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THE ARITHMETIC THEORY OF LOOP GROUPS
by HOWARD GARLAND

To my father. Max Garland^ on the occasion of his seventieth birthday

0.1, Introduction.

We let R denote a commutative ring with unit, and oS^ the ring of all formal
Laurent series

S a,t\ ^eR,
i^_io

with coefficients in R. We let k denote a field, so that JS^ is also a field. For any
commutative ring R, with unit, we let R* denote the units in R. We let G^ denote
the group of oS^-rational points of a simply connected Ghevalley group G, which we
take to be simple. We let

C'rn • "^Tj. /\ '"^If ^"fv

denote the tame-symbol (see § 12, (12.20)). Then as one knows from the work of
Matsumoto, Moore, and Steinberg (see [13], [i8], and [20]), there is, corresponding
to ^1, a central extension
(o.i) i-^^G^G^i,

of G^. Our first goal in this paper is to develop a representation theory for the
group G^ (here, k may have arbitrary characteristic). These representations will
be infinite-dimensional, with representation space defined over the field k. They are
constructed using the representation theory of Kac-Moody Lie algebras (see [10], [n],
[I^], [15]? PL §§ 3? 6? and see § 3 of the present paper). Thus, let B==(By),^i ^
be a symmetrizable Cartan matrix and let g(B) be the corresponding Kac-Moody Lie
algebra (see § 3, for the definitions). Roughly speaking, one constructs g(B) by
mimicking the Serre presentation, with B in place of a classical Gartan matrix corre-
sponding to a (finite-dimensional) semi-simple Lie algebra. In general, C|(B) is in
fact infinite-dimensional.

Partially supported by NSF Grant ^MCSyG-10435.
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6 H O W A R D G A R L A N D

Returning to the group Gj, one may then take the point of view that the Lie
algebra of G] is a g(B), for a suitable choice of B. More precisely, let g denote the
Lie algebra of the Ghevalley group G, and let A denote the set of all roots ofg (relative
to a Gartan subalgebra t)). Let oci, ..., oc^ (^=rank 9) denote the simple roots in 3
(relative to some fixed order). For ease of description, we have assumed 9 is in fact
simple, and we let o^ denote the highest root of A (relative to our fixed order). Let
^+i=--ao, and let A denote the (/ '+i)x^+i) matrix A==(A^,^^ . . . , ^+ i , where
Aij=2{c(•i^j)^i^i)~l^^,j=^, . . . , ^+i . We refer to such an A as an affine Cartan
matrix, and note that an affine Gartan matrix is a symmetrizable Cartan matrix. Then
the Lie algebra of G] is a ^-form of g(X).

For k a field of characteristic zero, Kac and Moody initiated a representation
theory for g(B), B equal to a symmetrizable Gartan matrix (see § 6) (1). Moreover, in
the special case when B==A is an affine Cartan matrix one can prove the existence
of a Chevalley lattice for each of these Kac-Moody representations with dominant
integral highest weight (see [7], § n, and also § 6 of the present paper, which may be
considered a continuation of [7]). This Chevalley lattice then allows one to develop
a representation theory over an arbitrary field k, and in this way we obtain the desired
representations for the group G^.

Moreover, our theory being Z-rational, then even when k=R or C (2), we can
use the existence of a Ghevalley lattice to develop a theory of arithmetic subgroups F
of G^, and prove the existence of a fundamental domain for f, using Siegel sets!
(§§ I?-21)- We will expand on this description later on in the introduction.

It should be mentioned at the outset that the present formulation of our theory
substantially differs from the original version in an earlier manuscript, and owes a
great deal to the insight of the referee. Thug, in the original version, given G^ (k
an arbitrary field), the algebra 9 (A) corresponding to G^, and a Kac-Mo^ody
representation n of Q (A), corresponding to a dominant integral highest weight X (see
§ 6 for the definition), we constructed a central extension G^ of a quotient of G^ .
The referee explicitly computed the symbol of G^ and found it to be a power of the
tame symbol! (see § 12, Theorem (12.24)). Incidentally, one can always use G^ to
construct a central extension E^G^) of G^, rather than of a quotient of G^ , by
taking a suitable fiber product.

The referee also gave an elegant cohomological interpretation of the Kac-Moody
algebra 3 (A) (§§ 1-3, below). Thus, let k be a field of characteristic zero, and let
k[t, t~1] be the ring of finite Laurent polynomials

ii

S a,t\ a^k,
l==»o

(1) It was in this context that V. Kac proved his celebrated character formula (see [11]).
(2) Throughout this paper we let Z, Q, R, and C denote the rational integers, rational numbers, real

numbers, and complex numbers, respectively.
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THE ARITHMETIC THEORY OF LOOP GROUPS 7

where io^i^ are integers. Let 'Q=k\t^ r^]®^, regarded as a Lie algebra over k
(so §' is an infinite-dimensional Lie algebra over k: we call it the loop algebra (of g)).
Then the referee proved that H^g, k), the and Lie algebra cohomology of §'with respect
to trivial action on k, has dimension one. The referee's proof is given in § 2. The
idea is to compute the "symbol" of an arbitrary central extension; i.e., to develop a
Lie algebra analogue for the theory of Matsumoto, Moore, and Steinberg ([13], [i8]
and [20]). The Lie algebra version is simpler.

On the other hand Kac and Moody knew that g(A) was a central extension of
§' (g simple) with one-dimensional center. It then follows easily that 9 (A) is the
universal covering Q (see § i, Definition (1.6)) of g" (see § 3, Theorem (3.14)). Also, if
one replaces §' by Qe==Q®^^, then (as observed by the referee) the argument of
§ 2 can be adopted to construct a universal covering ^ 3 g of c ,̂ but now with g6

universal in an appropriate category (see § 5, Remarks (5.11)). The universality ofg6

then allows one, by Galois descent, to construct a central extension I of a semi-simple
Lie algebra I over JS^;, which splits over an unramified Galois extension oS ,̂ of J§^ (see
Theorem (€24) of Appendix III, and see the Remark following Theorem (€24)).

Next, consider the group of ^-rational points L of a semi-simple, simply
connected, linear algebraic group L which is defined over oS^, and which splits over
the unramified extension oS^/ of oS^;. We let G^ denote the JS .̂ rational points of
L. Analogous to the situation for Lie algebras, one might ask whether one may
construct from the central extension G^ of G^ , a central extension L of L, by Galois
descent. Of course one would expect that such a construction could be effected from
a suitable universal property of the tame symbol. Indeed, when A' is a finite field, one
could probably construct L by using Moore's theorem on continuous Kg of JS^r (see,
e.g., Milnor [14], Appendix). However, in Appendix III of this paper, we rather
consider the case when char^=o, and then we take a different approach: In order
to construct the group L, we utilize the universality property of g6, and we utilize the
Kac-Moody representations of 9 (A), which correspond to dominant integral highest
weights (these representations extend from g to g0). However, we must now allow g
to be semi-simple and then give a suitable definition for A.

Now we had said that we develop a representation theory for the groups G^.
Indeed, for each dominant integral highest weight X, we obtain such a representation,
and we obtain a corresponding image G^ of G^ (see Definition (7.21) for the definition
of G^). We define an Iwahori subgroup ^"CG^ (see Definition (7.24)). Roughly
speaking, the subgroup ^ corresponds to the pullback of an Iwahori subgroup of G^
(see [9], [5], and the remark at the end of § 7).

In §§ ii, 13, 14, we construct a Tits system (G^, <^, N, S) (see Theorem (14. io)).
Again, roughly speaking, this Tits system is the pullback of the Tits system of [9]
(though our N is smaller).

In §§ 9, io, 12, we obtain explicit information about the group G^, considered
as a central extension of the oS^-rational points of a classical Chevalley group. In
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8 H O W A R D G A R L A N D

particular, in § 12, we associate to G^, a central extension E\G^) of G^ , and
compute the symbol of this central extension (see Theorem (12.24)). This symbol
turns out to be a power of the tame symbol. It follows easily from this, and from the
definition of the group E^G^,), that we obtain a homomorphism from G^ onto G^,
i.e., a representation of G^. In § 15 we compare the G^ as X varies.

Now let A=R or C (from § 16 on, with the exception of the appendices, we
pretty much restrict to the case when k='R or C). Let V^ denote the representation
space corresponding to the dominant integral highest weight X for g(A). Then V^
has a Ghevalley lattice V^ (so in particular, V^CV^ is a Z-submodule such that
V^=A®zVz) and V^ has a positive-definite, Hermitian inner product { , } which
is coherent with V^ in the sense that {v^, v^}ei, for ^, v^eV^ (see [7], §§ n, 12, and
see §§ 6, 9 of the present paper). We let J=Z when A==R, and we let J be the ring
of integers in a Euclidean, imaginary quadratic field, when k == C (see Remark (v)
following the statement of Theorem (19.3)). We set V^=J®zVz and let F (resp. K)
be the subgroup of G^, consisting of all elements which leave V^ (resp. { , })
invariant. We take the point of view that K C G^ is the analogue of a maximal
compact subgroup, and letting ^ play the role of a parabolic subgroup, we prove the
existence of an Iwasawa decomposition G^=K^, in § 16 (see Theorem (16.8) and
Lemma (16.14)). We then use this Iwasawa decomposition to define the notion of
a Siegel set (see Definition (19.2)3 and the definition of ©^ (c->o), preceeding
Lemma (20. i o)).

Now in § 3 we introduce the degree derivation D=D^i of Q(A). From
§ 6 we then know that D acts on each V^, and then in § 17 we define the auto-
morphism ^CD, cek, of V^. It is apparent from the definitions of ^CD and G^, that
^CD normalizes G^, cek. Then using our Siegel set, we construct a fundamental
domain for F acting on G^e~TI), r>o (see Theorem (20.14)). Our proof of
Theorem (20.14) is modeled on the proof of Theorem (1.6), of [i]. However, in
the infinite dimensional case it takes extra work to prove the existence of minima.
Actually we pass from F to a subgroup Fp, to construct the fundamental domain in
Theorem (20.14). Even for Fg, our fundamental domain is not exact. However,
for FQ, one obtains a sharp description of the self intersections when r is sufficiently
large (see Theorem (21.16) and its Corollary i—these results are analogues of the
Harish-Ghandra finiteness theorem and of the theorem of "transformations at oo",
in the classical theory of fundamental domains). Our proof of Theorem (21.16) is
related to that of the corresponding result in [i] (see e.g., Theorem (4.4) of [i]).
However, we must now contend with the existence of infinitely many Bruhat cells.

We may give an alternative point of view for the above theory of fundamental
domains. Thus, for r>o, let r^^^ro^. We may then take the point of view
that we are constructing a fundamental domain for I\ acting on G^ (see Corollary i
to Theorem (21.16), and the paragraph preceding that Corollary). Finally, if

i»"D/—R/^.,-rDQ^e^Q^e
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THE ARITHMETIC THEORY OF LOOP GROUPS 9

where ©^(r) is as in Corollary i to Theorem (21.16), then by that corollary and the
paragraph preceding it, we have that (5I\=G^, and we obtain a sharp description
of the self intersections. Moreover, we may naturally regard 6 as a Siegel set
constructed with K^e^Ke'^, r>o, in place of K.

The paper is organized as follows: In §§ 1-3 we construct the universal covering
of Q when Q is simple; we show in § 3 (still assuming Q simple) that g(A) is the universal
covering of 9'. In § 4 we define the Ghevalley form 9z(A) of 9 (A), as in [7]. In
§ 5 we introduce completions of the algebras Q and Q (A). In § 6 we introduce
the Kac-Moody representation theory of Kac-Moody algebras, and the Chevalley
lattice Vz of [7], in the Q (A) -representation space V^ corresponding to a dominant
integral highest weight X. In § 7 we define the Ghevalley group G^ (k a field of
arbitrary characteristic, and X a dominant integral highest weight). We also intro-
duce the Iwahori subgroup J^CG^. In § 8 we study the adjoint representation of
G^. In §§ 9, 10, and 12, we study the groups G^ as central extensions of classical
Ghevalley groups, and explicitly compute the symbol. In §§ n, 13, and 14, we
construct the Tits system (G^, J , N, S) (see Theorem (14.10)). The proof given
here that (G^, J^, N, S) is a Tits system, is different from the proof we gave originally,
and follows a suggestion ofj. Tits. Thus, in § n, we apply the results of [4], and
construct a donnee radicielle with valuation. When char^==o, a similar (but on
the surface, slightly different) Tits system had been constructed by Marcuson in [12].
Also, with some restriction on k, such a Tits system had been constructed by Moody
and Teo for the adjoint group (see [17]). Both the construction of Marcuson and
of Moody-Teo were valid in the context of general Kac-Moody Lie algebras, while
our Tits system is valid only for Kac-Moody algebras corresponding to affine Gartan
matrices. However, our construction complements that of Marcuson, in that we
make no restriction on the field A, and it complements that of Moody and Teo, in that
we make no restriction on k and work with nonadjoint groups.

In § 15 we study the relation among the G^, as X varies. Finally, in §§ 17-21,
we construct the fundamental domain for the arithmetic group Pp. In § 17 we prove
the existence of minima of certain matrix coefficients ofV^ (^==R or C) on FQ orbits.
In § 21, we prove our theorem on self intersections (Theorem (21.16)). We mention
that as a consequence of Theorem (21.16), Fg and r\ are not conjugate in G^
(^=R or C) for r>o sufficiently large (see Corollary (3) to Theorem (21.16)).

In Appendix I, we prove Lemma (11.2). Also, Lemma (A. i ) of Appendix I
is used to prove (17.1). In Appendix II, we consider the case when k is a finite
field, and formulate a conjecture about the special representation of G^ , relating
this representation to a suitable V^ (this conjecture is an analogue to the known
theorem for finite Ghevalley groups, relating the Steinberg representation to a highest
weight module). {Added in proof. — J . Arnon recently proved a slightly modified
version of this conjecture.)

185
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io H O W A R D G A R L A N D

As it stands, our theory is a theory for Chevalley groups G^ , and their Lie
algebras. In Appendix III we begin investigating how to extend our results to
non-split groups. Thus, assume charA==o, and as before, let L be the group of
oS^-rational points of a linear algebraic group which is semi-simple and defined over JS^.
Assume further that L splits over an unramified Galois extension oS ,̂ of oS^;. Let G^ ,
denote the group of oS^-rational points of L. Following a suggestion of the referee,
we show (by universality!) that at the Lie algebra level, we can lift Galois automor-
phisms from the Lie algebra of G^ to that of the central extension G^. We
then use this Lie algebra result and representation theory, to obtain a similar
result at the group level, and then, by Galois descent, construct a central extension L
of L. Our method of construction of L, here, is somewhat different from the method
of construction proposed by the referee. As we mentioned earlier, one could probably
also construct L when k is a finite field by using Moore's theorem (see Milnor [14],
Appendix).

If k = R or C, and if L is actually defined over A, then the referee has extended
the Iwasawa decomposition of§ 16 to L and to L. Thus the stage is set for beginning
the extension of our reduction theory for arithmetic groups to the non-split case.

It is now apparent that the restrictions on the field k vary in the course of the
paper. In §§ i, 2, 3, the meaning of A is always made explicit, and for the most part,
we assume in these sections that char k == o. In §§ 4, 5, 6, the meaning of k is made
explicit. In §§ 7, 8, and 10-15, no restriction is made on the field k (so k may have
arbitrary characteristic). From § 16 through the final section, § 21, we assume k is
R or C. In Appendix I, no restriction is made on k. In Appendix II, we assume k
is finite. In Appendix III, we assume char^==o.

As we have mentioned, we are indebted to the referee for communicating the
universality results of§§ i, 2, and 3, the relation in § 12, between the central extension G^
and the tame symbol, and the implications these last results have for extending our
results to the non-split case. We are also indebted to J. Tits for a long and detailed
correspondence and many suggestions. We extend to both, our hearty thanks. Also,
we wish to thank D. Belli for her patient and painstaking efforts in typing the
manuscript.

i. General remarks on central extensions of Lie Algebras.

In this section we describe Lie algebra analogues of some of the results in
Moore [i8], Chapter I. At the outset we make the notational convention that C,
R, 0^3 and Z denote the fields of complex numbers, real numbers, rational numbers
and the ring of rational integers, respectively. We let a denote a Lie algebra over a
field k. By a central extension of a by a Lie algebra b, we mean an exact sequence of
Lie algebras (over k):

(1.1) o->b-^e-^a->o,
186



THE ARITHMETIC THEORY OF LOOP GROUPS n

such that 5 is in the center of e. If

(i .a) o->b'->e'">a-^o

is a second central extension of a, then by a morphism from the central extension ( i . i)
to the central extension (1.2)5 we mean a pair of Lie algebra homomorphisms (9, ^),
<p : e—^e', ^ : b->b', such that the diagram

5 —> e
\7T

^•s) 4 ^ a

b' —> e' ̂

is commutative.
We say a Lie algebra is perfect, if it is equal to its own commutator subalgebra.

Definition (1.4). — We call the central extension ( 1 . 1 ) a covering of a, in case e is
perfect. In this case., we will also call e or TT (or the pair (e, n)} a covering of a, and we will
say that e (or the pair (e, 7r)J co^rj- a.

Remark. — If the Lie algebra a admits a covering, then a is perfect.

Lemma (1.5). — If (i. i) is a covering of a, then there is at most one morphism from the
central extension ( 1 . 1 ) to a second central extension of a.

Proof. — Assume (9, ^) and (9', ^') are morphisms from the central exten-
sion (1.1) to the central extension (1.2). Thus, in particular, we also have a
commutative diagram (1.3) with (9', ^') in place of (9, ^). For x,jye^ we consider

^-^([x^])=^[x^])-^{[x,y])

-[pW^O^-Ey'W,?'^)]
-[9W-9'W, 9(jO]+[9'W, <p(j0-9'(j0]
^o?

where the last equality follows from the fact that 9(^)—9 /(-^')eb / , for all zei, this
last assertion following from our assumption that (1.3) is commutative both for (9, ^)
and for (9', ^/).

Definition (1.6). — We say that a covering of a is universal, if for every central exten-
sion of a, there is a unique morphism (in the sense of central extensions) from the covering to the
central extension.

Remark. — In view of Lemma (1.5)3 it suffices, in order to verify that a given
covering is universal, to show that for every central extension of a, there exists a
morphism from the given covering to the central extension. Uniqueness then follows
automatically from Lemma (1.5).

187



12 H O W A R D G A R L A N D

The following proposition is an immediate consequence of Definition (i .6):

Proposition (1.7). — Any two universal coverings of a are isomorphic as central
extensions.

Of course, by Lemma (1.5), the isomorphism is unique.
Now let V be a vector space over k, and let Z^a, V) denote the vector space

over A, of all skew-symmetric, bilinear maps

/: axa-^V,
such that

(1.8) /([^], z)-f{[x, ̂ )+/([^ 4, x)=o ^, zea.

We let B^a, V) denote the vector space of all/, as above, such that there exists a linear
map g : a->V, with

/(^^(k^])? ^j^a.

Then the Jacobi identity implies that B^a, V) C Z^a, V), and we set
H^V^Z^VWa.V).

We call Z^a, V) (resp,. B^a, V), resp. H^a, V)) the space of 2-cocycles (resp.
2-coboundaries'y resp. the second cohomology group of a) with respect to V (regarded as a
trivial a-module). It is well known that H^a, V) parametrizes (suitably defined)
equivalence classes of central extensions

o->V->e —^a->o.

We briefly recall how one constructs such a central extension, given an element/
in Z^V). We let

c^=a®V,

and if ?,=={x, v ) , T]==(^, w)ecif (so x.yea, v, weV) we define the bracket [^, 7]]ea/
by

^•9) [^^-(k^],/^^)).
It follows directly from the cocycle identity (1.8) that this bracket satisfies the Jacobi
identity, and so with this bracket, c^ is a Lie algebra, and the exact sequence

i ^
o-^V—af-^a—o,

where E. is the inclusion, and S the projection from (L onto its first factor, is a central
extension of a.

In the next section we shall give an explicit construction of the universal covering,
in a special case. We have already noted that if the Lie algebra a admits a covering,
then a is perfect. Conversely, we have:
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THE ARITHMETIC THEORY OF LOOP GROUPS 13

Lemma (1 .10) . — If a is perfect, then a has a universal covering.

Proof. — We let 'Wf=A2a denote the second exterior power of a, and we let
I C W denote the subspace spanned by all elements

[x,y] A z — [>, z] /\y + [y, z] A x, x,y, ze a.

We then set W=W'/I, and let a(A;,j/)eW denote the image of x/\yeW. From the
definition of I, one immediately sees that a satisfies the cocycle identity (1.8);
i.e., aeZ^a.W).

We let

( 1 . 1 1 ) o->W-^cia->a->o

denote the corresponding central extension.
If /eZ^a, V) and

(1.12) o->V->ay->a—^o

is another central extension of a, we consider the map ^' : W->V defined by
^^(x,jy))=f{x,y), x,jyea. We then define (p' :a^->a/ by <p'(^ u)=={x, ^(z/)), xea,
^eW.

It is easily checked that (9', ^') is a morphism from the central extension ( i . n)
to the central extension (1.12).

Now let ^=[aa,aJ denote the commutator subalgebra of c^. Since a is
perfect, we have

a+w-a,,
and hence 8 == [a^, aj = [8, a].

Thus, if c==Wna, then the central extension
(1.13) o->c^8-^a->o

is a covering of a, and if
^ = ^' restricted to c

9=9' restricted to a

then (9, ^) is a morphism from this central extension to the central extension (1.12).
This proves that the central extension (1.13) is a universal covering of a. •

The remainder of this section will not be needed in the sequel, but is included
to complete the analogy with some of the results in Moore [18]. Thus:

Definition (1.14). — We will say a Lie algebra a is simply connected, in case it is
true that for every central extension

o^6->e->a->o,

of a, there is a unique homomorphism 9 : a—^e, such that 7^09= identity.
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14 H O W A R D G A R L A N D

Definition (1.15). — If a is a Lie algebra and

o->b-^e-^a-^o

a covering of a, with e simply connected^ then we call this a simply connected covering of a.

Theorem (1 .16) . — A covering of a is universal if and only if it is simply connected.

Proof, — Let

(1.17) o-^c—^a-^a—^o

be a simply connected covering of a, and let us consider a central extension ( i . i) of a.
We may "lift" this central extension to 8 as follows: We let e ( < 2 ) C e x 8 denote the
subalgebra of all (^,^)eex8, such that Tc(^)='S(jy). The projection of ex8 onto
the second factor, induces a surjective homomorphism

e(a)-^8—^o,

and it is easily checked that kernel p is contained in the center of e(d). Thus, since
8 is simply connected, there is a unique homomorphism (p:8->e(a), such that
<p o p == identity. We let X : 8—^e, denote the composition of 9 with the projection of
e(a) onto the first factor of exa. It is easily checked that X(c) C b, and hence, if we
let [L denote the restriction of X to c, then (X, [ L ) is a morphism from (1.17) to (1.1);
i.e., the covering (1.17) is universal (since the morphism is automatically unique,
thanks to Lemma (1.5).

