k=C
~|SO(2), k=R,

261



86 HOWARD GARLAND

and we 1et~B1CSlz(k) denote the subgroup of upper triangular matrices. For
each acAy(A)NA_(A), we then have
(x6.11) ¥, (K)CK

¥,(B,) C S,

where the first inclusion follows from (16.5), and the second inclusion, from (16.4)
and the definition of ¥,.
We now apply Lemma (16.9) to the Tits system

G} 4, N, §)

of Theorem (14.10), where we take our index set I to be {1,...,¢+41}. First, by
Proposition (14.8), we have wai(l)eﬁ)‘, i=1, ...,{+1; therefore each w,(1),
i=1,...,4+1, normalizes T}, since T} is, by definition, the kernel of the
homomorphism

p: N w,
of §§ 13-14. But then, from this, and from (13.22) and (13.23), we have
(x6.12) Jw,(1)I=U,w,(1)7,
where Ua‘_C(A},f is the subgroup

Uaiz{Xa;(‘r)}sek*i i:Ia AR

(we note that (16.12) holds for an arbitrary field £). Then, thanks to the Iwasawa

decomposition
Sly(k) =KB,,

to (16.4), (16.11), and (16.12), we may take the Y; of Lemma (16.9) to be contained
in ¥, (K), i=1,...,f/+1. Hence we obtain Theorem (16.8) from Lemma (16.9),
and the Bruhat decomposition for a Tits system (see [3], Chapter IV, § 2,
Theorem 1). m

Next, we obtain a uniqueness result concerning our Iwasawa decomposition.
Thus, we let H, , denote the subgroup of H, generated by all %,(s), where s is a
positive real number, and we let H, , denote the subgroup of H, generated by
all k,(s), where s has absolute value one. It follows from Lemma (14.20) that the
elements k,(s), sek’, i=1,...,¢+1, generate H,. We then have

(16.13) Hk=Hk’er,+,

and all the elements of Hy, , (resp. of H, ) have eigenvalues, when considered as auto-
morphisms of V7, which are real and positive (resp. of modulus one), thanks to
Lemma (11.2). Since the elements of H,, act on each weight space as a scalar
operator of modulus one, and since the various weight spaces are orthogonal with res-
pect to { , }, we have that Hk,OCKi and

GI:‘ = KHk,+"¢EI'
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Thus each geG} has an expression
g£=g8x8uly, &k, gu€Hy o, guety.

We wish to show that gg, gy, gy are uniquely determined by g. We fix a basis of V)
which is both orthonormal and coherently ordered (we can do this since the weight
spaces are mutually orthogonal, with respect to { , }). Then, KnH, , %, consists
of unitary matrices which are upper triangular. It follows that these matrices must
be diagonal. By Corollary (14.18), H, is the set of diagonal elements in /.
Hence H, , is the set of diagonal elements in H, ,%; (since HnSA={1},
by (14.16)). Thus

KnH, , %4 CH, .
But the only unitary element of H, , is the identity, and hence
RnH, , fy={1}.

Since H, . nSyCH,N.¥; is the identity, as we just observed, we have:

Lemma (16.14). — The group G} decomposes as
(A}ZKHk,+Jr Us

with uniqueness of expression.

17. A fundamental estimate.

From now on, with the exception of the appendices, we take our field k to be R or C.
Recall from § 6 (following (6.7)) that we introduced the extended k-algebra g,i(x),
and the extended subalgebra bfc(X) Indeed g,ﬁ(K):k@zgez(K), I),‘é(K):k@h“z(K),
where g4(A)=g,(A)®ZD, by(A)="5h,(A)®ZD, are semi-direct products (h3(A) is
a direct product). We should remark that the degree derivation D =D, ; leaves gz(x)
invariant, so that g;(K) is well defined. Also we let D denote the induced derivation
on gz(x), and on g,(A). We fix a normal element AeD (recall from § 15, that A
being normal means that A(4)#o for some i¢=1,...,¢+41), we consider the corres-
ponding highest weight module V2, and the Chevalley group G}CAutV}. Recall
from Theorem (14.10), that we have the Tits system (G}, #, N, S) with Weyl group W
(more precisely, we saw that N/(FNN) was isomorphic to W, which was defined
in § 13, after (13.19), and we identified N/(ANN) with W). Also recall from Pro-
position (14.8) that the set {w,(1)};_; .. ,+1CN isa set of coset representatives for
the set of reflections SCW, where S is in fact the set of reflections

{ral,o, LIS ] ra{,o, T—ao,l}

(see § 13, preceeding Theorem (13.20)).
Since =R or C, we have from Proposition (6.11), that the representation =}
is a faithful representation of g,(A) into End V2. We let §i(A)* denote the k-dual
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of [),‘C(K). In (3.3) we defined the Weyl group W CAut I),i(X)*, generated by reflec-
tions 7, ...,7,,, and in § 6, (6.14), we introduced the contragredient action
on I),“,(K) Identifying g,(A) with its image under =}, we have from Lemma (A.1)
in Appendix I of this paper, and from (8.1) that

(x7.1) Ad w, (1) (k) =7;(h) = h—a;(h) h;, hebi(A), i=1, ..., L+1.

Moreover, we have from Lemma (11.2) that for acAy(A) and sek’, the
operator h,(s)eAut V} is represented by a diagonal matrix with respect to a coherently
ordered basis. The same is true for lzef),ﬁ(x). Thus H, centralizes b;(}i) (see
Lemma (14.20)). But H,=Nn.J (see Proposition (14.19)). Thus (17.1) allows
us to define a surjection

D) : W>W,
where Qy(w, (1) (INN))=r,, 1=1,...,¢0+1.

We examine the action of W on §(A) further. We note that W leaves By(A)
invariant, and that

w.D=D mod b,,(K), weW.

Thus for weW, he[)k(x), we may define w*hebk(x) by
w(D+hr)=D+w=xh.

We also have the surjective Lie algebra homomorphism (see Notational Remark (4.7))
o: g(x) —@, given in Theorem (3.7). This homomorphism induces a surjective homo-
morphism (which we still denote by @)

& (&) ~bi(A),
where ok)=H,, i=1,...,¢

a;(hl+1) = —Hao

(see Theorem (3.7)).
We now compute &(wxh) for weW, heh,(A). It suffices to compute &(r;*h)
for i=1,...,¢/+1, and in this case we have from a direct computation

(17.2) a(rxh)=ah)—o(ah)H, i=1,...,4
&(r 1% h)=w, (3(h)+H,,,

%o
where for a€A(A), we let w, denote the orthogonal reflection with respect to the
hyperplane {Heh,(A)|«(H)=0}.
Now we have identified A with hp(A) in § 13. Also, each of the reflections 7,
has a natural extension to Pg(A) (still denoted 7,,). We may then reformulate (17.2)
as

(x7.2') B(rxh)=r, (B(h), i=1,...,¢

@(rppaxh)=r_, 1(G(h)).
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Thus, by means of * and the projection 8:I)k(x) —b,(A), we may define a
homomorphism

~

O: W--W

such that O(r)=ry,0 1=1,...,1,

~

(D(’l+1)=’—ao,1-

But then, thanks to (14.7), we see that w, (1)(#NN), regarded as an element of W,

~
Is 1, o for i=1,...,¢ and r_, ; for i=/+1, and hence @, and ® are inverses of
each other. Hence, in particular we have

(x7.3) The homomorphism ®,: W—W is an isomorphism of W onto W.
From the theory of affine Weyl groups (see for example [g], Proposition (1.2)),
it follows that for all kebhz(A) we can find weW so that
w(@(wxh))>0, i=1,...,¢,

12 o0(a(w* k) 2o,

or equivalently

(17.4) a(wD+h) >0, i=1,...,¢,
1>a,,,(w(D+1) >o.

We now prove some technical lemmas concerning the structure of the
a,(A)-module V.

Lemma (17.5). — Let pebhg(A)* be dominant integraly 1i.e., assume p(H;)>o
Jor i=1, ...,¢. Then the set of all vehgr(A)* of the form

¢
() v=p— % no, meEL, n,>o,
=1

and such that v is dominant integral, is finite.

Progf. — For v of the form (§) we have:

¢ ¢
(vs v)=(v, —iglni‘xi)—i"(p'a ) — (1 igl”i“i)S(P-’ ),

since w and v are both dominant. But v must vary over the dual lattice to the lattice
generated (over Z) by the coroots. Since the above inequality implies that v must
be of bounded norm, and since ( , ) is positive-definite on Phg(A)*, we obtain the
desired finiteness assertion. m

265
12



90 HOWARD GARLAND

Lemma (x7.6). — For each i=1, ...,¢+1, and each integer n>o, the set of weights
of V* of the form
1+1
A— Elnjaj,

with n,<n, 1is finite (1).

Proof. — Let 0,={a,, ..., a3, ...,a,,.}; i.e., 0;is the set of simple roots of A(K)
with ¢; omitted. We let m;Cg(A) denote the subalgebra generated by the ¢, &, f;,
with j=¢, and let }; denote the linear span of the %, j+i. We consider the
subspace of V*

v \Y
Vw— Z nja; :dfv

b
anO iFi

where A =A—o0q, with ¢ some integer such that 0<o<n Then ¥V is an
m;-submodule of V*. As we shall show in Lemma (17.7), below, V* is a direct sum
of finite-dimensional, m;-submodules, and hence is completely reducible. It follows
that ¥ is also a direct sum of finite-dimensional m;-submodules. But thanks to
Lemma (17.5), ¥ must in fact be a direct sum of finitely many, finite-dimensional
m;-submodules, and hence V must be finite-dimensional. Lemma (17.6) now follows
(letting ¢ vary between o and 7). m

We now prove the following assertion, which was used in the proof of
Lemma (17.6):

Lemma (17.7). — V* is a direct sum of finite-dimensional, irreducible -submodules.

Proof. — The highest weight vector v,eV? is a weight vector for m; (where we
take the Cartan subalgebra spanned by the %, j=:), and clearly corresponds to a
dominant, integral weight of m;. Thanks to Lemma (7.12), v, must generate a finite-
dimensional m;-submodule W, of V? (see in [8] the remark following Proposition (6.2),
p. 61), and W, is homogeneous with respect to the weight space decomposition of V*,
Let #>o0 be an integer. Assume inductively there exists an m;-submodule W, CV?*,
which is a direct sum of finite-dimensional m;-submodules, is homogeneous with
respect to the weight space decomposition of V*, and contains V} for every weight p
of V* with dp(p)<g. Since W, is homogeneous with respect to the weight space
decomposition of V*, the subspace W, has a well defined orthocomplement WZIL with
respect to the positive-definite, Hermitian form { , } (see § 9, and [7], § 12), and W;IL
is homogeneous with respect to the weight space decomposition of V* Thanks
to (16.1), we have m;=m;, so W;IL is m-invariant. Let y, be a weight of V* such
that dp(pg)=g¢+1, and V} intersects W‘qL nontrivially. Fix a non-zero ele-
ment '€V}, nWi. Then v’ generates a finite-dimensional m;-submodule W’ of W,JI'

(1) See [8], Lemma (5.3).
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We then repeat this process with W ®@W’ in place of W, and so on. We eventually
construct in this way, an m-submodule W, ;CV* which is a direct sum of finite-
dimensional irreducible submodules, and such that W, DV}, for every weight u
of V* with dp(p)<g-+1. This completes the induction, and hence the proof of
Lemma (17.7). m

We now consider H,; +C(A},§, the subgroup (defined in § 16) generated by

all k,(s), with s>o0 and i=1,...,¢/+1. If xeH; ,, then x has an expression
f+1

x=il:Illzai(si)”i, n,>o0, s;>o0, neZ.

We define InxeEnd V} by:
£+1

In»x= ‘Elni In(s))A;.

i =

By (17.4), we have that for all r>o, there exists weW such that
(x7.8) a(w(—rD+1nx))<o, i=1,...,¢
—r<a, (w(—rD+Inx))<o.
For each weW, we choose w'eN so that
(x7.9) (i) ' is a product of elements w,(1), i=1,...,¢+I.
(il) Dy(2'(FNN))=uw.