Conversely, assume (1.17) is a universal covering of a. Let

(1 .18) o->b-^-^8->o

be a central extension. Since 8 is perfect, Lemma (1.5) implies there is at most one
morphism from the covering

o—^o->8-->8—^o

to the central extension (1.18)3 and hence, to prove (1.17) is a simply connected
covering, it suffices to prove (1.18) is a split exact sequence. Again using the
assumption that 8 is perfect, and arguing as in the proof of Lemma (1.10), we can
show that 'e^E^^] ls iperfect. But if bo^^o0^ ^en the exact sequence (1.18)
will split if the exact sequence

o-^^o—^^Q-^a-x)

is split; i.e., we can assume the exact sequence (1.18) is a covering. We now
consider the diagram

^ v ^ t"e-xt-xx—^o,
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THE ARITHMETIC THEORY OF LOOP GROUPS 15

and we set y=S?ov. We wish to show that kernel y is contained in the center of?.
But if ^ekernely, then v(^)ecenter fi. Hence

(1.19) [x, y\e kernel v, j^e?.

Hence [>, {y^y^~\=o, y^y^,

by the Jacobi identify, (1.19), and the fact that kernel v C center?. But then
x e center?, since we are assuming '? is perfect. Thus

(1.20) o-> kernel ^'—>^—>a—>o

is a central extension. Since we are assuming (1.17) is universal, there is a
morphism (<p, ^) from (1.17) to (1.20); i.e., we have a commutative diagram

o —> c —> a —°-> a —> o
J J /
\ \ /Y

o -> kernel y -> ?

We will be done, if we show that v o 9 is the identity.
But by the commutativity of the above diagram

S o (y o 9) = Y ° 9 = ^5

and hence for xea,

gW=^^{x))-xec.

If ^13 ^a6^, then

5([^,^])=^o(p([^,^])-[^,A:2]-k(^i),Vo9(^)]+[^,^(A:2)]=0,

since ^ takes values in c. But then g is identically zero, since 5 is perfect. Hence
v o 9 == identity. •

Remarks. — (i) If a is simply connected, then a is perfect. Indeed, if a is not
perfect, there is a non-trivial linear map /: a/ [a, a]->k, and hence, if we consider the
trivial central extension

o-^k—^a@k->a->o,

with k->a@k denoting the inclusion, and a@k-^a the projection, then, using/, there
are two splitting homomorphisms, and this nonuniqueness contradicts the simple
connectivity of a. (ii) If a has a simply connected covering,

o-^c->a->a->o,
then 8 covers every covering of a. Indeed, if

o->5->e—^a-^o
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is a covering of a, we can, since a simply connected covering is universal, find a
morphism (cp, ^) from the first central extension:

o —> c —> fi —> a —> o

1 ^ ^ /^ ^ /

o —> b —> e

We then need only check cp is surjective. But if €0=9(8)5 then the commutativity
of the above diagram implies e = = C o + 6 5 and hence

e==[e, e]=[eo, eJCco,
and so e = Co and <p is surjective.

2. An explicit construction for the universal covering of the loop Algebra.

We let Q denote a split simple Lie algebra over a field k of characteristic zero.
Let k[t, r"1] (with t an indeterminate) denote the ring of polynomials in t and r"1, with
coefficients in k. We let

Q=k\t,t-1]^

we write ux for Z/®A; (^G^[^ t~1], XCQ) and we define a Lie bracket on g" by
(2.1) \ux^ vx^]=uv®[x^, ̂ ],

where u, vek\t, t~1], ^15^2^83 an(^ [-^15^2] denotes the Lie bracket of ^1,^2 m 9-
We regard Q with the bracket (2 .1) as a Lie algebra over k (which of course is
infinite-dimensional). We call §' the loop algebra of g. It is easy to verify that §' is
perfect (since g is) and hence Q has a universal covering. In this section, we shall give
an explicit construction for the universal covering

o-^c—g-^-^o

of Q, and in particular, find dim^ c = i. To determine the covering, it suffices to give
a corresponding cocycle TGZ^Q,^) . We must then show that the central extension
constructed from T, as in § i, is the universal covering of §'.

In order to define T, we first define a A-bilinear pairing
To: k\t, r'^xA^, r^-^A.

Namely, we let
T()(^, v)== residue {udv),

for u, vek[t, F'1]. For example,

f — n if n-[-m=o- (fn fm\__\ 'TQ^ , b ) — {
[ o otherwise.
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We have

(2.2) 0=To(^a, ^)+To(^l5 ^2)+To(^35 ^l), ^1, ̂  ̂ e^ ̂ -1]-

We let ( , ) denote the Killing form on g, and we define T by

T(^, ̂ )=-To(^, y)(A;,j/), ^ vek[t, r1], A:,^eg.

A direct verification, using (2.1) and the invariance of the Killing form, shows
that T satisfies the cocycle identity (1.8), and hence reZ^g,^). We let

0->k-.Q^Q—0

denote the corresponding central extension, constructed as in § i. We shall now prove
that this central extension is a universal cover of 9'.

First note that if

o->b->e-^a-^o
is a central extension of the Lie algebra a, if x, yea and if x ' ^ y ' a are inverse images
of x,y, respectively (so n[x/)=x, n{yf)=y) then [Y,y] depends only on x andj^, and
not on our choice of inverse images x ' ^ y ' . We therefore denote [A:',J/] by [A:,^]'.

Now, let 9=$Ia(^), the Lie algebra of all 2 X 2 trace zero matrices, with
coefficients in A. Let H, E+, E_ be the Chevalley basis ofslg^):

TT ( 1 °\ v ( ° I} r ( ° °\-M. == | |, jhj,==| | hi ==| |.
\0 -I/3 + \0 0)' - \1 o]

Let o-^Z-^^'-^^-^o

be an arbitrary central extension of o(=^. For uek[t, t~~1], we define elements ^E^,
nH! in §'' by

^=±^[H,«EJ'

MH'=[E+,ME_]'.

When u=i, we write E^,H' for iE^, iH', respectively. We note that
(2.3) p(»H')=yH

p{uE'^=uE^.

Thus for u, vek[t, t~1], we have
(2.4) [yH',yH']=[aH,oH]'eZ.

We set
(2.5) {u, v}=\uH.', vH']=[uH, pH]'eZ.

Also, we have from (2.3) that for uek[t, t~1],

(2.6) ME^=±^[H',^].
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Thus, substituting the above expression for ^E^, and using the Jacobi identity, we
have

[riET, u^.]=± i/2([[.H', H'J, ̂ ]+[H', [.H', ̂ ]J)
=±i/2[H',[.H',^E/J:l, by (2.4).

On the other hand, [yH', ^E^]=±2^yE^ mod Z, and hence the last expression in
the above computation equals

±I/2[H',±2^E^.

But (2.6) implies that this equals ±2uvE^. Thus, we have shown

(2.7) OH', uE^]=±2uv^, u, vek[t, r1].

Next, we consider (for u, vek[t, t~1]):

[^.^^^[[^H'.E^,^], by (2.7) ,

= [ [^H', .EL], E',] + [^H', [E^, .E^ ]

^[-^EL^E^+^H^H'],

by (2.7) and the definition of yH',

=uvIif-\--{u, v}, by the definition of uvU'y (2.3) and (2.5).

Thus, we have shown

(2.8) [^, v^L]==uvW+^{u, v}, u, vek[t, r1].

Next, for u, vek\t, t~1], we consider

[^,^]=±^[[H',^],.E^, by (2 .7) ,

=^([[H', .E^, ̂ ]+[H', [^4, .E^]]).

The first summand equals [d=2yE^,^E^] by (2.7), and the second summand equals
zero, since clearly [^E^, yE^]eZ. Hence the last expression in the above computation
equals [yE^.z/E^]; i.e.,

[^,^]=-[^,.E^,

and hence, since char k == o,

(2.9) [^,^]=o, u,vek[t,t-1].
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THE ARITHMETIC THEORY OF LOOP GROUPS 19

We summarize the multiplication rules, (2.5), (2.7), (2.8), and (2.9) in
(2.10) a) [uH^vH^u.v},

b) [yH',^]=±2^E^,

c ) [^EV,yEL]=^H'+^,y},

d) [uE^,vE^]==o, u,vek[t,t~1].

Lemma (2 .11 ) . — The pairing { , } defines a skew symmetric, k-bilinear mapping from
k[t, t~^xk\t, F'1] to k. Moreover, relations (2 .10) define a Lie algebra structure on Q\ if
and only if { , } satisfies the relations

(2.12) {u, u}== o
{uv, w}-{-{wu, v}-{-{uw, u}==o, u, u, wek[t, t~1].

Proof. — The bilinearity and skew symmetry o f { , } , and the relation {u, u}==o,
all follow from (2.5). To understand the second identity in (2.12), we consider
{u,v,wek[t,t-1])

[uW, [^, w^]]+[wE^, [uH\ ̂ ]]+[^, [^E^, uH']]
==±{u, vw}±{w, uv}±{v, uw},

and hence the second relation of (2.12) is equivalent to the Jacobi identity for uW,
yE^, wE^. As the remaining Jacobi identities follow from (2.10), we obtain the
Lemma. •

We now wish to study a skew symmetric, bilinear map

{ , }:k[t,^l]xk[t,^l]^k,

satisfying (2.12) . First, for uek[t, t~1], we let

M^^r1]-^^-1],

denote the multiplication operator

M^{v)=uv, vek[t, r1].

We let f^: k[t, t'^-^k denote the A-linear transformation, defined by

LW={^^ vek[t,t-1].

We easily deduce from (2.12) that
(2.13) /,oM,+/,oM,==^, u, vek[t, r1].

Then, applying (2.13) when u==i, we see that fi^=o. But if u, u~lek[t, t~~1], and
if we set v=u~1 in (2.13), we obtain

(2.14) /i=o
f^= -/,oM,-2, u, u-^k^ r1].
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Then, by (2.13), (2.14), and a straightforward induction, we obtain
(2.15) /<n=/<oM^-i, neZ.

Thus, for r, j-eZ, we have
{f, ̂ }=/;^5) =^o M^-i(^), by (2.15),

^.f^-1}.

But, interchanging r and j, and using skew symmetry of { , }, we then also have
{f.f}——^,^-1}.

Thus, we have:

Lemma (2.16). — Let

{ , }:k[t,t-l]xk[t,t-l]^k

be a skew symmetric., bilinear pairing., satisfying the relations (2 .12) . Then we have

(2.17) {^^}=8r,-^{^r1},
or equivalently

(2.18) {u, v}=— Residue {udv){t, r1}, u, vek[t, r1].

Remark. — In essence, Lemmas (2.11) and (2.16) imply that the central exten-
sion introduced earlier,
(2.19) o->A-x^-.g->o,

is a universal cover ofg, in the case when Q==sl^(k). Indeed, one need only check g^
is perfect. We shall check this in general later on (in any case it is easy). We also
remark that this central extension is therefore non-trivial.

We shall now assume g split semi-simple over k, and we let
Z r\/1 P r>j

o— ->Q —9—0

be an arbitrary central extension of §'. We consider the Lie algebra 9, and fix a
splitting Cartan subalgebra I) C g. We let A denote the set of roots of 3 with respect
to I), and we let

9=D©^9«

denote the root space decomposition (relative to f)) of g. Thus A C y, the dual
space of I), and

Qoi=={xeQ\[h,x]=^h)x, Ael)}.

For each aeA we pick an element E^eg" and an element H^el), so that for all
aeA, we have

[E^, E_J=H,
[H,,E±J=±2E^,
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[We will further normalize our choice of the E^'s in § 4). We let 3 (a) denote the three
dimensional subalgebra spanned by the elements E^ and H^, and we let g'(a) be the
subalgebra spanned by the elements ux, uek[t, t~1], ^eg(a). We let

^'w=p~\sW),
so that if we let pa denote the restriction of p to (^'(a), we have a central extension

(2.20) o-^Z-x^oO^c^a)-^.

Now for aeA, we have an isomorphism from ^(A) onto g(a) defined by the
conditions

E±^E±a

H KH,.

We then have a corresponding isomorphism <&^ from sl^{k) onto (^(a), defined by the
conditions

^E, }-> z/E, ,,± ±a ^eA[^r1].
z/H h>^

/^'
We may thus regard the central extension (2.20) as a central extension of ^(k).
Then the elements uE^y uH' defined earlier, correspond to the elements

.E^=±I[H„.E^]'
(2.21) 2 uek\t,t 1],

^H,=[E,^E_J'

in ^'(a), and if we set
{u, v}^[uH^ yH,], u, vek[t, t-1],

then we have that the relations (2.10) are valid in g''(a), with H', E^, { 3 }, replaced
by Ha, E^a? { 5 }a5 respectively. Of course, we may also regard these as being
bracket relations in §''.

We now wish to consider the brackets of elements (2.21) (regarded as elements
in Q ' ) as a varies. First, we consider [^H^, ^Ep], u, vek\t, t~1], a, (BeA. Now

o(u'H.^==uH^
(2.22) p a/ a u,vek[t,t-^ a,(BeA.

p(yEp)=yEp

Thus, we have

[^H,,.Ey=^H,,^[Hp,.Ep]], by (2.21) and (2.22)

=^[[>H,, Hp], ,Ep]+^[Hp, [^H,, .Ep]].

Now we have
[^H,,Hp]=o modZ
[^H,^Ep]=p(HJ^Ep modZ,
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and hence the last expression in the above computation, is equal to

^[HB,(3(H>yEp]=(3(HJwEp, by (2.10) b).

Thus we have shown
(2.23) [yH,,yEp]=P(HJwEp, a, (3eA, u, vek[t, t-1].

Next, consider (a, peA, M, yeA[f, t~1]):
[«H^Hp]=[[E;,MELJ,^He], by (2.21) and (2.22),

=[[E,, yHp], ME'_J+|X, [MEL,, ^Hp]],
by the Jacobi identity,

=[-a(Hp)yE,,yELJ+[E,,a(Hg)^ELJ, by (2.23),

=-a(Hp)(wH,+^{y,yL)+a(He)(MyH,+^{i,w},),

by (2.10), c ) ,

^^W^^ by (2.17).

On the other hand, we may interchange the roles of a and (B in the above compu-
tation, and we thus obtain:

(2.24) W, .H^^? ,̂ u}^^-^ v},.

As a Corollary of (2.24), we obtain:

(2.25) If(a,P)+o, then {«, v}^='———{u, y}p,
^a, aj

(where ( , ) is also used to denote the inner product on I)* induced by the Killing
form).

Next, for a, (BeA, H' a linear combination of the Hg, 8eA, z/, yeA[^, r1], we
have from (2.22) and (2.23):
(2.26) [[H', uE^ ^]-a(p(H'))[^, .Ep].

On the other hand, by the Jacobi identity, the left side of the above equality equals

(2.27) [[H', .Ep], ̂ ]+[H', [uE^ .Ep]].

Now [H',^]=p(p(H'))^Ep, by (2.23),

and
(2.28) C^E,, yEp] = N,, ̂ yE, ̂  p mod Z,

where N^pe^ is defined by
[E,,Ep]==N^E^.
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Hence, we have

[H/,[^,.Ep]]=(a+p)(p(H'))N,,^E^3, by (2.23), (2.28),

and hence (2.27) equals
P(p(H/))[.E3,^]+(a+p)(p(H'))N,^^E,^.

Comparing with the right side of (2.26), we obtain

(a+iB)(p(H'))[^,.Ep]=(a+p)(p(H'))N,,3^E^3.

If a = t = — P , then we may choose H' so that (a+jB)(p(H'))=|=o, and thus conclude
(2.29) [^E,, z/Ep]=N,^E^3, a+(B+o.

We collect (2.23)5 (2.24)3 (2.29)3 and (2.10), c ) and d ) (with E^ in place of
E^, H^ in place of H', and { , }̂  in place of { , }) into:

(2.30) a) [^H,,.Ep]-(B(HJ^Ep,

b ) [.H,,.Hy-^^{.,.}^pw{.,.}3,

c ) [^E^Ey^N^^E^p, if a+jB+o,

</; [^E,, z;E'_J=^H,+^{zz, ̂ , u, vek[t, r1], a, peA.

We will need

Lemma (2 .31) .— I f aeA, if a=Pi+(B2, (Bi, P^eA, and if c-^,c^ek are such that

na^i^x+^a11^

^TZ /or flZZ z/eAp, ^-1], we have

uH^=^uH.^+^uH^

Proof. — We have (in g):

H»=[E,,E_J,
N^E^fE^EJ,

for some NeA*, the multiplicative group of k. We then have

(*) N^H^ECE^E^E.J
=[[E^,E_J,EpJ+[EpJE3,,E_J].

If we define N, (t'=i, 2) in k by

[Eg,,E_,]=N.E_^ (i'=i if i=2, and f = 2 if i=i),

then the last expression in (*) equals:

Ni[E_p,,E3j+Na[E^,E_J=N^-NiHp.,
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and hence

(2.32) H,=NN,H^-NNiH^.

On the other hand (see (2.21))

^=[E^E_J',
^.=[Ep^E_^ i=i ,2 .

Hence N-^H,==[[E^ EpJ, ̂ .J, by (2.30) .;,
=[[E^ d&LJ, EpJ+P^D^ ̂ J]
^Ni^ELp^EpJ+N.EE^^E'.J, by (2.30) .J,
——N^H^+N^H^ by (2.21),

and hence z/H^NNa^-NN^H^

and comparing with (2.32), we obtain the lemma. •
We now fix an order on the roots A, and let o^, . . ., o^ (/'=dim I)) denote the

corresponding set of simple roots. We define 9 : (^-x^ by the conditions
(p(z/EJ=^, uek[t,t-1], aeA,

^uH^==uH^ uek[t, r1], z=i, . . .̂ .

Then, 9 is a section of our central extension
r~t f*^ f P t^f

0-^Z->Q'->Q-^0

(i.e., <p : (^-x^' is a linear transformation such that p o 9 = identity), and, thanks to
Lemma (2.31), we have

(2.33) 9(^HJ=^, uek[t,r^ oceA.

One knows that if
Tcp(^)=?([^])-[(P(^ 9(^)]. ^jyeQ,

then T<peZ2(§, Z) and our given central extension is equivalent to the central exten-
sion (see (1.12))

(2.34) O->Z^Q^->Q^O

defined by Ty.
Moreover, thanks to Lemmas (2.11) and (2.16) and also thanks to (2.25), we

have that if (B is any long root, then, in view of (2.33), we may reformulate (2.30) as
the simple assertion:

(2.35) T^ (u ® x, v 0y) = — Res (udv) {x, y) h[,

where
-n (^ P)h[={t,t-1},
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From (2.35) we easily deduce:

Theorem (2.36). — Let TeZ^g,^) be defined by:
^{u®x, v®jy)=—Res{udv){x,y), x,yek\t,r1'}, U,VCQ.

Then the corresponding central extension

(2.37) o->k->Q^Q^o

is the universal covering of §'.

Proof. — Thanks to (2.35), the map
(^)->(^0

from (^.==g'®A to §̂  ='Q@Z (where S;e§, sek) defines a morphism from the
central extension (2.37) to the central extension (2.34). Thus, to prove the theorem,
we need only prove that §^ is perfect. Since §' is perfect, it suffices to prove that
[§T? 9-r] contains k. But (see (1.9)) this follows from

T ( ^ H „ r l ® H J = 4 + o ,
(a, a)

where we may take oceA to be any root. •

3. Kac-Moody Lie algebras.

In this section we indicate a different method for constructing the central exten-
sion (2.37). In fact, this alternate approach is part of the very general theory of a
Kac-Moody Lie algebra associated with a symmetrizable Cartan matrix (for details
the reader may consult the papers of Kac and Moody [10], [15] and [i6], and
Garland-Lepowsky [8]).

Thus if t is a positive integer, then we say that an i^i matrix B=(By), ,^i ^
is a symmetrizable Cartan matrix in case By.eZ for all i and j, B^=2 for all i, B,<^o
whenever i4=J, and finally, there exist positive rational numbers q^y ..., q^ such that

diag(yi, . . . ,^)B

is a symmetric matrix. (If B satisfies all but the last condition it is called a Cartan
matrix, and the last condition is called the symmetrizability condition. In this paper
we shall only be concerned with symmetrizable Gartan matrices.)

Now given a field k of characteristic zero, and given a symmetrizable Cartan
matrix B, Kac and Moody have constructed a certain Lie algebra g(B) over A, and
we now proceed to describe g(B) (also see Garland-Lepowsky, [8]).

One lets g^==g^(B) denote the Lie algebra on ^ generators ^, f^, h^ (i==i, • . ., ^)
with relations

(3.1) IA,A,]==o, ,̂̂ .]=Vi,
[A.,.,]=B^, [^]=-B,,/,,
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for z , j==i , . . . ,^ , and with the relations

(3.2) (ad^-^^o,

(ad/r^^o,

for z+j, ^J=i, ...^.
For each ^-tuple (^i, - • • 5 ^ ) of nonnegative (resp. nonpositive) integers not all

zero, define 9i(^, ... ,^) to be the subspace of 91 spanned by the elements

[̂  1>^ • • . , [^.^^] ...]],

(^P- [/^ L4' • • •' EA-i^J • • • ] ] ) '

where ^ (resp. ^) occurs |^| times. Also, define 9i(o, . .., o)=l)i(B), the linear
span of AI, ...,^, and 91(^1, . . . ,^)=o for any other /-tuple of integers. Then

QiW=. U _.9i(^ •••^),
(HI, ...,-n^EV-

and this is a Lie algebra gradation of 9i(B). The elements h^, . . . ,^, <?i, . . . ,^ ,
/i, . . .,/ are linearly independent in 9^ (see [10], [15]). In particular, dim ^(B)=^.
The space 91(0, .... o, i, o, .... o) (resp. 91(0, . .., o, —i , o, . . ., o)) is nonzero and is
spanned by e, (resp.^.); here ± i is in the z'-th position. Also, each space 9i(^, . . ., n^)
is finite-dimensional. There is clearly a Lie algebra involution T] of 9^ interchanging
e, and/, and taking h, to —h, for all i=i, . . . ,^ . The involution T) takes each
space 91(^1, . .., ^) onto 9i(—^i, • • •, —^)-

The Z^-graded Lie algebra 9^ contains a unique graded ideal r^, maximal
among those graded ideals not intersecting the span of A,, ^, and / (I^^^) (see
E10]? [15])- We let 9(B) be the Z^-graded Lie algebra 9i.(B)/rr The images in
9(B) of h,, e^f,, 9i(^, . . . ,^) and I)i(B) will be denoted by ^, e,, /, 9(^1, . . . ,^)
and I)(B), respectively.

We let D,(i^i<^) be the i-th degree derivation of 9(B); that is, the deri-
vation which acts on 9(^1, . . ., n^) as scalar multiplication by n^ Then D^, . .., D^
span an /-dimensional subspace bo of commuting derivations of 9(B). Let b be
a subspace of bo. Since b may be regarded as an abelian Lie algebra acting on the
b-module 9(B) by derivations, we may form the semidirect product g e(B)=bX9
[e for "extended59) with respect to this action. We note that ^(B^b^I^B) is then
an abelian Lie subalgebra of 9'(B), and y(B) acts on each space 9i(^i, . . . ,^) via
scalar multiplication. We define ^, ..., ^e^B)*, the dual space of y(B), by the
conditions [A, e,]==a,{h)e,, for all Aey(B), and all 1=1, . . . ,^ We note that
^W-Ky for ^J=i , . . .^ (see (3.1)).

We now make the basic assumption that b is chosen so that a^ . . . ,^ are linearly
independent. This is always possible, as we may take b == bo • (In this case, we have
^(D^)==8^ for all i,j==i^ . . . , / ' ) . However, we may wish to choose b smaller than
bo; e.g., when B is nonsingular, then b=o is a natural choice.
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For fley(B)*, define
9a=={^9(B)l[A^]=<^(A)^ for all ^y(B)}.

Note that [9", g6] C g"4'6, for ^, ^e^B)*. Also, it is clear that e, (resp. ^) spans
9 '̂ (resp. g""1) for each i== i, . . . , / ' and that for all (^, . . ., n^eZ/y

9(^, ....^^i0^---^.

Indeed, since a^ . . . ,^ are linearly independent, the inclusion is an equality, and
the decomposition

9(B)=- U a(^, . . . ,n,)(ni,...,^)ez^

coincides with the decomposition

9(B)== U 9°.
9V / aeW)*

We define the roots of 9(B) (with respect to ^(B)) to be the nonzero elements
aey(By such that 9a=t=o. We let A(B) denote the set of roots, A_^.(B) (the set of
positive roots) the set of roots which are nonnegative integral linear combinations of
a^ . . ., a^ and A_(B)=—A^_(B) (the set of negative roots). Then

A(B)=A+(B)uA_(B)

(disjoint union), 9°==I)(B),

9(B)=^(B)©^U^9a©„^„90,

and dim 9-a==dim 9^ for all aeA(B). We call the elements a^ . . . ,^ simple roots
(this being relative to our choice of A_^(B)).

We let RCy(B)* be the subspace spanned by A(B) (so ^, . . . , a / is a basis
for R). Then the restriction map R->I)(B)* is an isomorphism if and only if B is
nonsingular.

Now, since B is symmetrizable, there are positive rational numbers ^, . . . ,^
such that diag (^i, . . . ,^) B is a symmetric matrix. We then define a symmetric
bilinear form or on R by the conditions o-(^, ^.)=^By, i,j== i, ...,/ '. Note that
^=0(^5 ^)/2 for each i. Set ^.==^^==G-(^, ^)^/2 in I)(B), for z = = i , . . . , ^ .

I l £
Then for 6zeR, with a== S p^, ^^, define h^= S ^A^. in I)(B). Transfer <y to

i"l i=l t

a symmetric bilinear form (again denoted by a) on I)(B), determined by the
conditions (r(^., ^.)==CT(^, ^-), for all i,j= i, ...,/ '. Then a(h^ h^)=a{a, b) for
all ^, &GR. Also, (T(^, ^)=^(A^), for all z , j=i , . . . ,^ , so that

cr(^,A,)=^,6)=^)=6(^),

for all <z, &eR. The form CT extends to a symmetric, 9 (B)-invariant bilinear form
(again denoted by a) on 9(B), such that [x,jy]=a{x,y)h^ for aeA(B), A^", yGQ~a

(see [10], [15]). In particular (7(^,^)===2/(7(^, ^), for z = = i , . . . , / ' « Also, for
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aeA(B)3 6eA(B)u{o}, one has ^(g^g^^o, unless a==—by and then a induces a
nonsingular pairing between g" and Q~a (see ,[io], [15]).

It is clearly possible to extend the symmetric form a on R to a symmetric
form G on ^(B)* satisfying the following condition: For all <zeR and Xey(B)*,
(j(X, fl)==X(A^). Fix such a form o- on ^(B)*. For each i = = i y . . . y f y define the
linear transformation r,: ^(B^-^B)'11, by

(3.3) r,(X)=X-X(A>,.

We let W==W(B) (the Weyl group) be the group of linear automorphisms of ^(B)*
generated by the reflections r^i=iy ...,/'. The following is proved in [8], Prop-
osition (2.10) (and is due to Kac and Moody).

Proposition (3.3). — The form a on ^(B)* is W'-invariant.

Examples: (i) We let A be the 1x1 Gartan matrix associated in the usual way,
with a A-split, simple Lie algebra g of rank i. (We will call such an A a classical
Cartan matrix—we note that a classical Gartan matrix is always symmetrizable: see
below.) Then it is a theorem of Serre (see [19], Ghapitre VI, p. 19) that

g^gi(A)c^g(A).

For a classical Cartan matrix A, when there is no danger of confusion, we write
A, A^, I), and g for A (A), A^(A), I) (A), and 9 (A), respectively. This notation is
consistent with that in § 2. Since A is nonsingular we may (and do) take b=o, so
we have y{A)=i), ge(A)=g. Also, we write Ei, .... E^, Fi, .... F^, H^, ..., H^,
for the generators e^, .. ., e^ f^y .. .,j^, A ^ , . . . , ^ , respectively. The Kac-Moody
construction of a Lie algebra corresponding to a symmetrizable Gartan matrix B,
automatically gives a choice of simple roots. In the case of a classical Gartan
matrix A, we denote these simple roots by a^, ..., 0^5 and we denote roots in A by
Greek letters a, (B, y, .. . „ If ( , ) denotes the Killing form (on g, I), and I)*), and if
^==(a^a^)/2, then the matrix

diag(?i, . . . ,^)A

is symmetric. Letting a denote the corresponding inner product on R (=1)*, in this
case) we see that a and ( , ) agree as forms on I)*, I), and g. We let ag denote the
highest root of g (with respect to our choice 0^3 ..., a^ of simple roots), and we set
a^i=—oco. Throughout this paper, we will use A to denote a classical Cartan matrix.

(ii) We let A==(A^ -^ . y+i denote the symmetrizable Cartan matrix, defined
by the conditions

-y ^2 (0^,0^) . ._
A ,̂ == — — , - 3 Z y j = I , . . . y i - \ - I .

(ai,oc,)

We call A the affine Gartan matrix (associated with A) and g(A) an affine Lie algebra.
The matrix A has rank /, and if we take b to be the ^-span of D=D^i, the
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£ -\- i-st degree derivation, then our basic assumption, that the simple roots a^, ..., a^^
are linearly independent on ^(A), is satisfied. We therefore make this choice for b,/^/ /^
and define g^A), I)6 (A) accordingly.

Our next goal is to show, using a result of Kac and Moody, that 9 (A) is exactly
our central extension (^ of the loop algebra (^ Recall that reZ2^, k) is the cocycle
defined at the beginning of § 2, and

o-^-^-^-^o

is the corresponding central extension, constructed as in § i. In particular, Q^=o[@k,
and we let 9 : (^—^ be the injective linear map defined by <p(i;)==(S;, o), ^e^. Then
<p is a section in the sense that
(3.4) S o y == identity.

We let S^C^ denote the subalgebra
f f ± = U g01® II f®9,

aeA^A)" ±nEZ+

where Z^. denotes the nonzero, positive integers. Since T restricted to B^ X^ is zero,
the map 9 restricted to ff^ is a Lie algebra monomorphism.

We fix elements E^eg^Cg, so that if H^=[E^, E_<J, then
P(HJ=2((B,ao)(ao,ao)-1,

for all (BeA (our choice ofE^o ls consistent with our choice ofE^ in § 2; these choices
will be further normalized in § 4). We set

(3.5) ^-y^i), fi=^i), h,=^H^ z=i,...,^,

and we set

(3.6) ;^=9(^)E_J, /^^^(r^EJ, ^+,=(-H^,2(ao,ao)-1).

We now state a theorem of Kac and Moody (see [10], [16]):

Theorem (3.7). — There is a surjective Lie algebra homomorphism n: 9 (A)—>-§', and
TC is uniquely determined by the conditions: Tr(^) = E ,̂ Tr(j^) == F^, 7r(^) = H ,̂ yor z = i, ..., i
and 7i;(^^i)=^®E_^ , ^{ff^^)=t~l(S)'E^ , and Tc(A^i)==—H^ . Moreover, the kernel c

0 ^ ° ^
<?/' TC ^ ^ 07^ dimensional sub space of I) (A). Indeed, if ao==S^o^ (<^ ^ ^ZTZ^

^ »=i
nonnegative integers), and if we set h[=[ S m^h^-^-h' eI)(A), then h[ spans c. Finally,
c ^ ̂  c^^r of g (A).

Of course the elements e^, f^, h^ in 9 (A), denote the generators given by the
Kac-Moody construction described earlier.

Now, in particular, Theorem (3.7) implies that we have a central extension

(3.8) o^c->9(A)-^9->o.
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Hence, by the universal property of the central extension (2.37)3 we have a unique
morphism from the central extension (2.37) to the central extension (3.8); i.e., we
have a commutative diagram

o —> k ——> c^ > Q —> o

(3-9) ! 1^ I1

o —> c —> 9(A) -"-» §' —> o,

where I denotes the identity, ^ is a Lie algebra homomorphism, and of course the
map k-^c is just the restriction of ^ to k.

Lemma (3.10). — We have
^)=^ W=fi, and W=A,,

for i==i, .. .,^+1.

Proof. — By the commutativity of the diagram (3.9), we have
(3.11) ^(?,)) =5(?,)

^W-^fi)
^W)-S(^), z=i, ...,^+i.

On the other hand, from the definition (3.5) and (3.6) o f^ ,^ , ^, the fact that
S o <p = identity, and from the conditions TT(^)=E,, TC(^)=F,, 7r(^)==H^, z = i , . . . , ^ ,
and 7r(^^i)=^®E_^, ^(/^l)=r l®E^, 7r(^)=-H^, of Theorem (3.5), we see
that
(3.12) 7T(^) =5(?,)

^(/i)-^)

TC(^) =S(^), Z = = I , . . . , / '+I .

Hence, from the exactness of (3.8), we have, comparing (3.11) with (3.12):
(S-^) ^-^i) mode

fi=^{f) mode
A,=^(^) mod c.

But then a direct computation shows:

?,=i/2[^,?J, y^--^^], ^-R,^], i==i, ...,^+i.

(the crucial computation is to show that A^i== [^+i,j^+i]). Hence, since c is contained
in the center of 9 (A), we have:

+(^==^[^^^(?^)]=^^,^=^

and similarly ^)=/;, for z= i , . . . ^+i . But then ^(^)=+(R,^])==^,^]=A,,
i==i, . . . , ^+ i , and this completes the proof of Lemma (3.10). •
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We can now prove:

Theorem (3.14). — The map ^ is a Lie algebra isomorphism. Thus the central exten-
sion (3.8) is the universal covering of §'.

Proof. — Since, by construction, the algebra 9 (A) is generated by the elements ^,
fi, and A,, z== i , .. ., f-\-i. Lemma (3.10) immediately implies that ^ is surjective.

On the other hand, by the commutativity of (3.9), kernel ^C kernel S=k. If
kernel ^4=0, then ^((o, i))=o, and hence (see (3.6)) we have

^-^-^((--H^, 2(ao, ao)-1))^^-!^, o)).

But —H^ is a linear combination of Hi, ..., H^, and hence ^((—H^, o)) is a linear
combination of the elements ^((H^, o)), . . ., ^((H^o)); i.e., ^=^(^) is a linear
combination of the elements h^= ̂ (^), ..., h( == ̂ (^). But since the ideal ti C g^A)
does not intersect the span of the ^'s, //s, and A/s in 9i(A), and since these elements
are linearly independent in g^(A) (as we noted earlier—see [10], [15]), we have
obtained a contradiction. Thus ^ is an isomorphism. •

4. The Chevalley basis in the universal covering.

I11 [?]? § 4? we introduced a Chevalley basis in the algebra 9 (A). By means
of the isomorphism ^ : §^->g(X), we may then pull this basis back to a basis in g^.
In fact it is quite easy to describe the "pull back" basis in §^, and then to compute
the bracket relations using the cocycle T. We wish to give the description in the
present section.

First, we begin with a simple Lie algebra g over the field C of complex numbers.
Indeed, let Q have rank I , and let A be the i^t (classical) Gartan matrix corre-
sponding to 9. Then 9=9 (A) is the Kac-Moody algebra constructed from A, as
described in § 3. From the Kac-Moody construction (in this case, the Serre construc-
tion), we have a Cartan subalgebra I)=I)(A), the set of roots A (relative to I)) and a
given set of simple roots o^, . . ., o^. We then know that g(A) has a Chevalley basis
(see Steinberg, [21]). Thus, for each aeA, we have nonzero elements E^eg",
H^el), and these elements have the bracket relations:

(4.1) [E,,E_J=H,, aeA

[E,,Ep]=±(r+i)E^p, if a, p and oc+(BeA, and
a—rp, . . ., a, . . ., a+^(B is the (B-string through a,

Pa 5 ^p]= °3 otherwise,

[H^E,]^2^^, a,peA.
(^a, a)
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For the Chevalley basis of 9, we take the set:
(4.2) ^-{EJaEAU{H,,. . . ,H,}

(where H^==H^., i==i, . . . ,^ ) . We note that, in particular, this basis has integral
structure constants.

Now, since the isomorphism ^ sends ^ to ^, and^ to^, it is easy to determine
the subspaces of §̂  which correspond to the root spaces of Q (A). Moreover, one can
easily compute the derivation of §,. which corresponds to the ^+i-st degree deri-
vation D of 9 (A).

If a^ . . . , a^^ey^A)* are the simple roots and if ao== S m^ is the highest

root of g (relative to the choice o^, ..., o^ of simple roots) then we let Ley(A)* be
the element

t
t=(S 7^)+^+i.

i=l

t ^

Also, if a== S ^oc^eA, we let ^(^G^^A)* be the element
» = i

^(a)= S n,a,.'i^i*
i==l

We then have (see [7], § 2):

(4.3) A+(A)={^(a)}^^(A)u{^(a)+^}aeA(A),nez,u{^}nez^

where Z^. denotes the set of all (strictly) positive integers. We let
Aw(A)={fl(a)+7^L}^^),nez5
^(A) -{^LGZ.n+O.

and call the elements of A^(A) Weyl (or real} roots, and the elements of A^(A) imaginary
roots. We let A^^(A) (resp. Aj ^(A)) denote the set of ± Weyl (resp. ± imaginary)
roots.

Then, if we identify 9 (A) with g^ by means of ^ we have

(4.4) 9a(a)+m==(^®9a,o), aeA(A), neZ,
g^^^^^o), %eZ, n4=o.

Also, we have .(*)=(°- tell(s)
li, *=D,

and thus
f scalar mult. by n, on ga(a)+m

(4*5) i[scalar mult. by n, on 9^

Indeed, (4.3)3 (4.4)3 (4-5) follow easily from Theorem (3.7), Theorem (3.14), and
the commutativity of the diagram (3.9) (also, see [7]).
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Remark. — One can deduce the existence of D on g^ directly from the univer-
sality of the central extension o—^—^—^g—^o, and from the existence of the deri-
vation Do :§->§, defined by 'DQ{tn®x)=ntn®x, neZ, XEQ. Thus D on g^ is the
lift of Do on ^

We define elements ^ in g", <zeA^(A), by
^==(r®E^o), a=aW+m.

For TzeZ, 7z=(=o, we then define elements ^{n), z = i , ... ,/ ' , in g"1 by
^)=r®H,, TZGZ, n^o, i=i , . . . , ^ .

Finally, we let
A,=:(H,,o), z=i, . . . ,^
^+i=(-H^,2(ao,ao)-1)

(so h^=h^ i = i, . . ., i + i). Then the set

(4.6) ^=W^l,..^+l^{UaeAw(A)^{^^)}neZ.n+0,^=l,..^

is a basis of g^=g(A), and is called a Chevalley basis.
One can of course compute the structure constants directly, using the cocycle T.

In any case these structure constants are computed in [7], § 4, and are seen to be
integral. Indeed, the integrality of the structure constants boils down to showing

2h'
that ——l— is an integral linear combination of h^ ..., ^ , ^ , when oc^ is a long root.

(°^ aj
This is part of the proof of Lemma (4.10) of [7], and is derived by examining root
diagrams.

Remark. — The element (o, i) in Q^==Q@k corresponds to A^=g(A). However,
if we replace the Killing form ( , ) by the form < , >=v( , ), where v>o is chosen
so that <H^, H^>==2 for a a long root, if we define the cocycle T' by

^{u®x, v®y)=—^{u, y)<^>, u, vek[t, r1], ̂ eg,

(compare with § 2, after (2.2)) , and if we consider Q^,=Q@k, in place of g^, then
(o, i)eg^ corresponds to 2^'/(a, a), a a long root. Thus it is natural to construct our
Ghevalley basis in g(A), by using Q^, and < , > in place of c^ and ( , ), respectively.
Roughly speaking, a Ghevalley basis in g^ is constructed by lifting an obvious choice
of Chevalley basis in §, and then adjoining the element A^i==(—H^, i).

Notational Remark (4.7). — From now on we use g(A), and not g^, to denote the
universal covering of §'. Indeed, identifying g(A) with g^ by means of 4'? and using
the commutativity of (3.9), we see that n : Q{A)->^ corresponds to £ : ̂ "^^ ^e

thus write S in place of TT; i.e., in sum, we let

(4.8) o^k->Q(A)^Q^o

now denote the universal {and Kac-Moody) central extension of (^
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We now define subalgebras u^^C^A) by

u^(A)= U,9- .
aeA±(A)

On the other hand, in § 3 (just after (3.4)), we defined subalgebras O^Cg. Since
kernel SC I) (A), by Theorem (3.7) (we have set S=7r), we know that the restric-
tion S^ of c5 to u^A), is injective. Moreover, from our description of the root spaces
in (4.4), we see that Image S^^O^; i.e., S^ defines an isomorphism

S^ru^A)-^.

We will write u(A) (resp. ff) for U^A) (resp. f f+) , whenever convenient, and we will
identify u^A) with ff^ by means of S^, whenever convenient. Thus, we may, for
example, regard F^g", n>o, a<=A(A), as the root subspace Q^ a=a[oi)+m, of
u(A), and we may regard ^ as an element of S4' (namely, ^=tn®'E^.

We let gz(A) (resp. 32(^0) denote the Z-span of the Chevalley basis $ (resp.
of the Chevalley basis Y). Then 9z(A) (resp. 9z(A)) 1s an integral subalgebra of
9(A) (resp. g(A)) by [7], Theorem (4.12) (resp. by [21], Theorem i, p. 6). If R is
a commutative ring with unit, we set

9R(A)-R®z9z(A),

9R(A)=R®z9z(A).

We let R[^, F1] denote the ring of Laurent polynomials S q^ (finite sum, with
I'O^ '̂l

IQ and z\ allowed to take negative values) with coefficients ^ in R. We let

^R^r1]®^^),

and observe that

SR-R^zQz.

We note that S induces by restriction, a surjective Z-Lie algebra homomorphism

Sz: QzW-^Qz'

By (4-5) and the remark following, we then see that

D(9z(A))C9z(A),

Do(gz)C§z.

Hence, for any commutative ring R with unit, the operator D (resp. Do) on 9z(A)
(resp., on §z) induces an operator on 9n(A) (resp., on c^) which we also denote by D
(resp. Do).

We let uKAO^^A^nu^A), and Qz^Sz01^- We then have

^(u^A))^.

210



THE ARITHMETIC THEORY OF LOOP GROUPS 35

We let I)z(A) denote the Z-span of ^, ..., h^^ and I)z(A) the Z-span of H^, .. ., H^.
We have

9z(A)=Uz(A)®I)z(A)®Uz(A),

Sz-ffz-^A)®^.
Moreover, the algebra Uz^A) (resp. ff^; resp. I)z(A); resp. I)z(A)) is a Z-form ofu^A)
(resp. 0^$ resp. I)(X); resp. I)(A)). We let

uS(A)=R®zUf(A)

^-R^z^
^(A)=R®zt)z(A)

I)R(A)=R®zI)z(A).

We then have direct sum decompositions

9R(A)=UR(A)®^(A)®UR(A),

SR-^UA)®^.

Moreover, Sz:9z(A)->§z induces a surjective Lie algebra homomorphism

SR=I®SZ,

SR : 9R(A) ->9R

(recall that 9R(A)=R®z9z(A), 9R=R®z9z). where

SR(WA))=I)B(A)
^(U^(A))=^
kernel SRC 1)̂  (A).

Thus SR restricted to u|t (A) is an isomorphism which we denote by £^. We
identify ut(S) with If^, by means of 2^.

Finally, when there is no danger of confusion, we will write u^ for u^(A), and
(more simply) UR for UR(A), and ff^ for f f^ .

5. Completions.

For ieZ, we define

9p(A), =={^e9B(A) | D(A:) = ̂ },

§R,^={^e9R|DoW=^}.

Of course, 9^ = ̂ ®9R(A), ieZ,

and 9R(A),=^®9R(A), zeZ, i+o

^22



36 H O W A R D G A R L A N D

(recall we have identified U^(A) with ff^, by means of 2^). Of course, also, we have
the direct sum decompositions

(5.i) 9R(A)=^9p(A),,

QR-^QR^

and SR(gR(A),)==§R,. If ^eg^A) (resp. xe^), if we write x== S x, (finite
^ iez

sum), with x,EQ^{A)i (resp. ^eg^), if we set Zo=inf{j[^.=t=o}, and

(5.2) M=2-S
(if ;v==o, we set \x\ =o), then we call \x\ the yzorm of x. We remark that the choice
of 2 in (5.2) is arbitrary—any ^>i would do. We have

(5.3) |^+^|<sup(H, h|) and |[^]|<Mb|

for x,jyeQ^{A) (resp. 9^).

If R has no zero divisors, we have

(H, reR-{o}
[o, r=o.

We note that

(5.4) \r.x\

(5.5) I^RMI^I, A:egR(A),

so that SR is norm decreasing, and hence uniformly continuous. Moreover,

(5.6) |SBM|=M, xeu^.

We let QR(A) (resp. §^) denote the completion of 9R(A) (resp. §p) with respect
to the norm | |. Then QR(A) and §p have induced Lie algebra structures and the
norms | | extend to these completions. Moreover, the extended norms also satisfy
(5.3) and (5.4) (the latter, provided R has no divisors of zero). Also, by (5.5), Sp has
an extension to a Lie algebra homomorphism

(5.7) SR:9R(A)^§R%

and (5.5) is still valid for this extended homomorphism (so the extended Sp is
continuous). We let u^ (resp. 0^) denote the closure of UR (resp. Op) in Q^{A)
(resp. g'6). We then have the direct sum decompositions

9R(A)=UR©I)R(A)®UR,
SR-^WA)®^

and the extended homomorphism SR (in (5.7)), when restricted to u^, defines an
isomorphism

~+ . «c .We
^R • ^R-^R-
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This last assertion follows from (5.6). It then follows that SR in (5.7) is surjective
and

kernel^ :9^(A)->9R)

is contained in ^(A), and is equal to kernel ( SR : 9R(A)->§R).