Since V* is a module for the extended Lie algebra g°(A)=g(A)®CD, and
since D preserves V3 (we assumed in § 6 that A(D)eZ), we have that V} is
a g;(x)-module. For any hehi(A), we define e Aut V}, by stipulating that ¢ maps

each weight space into itself and that on V}, ,, ¢ is the scalar operator ¢*". We note
that for xeH, ., we have

(x7.10) r=x.
Since we have defined ¢* for each }zeI),‘i(K), we have, in particular, defined ™ for

each rek.

For each weW, we fix w'eN as in (17.9). Let xeH, ,, rek. We then
have, by Lemma (11.2),

(x7.11) w x(w') "=,

w' (eP) (w') " t=e™D),  rek.
Now H,, is normalized by N (recall from Proposition (14.19), that H,=Nn., so H,
is normal in N by the axioms for a Tits system, (13.21), and by Theorem (14.10),
which asserts that (G2, #, N, 8) is a Tits system). Also, H, , consists of those elements

in H, with positive eigenvalues (as follows from (16.13)). Hence the first equality
of (17.11) implies that

w'(H, ) (@) =H, .

267



92 HOWARD GARLAND

For xeH,, rek, p.ef)e(x)*, with pel,, we set

(xe'D) B gl ru(D),

where x"ek* is defined by
x.o=x"s, eV,
if p is a weight, and »* is then defined for all peE,. We note that if xeH, ,, then,
thanks to (17.10), we have
w=eH¥ el .
Now given xeH, ,, reR with r>o0, we choose weW as in (17.8), and

then w'eN as in (17.9). From (17.8) and (17.11) (the second equality being
applied to ¢~ ™), we have

(17.12) (w're” () 1)4i<1, i=1,...¢
e "<(w'xe P(w) " Hun<1.

Lemma (17.13). — Let xeH, , and reR with r>o. Assume (xe”™P)%<1,
i=1,...,+1. Then for some j=1,...,{+1, we have

(xe~™)%<1.

Proof. — If (xe~™)%<1 for some i=1, ...,#, there is nothing to prove. Thus,
assume (xe~™)%=1 for each i=1,...,¢. Then, since ¢(D)=o for i=1,...,¢,
we have
(%) wli=1, 1=1,...,°
Now x has an expression as a product

£+1

— n; .
x—"il:llhai(si) Y Si>0> n;ZO in Z.
{+1
We have %“l“l:.l_[ls?’“lﬂ( il
Py

and thanks to (%), this equals one, since when acting on b(K), ay,4 is equal to an
integral linear combination of a;, ..., q,. But then

(xe~ ) Un1=¢""<1,

(since r>o0) and Lemma (17.13) now follows. m
From Lemmas (17.6) and (17.13), we immediately have

Lemma (x7.14). — Let «cH, and let cek with r=%Re(c)>0. Assume »x=x3%,
with »,€Hy o, %€M, , and
(kge~™)%<1, i=1,...,0+1.
Then for all A>o, there is a finite subset of weights of V*, such that if u. is a weight of V*
which is not in this finite subset, then
[(xe™ D) | >A.
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We define the ring JCk as follows:
Z, if k=R
J={ring of Gaussian
integers, if k=C.
We let #;C%, denote the subring of all formal Laurent series in #, with coefficients
in J. We fix a Chevalley lattice V; in V*, and a coherent Hermitian structure { , }
on V%, as in the proof of Theorem (12.1) of [7] (also, see §§ 6, 9 of the present paper).

We may thus assume that we have fixed a highest weight vector z,%0 in V} so
that {v,, vo}=1, and so that { , } also satisfies

{my, m}eZ

{my, my}e], for my, meV3.
We let I'=1?CG =G} denote the subgroup

P={yeG|y(V)=V]}

The following is the central result of this section:

Lemma (17.15). — For geG, cek, with r=%Re(c)>0, we can find Yoef‘ such that

—¢D

(x7.16) {86000, g6~ Pyovo} <{ge™ vy, ge Y15},

Sor all vyel.

Remark. — Lemma (17.15) remains valid if we replace I' by the subgroup T,
generated by yx,(c(?)), «acA(A), o(f)e;. The same proof (given below) applies.
Proof. — The argument is based on the Iwasawa decomposition
G=KH, , %
of Lemma (16.14). Thus geG has a unique expression g=gggngy, with ggeK,

gHEHk,+9 gueHy-
We first note that for any positive number A, we may choose a finite set of
weights A=A, of V}, such that for pu¢A, a weight of V), we have

|(gne™ )| >A.

To see this, we choose weW, and corresponding w'eN (as in (17.9)) so that
®,(w'(FNN))=w and so that

(W' (gue™ ™) (@) "H)%<1, =1, ..
¢ "< (w'(gue™ ") () 7)1 <1

(we have applied (17.12)). Now
w'(gue™ ") (@) T =xe”
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for some xeH,;, and thus it follows from Lemma (17.14) that for all weights p of V?,
but those in a certain finite subset, we have

| (' (gue™ ) (') 71)*|>A.
The left side of this inequality is just (ggze™ )™, so
[(gue™™)*|>A,

for all but finitely many weights of V* since W permutes the weights of V2. We
have thus found our set A,. Enlarging A, if necessary, we may assume that
if peA,, then all weights of V*, of depth<dp(u), are also in A,.

For veV), we set |[|o|?=u{v, 0}, and for yel' we set m,=v.v,€V}. Fix
v,el’  arbitrarily, and let
(17.17) A=|lge™Pmy,[|>o.

We set V2 ;=J®, V%, where V?,=V2nV}, for every weight p of VA For yel,
the vector m, may be written as a sum, with respect to the weight space decomposition

Vi IV

w,J»

where yw runs through the set of weights of V2

If m, has a non-zero component m,(u,) in V) ;, with p.¢A,, and if we
choose p, of maximal depth (see § 12) among all w such that m, has a non-zero V} ;
component, then

c. cD

my”Z”é'He_CDmy(P-o)”
=[(gne™ D)% ||my(uo) || > (gue™ )™,

since ||m,(wo)|| is the (positive) square root of a non-zero, positive integer, and is
hence at least one. Summarizing:

|l ge™Pm, || > (gue™)™|.
But since po¢A, we have

(x7.18) || ge~ Pm, || >A.

||ge~ Pm, || = || gugue”

Recall that if weA,, then all weights of V?, of depth <dp(w) are also in A,. Now
consider the set Ep of those vel' such that m,=vy.v, satisfies

mYEu_g\AVZL:MVA'
Then, thanks to (17.17) and (17.18), we have y,eEr. Also, (17.18) shows that
if y¢Ep, then [|ge=Pm||>A. If we set o(y)=||ge”Pm,||, yel, then for yeEp,
we have

cD

o(v)=||guguve” mY”’
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where gggye~®m,eV,. Since V, is finite-dimensional, ¢(y) achieves a minimum
as y varies over Er, say for y=vy,. Then, since y,eEp, we have

?(vo) <A,
and thus for yé¢En

9(10) SA<]|ge™ Pm, |,
by (17.18). Thus, for all yel, we have
|l ge=Pmy || <||ge~Prm,]|.

This is obviously equivalent to (17.16), and so we have proved Lemma (17.15). ®

18. A fundamental domain for I'n Foin .

We recall that beginning in the last section we have adopted the notational
convention that in the remainder of this paper, with the exception of the appendices,
we take our field 2 to be R or C.

In § 8 we defined the group homomorphism

D' : Gy(A) > G,y »(A).

Thanks to Lemma (8.14), and the fact that g (A) is perfect since chark=o, the
homomorphism @’ is injective. We now note that:

Lemma (38.x). — The homomorphism
D'0Ad: GGy £(A),
is injective, when restricted to the subgroup FyC G

Proof. — If gety, and if @'0Ad(g)=e, the identity of G, o(A), then
gekernel(Ad), since @’ is injective. But then geAut(V}) is a scalar multiple of the
identity, by Schur’s lemma (Lemma (9.1)). However, relative to a coherently
ordered basis, the element g is represented by an upper triangular matrix with ones
on the diagonal (by (14.15)). Hence g must be the identity. m

We fix a Chevalley basis of g(A), and order this basis so that positive root
vectors are represented in the adjoint representation, by upper triangular matrices.
For any commutative ring R with unit, we may also regard this Chevalley basis as a
basis of gg(A), and of course it is then still true that positive root vectors (in gg(A))

are represented in the adjoint representation, by upper triangular matrices.
We then have:

Lemma (x8.2) — The subgroup @ oAd(SFy) of Gy o(A) is the subgroup of
all geGyy o(A) such that relative to the Chevalley basis of g(A), ordered as above, g is repre-
sented by a matrix with coefficients in O, and such that the reduction of g mod ¢ is an upper
triangular matrix with ones on the diagonal.
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Proof. — From the definition of %;, at the beginning of § 12, we see that
®'0Ad(H) is contained in the subgroup J; of all geG, »(A), such that g is
represented, relative to our fixed Chevalley basis of g(A), by a matrix with coeflicients
in 0, and with a reduction mod ¢ which is upper triangular with ones on the diagonal.
To prove that S;C®'oAd(#), we first note that, thanks to Theorems (2.5)
and (2.24) in Iwahori-Matsumoto [g9] (where one interchanges the roles of A (A)
and A_(A)), it suffices to show SN (D cAd(T}))C D 0Ad(S). This is in fact
proved in the process of proving (18.14), below. m

From now on we identify 4; with its image $;jCG, o(A), where this identi-
fication is made possible by Lemma (18.1). For each j>o in Z, we define the
subgroup S C S by

S ={geS;|g=1mod #}.
In particular, A" =.;. We let
M =Tngy, j>1, jeZ.
We also set I'\;= f‘r\fu. We shall show that, for each j>1 in Z, there is an isomor-
phism of abelian groups
(18.3) P AP IGHD X g (A),  (G=1),
where g,(A) is a group with respect to the vector space addition, such that if we let
702 g > O, >0,
denote the natural projection, then, for rek, «cA(A), j>1, we have
(18.4) W onl(yy(rt))) =rE,,
Wl o ) (h, (1 +rt))=rH,,
and hence
(18.5) Yon(IP) dgs(A), j=1.
To prove the existence of the isomorphism W satisfying (18.4), we consider the
ring ¢;=0[#*'0, which, as a vector space over k, has a direct sum decomposition

0,= 11 ik
0<i<j

Then the algebra g@j(A) has a corresponding direct sum decomposition (as a vector
space over k):

(x8.6) go.(A)= Il #g,(A).

j 0<i<j

We fix an ordered basis of g@j(A) relative to this decomposition, so that the basis
vectors of g(pi(A) consist of a union of basis vectors of the subspaces #g,(A), so that
the basis vectors in each #'g,(A) appear consecutively, and so that for :<¢’, the basis
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vectors in ' g,(A) appear after those in #'g,(A). Then for ge s, Adg determines
a k-linear transformation of g (A), and relative to our basis, and the direct sum
decomposition (18.6), the matrix of this linear transformation has a block decomposition

I".. O

o,

A(g) 0 1
where A;(g)eHomy(g,(A), #g,(A)) 2End,g,(A). One sees directly that
(18‘7) Aj(Xu(rtj))=rad Ea:

Ak (14 1¥))=rad H,,

where rek, «acA(A), j>1, and thus, identifying g,(A) with its image under the
adjoint representation, we see that we may define ¥ by

WO omi= A,

and then note that ¥ satisfies (18.4), thanks to (18.7).

We also wish to consider the projection =°: f;— /A, With a slight abuse
of notation, we let y,(r), acA(A), rek, denote the automorphism of g,(A) defined by
_ oy @dX)’

Xu(r) ]ZO j!

We let G, 0CG, » denote the subgroup of all elements which, relative to our
fixed Chevalley basis of g(A), are represented by matrices with coefficients in 0.
Then =° is the restriction of the projection (again denoted by =°) from G,
to Gy o/ A", where G,y o/#") may be identified with the subgroup G,C Aut g,(A),
generated by all y,(r), a«cA(A), rek. Moreover (identifying #; with a subgroup
of G}), our notation is consistent, in the sense that if «eA +(A), rek, then

7(Xa(r)) = (1)
We let U,CG, denote the subgroup generated by all y,(r), acA, (A), rek.
Then
' (Fy)=Uy,
n°([y) D the subgroup &; of U,
generated by all y,(r), «xeA, (A), re].

We define a fundamental domain 2 C#k, for the action of J (acting as trans-
lations) as follows:

2 xeR, |x|<1/2, if k=R,
Nz=x+i, xyeR, |x|<ij2, |y|<1J2, if k=C.
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We define g45(A) Cg,(A) to be the subset of all xeg,(A) such that each coordinate
of x, relative to our fixed Chevalley basis is in 2.

We now fix an order on A (A). Then every element of U, has a unique
expression as a product ael;{ @ X«(Se)> S.€k, where the product is taken with respect

to our fixed order on A, (A). We let Uy CU, consist of all products I .05,

€A(4)
5,€2 (the product again being taken with respect to our fixed order on A +(A). A
straightforward induction then shows:

(x8.8) For all #eU,, there exists yesf;, such that #yeU,.

Now we have fixed an order on A, (A). This order, in turn, determines an
order on A_(A)=—A_(A). We let

U, =subgroup of G} generated by the elements y,(s(t)),
axelA, (A), o(t)e0,
U =subgroup of G} generated by the elements y,(o(t)),
aeA_(A), o(t)eZ.
We also recall, from Lemma (13.7), that TACG} is the subgroup generated by the

elements %,(s(t)), «acA(A), o(¢)e@, and by the elements hu(u(s), sek’. We note
that in the notation of § 13, we have

(18.9) Up=U,c,
U.;=U_,C.

It thus follows from (13.22) that

(x8.10) SI=U,TiU,,

and, from (13.23), that every element of U, (resp. of Uy) has a unique expression
as a product

Xa(0a(t)),  0a(t)€0
%a(0:(),  ox(f)€P),

where the product is taken with respect to our fixed order on A _(A) (resp. on A_(A)).
It then follows from (18.10) and the above remarks, that every element x of # has
an expression

(18.11) #=(, IL xalou®A( 1, 2(20)),

with o ()0,  acA,(A),  oL()e®,  aeA_(A),  heT),

uEA

(resp. AL

where products are taken with respect to our fixed orders on A, (A). Moreover, we
have
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Lemma (x8.312). — The subgroup $;CF consists of all xeS such that in an
expression of the form (18.11) for x, the element h may be written as a product

(8.13) =Tk (a0,

with o;(t)=1mod t(c;(¢)eC*), i=1,...,¢. For j>1, the subgroup S consists of
all xe Sy such that in an expression of the form (18.11) for x, we have o,(t)=o0 mod #,
«eA,(A), and o) (t)=0omod #, acA_(A), and in the expression (18.13) for h we may
assume o;(t)=1mod #, for i=1,...,¢.

Proof. — Recall, we have identified #; with its image under ®’ocAd. Relative
to a Chevalley basis of g(A), ordered so that positive root vectors are represented by
(strictly) upper triangular matrices, the elements of %; acting on gg (A), by means
of ®'0Ad, are represented mod{ by unipotent matrices. Hence, the elements
of TiNnF; act on g#,(A) as the identity mod & On the other hand, for any keTj,
we have

e

h= 1lzt,,i('c?-'i(t)) mod(kernel @0 Ad), Gj(¢)e, i=1, ...,".

Each G;(f) has an expression

c;(t)=o0;(t)s;, si€k’, o;(¢)el”, o;(¢) =1 mod .
Then we have

h=h'h" mod(kernel ®'oAd),

¢
where b = 1,131 ko (0i(2)),
¢
kl' == ’iI=Il hai (S’l) *

Now, if heTjnS, then
k'’ eThn S; mod(kernel @' o Ad),

since h'eTiNnS, by Lemma (12.2). But then, A’ acts on 0g,(A) as the iden-
tity mod £. But ®’cAd(") is equal to its reduction mod ¢. Hence &'’ ekernel(®oAd).
But ®’cAd is injective when restricted to %;, by Lemma (18.1). Since, by
Lemma (12.2), A'eTinSy, we thus have hA=4’; i.e., we have proved:

(x8.14) If heTinSy, then h has an expression as in (18.13)

with ¢;(f)=1mod ¢, i=1,...,°%
But now if xe;, and if we express x as in (18.11), then Aef;NTy, and hence the
first assertion of Lemma (18.12) follows from (18.14).

We now turn to the second assertion of Lemma (18.12). It is clear that
if xeS; has an expression (18.11), with o,(¢), o,(t)=0mod #/, acA(A), and with &
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expressed as in (18.13), with o;(f)=1mod #, then xe4y. The converse for j>2
follows easily from (18.7) and the result for j=1. For j=1, we have that if xe;
and if x is expressed as in (18.11), with £ asin (18.13), with ¢;(f)=1mod ¢, i=1,...,¢,
then
0( ) —
k] (x) - ocel;{(A) th(Qa)a

where ¢, is the constant term of o,(¢), «eA (A). If xefM then =°(x)=1, and we
must have g¢,=o for all «aeA, (A); ie., o,(t)=0omod?, for «acA_(A). This
concludes the proof of Lemma (18.12). m

Defimition (18.15). — We let Oy denote the set of all c(t)z_goqjtj i O such
: 1=
that ¢;€D, and O% the set of all c(t)=.§oqjt" in O such that ¢o=1 and g€ D, j>1. We
N

let Sy o denote the set of all xeSy such that in the expression (18.11) for x, with k as
in (18.13) with o,(t)e0", o;(t)=1modt, i=1,...,¢ we have o,(t), o _,(t)e0y, for
all acA (A), and o;(t)eOy, for i=1,...,¢.

Lemma (x8.16). — For all xeJSy, there exists vel'y such that
ety o-
Proof. — We have observed that n°(I'y) contains &%;CU,, and, thanks to (18.8),
we can find vy,el'y so that if we express xy, as in (18.11), then the constant term

of 6,(t), acA_(A), isin Z. For an integer j>o, we let P(;j) denote the following
assertion:

P(j): For each integer £ with 0<k<j, there is an element vy,el'y such that

(i) vi=1p+1 mod TEFY,

(ii) There exist elements o,(t), o ,(t)(x€A_(A)) in O,4, of order j (i.e., whose coefli-
cients of t" are zero for m>j), and with ¢’ ,(¢)eZ, and there exist elements o;(f)
(i=1,...,¢) in 0% of order j, so that if x; denotes the corresponding product
given by (18.11), with % given by (18.13), then

xy=x;mod SFY, o<k
We note that our initial comments in the proof serve to verify P(o), with y,
chosen as above. Assume then for some j>o we have proved P(j). Then
xy=xp;, yefPT.
Moreover, thanks to (18.4) and (18.5), we can find y'el§*?), such that
‘I"(Hl)on(””(yjy')Eg_@(A).

We set v;,.,=1;y’, and note that with this choice of v;,, we have that (i) of P(j+1)
is satisfied. We write WUtHornlitl( 5y egy(A) as

!
Z ana-i—.gl%'Hi) Gus qie‘@'

aEA(A)
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Now in (ii) of P(j) we have specified certain o,(t), o__,(¢), o;,(¢). For P(j+4+1) we
replace these elements by

6, (t) + g, 8T, acA, (A)

o )+ o, ach,(A)

o;(t) + gt T, i=1,...,4
respectively. We use these elements to define a corresponding x;,,, by (18.11)
and (18.13), and note that v,, 0<k<j+1, and X1 satisfy (i) of P(j+41). We see

that moreover, the sequences y;ely, x€S 5, have well defined t-adic limits yeIy,
xg9€Fy 9, Trespectively, and

xY:xg.

This proves Lemma (18.16). m

Remark (18.17). — Our proof of Lemma (18.16) shows more: If T, ;CTYy is
the subgroup of I'y generated by all y,(c(f)), a€A(A), o(t)€]J[[¢]], the ring of power
series in ¢, with coefficients in J, then for all xeJs; we may find yely, so
that xye S 4.

19. A fundamental domain from Siegel sets.

In accordance with the notational convention adopted in § 17, we continue to
take £=R or C. We define ¢,>>0 by

2/4/3, k=R

°=\yz k=C.
Definition (19.1). — For >0 we let H, consist of all he™°, where heH, .,
9 k, +

r=%e c>0 and
(he=™®)%<o, i=1,...,¢{+1.

Definition (19.2). — For o>o0, we let GazﬁHofu,g, and we call S, a Siegel
set.

We set [y equal to the subgroup of ' generated by all Ya(0(2)), acA(A),
o(t)eZ;. We have

Theorem (19.3). — Let N be a dominant integral, linear functional in r);(K)*, and
assume AN(h)=1, for i=1,...,¢+1. Then for geG) and ceck with r=Re c>o0, we
can find vel'y such that

g Pye@,,.

Remarks. — (i) Later on we shall see that if ¢eR, then we can drop the restric-
tion that A(h)=1 for all i=1,...,¢/+1 (see Theorem (20.14)). (ii) Of course
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Theorem (19.3) also holds for I'in place of I'.  We do not know the exact relation-
ship between I' and I',. (iii) Needless to say, Theorem (19.3) is an analogue of
Theorem (1.6) in [1]. Indeed our proof is modeled after that in [1], though the
present case presents some new technical difficulties (e.g., we must introduce the
operator D, and the space V* is infinite-dimensional). (iv) The appearence of D seems
to us to be natural. Indeed, the operator D is naturally related to the Fourier
expansion of automorphic forms on Sl, (R) (see e.g. [6]). The picture which emerges
in Theorem (19.3), when 2=C, may be described as follows: Let #* denote the
Poincaré upper half plane. For each ze#*, let I'*=¢""Te=*?C (G}, and let

P, 1
be the isomorphism defined by

?,(v) =€ Pye™ P,
We let I' act on G23x2* by

(& 2) -1 =(g9.(v), 2)-

We let @C,:all(g, 2)eGix#* such that gé*®eS,. Then Theorem (19.3) tells us
that ~
S, [y=Gix 2.

(v) When £=0C, our methods in fact prove Theorem (19.3), whenever J is the
ring of integers in a Euclidean, imaginary quadratic field. Of course, for each
such J, one must make an appropriate choice for o,. Also, one must utilize the
following for such a J:

(%) There exists €, with 0<e<1, such that for all £eC, there exists ne],
such that [E—q|<e.

The proof of () follows from Hardy and Wright, An Introduction to the Theory of
Numbers, p. 213, Thm. 246 (and accompanying remarks).

Proof of Theorem (19.3). — The proof rests upon the existence of minima
(as in Lemma (17.15)). We recall that by the remark following the statement of
Lemma (17.15), the lemma also holds for f‘o. Thus, given geG}, we may choose
'YoEIA‘o so that
(19.4) llge™Pvozoll <1lge™ Pv2o]l;
for all yel,. Now ge~“Pvy,e®eG), and relative to our Iwasawa decomposition of
Lemma (16.14), we may write this element as

—e¢D D ’
86 Y0¢” = g gn&u>
where gxeK, gueH, ., and gye S We note that gy=ePgye Pe s We

choose ylef‘o, so that go=ggy11€F o (we are using Remark (18.17), following
the proof of Lemma (18.16)). We have

||ge_0D'YoY1vo” = “ge_cDYovo“’
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since y,9,=0,. Hence (19.4) implies
(x9.5) ll2e™Pvovazol| <llge™ Pyovavooll,  for all  yeli,.
On the other hand, we have

8¢ PYov1=_gk&ngue” U1 =gk &ue

¢D

89-

We set this last element equal to g’ We have from (19.5):

(19.6) 1" 20l IP<|lg"v2o||?  for all vell.

We will have proved Theorem (19.3), if we show that g'eS,. To prove this, we

take y=uw,(1), i=1,...,£+1, in (19.6). The left side of (19.6) is, in any case,
equal to

(19.7) |(gne

—CD)}‘P'
On the other hand, thanks to Lemma (11.2) and to our assumption that
AMh)=1, for all i=1,...,f41, we have

(19.8) W, (1).00€Vi_gy  i=1,...,0+1.

Also, identifying g,(A) with m}(g,(A)) (recall from Proposition (6.11), that =} is
faithful, for 2=R or C), we have from (7.8) that

w, (1) e, (1)=%E_,, forall i=1,...,¢+1

We note that 2, =w,(1).00Vi_,, by (19.8), and
g*. Vic Vi acA(A), u=weight of V?,

w+a

as one checks directly. Hence

g2—-(1,"1)0—:u)ai(l)_] i‘wai(l) U

=wa‘.(1)“1ﬁi..v,f=o,
since Eﬁi.v,-'thai, and V},,=o0 because A+g; is not a weight of V* (see (6.7)).
But then, since w,(1).2,eV}_,, we have
wa;(I)'v():(I+Eai)(1_£—ai)'vo
=(1—E_5—&,8_4) 0
=_g—a,-'1)0)
and hence

(199) ga,-wa;(l)%:—hi-voz—”o: i=I) "';£+I;

since A(f)=1 for i=1,...,¢{41.