Remarks (5.8). — (i) We let ^-R[[^r1] denote the ^-adic completion of
R[^ ^l]:> i-^? °^R is the ring of all formal Laurent series
(5.9) ^-S?/, ^eR,

t^o

where the sum on the right is allowed to be infinite. We note that 9^ is isomorphic
to 9.^(A)=^R®R9R(A)^o^R®z9z(A). Moreover, if for o as in (5.9), we have
^+o, we define \a\=2~io (we set |o|=o). Then JS^ is the completion of
R[^, t~1] with respect to this norm, and this norm on oSf^ induces our norm | [ on
9^. (ii) From the proof of Lemma (4.10) in [7], we have

2/z' £

^^)=h^l+^k^ ^ez-
Therefore, the set

{AI, . . .,^, 2^/(ao, ao)}

is a Z-basis for I)z(A). It then follows that i®(2A,7(ao, ao)) in I)R(A)==R®zI)z(A),
spans kernel(cSR : 9^ (A)-> 9^)= kernel^ : 9R(A)->9R). If we call this kernel CR, we
have the two central extensions

(5.10) a) o->CR^9R(A)^9B->o,

b) o->CR->9R(A)^9R->o.

Remarks (5.11). — (i) It follows from Remarks (5.8) (ii), that (identifying
9(A) with g^^®^, over a field k of characteristic zero) we have 9z(X)=9zeZ,
whe^e (o, i) in §z©Z corresponds to the element 2^'/(ao, ao) in 9z(A). Thus
QR(A) =§R®R, 9p(A) =9R®R, and we have naturally defined sections 9 : g^ -> Q^{A),
P^R-^a^A), each defined by ^{x)={x, o) [xeQ^, 9^, respectively). The first
section is just the restriction of the second, and hence the cocycle corresponding to 9
on OR is just the restriction of the cocycle corresponding to 9 on 9^. The latter is the
cocycle ^ defined by

T,(̂ , ̂ ^^-Res^^)^,^)^^^, ^ ve^ x^eQ^A).

(ii) If R=k is a field of characteristic zero, then the central extension (5.10) b) is
universal in the category of central extensions

(5.12) o^z^r^sp-^o,
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which split over a sufficiently deep congruence subalgebra of § .̂ More precisely,
we set (9 C o§̂  equal to the ring of formal power series

^z^O^3 qiek)

and consider g^(A) C g^ (A) = § .̂

By the congruence subalgebra of^ of level n, we will mean the subalgebra of all A;eg^(A),
such that A;=omodr. We then consider the category of central extensions (5.12)
which split over the congruence subalgebra of level n, for some n, and we claim the
central extension (5.10) b) (for R==A) is universal in this category. The argument
is essentially the same as in § 2. There is just one additional point. Thus, define
{u, y}, u^ve^y exactly as in (2.5). Then in order to prove (2.18)3 one can argue
exactly as in § 2, once one proves that { 3 } is continuous on oS^x-S^ in the sense that
if Ui-^u, v^—v, are convergent sequences in o§̂  (relative to the ^-adic topology) then
{Ui,v,}=={u,v}, for i sufficiently large. To see this, one first notes that there exists
an integer n>o so that {u,v}==o, whenever u, ve0 and z / ,y==omodr . But then
the desired continuity is an easy consequence of this and the second identity of (2. i2),
for u, y, WE^.

6. Representation theory.

In [n], Kac introduced highest weight modules for a Kac-Moody Lie
algebra g(B) associated with a generalized fxf Cartan matrix B. Kac's modules
are described in [8] and [7], § 10. We refer to the latter as a general reference.
Briefly, the construction is as follows: We let

U±{B)= U Qa
v / oGA^B)0

p^TOeu^B),
so u^B), and p6 are subalgebras of (^(B). For any Lie algebra a over a field k, we
let ^(a) denote the universal enveloping algebra of a. We say XeI^B)* is dominant
integral, in case, (i) X(^)eZ, z==i , ...,/', and (ii) X(^)^o, z=i , . . . ,^ . If X only
satisfies the first condition, we say X is integral. We let D==D(B) denote the family of
dominant integral linear functionals in ^(B)*. For XeD, we let M(X) denote the
one-dimensional p^module, with Reaction defined by

h.v=\{h)v, Aey(B), yeM(X),
^.y=o, Seu^B), yeM(X).

We let ^^^(p'), and set
VTO.^ ̂ (^(B)) ®^ M(X).

Left multiplication gives V^ a ^(g^B)) (or equivalently, g^B)) module struc-
ture. As a g^B)-module, V^ contains a largest submodule not intersectiong the
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subspace lOM^CV^ nontrivially. We let V71 denote the quotient module of
yM(X) ^y ^g submodule. We call V^ the highest weight module with (dominant
integral) highest weight X.

We now focus on the case when B=A, the affine Cartan matrix associated with
the classical Cartan matrix A. From now on, we take 9 (A) to be the corresponding
Lie algebra over C. We also fix a highest weight vector VQ=^=O (by definition, a highest
weight vector is non zero) in the highest weight module V71. Thus we fix y+o in
M(X), and let VQ denote the image of i ® y in V\

In [7], we introduced a Z-form ^z(A) of ^(g(A)), and the Z-form

V,=^(A)^o

of V\ For (JIG^A)*, we let V^ denote the subspace

y^veV^h.v^^h^hey^A)}.

If V^4=o, we call [L a weight ofV^ and we call V^ the weight space (for the weight (A).
We call nonzero elements of V^ weight vectors (of weight |i). Then (see [8]), V^ is
a direct sum

V^ II V^,
HG^(A)*

of its weight spaces. We know (see [7], Theorem (11.3) and its proof) that V^ is
the Z-span of an admissible basis, i.e., of a basis Q. of V71 which is the union of its
intersections Q^=£2nV^ with the weight spaces ofV^ (see [7], § n, Definition (n .2)).
We note that if we set V^=V^nVz, then it is a consequence of our last assertion
that

(6.1) V,= II, V^,.
(XG^A)*

For a commutative ring R with unit, we set V^=R®zVz and

(6.2) V^=R®,V^.

From (6.1) we then have

(6.3) V^= H, V^.
ne^(A)*

Of course, in this direct sum, it suffices to let [L vary over the weights of V\
Similarly, the Z-module I)z(A)==df9z(A)nI)(A) spans I) (A), and for each

root <zeA(A) the Z-module Qci=^Qz(A.)^Qa spans 9". Moreover, we have

I)(A)-COO^z(A)

a^c^aL ^A(A),
and 9z(A)=I)z(A)®^n^az.
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If R is a commutative ring with unit, and if we set

I)R(A)=R®zI)z(A) and 9^=R®z9L
then Q^A)=^{A)@^Q^

We also note that if a is a Weyl root then c^, as an R-module, is isomorphic to R,
while if a is an imaginary root, then Q^ is a free R-module of rank {. When
considered as an R-module, ^(A) is free, of rank ^+ i . We also note that

(6.4) fc -̂̂ g,,, 9 "̂,9L if J+o,
aGA(A)

while

(6.5) 9R(A)o=I)R(A)®^U^ g°R.
aEA(A)

Alternatively, we have
a^A^^g^A)).

We note that Q^(K) acts on V^.

Proposition (6.6). — Let {^J^= 1,2,3,..., ^ ^ Cauchy sequence in Q^{A) (relative to the
norm \ \ of (5.2)^. Then for each yeV^, the sequence of elements x^.v in V^ is eventually
constant.

Proof. — As we noted in [8], § 10 (and as is easily seen from the definitions), each
weight [L of V^ is of the form

(6.7) ^X-^S^, ^o, ^EZ.

Also, we set gz(A)=9z(A)®ZD

9^(A)=R®z9z(A)
%(A)=I)z(A)®ZD
%(A)=R®,%(A),

and note that if X(D)eZ, then VR is a module for the R-Lie algebra (^(A). From
now on, we assume X(D)eZ (so D acts on V^). We set

^=={ve^\D{v)^(D)+j)v},

^=V;-nV,,

V^=R®^V^, j^o.jeZ.
f+l- s /
i==l

We say that the weight ^ of V5' has D-levelj, in case [JL==X— S ̂ a,, and —k^^=j;
then, thanks to (6.7),
(6.8) V^= II V^,v / 3 (x=weight IA9

ofD-levelj
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and therefore

(t.9) vl=,u„v,''.

Vj-=C8),V,;,,

v^uv^,
Vi=U^^.

Indeed, the first equality of (6.9) follows from (6.8) and the fact that V^ is a direct
sum of its weight spaces. The second equality follows from (6.8), (6.1), and the fact
that V^=C®zV^z. The third equality follows from (6.1) and (6.8), and the
fourth from the third. Also, we have

(6.10) 9R(A),V^C^,R,

as one can check directly.
To prove the proposition, we may, thanks to the fourth equality of (6.9),

assume yeV^R for some j<^o (in Z). Then, since {^^2,3,... ls a Cauchy
sequence, we may choose HQ so that for all H^HQ we have:

_ _ < /̂
x—x, e 11 CtR(A),.n "o i^x)^^ /l

But from the last equality of (6.9), and from (6.10)3 we have

9R(A),.V^=o if i+j>o.

Thus, for n>_ HQ,

xn^=X^V,

and this proves the proposition. •
If ^eg^A), let {^n}n=i.2,3,...5 be a Cauchy sequence in 9R(A) such that

lim x^=x. Then for veV^ the proposition implies that x^-o is eventually constant.
It is easy to see that this constant value is independent of our choice of Gauchy
sequence converging to x. We set x.v equal to this constant value, and in this way we
obtain a gR(A)-module structure on Vp. We let

^:9R(A)->EndVR

denote the corresponding representation of QR(A).

Notational Remark. — We also denote the restriction of TCp to (^(A) by TT^.
When R=C, we write ^ for TCR and Q° (A) for g^A).

Proposition (6.11). — If XeD and X(A»)=t=o for some z=i,...,^+i, then
i^ : Q'^K) ->End V^ is injective.
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Proof. — Choose a basis of V^ consisting of weight vectors and order this basis
so that the vectors in any given weight space appear in succession. If XEQ^A), we
may write x as

x=x^+ S,^,
' o£A(A)

where ^e^(A), and ^eg^ ^eA(A), and all but finitely many x01 with <zeA_(A)
are non-zero (however, infinitely many xa with ^eA^(A) may be non-zero). Relative
to the basis of V^ which we have just constructed, -n^^x) is represented by an infinite
matrix with a natural block decomposition, each block corresponding to a pair of
weights. Then the transformations 7^{x^), T^W, aeA(A), correspond to various
mutually distinct blocks of the matrix representing TC^). Thus, if 7^{x)==o, then
nx{x^==o and '^{xa)=o, for all ^zeA(A). Thus, if ^ is not injective, we may
assume nx[x)=o where either xei)(A) or xec^ for some ^eA(A), and x^=o. We
now show:

(6.12) If TT^ is not injective, then n'>'^x)=o for some non-zero element x
in 9°, aeAw(A).

By the above remark, we may assume Tcx(J^)=o for some j^=)=o and either
j^e()(A) or ^eg", ^eAi(A). Also, ^ is a nonnegative linear combination of
^i? • • • 5 ^ + r Hence A^kernel TC\ since X(^)^o for all z = = i , . . . , / '+i , and X(^)>o
for some z = i , . . . , / '+ i . It follows that if either ^eI)(A) or j^eg", aeAi(A), j^+o,
and TCX(Jy)=o, then one of the elements [ y, ̂ ], i= i, ..., ̂ + i, is non-zero. Since
(kernel 7^)09 (A) is an ideal, we obtain (6.12).

Thus, assume x is a non-zero element in g", aEA^(A), and 7^{x)==o. We
will show TT^ is then identically zero, and this contradiction will prove the proposition.
First, we will show we may take a to be a simple root a = a^ for some i==i , ...,/ '+!.
Toward this end, we first recall that in [7], § 6, we defined for each &eA^(A), an
automorphism ^ of 9z(A), by

5^ = exp (ad ^) exp (— ad ^) exp (ad ^).

Of course we may also regard ^ as an automorphism of Q (A), and then by
Lemma (6.9) in [7], we have

(6.13) ?,{h)==h-b{h)h^ 6eA^(A), AeI)(A),

where h^=2h[fa{b^ 6), for &eA^(A). On the other hand, for each i==i, ...,/ '+!,
we define a linear automorphism

^(A^I^A),
by
(6.14) X(r^))=(r,X)(A), AG^(A), XG^(A)*.

A direct computation, using (3.3) (i.e., the definition of r, on ^(A)*) then shows that
r,{h)=h~a,(li)h, z==i, ...,^+i, AGy(A).

218



THE ARITHMETIC THEORY OF LOOP GROUPS 43

Comparing with (6.13)3 and setting ^==^, z=i , . . . , ^+ i , we see that
?^)=r^), z== i , . . . ,^+i , AeI^A).

Thus, if w==r^ ... r-eW, and if we set S=^ . . . ? • , then
(6.15) a5(A)=^), Aey(A).

From this, from the fact that 3} preserves 9z(A), and from the fact that ^ is primitive
in 9z(^)? ^or eac!1 ^^wG^)) we easily obtain
(6.16) ^)=±^,, ^A^(A)

(here, we only need ^(g^^g^, but we will use the stronger assertion (6.16) later
on).

Now we are assuming 7I;x(^)==o for some non-zero ^eg0, ^GA^(A). We
choose weW such that w{a) equals the simple root ^. Then, by (6.16), we have
S^A^eg01. On the other hand, 7^x(^)==o implies ^(Z{x))=o, since kernel n^ is an/^/
ideal in 9(A); i.e., we have shown that if kernel TT +o, then for some i=i, . . . 5 ^ + 1 5
we have cf1 C kernel TC\

We let 6 C { i , . . .,^+1} be the subset of all j such that c '̂ ̂ - kernel TT\ We
let 6' denote the complement of 6. We shall now prove that 6 is empty. If not, we
may choose ie 6, jeQ\ such that
(6.17) Ay+o

(we have assumed g ==Q (A) is simple). We let [6] denote the set of all roots aeA(A)
which are linear combinations of the a^ with meQ. We set

/ - n 9^
a(=A+(A)-[6]

and we note that / C kernel TI;\ But by (6.16) and (6.17) we have

w^/'
Hence cf1' C kernel TT\ and this is a contradiction. Hence 6 must be empty.

Thus Q^ C kernel 7r\ for all i == i , . . . , / '+1. But then g- ̂  == ̂ (9^) (by (6.16))
is contained in kernel 7r\ for all i=i, ..., ̂ +i . Since the elements ^, ^,
z=i , ...,/ '+! generate g(A), all of g(A) is contained in kernel n\ i.e., we have shown
that if TC^ is not injective, then TT^ is identically zero on g(A). But then 7^x(^)=o,
for i==i, .. ., / '+I? and hence X(^)=o, i=i, . . ., ^+ i - This is a contradiction, and
hence n^ must be injective. •

7. Chevalley groups.

From now on we make the following assumptions and notational conventions:
We let Q (A) denote the Kac-Moody Lie algebra over C, corresponding to the affine
Gartan matrix A. Until § 163 no restriction will be made on k, except in the first part
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of § 9. We assume XeD satisfies X(A,)=)=o for some i=i, . . . , / '+i . Otherwise we
continue with our earlier notation; e.g., 9/<;(A)=^®z9z(^L)•

For each aeA^(A) we have defined (see § 4) Sa^L ^d we now also let ^
denote I®Soe9^::=^(x)z9S• Now let XeD. Then we have seen ([7], Lemma (10.4))
that for all yeV\ there exists a positive integer r such that
(7.1) ^..y=o, z=i, ...,^+i.

In particular, this holds for yeV^, and hence for veV^. Now, for ffeA^(A),
^/7x!e^(A) maps V^ to itself (see [7], § n), and hence, for any commutative
ring R with unit, ^/n! defines an endomorphism ^(^/^!) ofVj^. Indeed, we obtain
a representation n^ of ^R(A)=^R®z^z(A), in V^. In particular, this is true
for R=A.

We note also that a similar situation holds for the adjoint representation. As
usual, for ^, Y]£9(A), we set ad(^)(73)==[^, T]]. We then obtain a corresponding
representation of ^(g(A)) which we still denote by ad. For example, if i;, 7]eg(A),
then

72-times

ad(^)(7])=RiT^R,v3]...]].

Then ad(^/%!) maps 9z(A) to itself, and hence for any commutative ring R with unit
we define an endomorphism ad^^/Tz!) of 9a(A). Indeed, we obtain a represen-
tation ad^ of ^(A) on 9R(A).

For sek, we then have from (7.1) that

%±a.M=dlJ^"^(^«,/»!), i= l , . . . , f+ l ,

is a well-defined endomorphism of V^. Moreover, we have

(7-2) •)L±ai{sl+s2)=l±ai^l)l±ai{s2), S^ S^k, Z=I, ...,^+I.

Thus each ^^.(^) has an inverse (namely ^^.(—j-)) and hence /^•(•y) ls a ^-vector
space automorphism of V^.

We let End^(V^) (resp. Aut^(V^)) denote the ^-vector space endomorphisms (resp.
automorphisms) of V^. For ^eAut^(V^) and BeEnd^(V^) we let Ad(^)(B)= xBx~1.
We shall show that, for ^eg^(A),
(7.3) Ad(^,,M)(^(^))=j^n7^,x(ad(^^./n!)^) (finite sum),

sek, z= i , . . ., ̂ +i .

We note that only finitely many of the expressions ad(^^./^0(S) are non-zero.
Thus, for &eA^y(A), we may define an endomorphism @^,(^) of 9^(A), by

^)(y= Z; ^ad(^!)(y, ,̂ z=i, ...^+i.
n^O

Analogous to (7.2) we have

(7.4) ^1+^=^1)^2), ^s^k, z=i, ...,^+i,

^^(?
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and so ^{s)~~1 =^(—s), and ^{s) is an automorphism of c^(A). We may rewrite
(7.3) as

(7.3') Ad(^^.M)(^))=^(^^.M(S)), ^9,(A), sek, i=i, ...,^+i.

We prove (7.3') by regarding it as a formal identity in s, and computing the deriva-
tives of both sides with respect to s. The (formal) yzth derivative of the left side is

(7.5) Ad(^))(^((ad^,,)"(50)),

and the (formal) rath derivative of the right side is

(7.6) ^±«.M((ad^,.ra)).

We see that the expressions (7.5) and (7.6) are equal when j==o. This implies (7.3'),
and hence (7.3).

Now for each z==i , ..., ^+15 we define ^eAut^V^) by

^^(^X-^--1)^1)-
/^/ /N»»

On the other hand, in § 6, we defined automorphisms r^, ^eA^(A), of 9z(A).
Tensoring with k we then obtain automorphisms of Qjc (A), which we again denote by
5^. As in § 6, we set ^==?a., i=i, . . . , ^ + i - Clearly

^=^(i)^_,(-i)^(i),
and hence (7.3') implies
(7.7) Ad(r^00)=^(^)), ^€9,(A), t=i, ..., f+i.

From this and from (6.16) we have

(7.8) Ad(^)(^(y)=±^(^.(a)). i=i, ...^+i, ^A^(A).

If
(7.9) z£;==^...^.eW,

we set
(7.9') ^=^...^.

A priori, ^x depends on the expression (7.9) for w in terms of the r/s. In any case,
we have from (7.8) that
(7.10) Ad(^)(^(y)=±^(^), ^A,,(A).

Now if ^eA^y(A), then a==w[a^ for some weW, and z=i , . . . , / '+i . Thus, if
we write w as in (7.9)3 and then consider the corresponding w^ given in (7.9'), we
have from (7.10) that
(7.11) ^(y=±Ad(^)(^(^.)).

It then follows from (7.1), that we have the
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Lemma (7.12). — For all veV^, ^eAw(A), there exists an integer r>o, such that

(P-'S) ^=o.

Thus, if we set

(7.i4) XaM- S ̂ ?0, sek, aeA^(A),
w^' o

then the sum on the right is a well-defined element of End^(V^). Moreover, (7.11)
implies

XaM-^Xa,^)^)^

and it follows from (7.2) that
(P-^) Xa(^+•y2)=Xa(•yl)Xa(•y2). ^A^(A), ^, S^k,

and of course this implies, as before, that ^{s) e Aut^Vj^), for each jeA.
We have:

Lemma (7.16). — Let aeA(A). For all yeV^, there exists an integer j'o, so that if

j^LJo an^ ^=fl(a)+Jl^ then ^.y==o.

proof. — This lemma is a consequence of (6.9), (6.10), and the fact that if
a==a^)+JL, then ^eg^A)^.. •

Corollary. — Let aeA(A). For all veV^, there exists an integer jo, ^0 ^^ z/ j ^ j o
and a == a (a) +J^ ^^

(7• I7) XaM-^-^

for all sek.

In § 5, we have set .^R=R[K t~1]} equal to the ring of all formal Laurent
series with coefficients in the commutative ring R with unit (see (5.9)). We have
also, in § 5, defined a norm | | on JS^. We let

0==^={xe^\\x\<_i}
^=={xeQ | \x\<i}
^=^—^.

Then (9 is the ring of formal power series in J% (the "integers" of JS^), the set Sft is
the (unique) maximal ideal of 0, and Q* is the group of units in 0.

We will now consider oSf^; i.e., we take R to be the field k (which is not, we recall,
necessarily of characteristic zero). If we are given a{t)e£^, where

(7.18) o(Q=S%.^, q^k,
J^Jo

and if aeA(A), we define •^W)=-^W)eAut^} by
(7.19) ^(^(<))=%a(^W)=,^.^Xo(a)+^,•)•

We drop the superscript X when there is no danger of confusion.
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By the Corollary to Lemma (7.16), )Ca(<^)) is a well defined automorphism
of V^, and using the fact that

Ro(oc) +^ 5 ^a(a) +J" t] = 0? J? / E^

and using (7.15), we obtain

(7.20) Xa(^))Xa(^W)=:Xa(^)+^W), <^) ̂ , ^ '=i ,2, aeA(A).

The following definition is fundamental in this paper:

Definition (7. 21). — We let G = G^ = G^(A) C Aut V^ denote the subgroup generated
by the elements /a(^)), aeA(A), o(^)e^. We call G the (complete) Ghevalley group
over k (with respect to n^).

For aeA(A), and cr^GoS^ with (?^)=t=o, we set

(7.22) ^^W)==^a^W)=Xa^W)X-a(-^W- l)Xa(^W),

W))-Wt))=w^a{t))w^i)-1.

We drop the superscript X, when there is no danger of confusion. Also, for
^eA^(A), sek, j+o, we set

(7.23) ^M=^aM=ZaMX-a(-^-l)XaM,

^M-^)^^)^!)-1.

Again, we omit the superscript X when there is no danger of confusion.
We then have the following important

Definition (7.24). — We let J^C G denote the subgroup generated by the elements Xa^W)
where either aeA^(A), a{t)e(P or aeA_(A), a{t)e^, by the elements h^a(t)), a{t)E0\
aeA+(A), and by the elements h^^{s), self (^=^—{0}). We call ^ the Iwahori
subgroup of G.

Remark. — Obviously our definition of Iwahori subgroup is analogous to, and
motivated by the corresponding notion introduced by Iwahori, Bruhat and Tits
(see e.g., [5]). We shall make the relationship more precise later on (see §§ 13, 14,
below).