We can now compute the right side of (19.6) for y=uw,(1). Indeed, we get
from (19.9):
(19.10) |lg' wa (1) .2|*= || giie™ Pgo-v "= (gne™")* %"+ o] (gre™ )* P
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where

[ the constant term of 0,(¢), in the expansion (18.11) for gg,

when =1, ...,7.
- the coefficient of ¢ in 6”, (¢) («o=highest root of A(A), relative

to o, ..., %) in the expansion (18.11) for g5, when ¢=/¢+1.

Since ggeSfy, 9, we have peD, so
1/4) k=R
lel?<
1/2, k=C,

and if we set p2=1/4 when k=R and 1/2 when %k=C, we obtain from the fact
that (19.7) is at most equal to the last expression of (19.10) (by (19.6)) that

(1—03)'<|(gne~ )P,
2

75 k=R

vz, k=C.

or (gne™™)%<

This proves that g'eS,, which, as we noted earlier, is sufficient to prove
Theorem (19.3). m

20. The structure of arithmetic quotients (preliminaries).

As specified in § 17, we continue in this section, to take our field 2 to be R or G
(though this assumption is not always necessary; e.g., for Propositions (20.1), (20.2),
and Lemma (20.4)). We let AieI),‘:(K)*, the dual space of b,‘i(x), be defined by the
conditions

Nh)=85  ij=1, .ot

The following proposition is an immediate Corollary of Lemma (15.7):

Proposition (20.1). — If NeD s any normal element, then there is a positive integer m,
such that E,, CE,, for each i=1, ...,{+1.

The next proposition is an immediate Corollary of Lemma (15.7) and
Theorem (15.9):

Proposition (20.2). — Let A, peD be two normal elements. Then there exists an
integer my>0, such that if m is any positive multiple of my, m=jm,, j>o0, there is a well defined
group homomorphism

n(h, my) : Gi—>Gp,
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satisfying (and umiquely determined by) the conditions
(z0.3) m(h, mp) (1x(a () = x2(o(1),  2eA(A), o(t)e L.

The next result will be needed presently;

Lemma (20.4). — If, relative to a coherently ordered basis of V3, the element geG) is
represented by a diagonal matrix, then g is in H} (and, of course, conversely).

Proof. — Let geJwS, weW and assume that, relative to a coherently ordered
basis, g is represented by a diagonal matrix. We first show that w is the identity.
Assume this is not so. Recall that by Lemma (15.2), we have

(20.5) = CE,,

r

and that in § 17, we proved that there is an isomorphism ®,: W—W, of W
onto W (W C Aut(bi(A)*) being the Weyl group of g°(A), defined in § 3—(also see
§ 17) uniquely defined by the conditions

(20.6) Oy, (1) (FON))=r;,  i=1,...,¢+1.

By Lemma (11.2), (i), and by (20.6), we see that if #neN represents w, then
(20.7) ”(Vﬁ,k) :Vé)a(w)(u),k

for every weight p of V. Since E,CE, (see (20.5)) we therefore have that
O, (w)(r)+u for some weight p’ of VX The point here, is that since we have
assumed w different from the identity, and since @, is an isomorphism, ®,(w) cannot
be the identity. But then @ (w), restricted to E,, is not the identity (see [8], § 2, the
discussion preceeding Proposition (2.5)). Choose a weight w of V* of minimal depth
among all weights w' of V* such that ®,(w)(u')+u’ (for the definition of depth see
the beginning of § 12).
Also, write gefwS as
g=uxny, x,yeL.

If »eV),, v+o, then, thanks to our minimality condition on the depth of p, and to
Corollary (14.18), we have

g.v=cn.v (modulo summands of strictly smaller depth),

where cek*. But, by our choice of p, and by (20.7%), we have that v and n.v are in
different weight spaces. Hence the element g is not represented by a diagonal matrix,
relative to a coherently ordered basis; i.e., our assumption that w=se¢ has led to a
contradiction. Hence ge.#. But then geH2, by Corollary (14.18).

Now Theorem (14.10) implies that (G}, .#, N, 8) is a Tits system. Hence, we
have the Bruhat decomposition

G = wgw SwS,
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(see [3], Chapter IV, § 2, Theorem 1, p. 25), and every element g of G} is in Sw.2,
for some weW. We thus obtain the Lemma. m

Now let AeD be a normal element, and let G}»*C Aut V} denote the subgroup
generated by the elements of G} and by the elements ¢®, reR (recall from § 6 that
D acts on V} (we assumed A(D)eZ) and hence on V} for every field k, and that ¢™
was defined in § 17). We then have:

Lemma (20.8). — Let ), peD be two normal elements and assume E,CE,. Then
the homomorphism

m(,wp) : GGy

w

of Theorem (15.9) has a unique extension to a homomorphism
w(h, @) : G,i‘*‘»@,‘j”,
such that w(\, w)(e®)=e™ for all reR.

7D v

Proof. — For each reR, the automorphism ¢® of V) normalizes G} (v=p

or A) and one has
w(h, ) (¢Pge” ) =ePr(r, ) ()P, geGi
Hence, in order to prove the Lemma, it suffices to show that
(20.9) G2 {e®}, o g ={identity).
Indeed, by Lemma (20.4), this intersection is contained in H). However, (¢P)%=1,

for i=1,...,¢. Then, if ¢PeH), we must have, as a consequence of these equa-
) ) k q q
lities, that (¢P)%+1=1. But

(erD)a,+1 — er,
and thus r=o, and this proves (20.9), and hence proves Lemma (20.8). m
For ¢>o0, we write &} (resp. H) for &, (resp. for H,CH}) whenever we wish

to keep track of the A-dependence (see Definitions (19.1) and (19.2) for the definition
of S, and H,). We let

HMR— HR
consist of all A’eH, such that

K =h~", keH,,, r>o.
We set

SR=67 =dengU,9-

We write I} for Ty in G}, and similarly, S for 4, H}, for H, ,, and K* for K,
whenever we wish to keep track of the A-dependence of these groups. We have
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Lemma (20.10). — Let A, peD be normal elements such that E,CH,. Let
n(h p): Gpe—>G&® be the homomorphism given by Lemma (20.8). We then have
(z0.11) m(, ) (0) =14

(2, w) (K} =K*
n(h 1) (S H)=C4R  (c>o).

Proof. — From Theorem (15.9) it follows that

(20.12) T, ) (ta(s(t))=14(c(®),  acA(A), o(t)eF,
and then, as a special case of this equality, we have
(20.12") (0 ) () =14(),  aeBy(A), sek

(where we write y(s) for y,(s) (v=2A or p), to keep track of the dependence on the
highest weight). The first equality of (20.11) follows from (20.12) and from the
definition of I¥ (v=2 or ) in § 17 (after Lemma (17.15)).

In order to prove the second equality of (20.11) we note that if K}CG”
(v=2\ or w) is the subgroup of K* generz'x\tled by the subgroups ¥, (K), i=1, ..., +1

(see § 16 for the definition of ¥',, acAy(A), and of K CSL,(£)), then the proof given
in § 16 for Lemma (16.14) also shows that

GC=KH; S, v=xrory,
and then, by the uniqueness assertion of Lemma (16.14), we have
(20.13) R}=K*, v=xaor p.
On the other hand, if we write ¥¥ for W¥,: SL,(k) =G}, v=2X or g, aeAW(K), then
from the definition of ¥, in § 16, and from (20.12"), we have

Pe=rn(h, w)o¥?  acAy(A),

and hence, from (20.13),
(2, w) (RY)=K*;

i.e., we have proved the second equality of (20.11).
From (20.12") we also have

w(h @) (B () =RE(s),  sekt, i=1, ..., 041,

~

where (as usual) we write £)(s) for k,(s), acAy(A), sek*, to keep track of the
dependence on the highest weight. The third equality of (20.11) then follows
from this, from the second equality of (20.11), and from (20.12). This proves
Lemma (20.10). m

We can now prove the following extension of Theorem (19.3):
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Theorem (20.14). — Let AeD  be normal. For any geG), and r>o, we can
Sfind vel'y such that

g PyeGh.
Proof. — Fix peD, such that po(h)=1, for i=1,...,/+1. Then, by
Theorem (19.3), we know that Theorem (20.14) is valid for A=p. If AeD is any

normal element, then by Lemma (15.7), Proposition (20.2) and Lemma (20.8), there
is a positive integer m so that

EnCE,
E,CE,,
and we have well defined homomorphisms
(o, mp) : Gf* = Gp*,
n(h, mp) : GMe— Gree,
Using Theorem (19.3), and Lemma (20.10) (with A=p, wu=mp) we see that
Theorem (20.14) is true for A=mp. Presently we shall prove:
(20.15) If A, ueD are normal, and if E,CE,, then the kernel of the homomorphism
n(h p) 5 Gt Gp
is contained in R*nH}n (center G2).

We note that (20.15), Lemma (20.10) and Theorem (20.14) for mp, which we
have proved, then imply Theorem (20.14) for A, thanks to the existence of (A, mp).
We now prove (20.15). We first note that it suffices to consider w(a, w): G}—G¥.
Then, using the Bruhat decomposition corresponding to the Tits system of

Theorem (14.10) (for both G} and G we see that first (), u) respects these Bruhat
decompositions, and then, as a consequence, that the kernel of =(A, ) is contained

in #CG.
On the other hand, we have a commutative diagram

G;‘ (A, w) G,‘:

(20.16) d)’oA}\ @' oAd
Gad,..‘Z’(A)

where, of course, ®'0cAd on the right and left are two different homomorphisms.
But (either) ®'0Ad is injective on ; (by Lemma (18.1)). Since S=H,4; (semi-
direct product) by Lemma (14.12), by (14.13) and (14.16), we therefore have that
kernel 7(A, w) is contained in H,=H}. Also, by Lemmas (8.14) and (9.1), we have:
kernel(®’ o Ad) C center G}, v=»x or u (recall that for #=C or R, the algebra g,ﬁ(x)
is perfect). Hence, by the commutativity of (20.16), we have:

kernel w (), p) C center G2.
Thus, to prove (20.15), we need only verify that kernel (2, ) CK?
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But from (16.13), we have Hy=H; .H}, (v=A or u), where we introduce
the superscript v to keep track of the dependence on the highest weight. Also, we
clearly have from the equality

(], p.)(/z}i(s))=h,‘;i(s), SERY, i=1, ...,{+41,
which we noted earlier, that
(z0.17) m(h, w) (Hy ) =HE |

(%, w) (Hy, o) =Hi .

Also, H; , nHy, consists of diagonalizable automorphisms of V} (v=2 or p) each
of whose eigenvalues is positive and has modulus one (see § 16). Hence

H; . nH; , ={identity}.

Thus, since kernel 7(a, u) CH}, and since H,?,(,Cﬁx, we see from (20.17) that if
we show the injectivity of w(A, ) restricted to H} , we will have kernel m(3, ) CR™
But the %Lct that =(), ) is injective on H} , follows easily from the fact that E,
spans h°(A)*. Hence we have proved (20.15), and, as we already noted, we obtain
Theorem (20.14) from (20.15). m

21. The stucture of arithmetic quotients (conclusion).

As specified in § 17, we take our field % in this section, to be R or C. We
fix peh’(A)* such that p(h)=1, i=1,...,{+1. We set
O,=A, (A)nwA_(R)), weW,
and we let (®,> denote the sum of all the roots in ®,. Then from [8], Propo-
sition (2.5), page 50, we have

(2r.1) (D,>=p—w.p, for weW.

Thus, for weW, we have an expression for p—w.p of the form
t+1

p—w.p=]§1kjaj,

where the %; are non-negative integers.

Let w=r, ...r, be an expression of minimal length of w in terms of the
generators 7;. Set

ai.), j:I, LT

(21.2) bi=r,...1_(a

i
7—1
Then from Proposition (2.2), page 49, in [8], we have ®,={b,, ..., 5.}, and O,

has exactly v elements. Hence the b; are mutually distinct.