8. The adjoint representation.

In § 7 we defined, for each aeA^(A), a one-parameter group of auto-
morphisms /aM? •yE^ of Vj^ and a one-parameter group of automorphisms @^(^),
sek, of g^(A). In analogy with the way we defined the automorphisms Xa^WL
aeA(A), a(^)e,S^ in terms of the ^M? we now wish to define automorphisms ^(^W)
of g^(A), in terms of the ^{s}. We also wish to show that the Xa(<^)) and WJ^[t}}
are related by an appropriate analogue of (7.37).
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First we note the following generalization of (7.3') (the proof being the same
as for (7.3 '))^

(8-') Ad(^(.))(^(S))=^(^(.)(S)), ^9.(A), ^eA^(A), sek.

Next, we note that relative to the norm | | on C^(A), defined in § 5, the auto-
morphism ^(J), ^eA^(A), sek, of g^(A), is bounded; i.e., there exists G>o so that

ITO(^C!|^|, for all ^g,(A).

Hence ^{s) has a unique extension to a bounded operator on g^(A), and we denote
this extension also by ^(^).

Now let (7(^)ej2^ be given as in (7.18), and let oceA(A). We define the
endomorphism ^{o{t)) of 9^(A) by

(8.2) ^(^W)-^^^,^.).

Of course we must show that ^{a{t)) is well defined. But if 7]eg^(A), and if for
i^Jo, we set

^^^Ao^^^^^^
then the sequence T],, z==^,j'Q4-i, ... is convergent (relative to [ |). Moreover,
from (7.4) we have

(8-3) ^(^))^a(^W)=^a(^W+^)), <^)^ i=^^ aeA(A).

Thus ®a(^))-l=^a(-^)), and @a(^W) is an automorphism of ^(A), for
aeA(A), a(^)eJ^.

Actually, for the same reason that ^((r(^)) is well defined, we have:

(8.4) Let aeA(A). If ^(t), z = = i , 2 , ..., is a sequence in oS ;̂, and if
lim^)=(^)eJ^

(relative to the norm [ [ on oS^), then for all ^eg^A), we have
lim,(^(^)))(^=(^(o^)))(7i)

(relative to the norm | [ on g^(A)).

Similarly, from the Corollary to Lemma (7.16), we have

(8.4') Let aeA(A). If CT^), z = = i , 2 , . . . is a sequence in oS^, and if
lim^(0=^)eJSf,

(relative to the norm ] | on oS^), then for all yeV^, we have

Hm.z,(^^))(.)=^(^))(.),
in the sense that, for i sufficiently large,

Xa(<^))M=Xa(<^))W.
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We note that Lemma (7.16) implies that the action of c^(A) on V^ is continuous
in the sense that

(8.5) If ^, i== i, 2, . . ., is a sequence in C^(A),
if lim^ ^=^eg^(A) (relative to the norm | |),
and if yeV^, then for i sufficiently large,
^.y=^.y.

Now let oceA(A), a{t}eS^^ and choose a sequence a^t), i = i , 2 , . . . , in
k[t,F1], such that lim,a,{t)==G(t) (relative to | |). Then for ^eg^(A), yeV^,

Adxa(^))(^^))^=lim,Adxa(^))(^^)).^ by (8.4')
=lim,^(^(^))y.^ by (8.1)
=^(lim,(^(^))S)).^ by (8.5)
=T^(^))^, by (8.4),

and we thus have proved:

Lemma (8.6). — If aeA(A), a{t}e^, and ^eg^A), ^72:

(8.7) Ad Xa^W)(^(S))=^(^(^W)^).

When there is no danger of confusion, we will write oSf for JS^;. We then have

ft—9^A).

For each aeA(A) and (7(^)eJSf, we define an automorphism ^{a{t)) of 9j^(A) by
^(cT^))==exp(ada(^)EJ.

On the other hand, as we observed in Remark (5.8) (see (5.10)) we have the
central extensions (for R==A):

(8.8) a) o->c,-^(A)^^o,

b) o-^->9^(A)^9^(A)->o.

Moreover, as we noted in Remark (5.11), we have

Q^A)=Q^@k==Q^A)@k,

and S ;̂ is just the projection onto the first factor. From this, one easily sees that

%(exp q ad Sa(a)+^(73))==(exP ? ad ̂ ^(^(Y])),
T]£^(A), jeZ, aeA(A), qek.

Then, from this, from (8.4) and its obvious analogue for S^{a{t}), and from the
continuity of S^, we obtain:

(8.9) WMWW=^Mt))W. ^A(A), a{t)e^ Tjeg^A).
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Recall from § i, that 9^(A) is said to be perfect if

(8.10) [^(A),^(A)]=^(A).

Lemma (8 .11) . — If x : 3^ (A) -> 9j^(A) ^ a Z^ algebra automorphism (regarding
9j^(A) aj a Z^ algebra over k), and if 9^(A) is perfect^ then there is at most one Lie algebra
automorphism x' : 9^ (A) ->• 9^ (A), J^A ^A^

(8.12) S^oX'=Xo2^.

/^/ /^/

Proof. — Assume x" : 9^(A) -> 9^(A) is a second automorphism satisfying (8.12)
(with x" in place of x'). Then set Xo==x"o (x')"1, and note that

/>^ r^
CO^ 0 XQ == CO^ .

It then follows from Lemma (1.5) and our assumption that 9^(A) is perfect ((8.10)),
that XQ == identity. •

We let G^ j^=G'ad ^?(A) CAut(9^(A)) denote the group of automorphisms
generated by the automorphisms ^(o-(^)), creA(A), (r(^)eoSf. We let

G,,(A)CAut(^(A))

denote the subgroup generated by the automorphisms ^{a{t)), aeA(A), a{t)e^.
For any automorphism ^eG^(A), we have that W maps Cj, into itself (and in fact
is the identity on c^;, since Cjc is in the center of 9^ (A)), and hence ^ induces an auto-
morphism 3£ of 9^(A); i.e., there is a unique automorphism ^ of 9^(A) such that

(8.13) %(^(73))=^(%(7])), ^^(A).

In this way we obtain a homomorphism
0':G^(A)^G^(A),

where for @<eG^(A), the image ^==0'(^) is defined by (8.13). But then by
(8.9) and the fact that (by definition of G^(A)) the ^J^)) generate G^(A), we
have that O' is the unique homomorphism from G^(A) to G^^(A), such that

(m(^)))=^a(^)), aeA(A), a{t)e^.

Then, by Lemma (8.11), 0' is injective. Thanks to the fact that (by definition of
Gadjs?(A)) the ^((r(^)) generate G^j^(A), it is also surjective. Thus if 9^(A) is
perfect, we have:

Lemma (8.14). — There is a unique group isomorphism 0': G^(A) -> G^^(A)
of G^ (A) onto G^ ̂ , such that

^'W^W)-^W, aeA(A), <r(()e^.

Remark. — We have given the proof except to note that the uniqueness follows
from the fact that the ^(^W) generate G^(S).
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9. Schur's Lemma and an important identity.

For the first part of this section we consider the special case when k == C. We
fix XeD and, as specified at the beginning of § 7, we always assume that X(^)=f=o for
some z = = i , . . . , ^ + i - From Proposition (6.11)3 we then have that

TT^Q^A) —EndV^

is injective, and we therefore identify g^A) with its image ^(g^A)). In Defi-
nition (7.21), we introduced the group G=G^CAutV\ We now prove:

Lemma (9.1) (Schur's Lemma). — If ^eEndV^ commutes with x, for each XEQ\A),
then g is a scalar multiple of the identity.

Proof. — In [7], § 12, we proved the existence of a positive-definite, Hermitian
inner product { , } on V71, and of an involutive, conjugate-linear, anti-auto-
morphism * of Q (A) (where for ;ceg(A), we let x* denote the image of x under *) such
that the weight spaces of V^ are mutually orthogonal, such that

(9.2) {x.v^v^}={v^x\v^}, v^v^eV^, xeQ(A),

and such that

(9.3) u^Ar^u^A).

Moreover, we saw in [7], § 12, that * has an extension to an involutive, conjugate-
linear, anti-automorphism (again denoted by ilt) of ^{Q(A)). Again, if UE^{Q(A)),
we let u* denote the image of u under *.

Now,

(9.4) V^^A)).^,

since, e.g., V^ is a quotient of V^. Thus, to prove Lemma (9.1), it suffices to
prove that g.Vo is a scalar multiple of UQ. But for this, it suffices to prove that for any
weight pi=)=X of V\ and for y^eV^, we have

(9.5) {g^Q,V^}=0.

However, we may write v^ as

V^==U.VQ,

where ^e^u'^A)) is a linear combination of products of elements of u~(A).
Thanks to (9.3), u* is a linear combination of products of elements of u^A), and
hence

(9.6) U\VQ=O.
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But then

{^o^J^.^^o}^^-^.^)^}. by (9.2)
=={g'{u\Vo),Vo}, since g commutes with g(A),
=o, by (9.6),

and this proves (9.5), and hence the Lemma. •
In § 7 (formula (7.20)), we showed that Xa^W) is additive in a^t). We shall

now use Lemma (9.1) to prove a second important identity for the /a^W)- Thus,
let a, (BeA(A), with a+(B+o, and let ^==^(^), z = = i , 2 , be elements of ,S ,̂ where
we now allow k to be an arbitrary field. For automorphisms A, B of V^, we let
(A, B) denote the commutator ABA"^"1.

Lemma (9.7). — We have

(9-8) (xa(^i), vM)= n^a+^te^l^).
where the product on the right is taken over all roots ia+j(3, z.jeZ, ij>o, arranged
in some fixed order, and the c^s are integers which depend on a, (B, and the fixed order ̂  but not
on k, (TI, erg. Furthermore c^ satisfies

[Ea5Ep]=^^lEa+35

i.e., the integer c^ coincides with ±(r+i), in (4.1).

Proof. — First, assume CTI, erg are Laurent polynomials in t and t~1,
(9-9) <7i==S^

^-Sj^,

where the sums on the right are finite, and the p / s and q/s are complex numbers.
We let R=Z[^.,^.], denote the ring obtained by adjoining the j&/s and q/s to Z.
Then V^CV^, and the automorphisms ^(<7i) and 73(03), defined in (7.19), leave V^
invariant.

Now thanks to (8.7) and Lemma (8.14), we have
^>'oAd(xa(^))=^(ai),
0'oAd(^))=^).

Also, thanks to [21], Lemma (15), page 22, we have that Lemma (9.7) holds
for ^(^1)5 ^p(^a) i11 P^ce of Xa(^i)? Xp^), respectively. It then follows from
Lemma (8.14), that Lemma ̂ 9.7) holds for ^(c^), %^ in place of ^(oi), ^2).
respectively (note that g^(X) is perfect, since k=C). Then it follows from
Lemma (9.1) that Lemma (9.7) holds for ^(di) and ^(03) modulo scalars (given
our special choice of ^i, erg). Thus there is a complex numbers y'^^i) ^a)? svic^
that

(Xa(^l). Xp(^))(^X^a+^(-^^l^))==T(^l. ^2)1.
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where I denotes the identity operator. However, the left side of this equation
leaves V^ invariant, and defines an automorphism of V^. It follows that y^i? ^a)
is a unit of R. Now choose the j^-'s and q^s to be algebraically independent over Z.
Then we must have y^i? (72)=± I* Specializing the p^s and q^s to be zero, we
find Y(<Jl3 <72)= I- Again, by specializing, we see that in fact Lemma (9.7) holds
over any field ^, provided c^, 0-2 are of the form (9.9)5 with the expressions on the
right being finite sums. But then, thanks to (8.4'), we obtain Lemma (9.7). •

10. Relations with the work of Matsumoto, Moore, and Steinberg.

In this section we wish to apply (7.20) and Lemma (9.7) to show that G^
is a central extension of a classical Ghevalley group. More precisely, if A is a
classical Gartan matrix, we let Gj^ =G^(A) be the abstract group generated by
symbols ^(^s aeA(A), ^SoS^ so that one has the defining relations:
A) ^(o+T)=^(o)eM, aeA(A), o, TE^,,

B) (^(^),^(o,))= ^ ̂ (̂ ), a+-(B,
ia+j'PeA(A)

(where the order of the right-hand product, and the c^ are as in Lemma (9.7)),
provided A is not the i X i matrix A ==(2), in which case (B) is vacuous. But, if for
any aeA(A) and non-zero ae^, we set ^£^(<y)=^a(a)^a(—-(7-l)«%/((y)5 ^en
for A =(2), we have:
B') ^(^^(TX^-^^^-TO-2),

and finally, if we set h^{G)==w^{a)w^{i)~1, then
C) A,(C7T)=^(<^(T), (T.TCJS^.

Alternatively, if G denotes the Ghevalley group scheme over Z, such that Gp is the
simply connected topological group corresponding to A, then G^,, defined above, is
isomorphic to the group of oS ;̂ rational points of G (see [20]). Moreover, if we
define E(G^) to be the group generated by objects ^(o-), aeA(A), aeoS^, which,
for ^(cr) in place of S^\ satisfy the relations A) and B) (or B'), if A =(2)), but
not G), then clearly there is a unique homomorphism

^:E(G^)->G^,
such that

WaM)-^), ^^ aeA(A).

Moreover, Steinberg in [20], shows that E(G^,) is the universal covering, in the sense
of Moore [i8], of G^,. We also have

Lemma (10 .1 ) . — There is a unique homomorphism

^:E(G^)->G^
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such that

^(X^))-^), aeA(A), OG^.

Proo/'. — If A +(2), then the Lemma follows from Lemma (9.7) and
from (7.20). We are thus left to prove the Lemma in the case when A ==(2). We
let AI denote the 2 x 2 classical Cartan matrix

A,=( 2 -),
V-I 2;

and, as in § 3, we let E^ Eg, F^, Fg, H^, Hg denote the generators of g(Ai).
Similarly, we let E, F, H denote the generators of 9 (A). We then have an
injection L : 9(A)<-^g(Ai), defined by the conditions

i(E)=E,, i(F)=F,, L(H)-Hi;

then i defines an injection

T : C[t, t-^Q{A)^C[t, rl]®9(A,),

where T==I®(., and I denotes the identity map of C[t, r1]. In turn, T induces an
injective Lie algebra homomorphism

^:9(A)^9(Ai).

Using the identification of 9 (A) (resp. of 9(Ai)) with the universal covering of
9(A)=dfC[A t-l]®Q{A) (resp. of 9(Ai)=dfC|>, rl]®9(A^)) given by Theorem (3.14),
we can give a simple, explicit description of T. Thus let c>o be defined by:

.(X,Y)-(X,Y)i,X,Ye9(A),

where ( , ) (resp. ( , )^) denotes the Killing form of 9 (A) (resp. of9(Ai)). As in § 2,
we identify the universal covering of cf(A) (resp. of 9'(Ai)) with 9(A)CC (resp.
with 9(Ai)®C). We then define T by:
(10.2) T(^)-(TC;),^), ^9 (A), deC.

One checks directly that

^(9z(A))C9z(Ai).

On the other hand, if XieD(Ai), then X, the restriction of\ to ^(A), is in D(A), and
every element of D(A) can be obtained as such a restriction. As in § 6, we fix the
"highest weight95 vector VQ in V\ It follows from a result of Kac (see [11] and [8],
Remark on page 61) that ^(9(A)).z/o is the 9(A) module V\ Moreover, from [7],
§§ n, 12, one sees that

Vz=VzinV\
Thus, for any field k, we obtain an imbedding

t(A,Al):G,x(A)^G^(Al).
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To prove the Lemma for G^(A), we must prove relation B'). But this now follows
from the existence of the imbedding L(A,Ai)5 from Lemma (10.1) applied to G^(Ai)
(which we have proved) and from Matsumoto [13], Lemma (5.1) (or Steinberg [20]). •

ii. Relations with the work of Bruhat and Tits.

We now consider the group E(G^ ) defined in § 10. Following Steinberg [20],
we can introduce a BN-pair structure on E(G^). However, here we also follow a
suggestion of Tits and first introduce a donnee radicielle ([4], § 6.1) in E(G^).

Thus, for each aeA(A), we let U^ denote the subgroup of all elements ^(<r),
(reJS^. We set

^(^=XeaMxe-a(-^-l)x;(^, aeA(A), oeJS^{o}=JSf;,

and we set
A;((7)=<(o)<(i)-1, aeA(A), oe^.

We let T6 be the subgroup of E(G^) generated by the elements ^(d), aeA(A),
<T£JS^—{o}==JS^\ We let M^, aeA(A), denote the right coset of T6

M^T^i).

Proposition ( 1 1 . 1 ) . — The system

CP, (U^, M6,),^)

is a donnee radicielle of type A (A), as defined in [4], § 6 .1 .
Thus this system has the following properties (from [4], 6 . i . i ) :
(DR i) T6 is a subgroup of E(G^>), and for each aeA(A), U^ is a subgroup

of E(G^), and U^ contains more than one element.
(DR 2) For a, peA(A), the group of commutators (U^, U^) is contained in the

group generated by the U^+^p for p, qeZ, p>o, q>o and j^a+^PeA(A).
(DR 4) For aeA(A), M^ is a right coset of T6, and one has

u^-^cu^u:,
where ieE(G^) denotes the identity.

(DR 5) For a, Re A (A), and neM^, one has
nV^n-^U^

where r,((B)=(B-2(a, (3)(a, a)-^.
(DR 6) If U^ (resp. U!_) denotes the group generated by the U^, aeA+(A)

(resp. A_(A)) one has T^nU!. ={i}.

Remarks. — We have omitted (DR 3) of [4] since this property only applies to
nonreduced root systems. Also, we note that the donnee radicielle (T6, (U^, M^)^^))
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is generating in the sense of Bruhat and Tits; i.e., T6 and the subgroups U^ generate
^G^)- Indeed, the subgroups U^ generate E(G^).

Proof (of Proposition (11.1)). — (DR i) This is clear from the definitions.
(DR 2) This follows from the definition of the U^ and from B), at the beginning
of§ 10, as applied to the ^(<j) in place of the ^(cr)- Incidentally, though at first
glance B) only applies to the case a+—(3, we note that (DR 2) is in fact a tautology
if a==—(B. (DR4) The first assertion just comes from the definition of M^. For
the second assertion of (DR4), we apply Matsumoto [13], Lemma (5.2) (A):
X6-a(—^)=Xea(—^- lX(o•- l)xea(—^~ l)? ^+o, which follows from the definition
of ^(cy"1). (DR 5) This is just a consequence of (7.2) and of (7.3), {c) in
Steinberg [20] (also, see Matsumoto [13]). (DR 6) We define U^, oceA(A), to
be the subgroup of G^, consisting of the elements ^{o), (re°2^. We let U+
(resp. U_) denote the group generated by the U^, aeA+(A) (resp. A_(A)) and we
let ^ be the subgroup of G^ generated by the elements ^(a), oceA(A), (y<=oS^. We
then consider the homomorphism cp6 : E(G^ ) -> G^ , defined in § 10. We have

<pW)=U,, aeA(A),
^(U^)=U^,
^(T^T.

Moreover, y6 restricted to U!. is injective (see Steinberg [20], (7.1) and Matsu-
moto [13]). Hence, in order to prove (DR6), it suffices to prove TU+ nU_=={i},
where i now denotes the identity in G^,. But this is an easy consequence of the
representation theory of G^ (we can assume TU+ represented by upper, and U_ by
strictly lower triangular matrices), and is well known. •

For fleA^(X), we let
^:v{Ay^v(Ar

(^(A^dual space of ^(A)) be defined by
raW=^-^Wa,

where, as in § 6, after (6.13), we set
^^Ja^a), ^eAw(A).

In Appendix I, at the end of this paper, we shall prove:

Lemma (11.2). — Let aeA^(A), and let [L be a weight of V^, then:

(i) If yeV^ (see (6.2)^), there exists y'eV^^, such that

w^s).v=s-^v\ sek\

(ii) A^), sek* acts diagonally on V^ as multiplication by s^.

(See (7.23) for the definition of w^{s), A^), with aeA^(A), sek*.)
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Recall, that at the beginning of § 7, we assumed X(^) 4= o for some i == i, . . ., ^ -4-1.
It then follows from Lemma (11.2) that ^.(i) is not the identify automorphism
of V^ (just apply ^.(i) to a highest weight vector and use (i)). Hence G^ has more
than one element. But G^ is generated by the elements ^{c), aeA(A), <yeJ^ (see
Definition (7.21)). Hence the homomorphism

Y^G^)-.^,

of Lemma (10.1) is surjective. Since G^+i, as we just noted, we have
(11 .3 ) kernel ̂ +£(0^).

In G^ we let T^ denote the subgroup generated by the elements ^(0), oceA(A),
c-e^*. We let U^, aeA(A) denote the subgroup consisting of the elements ^(o),
CT£^, and we let U^ (resp. U^_) denote the subgroup generated by the U^, aeA+(A)
(resp. A_(A)). The homomorphism Y6: E(G^)->G^ satisfied (and was uniquely
determined by) the conditions

^(X^))-/^), aeA(A), oeJSf,.
It follows that
(11.4) YTC)=U^

^(U^)=U^
Y^T6) =T\

Moreover, thanks to Proposition (11.1), and to Bruhat-Tits [4], Proposition (6.1.12),
we obtain a BN-pair in E(G^), given by the pair of subgroups (B6, N6), where
B^T'U^ and N6 is the subgroup generated by the <(o), aeA(A), (TGJS^. But
then from Bourbaki [3], Theorem 5, p. 30, and from (11.3), above, we have
(11.5) kernel ̂ CT6.

For aeA(A), we let M^ denote the right coset of T^
M^T^(i).

The following proposition is then essentially a corollary of our above remarks and of
Proposition (n. i):

Proposition (n.6). — The system

(T\ (U,\ M^),^)

is a donn^e radicielle of type A (A).

Proof. — Properties (DRa), (DR 4) and (DR 5) follow from the corresponding
properties for (T6, (U;, M^)^^(^), and then applying the homomorphism Y". For
property (DR6), we note that if ^eT^U^nU?., then we may choose g'eVL
and g'^TV^ such that

'¥eig')=vye{g")=g.
233
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Then, thanks to (11.5), we have
g^g^t, te kernel VCT6.

But irLnT'U^^i}, and hence ^'=i. Therefore ^Y6^')^!, where, in this
last equality, i denotes the identity element of G^. This proves (DR6).

It only remains to prove (DR i), and for this, it suffices to show that U^ contains
more than one element. Indeed, if oe^ and CT+O, then Xa( C T )+ I • For if ^(cr)=i,
then ^((T)ekernel Y6. But then, by (11.5), we would have /^(c^eT6, hence
^{G)=^e{•^{a))e^=^{^e), and this is only possible if ^{a)=i (with i now
denoting the identity in Gjs?,). This, in turn, implies CT=O, a contradiction (see
e.g. Steinberg [21], Corollary i, p. 26). •

(n.7). Remark. — It follows from the observations in the proof of Prop-
osition (n.6), that each of the maps

^iW

^^Xa(^)

a^^a) cre^,

is injective.

We let v:J^-^Ru{oo}

be the ^-adic valuation. Thus, if

a= S ^eJS^, a, +0,
i^io 0

then ^^^o?

while v(o)=oo.

For each aeA(A), we define functions
<:U^RU{O)},
v^:U^Ru{a)},
v,:U,^Ru{oo},

by <(X^))==^(XaM)=^(^a(^)=^M, ^^•

We let M^ denote the right coset of T,
M,=T<(i).

It is then known that the system
(T,(U,,MJ,^)

is a donn^e radicielle of type A(A) (see Bruhat-Tits [4], § 6.1.3). We make the
notational convention that ^ (resp. U;, resp. M;) may denote any one of v^, v^ or v^
(resp. U^, U^ or U^, resp. M^, M^ or MJ. Similarly, we let T denote either T, T^
or T.
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We now prove:

Lemma (n.8). — The family (^c)aeA(A) ls a valuation in the sense of Bruhat-
Tits [4], § 6.2, of the donnee radicielle (T*, (U^, M^)^^)).

That is, the (^)aeA(A) satisfy the following conditions (each ^ mapping U^
into Ru{oo}):

(Vo) For each aeA(A), the image of v^ contains at least three elements.
(Vi) For each aeA(A) and ?ERu{oo}, the set U^^v^""1^, oo]) is a subgroup

of U; and one has U;^={i}.
(Vs) For each aeA(A) and m eM^, the function

u->^_^u)--^{mum~1)

is constant on V*_^—{i}.
(V3) Let a, (BeA(A) and z,jeR; if (B^—R^a, then the group of commu-

tators (U^, Up ) is contained in the group generated by the
TT*
^poi+q^,pi+qp

where ^, q are strictly positive integers and ^a+?P^A(A).
(V5) If aeA(A), ueU^, and u ' , ^'eU^^, and if z/' ^"eM^ then one has

^aM———^M.

Remark. — We have omitted (V4.) of [4] since that condition only applies to root
systems which are not reduced.

Proof. — For G^ and the donnde radicielle (T, (U^, MJ^eA(A))? wlt^
valuation (vJaeA(A)5 tne Lemma is proved in Bruhat-Tits [4], (6.2.3) (&). But then
consider the homomorphism

^.^(G^)-^.

As we noted in the proof of Proposition (11.1)5 we have 9(?(U^)=U^ 9^ ('?)==!',
and similarly, we have (pe(M^)=M^. Moreover, we clearly have
(11.9) W=^W), xeV^.

Thus, (Vo) for E(G^>) follows from the corresponding assertion for G^ . By (11.7),
(p6 restricted to U^ is an isomorphism onto U^. Hence (Vi) for E(G^) follows
from (11.9) and the corresponding fact for G^. We now consider (Vs) for E(G^).
Thus, let meM.^; then the function

u^^^—^mum-1), ^eUl. <,—{!},

is the same as the function
u^.^W-^W^W^m)-1),
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which is constant as ^(u) varies over U_a—{i}, and hence as u varies over U!_a—{i}.
Property (V3) for E(G^) follows from (B), at the beginning of § 10, but applied to
the ^((?) in place of the 3£^, cre S^ oceA(A). Finally, (V5) follows for E(G^)
from the corresponding property for G^,, and an argument analogous to the one used
to prove (Vs) for E(G^) (assuming (Vs) for G^).

Finally, we come to the proof of Lemma (n.8) for the (^)aeA(A) ^d G^.
Here we use the homomorphism T6: E(G^)->G^. Thanks to (11.4) and (11.7)
we have that for each oceA(A), T6 induces an isomorphism from U^ onto U^, where,
recall,

^(X^))-^), ^^.

Since we clearly have
(n.10) WW)=<M, xeU^

we obtain (Vo) and (Vi) for G^ from the corresponding properties for E(G^).
Property (V^) for G^ follows from (9.8). Property (Vs) for G^ follows from (11.4),
(11.10)5 from the observation, made above, that Y6 induces an isomorphism on U^
(see (11.7)), and from (Vs) for E(G^). Similarly, ^5) for G^ follows from ^5)
for E(G^), from the facts just noted, and from (11.5)5 which implies

CF^-^M^M^.

12. Computation of the symbol.

We fix XeD (==the family of dominant integral linear functionals in I)6 (A)*,
as in § 6). As specified at the beginning of § 7, we assume X(^)=t=o, for some
i= i, ..., /'+ i. We consider the highest weight module V\ and fix a highest weight
vector VQC^. We also let VQ denote the element i®VQeV],=k®V^ (where k
continues to denote a field, not necessarily of characteristic o). As we observed
in (6.7), every weight pi of V^ is of the form

£ + 1
(JL=X— S n,a^ ^^:o, n,eZ.

i==l

We define dp (pi) (the depth of pi) by
(+i

dp((A)=^S^

(see [7], proof of Lemma (10.4)).
We let y^, v^y ^2, . .., y^, ... be a basis of V^ consisting of vectors in the weight

subspaces V^, pi a weight of V71. We assume our basis ordered so that if ^eV^,
^.eV^, and i<j, then dp(pi)<^dp(pi'). Moreover, for each weight [L of V\ we
assume that the basis vectors in V^ appear consecutively. We will call such a basis
coherently ordered. We note that, with respect to a coherently ordered basis, the
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elements of u^ (resp. u^~, resp. I^(A)) are represented by upper triangular matrices
with zeroes on the diagonal (resp. by lower triangular matrices with zeroes on the
diagonal, resp. by diagonal matrices).

We let -^jC^ denote the subgroup generated by the elements /a^W)? where
either aeA^(A), a(f)e0, or aeA_(A), (j(^)e^. From the observations of the
previous paragraph, and the definition of ^a^^)) (see {7fI9)) we l^ve:

(12.1) With respect to a coherently ordered basis, the elements of <^j are
represented by upper triangular matrices with ones on the diagonal.

Next, we have

Lemma (12.2). — Let

(12.3) ^ )=yo+^+-- -+^+-- - .
q e k y qo^=o, be an element of O*. Then., for aeA(A), h^a{t)) can be written as a product

- W^))=^a(?o). X^A-

Proof. — We set

^) - l=?o+^+•.•+^+•••>

where q'^k, (Jo^o, and in fact,

?o==^1-
Also, we set

p{t)== 0(0-^
q{t)==a-\t)-q,.

We then have:
(12.4) ^(a(^)=^(a(^(i)-1 (see (7.22)),

=7a(^W)z-a(-^W- l)Xa^W)^(I)- l (also by (7.22)),
=Xa^W)Xa(?o)%-a(-?W)X-a(-?0-l)Xa^W)Xa(?o)^a(I)- l

=Xa^W)X-a(-?W)xa(?o)Xa(?o)X-a(-?0-l)Xa^W)Xa(^)^a(I)-l

=Za^W)X-a(-?W)xa(?o)Xa^W)wa(?o)Aa(?o). by (7.22),

where for h, g in a group, we set g^^hgh'1. Also, a direct computation using (7.3),
(7.11), and the following consequence of (7.11) already noted in § 7, preceeding (7.15):

XaM=^(^)(^)~\

shows that
(12.5) Ad ^M(^(^)=j/n^(ad(^!)(S)), (finite sum),

sek, ^eAw(A), ^ftc(A).
But then, another computation, using (12.5), yields

Ad ^(?)(^(^))———^2^(^-a(a)+,^
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for qek*==k—{o}, fl==fl(a)+jieA(A), j+o in Z. From this last equality, we have

UPW^^-^^PW,
Similarly, ^-^-q{t)Y-^-^=^{(^q(f)), and it thus follows that

0) Xa^W)X-a(-yW)xa(^Xa^Wra(?o)=

W Xa^(^)(X-a(-y(^)x-a(ffol)w-a(-^ol))Za^(^)wa(^

where if aeA+(A), the expression (i) is clearly in J^j, and if aeA_(A), the
expression (ii) is clearly in J^j. Calling 7 the common value of (i) and (ii) and using
the expression (12.4) for h^{a(t)), we have

Wt))=M^,
and this proves Lemma (12.2). •

Corollary. — For a{t)e(P*, with

<^)=?o+^+...+^+...,

and for aeA(A), we have

(12.6) Wt))^=q^Wv,.

Proof. — We note that h^o) ==h^^qo), and apply Lemma (11.2),
Lemma (12.2), and (12.1). •

We now wish to compute

^^Wr1)^^-1)-1^^^)-1.^, oceA^(A), ^)e^.

Thanks to (12.6), it suffices to compute
W^-W-1)-1^.

But we write cj{t) as in (12.3), and then, as we noted in the proof of Lemma (12.2),
we have

^) - l=?o+^+.••+^'+..., q^q^\ q^k.

We write a for a{t), and recall that we defined (in the proof of Lemma (12.2))
^), q{t) by

^==9o+PW,

<^l=?o'l+?W•

We then have

Grl=yorl+^)
^t=q^t+q(t},

where PW^p^t^eQ,
fq(()=q(t)teQt2.
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We have

(12.7) "'a^-1)^^-1)^-^-1^^-1), by (7.22),

=Xa(^))%a(?0^1)%-a(-?'W)X-a(-?0-^)X,(?))Xa(?0<-l)

=Xa(^)X-,(-^))xa(?o'-V(?orl)Xa(?))

=Xa(^f))%-a(-?'(^))XA(-l)Xa(^(<))"^<)(-l)^(?orl).

Now of course

Xa(i^))e^u (recall aeA^(A)).

We wish to also show:

(12.8) x-J-yW)^^ xa^))"'̂ 0''1^.
However, thanks to Lemma (10.1), and to Matsumoto [13], Lemma (5.1) (6):
(ia.9) ^(^XAB^)^!)-1^^^2^),

where •»i=+i or —i , (TI, ̂ e^, peA(A). From (12.9), it follows that

(" . 10) Xa(?(^)"a(io'-l) = X-a(± ̂ '^W) e^U.

On the other hand, also by (12.9),

X-a(-?W)"-a(rf)=Xa(-^(rf)-2?'W), Cek\

where again, T ) = + I or — i . But, since q'{t)e0t2, aeA+(A), we see that this last
element is again in ^y. But, on the other hand, we have:

X-a(-?W)w-a(c"=X-a(^X,(-^-^-l)X-,(-?/(<))X,(^l<-l)X-a(-rt)•

Since X-a^^^? we therefore obtain:

X-a(-?'W)xa(-c-lf-l)e^, cek\

and setting c=—qy1, and recalling (12.10), we get (12.8).
But then h^^t-^h^t-1)-1 .Vy

=^(^)rl)^(I)-l^(I)^(rl)-l.^, by (7.22),

=wM)t-l)w^t-l)-l.v,

=^^(^rl)^(rl)-l.yo, ^e^j,
thanks to the expression (12.7) for w^a{t)t~1) and to (12.8). But for cek*

^r1)^,^--1)^--^-1^^-1)
=X<>Mx-<,(—<•-l)XoW:='»a(<0> a=a(a)—i.

Hence wjyo^wjr^-^w,,^);^!)-1^^,), and hence

A,(CT(<)rl)^(rl)-l.^>o=^(^).^=^^.^, by Lemma ( 1 1 . 2 )

^q^Vo,
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since ^eJ^, so we can apply (12.1). Combining this last computation with (12.6),
we obtain

h.Wt-^t-^Wt))-1^0=^^ q^v^q^

2W
where

a=a(oL)—i and co

i.e., we have for aeA^(A), cs{t)eG)*,

(^ a) 9

(l2.n) ^(^r1)^-1)-1^^))-1..0=^.0, co^-2^.
(a, a)

We also note that

(12.12) ^(a)^1)^)-^-^-

On the other hand, if ^(9&(A))==A®^(A), then

V^A^V^^^A)^-^^))^ (see § 6),

and hence, thanks to Lemma (8.6) and to Lemma (8.11) we have from (12.11) and
( 1 2 . 1 2 ) (note that ^(<7o-l)W =Wl)h^t-lWl)-l)

(12.13) ^((r^r1)^^-1)-^^^^)-^^^-1)^^)

=^I. a^A+(A), G(t)=^t\ q^o,

where I denotes the identity operator on V^, and co is defined as in (12.11).

We now consider the group G]c from the point of view taken in § 10. Thus, we
recall from § 10, that the ^(c) in place of the 3S^\ aeA(A), oeJS^, satisfy the
relations (A), (B) ((B') if A =(2)) at the beginning of § 10. But then, if we
divide G^ by the subgroup C generated by the elements h^G^)h^a^~lh^G^~l,
aeA(A), CT^, o^e-S^ (this subgroup is central by Lemma (10. i) and by Steinberg [20]),
the resulting quotient group, Gj^ say, is also a quotient group of G^. Indeed, we
have surjective group homomorphisms

^G^-^G^,

^2: ljr^ —> Gĵ ,

defined by the conditions

^(Xa(^))=XaW

^W^-ZaW,

for aeA(A), (TG^. By Steinberg [20], Theorem (3.2), we have that kernel(7Ta) is
finite and central. We have already noted that G= kernel TT^ is central in G^.
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We let E^G^CGj^xG^ denote the subgroup of all elements {g^gz), gi^G],,
g^G^,., such that:
(12.14) ^i)==^).

Then, thanks to (12.14), we have a commutative diagram

E'(G^) ""^-———G^

where cpi^cp^, 92 ==9^ (we drop the superscript X when there is no danger of
confusion) are induced by the projections of Gj^xG^ onto the first and second
factors, respectively. We let n=n^o^=^o^ then since kernel(7Ti) and kernel)
are central in G^ and in G^,, respectively, we have

kernel(Tc) C center (E^G^)).

We now fix a long root aeA_^.(A), and we let
C^== kernel 92.

Then, by Moore [i8], Lemma (8.4), the central extension

I-C^E^G^G^I

is determined by the function ^( , ) from ^X-S^ to G\ defined by
(12.15) ^(cr, ̂ ^h^a)h^hW\ ^ TE^J^-{O},
where for oe£^

Aa/M=(^(^,^(o))eEX(G^).
We note that

Aa(^aM-A,((TT), 0,Te^,

thanks to (G), at the beginning of § 10. Hence, we have
(12.16) ^(^)=(^(^^

where
(12.17) ^ ̂ =Wh^)h^)-\ (T, TeJ§f;.

We let M denote an abelian group (in which we write the group operation
multiplicatively) and we let k denote a field. Following Matsumoto [13], we let
S(^*, M) (^k*==k—{o}) denote the group of all mappings

c:^xy->M
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satisfying the following relations for x ^ y , zek*:
(12.18) (Si) c{x,y)c{xy, z)==-c{x,yz)c{y, z),

(82) ^(i,i)=i; c{x^)=c{x-1^-1);

(83) c[x,y)=c{x,{i—x)y), if x^i.

We let S°{k\ M) C S[k\ M) denote the subgroup of those ceS(y, M) which are
bilinear; i.e., c{xy, z)=c{x, z)c[y, z), c[z, xy)==c{z, x)c{z,jy), x,y, zek\

Lemma (12.19). — Let oceA^(A) be a long root', then 0^= kernel 93 is generated
by the elements ^(o, r), (T, TEoS^, and we have b^{ , )eS°(oS^, C^).

Proof. — The first assertion follows from Lemma (8.2) in Moore [18].
When G^ is not of symplectic type; i.e., when A is not the classical Cartan matrix
corresponding to the symplectic group, then the second assertion follows from Matsu-
moto [13], Theorem (5.10). Also, Theorem (5.10) of [13] asserts that in any
case, Z^( , )eS(oS^*, G^). Thus, to complete the proof of the lemma, we need only
prove that b^{ , ) is bilinear in the symplectic case. By (12.16), this is equivalent to
showing that b^{ , ) is bilinear in the symplectic case (note that, also by (12.16), we
know that b^{ , ) is bilinear in the non-symplectic case).

In the symplectic case we consider the subgroup H of G^ generated by the
elements Xa^iW)? X-a^aM)? ^iW? G2We<2k' Passing to a suitable H subrep-
resentation of V^ (generated, over Z, by the highest weight vector and the subalgebra
corresponding to the subgroup H), we may in fact assume that G^,=SLg(JS^) and
that A is the 1x1 Cartan matrix A =(2). But then, arguing as in § 10, we may
imbed g^A) into Cfc;(Ai) where

is the classical Cartan matrix corresponding to 81.3. We may also assume V^ is
obtained from a highest weight module for 9^(^1)5 as the Cfa;(A)-submodule generated
by a highest weight vector. We may then use the known bilinearity assertion
for SI*3, to obtain the desired assertion for SLg. • ,

We let
Crn • oZi/. /\ °^t; ' lv

denote the tame-symbol, defined by

(I2.20) ^(^^2)=(~I)v(olMoa)((^02)^v(ol))(o)),

where we recall that v denotes the ^-adic valuation on o^. It is known that
Cry{ , ^S^JS^*,^*) (see Milnor [14], Lemma (11.5)3 p. 98). Indeed, one can easily
check bilinearity (which then implies (Si) of (12.18)) and property (82) of (12.18),
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directly. Property (83) is also easily checked by noting, thanks to bilinearity, that
it suffices to check ^(^ I—^==^'> for CT£^*, cr+i . One can in turn check this
by setting ^==0^, c'e^*, and separately considering the cases m>o\ m<o; m=o,
CT(0)==I$ 772=0, (7(0)=|=I.

Now we have observed that ^( , ) is bilinear (by (12.16) and Lemma 12.19),
and thanks to (12.13), we know that

(12.21) ^a(°'(^3 rl) is a non-zero scalar multiple of the identity operator
on V^, for all a{t)e0\

In fact, we have:

Lemma (12.22). — For all o^, c^eJS^, ^(^ ^2) ts a' scalar multiple of the identity
on V,\

Proof. — If we write
(T,=a ,̂ a[EQ\ z=i,2,

then we see from the bilinearity of ^( , ), from property (82) of (12.18), and
from (12.21), that it suffices to prove the lemma for

(i) ^(^ ^2)5 ^^^
W b^t-1), b^t).

But, in case (i), each of the operators A^i), AJ^), h^a^s^ is upper triangular with
respect to a coherently ordered basis (Lemma (12.2)). Then, we can use (12.6) to
show
(12.23) b^^)==i, a^^e(P\

We note that since for ceSP{k\ M),
c[i—x, x)=-.c{i—x, i — ( i — ^ ) ) ,

for .veJS^, A:=t= i , the relation (83) of (12.18) implies
(83') c{i—x,x)=i, xe^\ x^ i .

But then
b^t-^^b^-t-1)^-1), by (83') and bilinearity,

==b^{t— i, ^"^^ non-zero scalar multiple of the identity,
by (12.21).

On the other hand
^(^-VU'r1)

= b^t, t^b^t, r1), by bilinearity
= b^(t, tfb^t, r1), by bilinearity.

Hence b^t, t)=b^t, r1)-1,
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and hence b^(t, t) is also a scalar multiple of the identity. This concludes the proof
of Lemma (12.22). •

By Lemma (12.22)3 we may identify ^( , ) with an element of S°{^,k*).
By (12.13)5 we have

W^-1)^- c^-2^.
(a, a)

for cr(^)==yo+?i^+ • • • +%^+ ..., q^k*. On the other hand,

^(a^.r1)^^-1^)^"1.
and so ^a(CTW^-l)=^T(G•W^~l)^ o{t)e(P\

Similarly, C^(J-^,G^=I, for (^, c^e^*, as one sees from the definition. Hence

^(^i? ^O^T^I? ̂ ^ ^ o-a6^*-

But then, arguing exactly as in the proof of Lemma (12.22), we see:

Theorem (12.24). — If ci)==—2X(^)(a, a)"1, for aeA^(A) a long root, then:

^(^i? ^^^(^i? ^a)^ ^i? ^2e°%*-

In particular, we may take X==Xo, where

fo, z=i , ..., ^,
(12.25) \W==\ . .

[i, z==/ '+i .

Then co == — i, and

^(^l? <72)=^T((7l3 a2)-l•

We thus have:

Theorem (12.26). — If XeD, and X(^)+o for some i=i, .. . , / '+1? ^^ ^^
z'j a unique homomorphism

^: E^CG^^E^G^),
jz/cA that

<I>W(<^)), ^(^W))=(%^(^^), ^p(^))), PeA(A), <^)e^*.

Proo/'. — For any X, we set

^(^-(^(O), ̂ 3^(0)). ^)^ P^A(A).

Now let ^0=(^XO(^(CT(^))) be a word in the ^°((^)), such that ^^i
in E^G^). To prove the theorem, it then suffices to show that the corresponding
word ^x in E^G^), is equal to the identity.
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Indeed, let W be the corresponding word in the ^(o^)), in E(G^). We
have the commutative diagram k

^^
^{^i) v^

where for XeD (X(A,)+o, some i=i, ..., f+i), we let p^ be defined by the
conditions

P^XW)))-^^)), PeA(A), <T^)e^*,

noting that ^ is well defined since the ^(<^)) (in place of S'^{t))) satisfy the
relations (A), (B) ((B') when G^=SL^)) of § 10. Then

yW = ̂ °° p'W = y^8^'0) =i,
and so ^ekernel y6. But then ^ is a product of elements h^h^h^)-1,
a, Te.2^ (and inverses of such elements) in E(G^) (see Moore [13], Lemma^S 2))'
Hence ^.=p^) (resp. ^=p^(^)) ^ the corresponding product of ele^
ments ^((T, r) (and inverses of such elements) (resp. of elements ^(o, -r) (and
inverses of such elements)). But ^==(1, i), where I denotes the identity operator
on Vj^, and i denotes the identity in G^. It follows from Theorem (12.24), and
from our choice of Xg, that ̂  is the identity in E\G.y). •

13. The Tits system.

We begin by summarizing some of the material in Bruhat-Tits [4], § 6. Recall
that in Lemma (n.8) of the present paper, we proved that the family (^)^gA(A) is
a valuation of the donnee radicielle (T*, (U;, M;),^)). The elements" of A(A)
may be identified with elements of I)a(A)*, the real dual space of ^(A). For
each oeb^A), for jeR* .̂ (= the set of non-zero, positive real numbers), and for each
valuation ((X;)^A(A) (so (^;=t4, ^, or (ij of (T*, (U;, M;)^^)), we define a
new valuation (4';)aeA(A) by

('S.I) ^:(")==^:(M)+a(o) aeA(A), yeU;.

We will denote a valuation ((4)«eA(A) simply by (A* (e.g. we will denote (v:)agA(A)
by v*). We then write (13.1) more simply as
(13.1') y==s^+v.

Thus the additive group bg(A) acts on the valuations of (T*, (U:, M*J^(A))>
via (13. i') (with s = i). We call two valuations in the same orbit of this ^(A) action,
equipollentes.
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On the other hand, consider the group N* generated by T* and by the M^,
aeA(A). We note there exists a homomorphism

v?: N*-.W(A),

such that for all aeA(A), neN*, one has

(13.2) nU^-^U^ p=^(n)(a).

Moreover, we have ^(M^)=r^, where r^ is the reflection on ^(A)* defined by

(13.3) r^)^-2^^ ^e^(Ar,
(a, a)

(see Bruhat-Tits [4], § 6.1.2 (io)).
If weN*, and if ^==^(7z)eW(A), then, as noted in (13.2), we have

n~luneU^-^, for ^U;, aeA(A).

Given a valuation ^=((iJaeA(A) of (T*, (U^, M*J^^)). ^d ^eN*, we define
a new valuation n. p.* = 4'*, by

(13.4) ^M-^-^-1^ aeA(A), ueV^

As noted in Bruhat-Tits [4], (6.2.5), (i), one easily checks that

(13.5) n.{s^+v)=s{n.^+vp{n){v), ^R^, yeI)n(A), neV[\

We let A denote the set of valuations equipollentes to v*. But of course we may
identify A with I)R(A), and then furnish A with the inner product structure ( , )
on I)R(A), given by the Killing form. We note that if [I'eA, then it is natural to
let [L*—v* denote the corresponding element of I)R(A).