For each i=1,...,/4+1, we let W;CW denote the subgroup generated by
the r;, j+i. We then have:
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Lemma (21.3). — Fix an integer ie{1, ...,0+1}. If weW is not in W,, then

{+1
w.p—p=—Z ke, k>0, ke,
and k,>o.
Proof. — Let
w=1’,~l oo Ti,c

be an expression of minimal length of w in terms of the generators r;. Let x be the
smallest integer between one and r, such that i, =7 (w is not in W,, so such a x does
exist). Then

bx: Til v r,iu_l(ai )

- 7’,-1 “ e T,,:K_l(ai)
{+1

= ,-§1 g;a;, ¢;F0,

and hence
{+1
e—w.p=<{D,>=0b+. ..+bT—_—j§1kjaj,
with 2>0. m
Lemma (2x.4). — Fix an ie{1, ...,¢+1}. Then there is a real number ¢>o, such
£+1
that if beA, (R), and b= 2 ke, with k>o, then
i-
f+1
(21.5) k> 2 k).
i=1
Proof. — Let «yeA(A) denote the highest root, and express «, as a linear

combination of the simple roots of A(A):
¢
Ko = E ij(].
i=1

¢
We let m= .Zlmj. Next, let + denote the imaginary root
i=

{
L:jglmjaj—{—alM,

and recall the description of A +(K) given in (4.3).

Thus, if beA, (A), then b has an expression

{+1

t
b=( El g;8) + n(Elmjaj),

where we have set m, ;=1, and where

Oqugmj, jZI, -.-,[
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and n>o0. On the other hand, in the statement of Lemma (21.4), we have set

/+1

b=j§1kjaj, with %,>o0 for our fixed i. We set

N S

2(m+1)’°

and we let ¢,,,=o0. We have
(2x.6) ki=gq;+nm;, j=1,...,{41,
where
(21.7) m>1, ¢<m, j=1,...,¢{+1.
Then

lf; =T it , by (21.6)

E k; (jglqj)—{-n(m—l—l)
g;+n
Z a1’

¢;+n
Zmrn @t

by (21.%)

1
m-+41’°
=) n 1 1

>
n+im+1—2(m+1)’

and in either case, we obtain (21.5). ®

Lemma (21.8). — Fix an ie{1,...,0+1}.
all weW—W,, if we set
{+1
P—w-P=E‘lkjaj,

then
{+1
(21.9) k,.Zx(Elkj).
Proof. — For a root
{41
f= iglnjaj

if n=o0 (then ¢,=F~2>1)

if n>1,

There exists

in A +(K), we let ht(f)(=height of f) be defined by

{+1

ht(f)=j§1nj.

®>0

such that for
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The set FCA +(K) of all roots feA +(K), such that
f+1

f= Zna, m=o,

j=1979

is a finite subset. We let f;, ..., f, denote the elements of F, and we set

u= 3 he(f).

Recalling (21.2), and that if w=7; ...7_ is an expression of minimal length of w

in terms of the generators 7;, then ®,={b,, ..., 5.}, we have from (21.1) that

p—w.p=b1—|—. . '+b‘t'
{+1
We write b,= Zlkwav, U=1,...,1,
v

and note that kj= 2k

u=1 Ju*
We set T(F)={ue{1, ..., <}|b,¢F},
{+1
and M= X 2X&

wETE j=1 %

Then, since w¢W,, it follows that M>1. As a result:
{+1 T f+1 7

R(E k)7 =( 2 k(2 X k)"t

w=1 j=1u=1 %

>( 3 k)(MAw)

T TuETE)
>cM(M+p)~, by Lemma (21.4),
=c(14wp/M)" > (1 +p) 7

We may thus take x=c¢(14+u)™ !, in (21.9). ®

For each ¢>o0, we defined H? in § 20, to be the set of all A'eH; such
that A'=he~'®, heH, ., r>o. Thus, in particular

(F%i<o, i=1,...,¢41.

We now prove:

Lemma (2x.10). — For all e>o0, there exists M>o such that if r>M and
k' = he~PeHR, heH, ., then for some i=1, ...,f41, we have (h')%<e. Conversely,
Jor all M>o, there exists an e>o, such thatif K =he~™eHE, heH, ., and if (k')%<e
Sor some i=1,...,f+1, then r>M.

Proof. — If k' =he™™, with r>o0 and heH,,, then
(2x.11) (BY%i=h%, i=1,...,¢,

(hl)a(+1 — Th(ll+1'
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Writing the highest root «yeA(A) as an integral linear combination of simple
roots of A(A), we have

¢
Wg= 2 M;0;.
i=1 77

For heH, ,, we then have

¢
(21.12) Bt = Hl k"%,
o

¢
We let m= 2 m;. Assume we are given >0, and let
i=1

Then choose M>o0 so that
e e <,

We then consider A'=he™™ in HY, with %eH, ., and r>M. We claim that
(#)%<e for some i=1,...,£+1. If this is not true for some i=1,...,7, then

h%>e, for i=1,...,¢ (by (21.11)). Hence, by (21.12), we have
Rt <e',
But then (k')%+1 = (he~ ™) +1
=kt T<ee "
<eg'eM<e,

Conversely, assume, for some M>o, that A'=he ™ is in HY, where heH, ,
and o<r<M. Then

K %i<e, i=1,...,041,
and by (21.11) and (21.12), we have
h+1>q’,
where ¢'=06"™ On the other hand
hotigm "= (k') %1 <g,
by (21.11) and our assumption that A’ is in H®. Thus
o’ <hr1< geM,
For i=1,...,¢, we let m(t)=m—m; and b(i)=(§lmjaj)—m,~a,-. We then have

AT 23 b(’.), by (21 . 12)

>(oeM) o™, i=1,...,¢,
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and thus the (A')%=h% i=1,...,¢{ (see (21.11)), are bounded below. But
(W) 1=h%+1e~" (by (21.11))
>o'e Y
so all the (A")%, i=1, ...,¢+1, are bounded below, and this proves Lemma (21.10). m
In the proof of Lemma (20.8), we showed that if we write geG}° as
(21.13) g=g'e® geBl reR,
then ¢’ and r are uniquely determined by g (see (20.9)). It follows from this fact,
and from the Iwasawa decomposition of Lemma (16.14), that in the decomposition

(21.14) SR=KHRSA ,, o>o,

we have uniqueness of expression. For xeSE, we let
x=axgxg¥y, *xeK, xgeHy, xyeFy g,
denote the decomposition of x, relative to the decomposition (21.14).

The operator ¢, reR, normalizes G,ﬁ, and hence, from the uniqueness of the
decomposition (21.13), we have:

(21.15) If g,, 80, 8€Gl, if #,r"eR,
and if ge"Pgy=g,e”"'P, then ' =1".
For each i=1,...,f41, we let W;CW denote the subgroup generated by

the elements w,(1)(#NN), with j+i. For FC{1,...,0+1}, we let wF=ile'Lw,.,
and we denote by P,CG} the parabolic subgroup

Po=SW, 5.

Indeed, the fact that Py is a subgroup of G} follows from Theorem (14.10) and from
standard properties of Tits systems (see [3], Chapter 4, Theorem 3, page 27).

Theorem (21.16). — Fix o>o0. Then there exists e>o0 such that if x,ye Gk,
if Yef‘o, if for some tg=1,...,{+1,

(21.17) xf<le,
and if
(21.18) xy =y,

then yeP; .

Proof. — We first note that as a consequence of Lemma (21.10) and of (21.15),
we have that for all ¢'>o0, there exists >0 suchthat if x, yeG%, yel, satisfy (21.17%)
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and (21.18), then yg<e’ for some j=1,...,¢/+41. Thus, in order to prove
Theorem (21.16), it suffices to prove

(21.19) There exists €>o, such that if x, ye®F, if yel,, if for some
9, Jo{1, ..., £+ 1}, we have
(2x.17') 1p<e, Igpe<le,
and if xy=y, then yeP ;,.
Now if x, yeGR, yel', satisfy (21.18), we have
(21.20) YrXuXyY =JxJu)u-

Moreover, y.7y=m, eV} (see § 17 and recall we are taking G2C Aut V), where rcD
is normal). If p is a weight of V?, then the weight component m.(p) of m, in V} is
also in V} (see (6.3)). Thus, if p, is a weight of V* of maximal depth such
that m.(ue)+0, we have

| xxxaxoy-vo|| = || xu¥y. my [| 2|25 m (12o) || = 28
On the other hand, from (21.20), we have

| *x 25 %y - 00 || = || Jx eIy vol| :}’x)i-
Thus, if

l+1

F’-o:l“igl%aﬂ, %:€Z, ¢;2o,
/+1
(see (6.7)), and if we set @@= X ¢;4;, we then have
i=1
(21.21) R >ahag

Now in § 17, we defined an isomorphism
D, : W>W,

and hence we may identify W with W, by means of ®,. We observe that if yeSfwS,

weW, we may take
{41
Ho=7\—,214iai=w-7\,
Py

thanks to Lemma (11.2), Corollary (14.18) and the definition of ®,.

On the other hand, interchanging the roles of ¥ and y, we also obtain
{+1

(21.21") $h>yhya’, where w()=r—0b, with b= 3 pa, peZ, p>o.
i=1
Combining (21.21) and (21.21"), we find
~ o~ {+1 ~ ft1
(21.22) 1<k ‘7=‘Zlqias, b=,zll’ia&,

bis q‘»EZ, bi» inO) i::I: "'a[+19
w)=r—a, w'(\)=r—b.
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Now assume A is a multiple of p; i.e., assume that for some positive integer z,
we have

Me)=mn, i=1,...,¢f+41.

To prove (21.19) for this choice of A, we first note that from Lemma (21.3),
Lemma (21.8) and (21.22), we can conclude that there exists ¢’>o0 so that if (21.17’)
holds for ¢’ in place of ¢, and if xy=y, then either vy is in P; or v is in P;. Fixing
such an ¢, we may in particular, assume y lies in one of finitely many double
cosets fwSf, weW. We then obtain from Lemma (21.3) and from (21.22) that there
exists €>0 so thatif (21.17’) holds, and if xy=y, then yis in both P; and P;; i.e., we
obtain (21.19), and hence Theorem (21.16), for A=np. The theorem for general A
then follows in a manner parallel to the proof of Theorem (20.14). B
For r>o0, we set GR(r)=GRePnG} and I',=¢ ™[¢®CG). Then
Gi=&L (T, (r>0),

and we also have

Corollary 1. — For r sufficiently large and yel', such that

S (NyN&3(r) * o,
we have P, for some i=1, ...,{+1.
Proof. — This follows from Theorem (21.16), from Lemma (21.10) and from

the fact that ¢~ P,e® =P,.

Corollary 2. — For r sufficiently large, T, acts on R |G} with finite isotropy groups.

Proof. — 'This follows from Corollary 1, and from the fact that f‘,nP,- intersected
with a conjugate of K is finite. Indeed, G=K.#=KP, (see Theorem (16.8)), and
hence our last assertion is equivalent to the assertion that the intersection of KNP,
with a conjugate p(f‘,n P)p~', peP;, is finite. Butif M;CP; is the finite-dimensional
sutzgroup generated by the yx iaj(s), j+i, sek, then KNP,CM,; is compact, and
p(U,NP)p~ ' NM; is discrete. m

Corollary 3. — For r sufficiently large, T, is not conjugate to f‘o by an element of G).

Proof. — The group I',nK is infinite, as it contains all w,(1), aeA(K). Hence
Corollary 3 follows from Corollary 2. m
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Appendix 1

We note that D, the ¢+ 1st degree derivation of g(K), maps gz(x) into itself.
Hence, as in § 6, we may adjoin D to gz(A), to obtain the extended integral
algebra g3(A)=g3=gz(A)®ZD. We then set I)%(K):I)%:I)Z(K)@ZD, and for a
commutative ring (with unit) R, we let

bi(A)=Dr=R®, b3,
r(A)=gr =R, gz.

~

For aeAy(A), seR, we let %, (s) denote the automorphism of g} defined by
%)= T ad(Zj).

For seR*, the group of units of R, we set
Bo(5) = ()Y o(—5 (),
Fols) = Ba(s) By (1) 7.