For oceI)g(A)*, and T^eR, we let a^^ (or ^aw? ^ we 'wls^ to make the depen-
dence on the valuation v* explicit) denote the half space

a^={xeA\^x—^)+m>,o}.

We define the affine roots of A to be the half spaces a^ ^, oceA(A), meZ., and we let S
denote the set of affine roots. We let

^CSxA(A)

denote the subset of all pairs {a, a), where a=a^^ for some meZ. We let c^^,
the boundary of the half space ^w? oceA(A), weZ, be defined by

8a^m=={xeA\ a(^—v*) + m == o}.

Recalling that A inherits the inner product ( , ) from t)n(A), we let

y"a,m ^ A-^A,

denote the orthogonal reflection with respect to the hyperplane ^a,w*
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Quoting Proposition 6.2.10 in [4], we have:

Proposition (13.6). — The space A is stable under the action of N* defined in (13.4).
For /zeN*. we let p(n) : A->A denote the mapping p(n) : x->n.x, xeA. Then p{n) is an
automorphism of the Euclidean space A, and the canonical image of p(n) in Aut(I)g(A)) (the
group of linear automorphisms of f)^{A)) is vp[n). Moreover:

(i) For each meZ, a-eA(A) and 7^eM^=M^nU!.^~l(;7^)U^, the mapping p(n) is
the orthogonal reflection r^.

(ii) For f l = = < ^ w ? ^^(A), meZ, we let U^==U^. Then, if /zeN*. one has

p{n){a)e^

and

nV^-^V;^.

We let T^CN* denote the subgroup

T^-^i:),

where i denotes the identity automorphism of A. We have:

Lemma (13.7). — The group T^, XeD, X(^)4=o for some i==i, . . .,f-\-i^ is the
group generated by the elements h^{a{t))y aeA(A)5 G{t)e(P*, and by the elements h (J), sek*.

Proof. — Denote by T^ the group generated by the elements ^(or(^)), aeA(A),
a{t)e0*, and the elements h^ ^ (J), sek*. Using the identity

(i3.8) ^s)^w.,^ts)w_^{t)-\ sek\

(which may be checked directly from the definitions) we see that A ^^(j-)eN\ sek*.
Also, the relation

('S-Q) ^a(^)XpM^a(^)-l:==Xra(P)(7]CT-CT)^

a, (BeA(A), a, reJS^, v]=7](a, P)=±i,

^=2(P, a)(a, a)-1, 7](a, -P)=7](a, P),

(see Matsumoto [13], Lemma ,(5.1), Steinberg [20], (7.2), and apply our
Lemma (10.1), implies the relation

(13.10) ^(^XpM^^-^Xp^T), rf=2(a, P)(a, a)-1,

a,T£^% a, peA(A).

But (13.8) implies

h^)==h_^st)h.^t)-\ sek\
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and (13.10) then implies h (J)eT^. On the other hand, (13.10) also clearly
implies that the elements h^{a{t)), aeA(A), G{t)e0*, are in T^, and hence we have
proved

¥

x/- •-r'xv- ^o9

Conversely, assume neT^ so we have p(n)==i. Then vp(n)==l, and hence
(by Bruhat-Tits [4], (6.1.11)) we have ^eT\ Now T^ is the subgroup of G^ gene-
rated by the elements h^{a{t)), c{t)e^, aeA(A). Thanks to (13.10) and to
Remark (n .7), for each aeA(A) we may define a character a : u-^u^y ^eT\ ^eJS^*,
on T\ by
( 13 .11 ) u^u-^^a), aeJSf,, ueT\

Thus, if p (u)== i, then
v(^)=v(a), for all (jeJ^, aeA(A).

Taking o==i , it follows, still assuming j&(z/)==i , that
(13.12) ^(^r^ ,̂ for all aeA(A).

Now u may be expressed as a word in the ^(c^'s and their inverses (aeA(A),
creJS^*), u=u{h^a)Y Let ^==^(^(0)) be the corresponding word in the ^(^'s
and their inverses, in E(G^). Then of course

Y6^)^

(see § 10 for the definition of Y': E(G^)->G^). Also, we let u'eG^ denote the
corresponding word in the ^(c^'s and their inverses. Then

<pW=^

(see § 10 for the definition of (p6: E(G^)->G^). Now, thanks to standard results
in the theory of Chevalley groups (see Steinberg [20], (8.2)), u' is a product

u^h^ ... ̂ (o,), ^eJS?;, z=i, ...,^.

Hence,
^ =^((7i) ... A^(^) mod kernel Y6.

But from Moore [i8], Lemma (8.2)3 we have that if (BeA(A) is a fixed long root,
then kernel Y6 is generated by the elements ^(^^(^^(crr)"1, cy, TeJS^*. But then
(13.13) ^y^)=A^) ... h^) modA,

where A denotes the subgroup of G^ generated by the elements &p(or, r), CT, TE,S^.
On the one hand, each 63(0, r)eAut V^, is a scalar multiple of the identity

operator of V^ (Lemma (12.22)). Thus we have:

(13.14) Every element of A =9^ (kernel Y6) is a scalar multiple of the iden-
tity operator of V^.
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We let ^==A^((yi) ...^(^). Then from (13.11), (13.13) and (13.14), we have
(13.15) u"=u^ all aeA(A).

But if p(u)-=i, (13.12) and (13.10) imply

<noW)=o, aeA(A), <a, a,>=2(a, a,) (a,, a,)-1;

i.e., we have
t
S <a, a,>v((y,)=o, aeA(A).

Taking a=oci, ..., a^, and using the fact that the Gartan matrix A is invertible, we
see that

V(CT,)=0, Z = I , ...,/';

therefore
u^T\

Thus, to prove Lemma (13.7), it suffices to prove:
(13.16) ACT\

Of course, (13.16) is equivalent to showing
(13.16') 6p((T,T)eT\ G,Te^.

First, if ae^, then b^t-^eT^ by (12.13). If GI, a^0\ we have
^3(^1? ^"^ ̂  by (12.23). We can then argue as in Lemma (12.22), to prove (13.16'),
and hence Lemma (13.7). •

Let QCA be a bounded region; then following Bruhat-Tits [4], (6.4.2), we
define an integral valued function f^ on A (A) by

/o(a)=inf{mEZ|^3Q}.

We let

Uo=U^CG^

denote the subgroup generated by the union of the subgroups U^ .^, aeA(A), and
we set

Ui,o=U^=U^nU^.

Remark (13.17). — Let G denote the subset of all xeA satisfying the conditions
oc^—v^o, i= i, ...,/,

^(x—^)<^i.

rp, / . / , (°> aeA+(A)
Then /c(a)= . ,.,

[i, aeA_(A).
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From Remark (13.17)3 we see that Uc is the subgroup generated by the
elements ^{a), ae(P, aeA^(A), and by the elements /a^)? CTe^? aeA_(A); i.e., we
have
(13.18) ^j-Uc.

Also, if we let P^ denote the subgroup generated by U^ and by T^, then we see that
from (13.18) and Lemma (13.7)3
(13.19) ^=P/o.

We let W be the group of affine automorphisms of A generated by the orthogonal
reflections r^, aeA(A), meZ. Thanks to Proposition (13.6), we note that

WC^),

and we let N^^-^W). We let SCW be the set of reflections r^, . . . , ^^ ,
and y-ao,i$ 19e9) S is the set of reflections with respect to the walls of C. The rela-
tion (13.19), and the theorem of § 6.5 in Bruhat-Tits [4] now imply:

Theorem (13.20). — We have N^nj^T^. The quadruplet (G ,̂ J ,̂ N ,̂ S) is a
Tits system^ where we identify W with M^/T^.

We recall that a quadruplet (G, B, N, S) is a Tits system if
(13.21) (i) B, N are subgroups of G, BuN generates G, and BnN is a normal

subgroup of N.
(2) SCN/(BnN)==df^9 consists of elements of order 2.
(3) ^Bz^CB^BuB^B, seS, weVf.
(4) For all jeS, we have jBj'cj:B.

From Proposition (6.4.9) and Lemma (6.4.11) of Bruhat-Tits [4], and from
the observation that (in the notation of Lemma (6.4.11) of [4]) O^ is empty, it
follows that
(13.22) ^=U_,cT^U+,c.

We also have from Proposition (6.4.9) of [4], that if one is given an order on A^(A)
and forms the product

ae^A)1^^)

with respect to this order, then
('S-^) The product map ^^^u^/c(a)-->u±,c is bijective.

14. The Tits system (continued).
/%/

Our first goal is to define a certain subgroup of N\ Toward this end we first
show:
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Lemma (14.1). — For meZ, oceA(A), we have
Piw^s))^^

for all sek*.

Proof. — Let ye I) (A) and set
^==^-\-y

(see (13.1) and (13.1')). We then have, for neN\
n^^n^+W^ (by (13.5)).

But, by (13.2) and (13.9).

(i4.i') ^a^))-^ aeA(A), meZ, sek\

In other words (see (13.3))

(14.2) VP{w^tms)){v)=v-^v)H„ ,EI)(A).

On the other hand, by (13.4), and (14.1'), with n^w^s), we have

(14.3) ^•^pM-^o)^^)"^^^)), (^A(A), ueV^

But (13.9) implies:

(14.4) ^a(^)~lXp(T)^a(^)=Xra(P)(73CT~CT).

with CTeJS^, TGJ^, ^==2(00, p)(a, a)"1, 7]=d=i. Indeed, by (13.9), we have

^a(^)ZpM^a^)~l=Xra(P)(7]CT-^). < °̂̂  ^^^,

hence

^(^"^^(^^(^-XraO^7]^^).

where (B'=^((B), T'=7](y-CT. But
.=2(a, r,(p'))(a, a)-^-^, p')(a, a)-1,

and we thus obtain (14.4).
But from (14.3) and (14.4) we have

(^•S) w^tms).^^^—m^ oceA(A), meZ, ^eA*.

Hence, for n=w^(^),

^.^=^.^+^^)(y)=^_^H,+(y-a(y)HJ,

by (14.2) and (14.5). To prove Lemma (14.1), it thus suffices to show that the
transformation

v\->v— mH.^— a(y)H^

is r^, the orthogonal reflection with respect to the hyperplane oi{v)==—m. But this
is clear. •
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Now let (zeA^(A), and assume
a=a{a)-{-m, oceA(A), %eZ.

(See (4.3) and the subsequent definition.)
Then

^(<y)==XaMX-a(-ty-l)ZaM. by (7.23)

=Xa(^)X-a(-^^-l)Xa(^), by (7.19)

^w^s), by (7.22).

In particular, for ^ _^ = — ao + ̂  we have

O^-6) ^M= w-^\ sek\

while, for i= i, ..., ^,
(14.6') ^M=^(^), ^==a(a,), .ye^.

It thus follows from Lemma (14.1) that, for jeA*,

/ \ ^ / / \ \ ^1,05 z = i, . . ., ^(14-7) ^KM)- . -
l^-ao,!. ^=^+1 .

In fact, thanks to (14.6), (14.6'), and (14.7)3 we have proved:

Proposition (14.8). — Each of the elements w^{s), aeA^(A), sek*, is in N\ and

if NCN^ is the subgroup generated by the w^{s), ^eA^(A), sek*, then under py the
set {Wa^1)}^!,...,/+! T^^PS bijectively onto S. In particular W==^(N).

The next lemma follows from the axioms (13.21) for a Tits system and from the
Bruhat decomposition (see Bourbaki [3], Chapter 4, § 2.3, p. 25).

Lemma (14.9). — Let (G, B, N', S) be a Tits system^ and let N()CN' be a subgroup
such that the projection

7r:N'->N7(N'nB)=W

maps No onto W. We then have: (i) NQ^B is a normal subgroup of No. (ii) The
inclusion No^N' induces an isomorphism from No/(NonB) onto W. (iii) If we iden-
tify No/(NoHB) with W, by means of this isomorphism^ then (G, B, No, S) is a Tits system.

Proof. — Since 7i(No)=W, it follows from the Bruhat decomposition (Bour-
baki [3], Chapter 4, § 2.3, p. 25)

G= U BwB,
w(=W ?

that BuNo generates G. The other axioms for (G, B, No, S) follow directly from
the corresponding axioms for (G,B,N',S). •

From Proposition (14.8), Lemma (14.9), and Theorem (13.20), we have
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Theorem (14.10). — The quadruplet
(G,\ ̂  N, S)

is a Tits system.

We now wish to study the intersection Nnj^. Toward this end, we first study J .
Thus, we let H^==H^ denote the subgroup of G^ generated by the elements h^(s),
aeA_^.(A), sek* and by the elements h^s), sek\ From (14.6) we have

(14.11) ^M=^,M^,(I)-l=^-ao(^A-^W-l, sek\

But then, from (14.11) and (13.10) we deduce

Lemma (14.12). — The subgroup H^ normalizes the subgroup e^j.

On the other hand, Lemma (12.2) implies that ^j and H^ generate ^, and so
(14.13) ^=H^u==^H^.

Also, since h^{s)==h^{s), oceA(A), sek\ we see by Lemma (11.2), (ii), that:

(14.14) Relative to a coherently ordered basis of V^, the elements of EL
are represented by diagonal matrices, which restricted to a weight
space V^, are scalar multiples of the identity.

Also, by (12.1) we have that relative to a coherently ordered basis, the elements
of ^j are represented by upper triangular matrices with ones on the diagonal.
Indeed, the argument leading to (12.1) in fact shows:

(14.15) Relative to a coherently ordered basis, the elements of ^j are repre-
sented by upper triangular matrices with ones on the diagonal.
Moreover, the diagonal blocks corresponding to weight spaces, are
identity matrices.

We will use this stronger conclusion a little later on. But even from (12.1)
and (14.14) we see that

(14.16) H,n^={i},
and hence we have:

Proposition (14.17). — ^ is the semi-direct product of H^ and the normal subgroup Jy.

Corollary (14.18). — The group H^ is precisely the set of all diagonal elements (with
respect to a coherently ordered basis of V^ in ^. Relative to a coherently ordered basis of V?,
the group ^ consists of upper triangular matrices whose diagonal blocks corresponding to the weight
spaces^ are equal to scalar matrices.

We are now ready to prove:
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Proposition (14.19). — The intersection Nn^" is equal to H .̂

Proof. — Thanks to Lemma (11.2), the elements ofN permute the weight spaces
of V^. Thus, by Corollary (14.18), the elements of Nn^ must have off diagonal
blocks zero, hence must be diagonal. Since H^CNnj^, the Lemma now follows
from Corollary (14.18). •

We conclude this section with:

Lemma (14.20). — The group Ĥ ; is the group generated by the elements h^.(s),f>>/ *
z==i, . . . , / '+15 sek*. Moreover, VLj^ contains h^{s) for every ^eA^-(A), sek*.

The proof of this lemma depends on:

Lemma (14.21). — For every ^eA^(A), the coroot 2^/0(0, a) is an integral linear
combination of the fundamental coroots 2^/a(^, ̂ ), i=i, ...,/'+1.

The proof of Lemma (14.21) is exactly the same as the proof of Lemma (4.4)
in [7] and is therefore omitted.

Proof of Lemma (14.20). — By definition, the group H^ is generated by the
elements h^{s)=h^{s), oceA(A), sek*, and by the elements h (.?), sek*. But
^(0^)=^, z = i , . . . 3 ^ 3 and hence H^ contains the elements h^.{s), z = = i , . . . , / > + I 5
sek*. The rest follows from Lemma (14.21)5 and from Lemma (11.2), (ii). •

15. Comparison of the G^ for different X.

As always since § 7, we let k denote a field of arbitrary characteristic, and XeD
an element such that X(^)=t=o for some z = = i , . . . , ^ + i - From now on we call such
an element of D normal. Then for each normal XeD we have defined the
group G^CAutV^. For each z=i , . . . , ^ + i , we let ^eI^A)* denote the domi-
nant, integral linear functional (i.e., element of D), defined by the conditions

( 1 5 . 1 ) W==S^ \(D)=o, i j= i , ...,^+i.

By restriction we may regard each \ as an element of I) (A)*, the dual space
ofI)(A). We let ECI)(A)* denote the Z-lattice of rank ^+i? spanned by \, ..., X^r
Also, by restriction, each ^eA(A) defines an element of I) (A)*, and we let S^CI)(A)*
denote the Z-span of the restrictions of elements of A (A). Then 3,. is the free
Z-module of rank /', generated by a^ . . . ,^, restricted to I) (A), and since ^(A)eZ,
i,j=i, . . . , ^+i , we have S^CE. For each normal, dominant integral Xey(A)*,
we let S^C I) (A)* denote the Z-span of the restrictions to I) (A) of the weights of V\
From our previous observation that S^CS, we immediately deduce that S^CS.
In fact, we have:
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Lemma (15.2). — Let XeD be normal. Then EyCS^CS, and S^ is offinite index
in S.

Proof. — We have already noted that E^ C S. Also, since over Z, Sy has rank ^,
we note that if SyCS^, then S^ must have rank ^+1 over Z, because X restricted
to I) (A) is clearly linearly independent from the elements of S^. Hence, since S has
rank f-\-i^ it suffices, in order to prove the lemma, to show that E^CS^.

We let I={ze{ i , . . ., t +I}|^(^^):4=o}- By our assumption that X is normal, I is
not equal to the empty set. Let ^eV^ be a highest weight vector. We then have
for iel

^'{fi^o)==--fi'^i^o)+h,.VQ==Hh,)v^o.

Thus fi.Vo^=o, and since, as one checks directly,

(15-3) S'-V^CV^,, ^eA(A) and pi, pi+^ weights of V\

the difference X—^ is a weight of V\ and hence ^ restricted to I) (A) is in 3^ (for
each iel). Now let je{i , . . . , / '+i}—!• Then we can find a sequencer, . . . a j s
in { i , ..., i +I}? so that

A61. Js=7.

and
(15.4) a(^,^j4=o, ^=i, ...,^-i.

We assume we have chosen the above sequencer, .. .,j\ so that s is minimal. Then
(15.5) ^)=o, p==2, ...,J.

We define ygeV\ ^^i, . . . , ̂  inductively by

^=4-^-13

where VQ is the fixed highest weight vector. We set \ = ^ — ^ — . . . — ^ .
If y^=t=o, then yy+o and y^eV^, for r==i , . . . ,y . Therefore <^ , . . . 3 ^ restricted
to I) (A) are all in S^. Thus, if we make the inductive hypothesis:
(H) for q with i^?<^ we have ^4=0;

then to prove the lemma, it will suffice to show that z^+i+o (note that we have
verified (H) for (?=i). But

(15-6) ^•^==0.

thanks to (6.7), (15.3) and our minimality assumption on s (the last implying a^ ^=a ,
i<77i<y). Hence

^g+l • ̂ +1 = %+! 'fjq+1 • ̂

-^l-^ ^ (^-G)

=\(^x)y^
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where the last equality follows from our previous observation that if v =)=o,
then v^eV^ . But our minimality assumption on s implies

^•^Vi^05 ^<.^<<l.
and ^Vi)-0-
Hence, \(h, )=a,(h, ),

S^ .̂ l7 3q^ J^+l73

and the latter is not equal to zero, by (15.4). Hence ^ ,^.^+i=t=o, and v^^ is diffe-
rent from zero. We have already noted that this proves the lemma. •

Lemma (15.7). — If XeD is normal, then for each normal element (JieD, there is a
positive integer m such that S^CE^.

Proof. — Since both S^ and E^ are of finite index in E (by Lemma (15.2)), S
is in the Q^-span of S^, and hence m[LeS^ for some positive integer m. But EyCE^
(by Lemma (15.2)); therefore S^CS^, by (6.7) (as applied to [L in place of X, and
to a weight pi' of V^, in place of the "p.59 appearing in (6.7)). •

Our next point is to note that:

Lemma (15.8). — An element ^ of the center of G^ is a product

^=h^s,) ...^(^), ^,..., s,ek\

Proof. — By Steinberg [21], Lemma 28 (d), p. 43, we have
^=k^) ...^(<T,), ^,...,0,E^,

and

(*) n^ î, j=i,...,^,
where <a, (B>=^2(a, (B)((B, p)"1, a, (BeA(A). But then, applying the ^-adic valuation v
to both sides of (*), we have

£

^<^., aXcrJ=o, j==l, .. . , / ' .

Hence, since the Cartan matrix A is nonsingular, we have v(^)==o, z=i , ...,^
and we may set ^=<y,ey. •

We are now ready to prove:

Theorem (15.9). — Let X^, Xg 6^ two normal elements of D, and assume E^ CS^ .
Then there is a unique group homomorphism

7r(^):G^G,\

of G^ onto G^, such that

^,^)^W)=lMt)), aeA(A), a(t)e^.
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Proof. — Let

^=^W)})
be a word in the x^W)), aeA(A), a(t)e^, and assume w^==i in G^. Let a^
(resp. uf; resp. w') denote the corresponding word in the /^(cr(f)) in G^ (resp. in
the ^(d^)) in E(G^); resp. in the ^;(<r(f)) in G^). We consider the diagram

where TC^, 7^2 are as in § 12. We have

i=.^(i^i)=7ta(w'),

and hence w' is in the center of G^. But we also have the homomorphism

^^(G^G^

of § 1 0 , where ^W^t)))=^{a{t)), aeA(A), (T^)e^, and hence

^{we)=w'.

Then, by Lemma (15.8), there exist ^, . . . , S ( e k * , so that
(15.10) a/ = ̂ (^) ... h^{s{) mod(kernel y6).

If we fix a long root aeA(A), then kernel y* is generated by the elements
(*5.") ^,a^=he^he^h^a^)-l, c,,^e^,

thanks to Moore [i8], Lemma (8.2).
In Lemma (10.1), we defined the homomorphism Y": E(G^)-^G^, such that

(15.12) ^(X^)))-^)),

aeA(A), <r(^e^*. We write Y6^ for Y6, to denote the X-dependence. We then
have from (15.12) that

Y^-^, ̂ )) =h^h^)h^,)-1, a,, a^*, i= i, 2,

and, thanks to Theorem (12.24),

(15.13) y6-^^, a^)=c^, ̂ Wl, 01, a^, i= i, 2,

where u{\) = — 2\(h[) {«., a)"1, t '==i,2, and I denotes the identity operator on V^".
On the other hand, by (12.13) (second equality)

C^.^) ^-l)^a)-^)=^•)I;

i.e., taking into account (15.13), we have

(i5. '5) ?̂1, (Ta)) =^)(^(<TI, (^2)-l)^_^(<Tl, 02)).
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Now we use (15.10) to write w6 as a product
^=^) ...^W,

where p6 is a product of elements ^(^i? ^2)3 as defined in (15.11). We let p^,
z== i , 2, be the corresponding product of elements

1̂. ̂ -dA^T^l. ̂ "^^-^^(^l. ^2))

in G^'. We then have, from (15.15)3
^i{pe)=p\ i=i,2.

Hence w^ =Y6' x^) - ̂ (^) ... h^)p^, i = i, 2.