We then have:

Lemma (A.x). — For hel,, and seR*, acAy(A),
Wy(s) (B)=h—a(h)h,.

Progf. — The following equalities are obtained from a direct computation:
Y (s) (h) = h—sa(R)E,,
Y_o(—57) (h—sa(h)E,) = h—a(h)h,— sa(h)E,,
() (h— a(h)h,— sa(h)E,) = h—a(l) k.

The lemma follows. m

We now proceed to prove Lemma (11.2). First we take s to be an indetermi-
nate over Z, and consider

' V;[s,s—‘] = Z[S, S“_l]@zV%,

and gz[s,s_q(x)=Z[s, 5 Y®,0,(A). We fix an embedding of Z[s,s"!] in C, and
thus obtain embeddings of Vi, ., 0z..u(A) in Vi, go(&), respectively. We
may define w,(s), #4,(s)eAut(V), as automorphisms of Vg which leave Vi, .-
invariant. Thus, if we can prove Lemma (11.2) over G, we may then specialize s
and so obtain Lemma (11.2) over an arbitrary field &.
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So now take £=C. Our argument follows that in Steinberg [21], Lemma 19,
page 27. For seC, veV}, we set o(s)=w,(s).s, and we note that we may
write o(s) as

(A.2) v(y):jezzs"vj (finite sum),  2,eV}, ..

On the other hand, noting that Lemma (A.1) implies @,(s)(k)=@,(s) " (k),
for heb‘(x), we have
T (h) . (14(s) - v) = 1,(12) (R)w,(s) .,

where ra() = u—p(k,)a.
Hence, in (A.2), we have »;=o0 unless r,(u)=uw+ja; i.e., unless j=—u(k,). Thus,
taking »'=v,, for j=—u(k,), we obtain Lemma (11.2) (i).

To prove Lemma (rr.2) (ii), we first note that, by a direct computation from
the definition of w,(s) (see (7.23)), we have

wa(s)_l-: a(—S),
and thus for, »eV},
(A.3) ha(s) .0 = 0,(—8) " w,(—1) ..
Now, by Lemma (11.2) (i),
,(—1).v=(—1)" 0
Wy(—5) .0 =(—s)"*M,
and it then follows from (A.g) that

hy(s) .0 =s*t) p,

so we obtain (ii) of Lemma (11.2). m
We now wish to prove an analogue of Lemma (11.2) for the adjoint representation:

Lemma (A.4). — Let k be any field, and let a, beAW(K); then in gk(K) we have
@y() (En) =5~ “™E, ),
where sek, y=vy(b,a)=+1 1is independent of s and k, with (b, a)=~(b, —a), and
where r,(a)=a—a(h,)b.

Proof. — For the most part, the proof of Lemma (A.4) is parallel to that of
Lemma (11.2), so we only give a sketch of the proof. Thus, just as in the proof of
Lemma (11.2), we may take 2=GC and then show that

(5 (Ea) =5~ M8, )5

for some yeC. But taking s=1, and noting that @,(1)(&,) is in gz(K), and is in fact
a primitive vector, since @,(1) is an automorphism of gz(A), we see that y=<+1.

294



THE ARITHMETIC THEORY OF LOOP GROUPS 119

Finally, noting that [£,,%_,]=#,, and then applying @,(1) to both sides of this
equality, we obtain (using Lemma (A.1));

Y(b) a)Y(b> - a)hrl,(a) = ha - b(ha) hb = k,b(d),

and so vy(b,a)=+v(b, —a). The independence assertion is clear, and so we obtain
the Lemma. m

Appendix I

In this appendix, we take £ to be the finite field with ¢ elements. We wish to
prove

Theorem (B.x). — Assume ZeD is normal, and that \(k) is divisible by q—1, for
each i=1, ...,0+1. Then the homomorphism =, : G} — G_"gk of § 12 is an isomorphism.

Proof. — By definition of =;, we know that the kernel of =, is the group C
generated by the central elements

ha(61)ha(02)ha(0102) ™Y, aeA(A), oy, 6,e F.
By Lemma (10.1), we have the homomorphism
¥ : E(Gg,) G,
defined by
P (xa(o)) =2xu(0), xeA(A), ce .
We let C°CE(Gg,) be the subgroup generated by the central elements
ky(o))he (o) (010) ™", acA(A), 6y, 0,6 4.
If B is a fixed long root in A(A), then by Moore [18], Lemma (8.2), C=%*(C*) is
generated by the elements
RCCARACHLACHIACT N R A
By Theorem (12.24), we have
bg(oy, 62)=cr(01, 65)°L,
where I denotes the identity operator of V;, where «=—2A(k)(B, 8)”"!, and
where ¢;( , ) denotes the tame symbol (see (12.20)). However, the only thing we
have to note here is that ¢y(oy, 6,)€k*. Now 2A//(a, o) is an integral linear combi-

nation of &, ..., k, ., (see the discussion preceeding Remark (4.7)). Hence, since A(%)
is divisible by ¢—1, for each =1, ...,/ 41, we must have

o __
ep(01, 03) =1,
and T, is injective. Since =, is in any case surjective, we obtain the Theorem. m
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The locally compact group Gg, admits a certain irreducible, unitary represen-
tation, called the special representation (see [2]), which is an analogue of the
Steinberg representation of a finite Chevalley group. On the other hand, when AeD
satisfies the conditions of Theorem (B.1), we have a well-defined modular representation

mt=rntom,: Gy, — G} C Aut V2,
where m,: G_gkef}}k is defined in § 12. In analogy with known results concerning

the Steinberg representation of a finite Chevalley group, we propose:

Conjecture. — Let peD satisfy p(h)=1, for ¢=1, ...,¢/+1. The special repre-
sentation of Gg, admits an integral subrepresentation such that, when we tensor this
integral representation with %, we obtain the modular representation =4~ (%),

Appendix III

In this appendix we wish to discuss how one can extend some of the results of
this paper to the non-split case. The idea is to use the universal properties of our
central extensions in order to lift Galois automorphisms, and then use descent.

In this section we take %2 to be a field of characteristic zero. We let g denote
a split, simple Lie algebra over %, and we let §°=7@, denote the infinite-dimensional
k-Lie algebra

G =280
We define
To: LpX G~k
by
(Cr) To(0y, 62) =residue(s,doy), 64, 6,€%;.
Then the 1, of § 2 is just the restriction to k[¢, t~']xk[t, t~'] of the 7, defined here.
We then define
T G XG>k
exactly as in § 2; i.e., we set
(C2) (611, 0,8y)=—1(01, 63) (%, 0), 01, 026 %, %, yETY.
Then teZ2(g° k) (where we regard % as a trivial §° module), and corresponding to ©

we have the central extension

(C3) 0o—>k—>g S8 o,

(®) Recently, J. Annon has proved a modified, topological version of this conjecture. Roughly speaking,
Annon introduces a topology on V(@-1?, and then proves that a k-form of the special representation is isomor-
phic to a dense subrepresentation of {¢~2° (the density being with respect to Annon’s topology).
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where we take

(Cq) 8;=0,®k (as a vector space over k),

with multiplication defined by _
(CS) [(Ea S)’ (zl: 5')]=([‘2a E/]y T(E: E,)): g) g’eakc: 5, S’Gk;

and where @, is the projection of §;=0;®% onto the first factor.

We note that §; is perfect. Indeed, it is obvious that §y is perfect, since g is
perfect. But then it suffices to show the commutator subalgebra of §; contains the
direct summand % of (C4q). For this we need only check that <(§, £') is not zero for
some pair &,&. But if xeg is any element such that (x, x)&o0, then

T(t®x, t7'®x)*o0,

by (C2). Thus we have proved:
Lemma (C6). — The Lie algebra §, is perfect.

We may now recall the comments of Remarks (5.11) to the present context.
Thus we let g,Cg7 denote the k-subalgebra
8o=0®,g,

where 0= 0,C.%, is the subring of formal power series (see Remarks (5.11)). By
a congruence subalgebra of level n in §7 we mean the subalgebra of all £eg, such
that £=o0mod ¢". We then note

Lemma (C#%). — The central extension (Cg) is universal in the category of all central
extensions of G which split over the congruence subalgebra of level n, for some n.

The proof is as in § 2, with the one additional point discussed in Remarks (5.11).

Since Gy = %,®,g9, we may topologize §; by means of the t-adic topology of %, .
We call @ the universal topological covering of §.

Lemma (C8). — For every automorphism

%R

with % and %~ continuous, there is a unique automorphism
% 88

such that the diagram

is commutative.
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Proof. — The existence of x follows from the universality property of Lemma (C7).
The uniqueness of % follows from Lemma (1.5) and Lemma (C6). m

Now let 'Ok be a Galois extension. Then we have %,0.% and %, is a
Galois extension of %,. Moreover, we have a natural inclusion

(Co) Gal(k'[}) > Gal(%; | %)
of the Galois group of %’ over £ into the Galois group of %, over %, and this
inclusion is an isomorphism, as one sees immediately from Galois theory. We now

let [ denote an absolutely simple Lie algebra which is defined over %, and which splits
over %,. We let gy denote the Lie algebra

(Cro) G = Z.0gL
By assumption, we have an isomorphism of Lie algebras over %, (and hence over %’)
(Crx) 02208 (2Z0, (R ®,9))
where g is a simple Lie algebra which is defined and split over 2. We fix the isomor-
phism in (Crr).

We now wish to show that we can lift Galois automorphisms of §y=.%.®g I,

to the corresponding central extension @i of (Cg). Thus, let »:%.—%, be an
element of Gal(%,./%,), and let %:§S—>8; be defined by

%(c®E)=x(c)®E, o€, Lel,

(see (CG1o)). Then we have

Lemma (Cx2). — For every »€Gal(Z,[%F,), there exists a unique % : @ — @5 such
that % preserves brackets and sums, such that
(Cr3) k() =x(s)x(E), sek', EeBi,

and such that the diagram

~

ac % ~
Oy — O

s commutalive.

1

Proof. — Assume % and %X~! are continuous (relative to the isomorphism (Crr1)

and to the t-adic topology introduced just before Lemma (C8)). We note that %
preserves brackets and that

(Cx4) X(sn)=x(s)%(x), sek’, ney.
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We wish to define a second such mapping

R A A
To do this we use the isomorphism (Crr):
(C15) H(c®x)=x(c)®x, o€, xeg.
Then »¥ preserves brackets and sums, and satisfies
(Cx6) wH(sm)=n(s)x¥(n), sek, nedy.
But then 5%o(x¥)~! still preserves brackets and sums, and is #’-linear by (C14) and
by (C16); i.e., %o(x¥)~! is a Lie algebra endomorphism (over #') of §%. In fact, X
and »¥ are each clearly bijective, so %o(x¥)~! is a Lie algebra automorphism of @
(as a Lie algebra over #'). But x¥ and (x¥)~! are clearly continuous, and hence, so

are (Xo(x¥)~1*!, by our assumption that % and %X~! are continuous. Hence, by
Lemma (C8), there is an automorphism x*; g5 —@; such that the diagram

~e g

Oy —> Gy

is commutative. On the other hand, if we let x¥:§;—3G: be defined, relative to
the decomposition (Cg4)

4 =G Ok,
by
x¥((E, 5))=(x*(E), x(s)), Eeqy, sek/,

then %# preserves brackets (as one checks from (C5)) and sums (as one checks directly),
and thanks to (C16), one has

wh(sn)=n(s)x¥(n), sek’, n€dp.
Moreover, from the definition of %¥, we have
Sy oxF=x¥oqy,
and hence, if we set
Z=%"ox¥,

we obtain the Lemma.
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The only remaining point then, is to show that %X and %~! are continuous.
To see this, we consider the tensor product decomposition (Cri) and we fix a
basis X;, ..., X, (r=dimg) of g. We then have

n
%(Xi)=j§1’;jixj>
where ?{ﬁe%,, i,j=1,...,n. But then if
n
X= 2 GiXi’ G,"GQZC:,
i=1

is a general element of §.~.%,®,g, we have from the definition of % (preceeding
Lemma (C12))

H(X)= 2 oiX,,
where

G.:
v

t M=

l?t;-jx(cj), 1=1I,...,M

Since o; and x(s;) have the same f-adic absolute value (x only acts on the coefficients
of the Laurent series c;), we obtain the desired continuity of %. The same argument
shows that %! is continuous, and hence we obtain the lemma. m

We let ¥=Gal(%,/%,)~Gal(?'|k), and note that if we consider the ¥-module %/,

then we have
(Cx7) HY(%,k)=o0.

This is a simple consequence of the facts that ¢ is finite and %’ has characteristic zero.
Now, consider the central extension

S
0—>k'—>§,‘c,—’i>’g"k?——>0.
Then, by Lemma (C12), for every xe%, we have maps %, % of §., G, respectively,

which preserve sums and brackets, satisfy (Crg), (Ci4), respectively, and satisfy
QpoXx=%oGy. In particular, note that for %2 Cg, we have from (Cr13):

(Cx8) %(8)=x(s)%(1).

Since % is unique (given x€%¥), we have
Rykg=R1%a, %p, %a€ Y.

Thus, we obtain the following from (C18):
w1 %a(1) = 1 (%a(1)) %1 (1);

i.e., x>%(1) is an element of Z!'(%, k™), the one-cocycles of ¢ with coefficients in &".
By Hilbert’s theorem go, there exists syek”, such that, for all xe%,

(Cx9g) (1) =x(s)$5 "~
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But then
%(s5)=n(s5Mx(1), by (C18)
=x(s) "' (x(%)s3 "), by (C1g)
=SO—1’
and hence

®(ssg ) =n(s)%(s5 "), by (C13)

=x(s)s5 5
by the above computation; i.e., we have
(C20) x(ssg )=wn(s)sg Y, sek'.
We let T denote the k-subalgebra of §;,
(Cax) [={geqy|%(E)=E, for all xc%}.
We also have, of course
[={Eeq|%(E)=E, for all xe%}.
Hence o induces a homomorphism of %-Lie algebras
w: [

We now wish to show that = is surjective, and has kernel isomorphic to 2 Indeed,
if Eel, there exists &'egd; such that

() =E.
But then, since £ is %-invariant,
8kl(£(£,)) = 8]"(&,), fOI‘ a.ll xeg.

Utilizing the decomposition @i =g @k, of (C4), we may take E&'=(§,0),
Eeqy, and we see that for x€%, there exists s(x)ek’ such that

%(€)=(& s(0)sy ).
But then for x;,%,e%
%1 %3(E") = (& s(x1%2) 55 ),
and on the other hand
w1 %3(E') =%1%5(8")
=%1(, s(x9)85 1)=&, s(xq)s5 " +%1(5(x2)55° 1))
=(E, (s(x1) +%1(5(%2)))s55 "), by (C20).

Thus, »t>s(x) satisfies the cocycle identity

S(uane) =5(ny) +1(5(%2)), %1, %26 Y,
and hence by (C17), there exists s;e&’ such that
(C22) s(w)=s1—x(s), xe%.
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But then for xe¥%,
%((& 5156 1)=& s(2)s5 t +% (5155 1))
=(&, (s1—x(s1))s5 '+ %(s1)55 "), by (C20) and (C22)
=(E» J‘150_1):
and so
(€, sy50 1) el
Moreover we have

(& 515 )= (& s1% 1)) =§,

and thus we have shown = is surjective. Moreover, thanks to (C20), we see that
kernel m=1{(o, ss;') | sek} is isomorphic to 2. Hence we obtain the central extension

(C23) 0>k—>1>I->o.

We summarize what we have just proved in:

Theorem (C24). — Let | denote an absolutely simple Lie algebra which is defined over %,
and splits over the unramified Galois extension L., with £, @5 1205, We let IcC a5

be the k-subalgebra defined in (C21), and we let = :T—1 denote the restriction of & : 8p—>0y-
Then w is surjective, and kernel m~k. We thus obtain the central extension (C23) of L.

Remark. — We can generalize Theorem (C24) to the case when [ is semi-simple,
and we will now sketch the necessary argument. In this more general case, we
have %, ®g [~@f, where gy is a direct sum of simple components. We then
let @i be the corresponding direct sum of universal topological coverings of these
components, and note that, in an obvious sense, §;. is the universal topological covering
of @:. Then, as in Lemma (Cr2), the action of ¢ on @, lifts to §; (we let % denote

the lift of x€%), and we again let 1 denote the fixed points in g;., of 4. As before,

the projection g, : @5 —0; induces a Lie algebra homomorphism n:1->I Since
HY(¥%, V)=o0 whenever V is a finite-dimensional vector space over £ with %-action
(recall char.% is now assumed equal to zero), we obtain that = is surjective. Moreover,
if n=dim, (kernel &), then dimy(kernel *)=n. This last assertion follows from

(*) Let V' be a finite-dimensional vector space over %', and assume we are given a
@-action on V', where each element of ¥ acts as a semi-linear automorphism;
i.e., for ce€¥, we have

o(w)=o0(a)c(v), ack’, veV’,

where o(«) denotes the Galois action of s on «. Let VCV’ be the space of fixed
points of this action; then V'xk'®,V.
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The following proof of (%) was communicated to us by T. Tamagawa:

Let &, ..., ®, be a basis of &' over &, let xeV’, and for each i=1, ...,r, let

Ji= ogg o(w;x).
Since (6(w;)); 5 15 @ non-singular 7Xr matrix, it follows that x is a linear combination
of the y;. Since x was arbitrary, and since the y; are in V, we obtain (*).

We will continue to use the notation suggested by the last Remark. Thus if g is a
semi-simple Lie algebra defined and split over %, and if §;=.%,®,qg, then we let g
be the direct sum of the universal topological coverings of the direct summands
of g7, and we let @, : @ —>G. denote the projection map.

Our next topic is to investigate the possibility of obtaining an analogue of
Lemma (C12), and of Theorem (Cay4), for the groups G}. In view of Theorem (12.24),
one expects such an analogue to be intimately connected with some universal property
of the tame symbol. However, here we take a different approach, and continue to
utilize the Lie algebra point of view.

We begin with some representation theory. We let g denote a semi-simple Lie
algebra which is defined and split over 2. We fix a Cartan subalgebra hCgq, and let A
denote the set of roots of g with respect to ). We fix an order on A and let A, denote
the corresponding set of + roots. We let bCg denote the Borel subalgebra spanned
by b and the positive root vectors. We set ¢'=£k'®,g, b'=~k'®, b and b =k'®.b.

We let icC 0,€,g (resp. ’i:IC 0,9®,g) denote the k’-subalgebra of elements whose
reduction mod ¢ is in b’ (resp. is in [b’, b']). We then set

(Cas) b =a;'(h),
’; :81:16)9
iy = & (iy).-

We remark that if g’ is simple, with corresponding classical Cartan matrix A,
then §; is just the algebra g,ﬁ(X) of § 5. In general, g’ decomposes into a direct
sum of simple algebras g;, i€I,, each with corresponding classical Gartan matrix A;.
We write A for the direct sum matrix of the A; (so A is the Cartan matrix corresponding
to g’), and we let A denote the direct sum matrix of the affine matrices K,-. We then
write g% (A) for the direct sum igog,i,(xi). Then the algebra §; is isomorphic

to g (K), and we let p: gj (K) —@; denote the isomorphism. We set I)’(K)z p‘l(f)’),

i=p (i), iU=p_1(iAU). We may regard gZ(A) as the completion of the Kac-Moody
algebra (see § 3) gy (A). Then I)’(K) is contained in gk,(x), and in fact may be

~

taken to be the Cartan subalgebra defined in § 3. We say that Ae(}’)* (the dual

space of f)’) is dominant integral, in case Ao pe[)'(K)‘ is dominant integral, and that A
is normal if Aopeh’(A)* is normal (see § 15) in the sense that for each i€l loplb:(xi)
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is normal. We let D denote the set of dominant integral elements of (B’)*. Then

given AeD, we let M(2) denote the one dimensional ?—module, with generator ,, and
defined by

7‘(5)”0, EEBI’

E.vo= ~
o, Eety.

We let VEY=(3:)®:M(2), and note that left multiplication gives VX®
a %(8;)- (and hence a §j-) module structure. We let v, also denote 1®y, in Vi,
We then let Vj, be the quotient of VE® by the (unique) maximal §Z-submodule,
not intersecting %'v,, and we let v, also denote the image of 2,V in V2. We
may regard V}, as either a gf.- or §. (K)- module, and hence also as a g, (X)-module.
The same holds for VX®,

Now each A;, iely, is an ¢;X{ matrix for some positive integer 4. We

set [’:ZI (¢;+1), so Aisan {'x¢ matrix. We let ¢, ceslps fis oo Sos by ooy By
iel,

be the canonical generators of the algebra g, (K), given by the Kac-Moody construc-
tion (see § 3). When we regard V) as a g,(A)-module, as above, then Vi s
quasisimple in the sense that there exists a positive integer 7 such that f".»y=o0 for
all i=1,...,¢ (see [8], § 6). Indeed, since A(%)>o0, and A(h)eZ, for each
it=1,...,¢ (i.e., since A is dominant integral), we may take n=, max (M&) +1).
Also since A is dominant integral, it follows from a theorem of Kac (see [8], Corol-
lary (9.8)) that V} is the unique quasisimple gk,(x)-module with highest weight A.
We can then use V) to construct Chevalley groups G, exactly as in § 7 (of course,
we now allow that A correspond to any semisimple algebra).

We now return to the context of Theorem (C24), and of Lemma (Cr12). Our
goal is, for each

xe@=Gal(%, %),

to define a bijection %:Vh—V2 (actually—see (C34) below—one must replace V3
by a direct sum of V&’s, in general) such that %* preserves sums, and satisfies

(C26) %M (sv) =% (s)x}v), sek’, veVE,
wMEo)=%(E)xNv), Eegp, veVp.

If A is a classical Cartan matrix (and so, corresponds to a simple Lie algebra),
we have defined, in § 10, the simply connected Chevalley group Gg,, (A). More
generally, if A is the finite direct sum of the classical Cartan matrices A;, ieI,, we
let Gg,,(A) be the direct product

G, ()= 11 Gy, (A).
We now consider ?c'(?), the image of T under %. From the results of Bruhat and

Tits (see [5]) we know that %(i)=Ad x(?j, for some yeGg,(A).
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We let &*:§; —End V) denote the representation corresponding to the
gc-module structure of V.. We set gy°=a(a5), and we let &,:ar°—>3S denote
the Lie algebra homomorphism defined by the condition that &,o&*=a,. We

choose y*eG} and (by universality) a Lie algebra automorphism @ of g%, such that
(C27) SNYE))=1"S"E N Eedi,
S (M) T =Ad (G (n), megr”.

We then have, from Lemma (Ci2), from (C25), and from the above, that
(Ca8) =t
where f=% 'o%. We define #CG), as in § 7 (but now for our more general A).

If A is a Classical Cartan matrix (so corresponding to a simple Lie algebra), we
have defined the adjoint group G,y ¢, (A) in § 8. More generally, if A is the finite

direct sum of the classical Cartan matrices A;, iel,, we let G,4 4, be the direct
product group

Ga.d,,?k' (A) = ‘-le_[IoGad,.?k' (A)-

Also, as in § 8 (but for our more general A) we construct the group G, (A) and the
homomorphism ®@': Gad(K) -Gy . (A). We let S= ®'0Ad(#), where

Ad: G} - Gy(A)
is the adjoint representation. We let J;Cf be the subgroup of all elements whose
reduction mod ¢, is in the unipotent radical of the Borel subgroup corresponding to b’.
We let .ﬁ”’?}"”:%, and for j>1, we let .ﬂ’[\(;") be the subgroup of all elements in J’A{;

(and in J?) whose reduction mod #, is the identity. As in § 18 (but again, for our
more general A) we can define the Lie algebras g@j(A) over the truncated power series
ring 0;, j>o.

We let ?{,’ CfiVU be the subalgebra of all elements whose reduction mod # is zero,

~

for j>1, and we let i =TU. For subgroups H,, H, of a group G, we let [H,, H,]CG
denote the subgroup generated by the commutators A hyhy 1Ay !, heH,, heH,. By
considering the adjoint action of #/5U+Y on go;(A), we see that S|+ s a Lie
group, and a linear algebraic group, with Lie algebra i/ii*!. By considering Lie
algebras, it then follows that there are integer p>o, ¢>o0, such that

[5, )=,

p-times
[, [ [ [ A J]= S0 >0
¢-times

oo [ - o [ [Fs £11. . 1] = A0
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It follows that for each j>o, the group jgj) is a characteristic subgroup of z.
Hence, Ad y 'o% induces an automorphism of gf/'%"“), for each j>o. Since
ﬂf?}j *1 is algebraic, it follows that, regarding §’ (the Cartan subalgebra of g’) as a
subalgebra of Ni’/’{z{}“), we have that Ad y 'o%(h’) is conjugate to ' by an element
of F]JU+Y, Bya simple argument one can then pass to the limit as j—>oo, and show
that §’ and Ad x~'o%(h’) are conjugate in'ivby an element of S (to pass from a;/.,%’ +1)
to J"N/j:(,’j“), it suffices to conjugate by an element of f?*”/.ﬁ}/j“’). Thus, multi-

plying y by a suitable element of S, we may assume (setting Z=Ad 3 'o%),

(Cz9) EH=1

w(h)=Y,
and hence we may assume in (C28) that we also have
(C30) a(h) =D

From (C2g), we have the map @ : )’ —}’, which induces a dual map (still denoted
by &) on (§’)*, the %’-dual space of §’. From (Cz2g), and from our earlier observation

that AII({I) is a characteristic subalgebra of Z it follows that % (on (§’)*) leaves the set of
roots A (and the set of simple roots, relative to our fixed order on A) invariant.
Hence ' induces an isomorphism of the root system A, and this isomorphism extends
to an automorphism p of g. Of course, by % -linearity, ¢ extends to an automorphism
of @ (which we also denote by p). Then p~'ofi still satisfies (C2g), and induces
the identity on §h. We let Hy, ..., H, (/=dim}) denote the simple coroots in f
(we had fixed an order on the roots A). Also, let

{I_Iia Eo:}i=1,...,{; aES A

be a Chevalley basis of g. Thus, in particular, for each «a€A, E, is a non-zero vector
in the « root space and [E,, E_,]J=H,, the coroot corresponding to «. In particular,
for each simple root «, i=1,...,¢, we let E;=E,, F,=E_,, and we then
have [E,, F,]=H,, i=1,...,¢. We also have, as we just noted

(C31) R =H,  i=1,...,L
Also, since p~*of (in place of ) satisfies (C2g), it induces a map on ?U/?é), and (Cg1)

implies that this induced map leaves each root space invariant. Hence for each acA,,
we have

o loll(By)=0,E,, 0,e0,

0*(COCY,) denoting the group of units in the ring @ of formal power series with
coefficients in &’. But then (Cg1) implies for acA_

pvjoﬁ(Ea):GaEa, Gae"%c"
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But for acA,
[GaEaa G—aE—a]=9—1°;(Ha)=Ha’

. in particular, ¢

and so o6_,=o0,
P_loﬁ(tE—a)thoTlE—a:

e Lo Rt E) =t 17, E,, 1,e0".

€0’. We also have (axeA,)

—

To summarize:

Lemma (C32). — The map o ol on QS satisfies the following:
(1) o7 UW(H)=Y, and o ol restricted to Y is the identity.
(ii) For each ocA,, we have

where o, T,E0"

We may lift p to an automorphism p of §; and we will now show that
o loli(h)="h, for all heh (where B=<’3k_l([)), with @ : §;—85 being the natural
projection). To do this, it suffices to assume g simple (and hence absolutely simple,
since g is assumed to be split). But then we have §; =q:®k’, and p is defined by
setting (&, s)=(p(8),s), E€Qy, sek’. Moreover, for acA,

0 of(H,, 0) =510 B([(E,, 0), (E_,, 0)])
z[(GaEaa 0)> (G;1E_a, 0)]=(Ha> 0),

since o, is a unit. Also, for acA,
~i 2 et o _
Fe (B, 125 ) =57 oI, ), (7B, 0)])
= [(tT;—lE—aa 0)’ (t_lTaEa: O)]

I

where Res=residue,

(H_ —Res(tx 1 d(t17,)

)

and thus we have proved (also see (C30))
(C33) plofi(h) =", for all hef).

)

I

But then it follows that if )\e(f))‘ is dominant integral, fi(A) is dominant integral,
where, by definition, we set

B0)(R)=2(a(k), heb.
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Also, since p on §) induces an automorphism of the root system A, it follows that g on B’,
and hence (by C33), i on b’ has finite order. As x varies over ¥, {i (which depends
on x) varies over a finite group. We let {A;, A;, ..., A} denote the set of distinct
elements in the orbit of A under this group and we set

(C34) V= 1I Vi

0<i<¢
We note that the group G2 and the Lie algebra g admit diagonal actions on \~7, and
also that if
2=(Ad YN ol
(see (C28), and the subsequent definition of &) then % induces a bijection z* of V, and
that this %* satisfies (C26) (but with V3 replaced by V—we note that if the Cartan
matrix A has no non-trivial automorphisms, then V=V2).

Now, as earlier in this appendix, we let I denote a semi-simple Lie algebra
which is defined over %, and which splits over %,. Let L denote the group
of %-rational points of the simply connected, linear algebraic group with Lie algebra [
(more precisely, we should here replace I by its tensor product with an algebraic
closure of %). We let Gg,, denote the group of % -rational points of this algebraic
group, and for xeGal(%, /%), we also let » denote the corresponding automorphism
of Gg,,. We then construct the fibered product

EA(G_gk,) C (A}%,Xng,, )\ dominant integral,

A

as in § 12 (see (12.14)), but now for our more general A. Then %* induces an

automorphism % of G), by conjugation. We let
w'(g, h)=(3(g), x(h)), (g, H)eENGg,),

and thus obtain a lift of our Galois action on Gg, to EA(G_Z,k). We let LL.C EXGyg,)
denote the Galois fixed points. Then the projection onto the second factor

E)\(G'?k) bl G'?k
induces (by restriction) a group homomorphism

L— L,
and by Hilbert’s theorem go, this latter homomorphism is surjective, and hence yields
a central extension of L.
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LIST OF NOTATIONS

o. R, #g, R* (also, see the discussion at the end of § o, concerning the use of ‘&”)
.G, R, Q,Z

after (1.8): B¥(a, V), Z*(a, V), H%(a, V) (where a is a Lie algebra over a field £); a; (for f€Z%a, V))
2. g,A[t,t71], 3

after (2.1): @, ¢

after (2.2): 7, (,) (on g), ®

after (2.19): b, A, g* (for a€A), Hy, Eq

after (2.25): (,) (on h*)
after (2.35): A;

3. B, gl(B)’ > fis B
after (3.2): g(B), b, o(B), B(B), B’(B)", ay, .- az, A(B), As(B), R, o, Dy, ..., Dy
after (3.3): r; (in Aut(h?(B)*)), W=W(B)
after Proposition (3.3): A, INX, A, AL, D, B, Fy, Hy, oy, .00, 0, %, D, D (as the span of D)
in (3.8): ™
in (3.9): ¢
4.in (4.1): r
in (4.2): ¥
after (4.2): t
in (4.3): A4(A) .
after (4.3): Aw(A), Ar(A), Aw,+(A), Ar, +(A)
after (4‘5): Dy, g.»a’ E.n(b)> hi
in (4.6): ® _
after (4'8). ui(A)9 aiy ui: gz(A), gZ(A)’ 9R<A)9 QR(A): aR’ g’Za u%(A): ﬁ%:’ u%(A), ﬁ%s bR(A): I)R(A)’
Gy, UE, Ug, ﬁR
5. QR(’;\)Q', §R,i
in (5.2): ||
after (5.6): g&(A), af
after (5.7): u%, ug, Of
in Remark (5.8): (Zgr =)R[[t, t71]]
after (5.9): Cr
after (5.12): @
6. wE(B), p°, %(a) (for a Lic algebra a over a field k), D, M(\), 2%, VM® V2 o #z(A), VE, V), Q, Q,, V2 2
after (6.1): V%‘{
in (6.2): VA g
after (6.3): bz(A), g%, br(A), ok
after (6.7): g5(A), g(A), BE(A), bR(A), V1, Viz, Viie
after (6.10): 1:}%, ot
after (6.12): 75
after (6.13): ky, 7; (in Aut(§°(A)))
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7.

10.

II.

12,

13.

THE ARITHMETIC THEORY OF LOOP GROUPS

before (7.1): k

after (7.1): g(A), 7k, adr( ), Xiq;(s)
after (7.3): ¥p(s)

after (7.6): r}

in (7.9"): w*

in (7.14): Xa(s)

after (7.17): 2, 0*

in (7.19): x5(0(5)=xa(o(®))

Definition (7.21): a=§,§=§,§(7x)

in (7.22): wl(o(t)=w,(o(t), hx(o(t))=hy(o(t))
in (7.23): w}(s) =wy(s), K}(s)="hals)
Definition (7.24): S

.in (8.2): #u(o(t))

after (8.7): &, Z4(o(¢))
after (8.12): Gag.# = Gaq, #(A), Gaq(A)
after (8.13): @’

. after Lemma (9.1): { , }, *, »#* (for xeg(:&))

after (9.3): u* (for ue(g(A)))

Cg,=GCgy(A), Zu(0), wilo), Kx(0), G, E(Gg,), x4(0), ¢°

in Lemma (10.1): W*

U, wi (o), k(c), T, MS

in Proposition (1r.1): U4, U®

after Remarks (11.2): Uy, Uy, U_, T, 174, by
after (11.3): T?, U2, U> U?

after (11.4): B% N¢

after (11.5): Mg“

after (11.7): v, v&, V&, Vo, My, v4, Uy, My, T*
in Lemma (11.8): Ug ;

dp(p), coherently ordered basis, Sy

after (12.4): gP

in (12.11): ®

after (12.13): 7, Ty, E)‘(G_g,k), G},,k
after (12.14): (pi=cp1~7\, i=1,2,T

in (12.15): b3(s, 1)

after (12.15): hy(c)

in (12.17): by(o, T)

after (12.17): M, S(k*, M)

after (12.18): SO(%*, M)

in (12.20): ¢p( , )

after Theorem (12.26): p*

in (13.1): sp* +o

after (13.17): definition of ‘‘equipollentes’
after (13.1°): N*, %

in (13.3): rq

in (13.4): n.p*

afier (13.5): A, @y, m Gy, m> 2> €, O0q,m> Ta,m
in Proposition (13.6): p(n), Ug

after Proposition (13.6): T

after (13.13): A

after (13.16"): f, UQ=U‘7‘), Ui

135

311



136 HOWARD GARLAND

in Remark (13.17): C
after (13.19): W, ﬁl, S
14. in Proposition (14.8): N
after Theorem (14.10): HA=Hk
15. in (15.1): N
after (15.1): B, 8,, )
in Theorem (15.9): (A, Ay)
in (15.11): ¢(0y, Gy)
after (15.12): W& *
after (15.18): Hj
16. after (16.1): { , }
Lemma (16.3): ¥y
Definition (16.7): R=R*
after (16.12): Hyg, +, Hy o
17. before (17.1): BL(A)*
after (17.1): @,
after (17.2'): o
after (17.9): e
after Lemma (17.14): J, £y, f‘:f‘%
18. after Lemma (18.2): f%’, I“é", I'y
after (18.3): ), =
after (18.5): 0;
after (18.7): n% Gy, Ui, &vu, 2, go(A), Ug
after (18.8): Uy, Ugp
in Definition (18.15): 0g, 0y, fy, 9
in Remark (18.17): Ty u, JI[¢]]
19. before Definition (19.1): o,
in Definition (19.1): Hg
in Definition (19.2): G4
after Definition (19.2): fo
before (19.5): gg
20. before Proposition (20.1): A;
before Lemma (20.8): Gp* ¢
before Lemma (20.10): G5, Hy, Hi=H}' B, eB_g)® D} -1, sh=0sy, H) . =H; ,, R*=K
21. before (21.1): @,
in (21.1): {Dyp>
in (21.2): b;
before Lemma (21.3): W;
after (21.5): oy, mj, m
after (21.15): W;, Wg, Py
after (21.22): Ty, GR(n)
Appendix I. before Lemma (A.1): [)f;(g), gﬁ(g), Wa(s), Wals), Za(s)
in Lemma (A.4): y=x(b,a)