In other words, we have written w^ as a product in elements h^{s^, fleA^y(A),
^e^*, and w^2 as the exactly corresponding product in elements A^(^), ^eA^(X),
^e^*. Thus, if w^r^i, as we assumed, then w^==i, thanks to Lemma (11.2) and
our assumption that E^ C S^.

It follows that if we set
î, ̂ )(Xaxl^W))=Xax2^W), aeA(A), a{t)e^,

then 7c(Xi, Xg) defines a homomorphism from G^ onto G^2. •
We conclude this section with a few observations. First, note that in the proof

of Theorem (15.9), we showed:

(15.16) The kernel of the homomorphism
^x , /"ix
^->^

_ . /^x ^ n^
n! ' ^k~^^i

is contained in H^.
It then follows from (15.16) and from (14.16), that

(15.17) The homomorphism Tii, restricted to the subgroup ^jCG^, is
injective.

Also, we have, using Lemma (15.8):

(15.18) The kernel of the homomorphism
7T2:G^->G^

is contained in the subgroup H^CG^., generated by the elements h^{s), aeA(A),
sek\

Indeed, (15.18) results from Lemma (15.8)3 and from the fact (see Stein-
berg [21], Corollary 5, after Lemma 28, page 44) that kernel 71:3 C center G^.

Finally, we note:

(15.19) If E^ C 3^ , for Xi, Xg normal elements in D, then
(*) \ = m\ 4- integral linear combination of a^ . . . ,^_^,

where m is a strictly positive integer, and one has mX^eS^ .
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Proof. — Clearly Xg may be expressed as in (*) with m an integer, so we need
only check m>o (m\eS^ follows from the fact that S^CS^, by Lemma (15.2)).
Evaluating both sides of (*) on h^ we have:

\[h[)=m\{h[),
^ l+l

since a(^)=o, for all ^eA(A). But h[= S q,h,, q,>o, and since Xi, X^eD are
normal, we must have m'>o.

16. The Iwasawa decomposition.

With the exception of Lemma (16.3), in this section we take k==R or C.
Now it follows from § 12 in [7] (see the discussion following (12.6) in [7]) that

(16 .1 ) S:=S-., ^A^(A).

As a result, * leaves 9n(A) C Qc(A) invariant, and hence we may regard * as an
R-linear, involutive, antiautomorphism on g^ (A), k = either R or C. Of course,
if A=C, then * is conjugate-linear.

As we discussed in § 9 of the present paper, we also obtain from [7], § 12, that
there exists a positive-definite, Hermitian inner product { , } on V^ {k == R or C)
such that we have (by (9.2) and (16.1)):

(I6-1') For all ^eAw(A), the element ^ of g^A), regarded as an operator
on V^, is the Hermitian conjugate of ̂ , with respect to { , }.

We thus let * either denote the Hermitian conjugate with respect to { , }, or
the involutive, anti-automorphism of Qj,(K) introduced in § 9 (also see [7], § 12), and
defined on 9a(A) by restriction from 9c(A). From (16.1) we then have

(i6-2) XaM*-X-a(^ ^ ^eA^(A).

Remark. — In particular, •)^(s)* is defined!
We now prove:

Lemma (16.3). — Let k be an arbitrary field. For each aeA^(A), we can define a
homomorphism

y,: SW->G^
by the conditions

^(C '^
<' ^X-M.
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We also have

c'.o ^.((_: :))-.(.)
•r.(̂  .̂))=*.(»), ^*-.

Proo/1 — Once we prove the existence of Y^, the identities of (16.4) will follow
by direct computation. In view of the well known presentation of Sl^k) (see Stein-
berg [21], Theorem 8, § 6) it suffices to check:
a ) X±aM Is additive in s {sek);
b) h^[s} is multiplicative in s {sek*)\
c) ^MXa(y)^(-^=X-a(-^2?/), sek\ 7ek.

However, we observed a) in (7.15), and b) is an immediate consequence of (ii), of
Lemma (11.2). As for c ) , we first note that if a==a^)+m, aeA(A), yzeZ, then

Xa^Xa^),

^M-^aC^).

Also, a) and a direct computation, imply that
^a{-s)=W^s)-\

Thus

^MXa(y)^(-^=^a(^)Xa(^y)^a(^^)~l

-X-a^-^-2?), by (12.9),
^X-^-2?),

where T]=±I. Indeed, by Matsumoto [13], Lemma (5.1), b) and c ) , we have in
this case that T]=—I. •

We again assume A==R or C, and for

c ^sv*),
we let (a b V / a c }

[c d ~[b d

denote the conjugate transpose. We set

^M-C 0. x-W»(; :), ^
and note that, thanks to (16.2),

ya(x^n=^(x^)r, sek.
Since the ^{s) generate Sig^), it follows that
(16.5) for each aeA^(A), we have T,(^==Y,(^), ^eSl^A).
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But then, thanks to (16.4)3 we have from (16.5)

(16.6) ^(ir=^(i)-1, ^eA^(A).

Definition (16.7). — We let I^K^CG^ denote the subgroup

}^-=={geG^\g* is defined^ and equals g~1}.

Theorem (16.8) (Iwasawa decomposition). — We have

G^=K^.

The proof of this theorem rests on the following lemma for Tits systems,
from [21]:

Lemma (16.9). — Let (G, B, N, S) be a Tits system^ and let S==(r^gi, with I a
suitable index set. For each zei, let Y^ be a set of representatives for the family of cosets

Br,B/B.

If ze;eW=N/(NnB), and if

w=r, ... r,
3l 3m

is an expression of minimal length for w in terms of the r^ then

(16.10) BwB==Y^...Y^B.

Proof. — We make full use of the standard results on Tits systems (see Bour-
baki [3], Chapter IV), and we argue by induction on m. By assumption, there is
nothing to prove for m==i. Assume we have proved (16.10) for some w^i, and let

w== r, . . . r,
3l 3m +1

be an expression of minimal length; then

BwB=Br, . . . r , Br B
3l 3m 3m+1

==Y, . . .Y, (Br, B)
3l 3m^ 3m+l '

==Y .. .Y Y B
Jl* * * 3m 3m+l 5

where the first equality follows from the minimality of m +1 and a standard property
of Tits systems, where the second equality follows from our induction hypothesis, and
where the last equality follows from our initial assumption concerning the Y^. •

We now prove Theorem (16.8). — We let KCSla(^) denote the subgroup

^JSU(2), k==C
ISO(2), A=R,
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and we let B^CSlg^) denote the subgroup of upper triangular matrices. For
each fleA^(A)nA^(A), we then have
(16.11) ^(^CIC

^(Bi)C^,

where the first inclusion follows from (16.5), and the second inclusion, from (16.4)
and the definition of T^.

We now apply Lemma (16.9) to the Tits system
(G,\ ̂  N, S)

of Theorem (14.10), where we take our index set I to be { i , . . ., ^+i}. First, by
Proposition (14.8), we have w^{i)eV[\ z = i , . . . , ^ + i ; therefore each ^.(i),
z'==i, . . .,/'+!, normalizes T^, since T^ is, by definition, the kernel of the
homomorphism

p : r^->W,

of §§ 13-14. But then, from this, and from (13.22) and (13.23), we have
(16.12) J^(i)^=U^.(i)^,

where U^. C G^ is the subgroup

Ua,={Xa,MLe^ i=^ ...,^+i

(we note that (16.12) holds for an arbitrary field A). Then, thanks to the Iwasawa
decomposition

Sl^)=KBi,

to (16.4), (16.11), and (16.12), we may take the Y, of Lemma (16.9) to be contained
in Y^.(K), z=i , . . . , ^ + i - Hence we obtain Theorem (16.8) from Lemma (16.9)3
and the Bruhat decomposition for a Tits system (see [3], Chapter IV, § 2,
Theorem i). •

Next, we obtain a uniqueness result concerning our Iwasawa decomposition.
Thus, we let ftjc,+ denote the subgroup of H ;̂ generated by all h^.{s), where s is a
positive real number, and we let H ;̂ @ denote the subgroup of H^ generated by
all A^(j-), where s has absolute value one. It follows from Lemma (14.20) that the
elements h^{s), sek*, i=i, ...,/ '+!, generate H^;. We then have
(16.13) H,=H,,eH^,

and all the elements ofH^+ (resp. ofH^e) have eigenvalues, when considered as auto-
morphisms of V^", which are real and positive (resp. of modulus one), thanks to
Lemma (11.2). Since the elements of H^ 9 act on each weight space as a scalar
operator of modulus one, and since the various weight spaces are orthogonal with res-
pect to { , }, we have that H^CIC, and

G^==KH^J^.
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Thus each g^G^ has an expression

g==gKgRgv> gK^ ^H/c^ ^U^U-

We wish to show that g^ g^ gv are uniquely determined by g. We fix a basis of V^
which is both orthonormal and coherently ordered (we can do this since the weight
spaces are mutually orthogonal, with respect to { , }). Then, £nH^+^u consists
of unitary matrices which are upper triangular. It follows that these matrices must
be diagonal. By Corollary (14.18), H^ is the set of diagonal elements in J .
Hence H/^ is the set of diagonal elements in H^^^j (since H^nj^^i},
by (14.16)). Thus

KnH^CH^.

But the only unitary element of H^ ^ is the identity, and hence

KnH^={i}.
Since H^^n^CH^n^j is the identity, as we just observed, we have:

Lemma (16.14). — The group G^ decomposes as

G=tH^J^
with uniqueness of expression.

17. A fundamental estimate.

From now on, with the exception of the appendices, we take our field k to be R or C.
Recall from § 6 (following (6.7)) that we introduced the extended A-algebra 9^(A),
and the extended jmbalgebra ^(A). Indeed 9^(A)=A®z9z(A), ^(A)=A®Az(A),
where 9z(A)==9z(A)®ZD, I)z(A)==I)z(A)®ZD, are semi-direct products (I)z(A) is
a direct product). We should remark that the degree derivation D == D^i leaves 9z(A)
invariant, so that 9z(A) is well defined. Also we let D denote the induced derivation
on 9z(A), and on 9/c(A). We fix a normal element XeD (recall from § 15, that X
being normal means that X(A,)+o for some i=i, . . ., ^+i) , we consider the corres-
ponding highest weight module V^, and the Chevalley group G^CAutV^. Recall
from Theorem (14.10)3 that we have the Tits system (G^, J^, N, S) with Weyl group W
(more precisely, we saw that N/^nN) was isomorphic to W, which was defined
in § 13, after (13.19), and we identified N/^nN) with W). Also recall from Pro-
position (14.8) that the set {w^1)}^!, ...,f+i C N is a set of coset representatives for
the set of reflections S C W, where S is in fact the set of reflections

I r0l^ ,05 * • • 3 ̂  ,05 r— (XQ , 1 S

(see § 13, preceeding Theorem (13.20)).
Since A=R or C, we have from Proposition (6.11)3 that the representation TC^

is a faithful representation of 9^ (A) into End V^. We let %(A)* denote the ^-dual
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of l)^(A). In (3.3) we defined the Weyl group WCAut ^(A)", generated by reflec-
tions r i , . . . , r^i , and in § 6, (6.14), we introduced the contragredient action
on I)^(X). Identifying Cfc;(A) with its image under TT ,̂ we have from Lemma (A.i)
in Appendix I of this paper, and from (8.1) that
( 17 .1 ) Ad^(i)(A)=r,(A)=A-^(A)A,, Ae^(A), z=i, ...,^+i.

Moreover, we have from Lemma (11.2) that for aeA^(A) and sek*, the
operator ^(^)eAut V^ is represented by a diagonal matrix with respect to a coherently
ordered basis. The same is true for Ae^(A). Thus H^ centralizes ^(X) (see
Lemma (14.20)). But Hfc=Nnj^ (see Proposition (14.19)). Thus (17.1) allows
us to define a surjection

(&o : W-^W,

where ^o(^(I)(J^^nN))=ro i==1^ ...^+i.

We examine the action of W on I)^(A) further. We note that W leaves I)^(A)
invariant, and that

w. D = D mod Ifc(A), weW.

Thus for weW, Ae^(A), we may define w*he^(A) by

w(D+A)==D+w*A.

We also have the surjective Lie algebra homomorphism (see Notational Remark (4.7))
^ ; g(A) ->§, given in Theorem (3.7). This homomorphism induces a surjective homo-
morphism (which we still denote by S)

S:I),(A)->I),(A),
where S(A,) = H,, i = i, . . . , t

S(^+i)==—H^

(see Theorem (3.7)).
We now compute S(^*A) for weVf, Ae^(X). It suffices to compute S(r,*A)

for i==i , . . . , / '+1, and in this case we have from a direct computation
(17.2) S(r^A)-S(A)-a,(S(A))H,, i=i, ...,^,

S(r^,*A)=^(S(A))+H^,

where for aeA(A), we let w^ denote the orthogonal reflection with respect to the
hyperplane {He^(A) | a(H) = o}.

Now we have identified A with I)a(A) in § 13. Also, each of the reflections r^
has a natural extension to 1)̂ ) (stm denoted r^). We may then reformulate (17.2)
as
(17.2') S(r,*A)=^,o(S(A)), i=i, ...,^

S(r,^*A)=r_^,,(S(A)).
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Thus, by means of * and the projection S: ^(A)-^^(A), we may define a
homomorphism

( D : W — W

such that 0(rJ=^o, z = i , . . . , ^ ,

0(^)=r__^i.

But then, thanks to (14.7), we see that ^.(i)(^nN), regarded as an element of W,
ls ^,0 f01' Z = I ? • • - 5 ^ ^d ^-ao,i ^or ^^i? and hence <Do and 0 are inverses of
each other. Hence, in particular we have

[17'3) The homomorphism $o : W—W is an isomorphism of W onto W.

From the theory of affine Weyl groups (see for example [9], Proposition (1.2)) ,
it follows that for all AeI)g(A) we can find weW so that

o^(S(^*A))^o, ^== i , . . . ,^

I^OCo(S(^*A))^0,

or equivalently

(17.4) ^(D+A))^o, i=i, ...,^,

i^^+i(^(D+A))^o.

We now prove some technical lemmas concerning the structure of the
Cfc (A) -module V^.

Lemma (17.5). — Let (JIG^A)* be dominant integral^ i.e., assume [ji(H,)^o
for i==i, .. ., L Then the set of all vet^A)* of the form

£

W v=[i—I;^a,, ^eZ, n^o,
i=l

and such that v is dominant integral, is finite.

Proof. — For v of the form (\\) we have:
t £

(v, v)=(v, - S n,a,)+(^ ^)-(^, 2; ^a,)<((Ji, pi),
1=1 i=i

since ^ and v are both dominant. But v must vary over the dual lattice to the lattice
generated (over Z) by the coroots. Since the above inequality implies that v must
be of bounded norm, and since ( , ) is positive-definite on I)n(A)*, we obtain the
desired finiteness assertion. •
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Lemma (17.6). — For each i == i, . . . 3 ^ 4 - 1 , and each integer n>o, the set of weights
of V^ of the form

t+i
x-2:^^

with n^<n, is finite (1).

Proof. — Let 6,--={^, . . ., a,, . . ., ^+J; i.e., 6, is the set of simple roots of A(A)
with a, omitted. We let m,C9(A) denote the subalgebra generated by the e^ h^f^
with j^i, and let I), denote the linear span of the h^, j4=z. We consider the
subspace of V^

y-^=.v,

where X'==X—-CT^, with o- some integer such that o<_a<_n. Then V is an
m,-submodule of V\ As we shall show in Lemma (17.7), below, V51 is a direct sum
of finite-dimensional, Tttrsubmodules, and hence is completely reducible. It follows
that V is also a direct sum of finite-dimensional m^-submodules. But thanks to
Lemma (17.5), V must in fact be a direct sum of finitely many, finite-dimensional
m^-submodules, and hence V must be finite-dimensional. Lemma (17.6) now follows
(letting <r vary between o and 72). •

We now prove the following assertion, which was used in the proof of
Lemma (17.6):

Lemma (17.7). — V^ is a direct sum of finite-dimensional, irreducible m^submodules,

Proof. — The highest weight vector y^eV^ is a weight vector for m^ (where we
take the Cartan subalgebra spanned by the h^ j= t=z) , and clearly corresponds to a
dominant, integral weight ofm^. Thanks to Lemma (7.12), VQ must generate a finite-
dimensional m,-submodule W^ ofV^ (see in [8] the remark following Proposition (6.2),
p. 61), and Wo is homogeneous with respect to the weight space decomposition ofV\
Let k^o be an integer. Assume inductively there exists an rrt^-submodule W CV^,
which is a direct sum of finite-dimensional nx^-submodules, is homogeneous with
respect to the weight space decomposition of V\ and contains V^ for every weight [L
of V\ with dp(pi)<^. Since W^ is homogeneous with respect to the weight space
decomposition of V^, the subspace Wg has a well defined orthocomplement W1 with
respect to the positive-definite, Hermitian form { , } (see § 9, and [7], § 12), and W1

is homogeneous with respect to the weight space decomposition of V\ Thanks
to (16.1), we have m^m,*, so W^- is mrinvariant. Let [LQ be a weight of V^ such
that dp([jio)=y+i, and V^ intersects W^- nontrivially. Fix a non-zero ele-
ment y'eV^nW^-. Then v ' generates a finite-dimensional rn,-submodule W' of W^-.

P) See [8], Lemma (5.3).
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We then repeat this process with Wg<9W' in place ofWg, and so on. We eventually
construct in this way, an m^-submodule W^^CV^ which is a direct sum of finite-
dimensional irreducible submodules, and such that W^i^V^, for every weight [L
of V\ with dp({ji)^y+i- This completes the induction, and hence the proof of
Lemma (17.7). •

We now consider H^+CG^, the subgroup (defined in § 16) generated by
all h^.{s), with s>o and z=i , . . . ,^+i . If xeH^, then x has an expression

£ + 1
x== PI h^s,)^ ^>o, ^>o, n,eZ.»• — 1 *i=l

We define InxeEndV^ by:
f+i

In x= S ̂  ln(^)^.
i = 1

By (17.4), we have that for all r>o, there exists weW such that
(17.8) ^(w(-rD+lnx))^o, i=i, . . . , ^ ,

—r^^+i(w(—rD+lnx))^o.

For each z^eW, we choose w'eN so that
(17.9) (i) w' is a product of elements w^.{\\ i==i, ...,/'+!.

(ii) (Do(";/(^nN))=w.

Since V^ is a module for the extended Lie algebra g6 (A) =9 (A) ©CD, and
since D preserves V^ (we assumed in § 6 that X(D)eZ), we have that V^ is
a g^(A)-module. For any Ae()^(A), we define ^eAut V^, by stipulating that ^ maps
each weight space into itself and that on V^, e^ is the scalar operator ^lw. We note
that for xeH^;^., we have
(17.10) ^^x.

Since we have defined ^ for each Ae^(A), we have, in particular, defined ^rD for
each re k.

For each weW, we fix z^'eN as in (17.9). Let xeH^+, re A. We then
have, by Lemma (11.2),
(i7.n) ^'x^')-1^111^,

wf{erI)){wf)~l==erww, rek.

Now H^ is normalized by N (recall from Proposition (14.19)3 that H^=Nn<^, so H^
is normal in N by the axioms for a Tits system, (13.21), and by Theorem (14.10),
which asserts that (G^, e ,̂ N, S) is a Tits system). Also, H^ .̂ consists of those elements
in H/g with positive eigenvalues (as follows from (16.13)). Hence the first equality
of (17.11) implies that

^(H^KO-^H^.

267



92 H O W A R D G A R L A N D

For xeH^;, rek, ^eI^A)*, with (ieS^, we set
(x^-Y^x^-^,

where x^eA* is defined by
X.y^X^y, y^V^,

if (JL is a weight, and x^ is then defined for all [isS^. We note that if xeH^ _(., then,
thanks to (17.10), we have

^_^(ln^ ^g^

Now given xeH^, reR with r>o, we choose weW as in (17.8), and
then z£/eN as in (17.9). From (17.8) and (17.11) (the second equality being
applied to e~rJ)), we have
(17.12) (w'x^-^O-1)^!, i==i, . . . i,

^-r^(^'X^-rD(^/)-l)a^l^I.

Lemma (17.13). — Let xeH^ + and reR ^z^ r>o. ^^m^ (x^"^)^'^!,
^=i , . . ., /'+!• TA^ for some j=i , ..., ^ + I3 ^ ^^

(x^-^^^i.

Proo/. — If (Ke'^Y^i for some z=i , ..., ̂  there is nothing to prove. Thus,
assume (y.e~r^Yi==l for each ^==1, . . . ,^. Then, since ^(D)==o for z== i , . . . 3 ^
we have
(*) x^-=i, z = i , . . . , ^ .

Now x has an expression as a product
£ + 1

x= Ft ^.(.5,)^, J,>o, 7x^0 in Z.
i=l l

^+1

We have K^^= H sW^',
z=l

and thanks to (*), this equals one, since when acting on I) (A), a^^ is equal to an
integral linear combination of ^, . . ., a^ But then

(x^-^^^-^i,

(since r>o) and Lemma (17.13) now follows. •
From Lemmas (17.6) and (17.13)3 we immediately have

Lemma (17.14). — Let xeH^; and let cek with r=S9e(c)>o. Assume x^x^Xg
with x^eH^Q, x^eH^ .̂ and

(x^-^Ki, z=i,...,^+i.

Then for all A>o, there is a finite subset of weights o/'V\ such that if \L is a weight ofV^
which is not in this finite subset, then

KX^V^A.
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We define the ring J C k as follows:

Z, if k=R
J = ring of Gaussian

integers, if k == C.

We let oSfj C JS^ denote the subring of all formal Laurent series in t, with coefficients
in J. We fix a Chevalley lattice V^ in V\ and a coherent Hermitian structure { , }
on V\ as in the proof of Theorem (12. i) of [7] (also, see §§ 6, g of the present paper).
We may thus assume that we have fixed a highest weight vector VQ^O in V^ so
that [vo,Vo}==^, and so that { , } also satisfies

{mi,77^)eZ

{mi, ̂ 2}eJ, for m^ m^eV^

We let r= r^CG==G^ denote the subgroup
r={yEG|y(V^=V^.

The following is the central result of this section:

Lemma (17 .15) .—For geG, cek, with r=3Se{c)>o, we can find ^eY such that

(17.16) {ge-^w^ge-^w^ge-^^ge-^^},

for all Y6!^.

Remark. — Lemma (17.15) remains valid if we replace F by the subgroup FQ
generated by ^{a{t)), aeA(A), a^eJSfj. The same proof (given below) applies.

Proof. — The argument is based on the Iwasawa decomposition
G=KH^+J^

of Lemma (16.14). Thus geG has a unique expression g=gKgQ§v, wth ^K6^
^H6^,^. ^UeJ^U•

We first note that for any positive number A, we may choose a finite set of
weights A=A^ of V^, such that for (JL^A, a weight of V^, we have

IQ^T^A.

To see this, we choose z^eW, and corresponding w'eN (as in (17.9)) so that
Oo(w'(^nN))=^ and so that

( '̂(^-^rT^i, ^=i,...^
^-^(W'^-^)^')-1)^!^!

(we have applied (17.12)). Now

^'(^"^r1-^"^
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for some xeH^, and thus it follows from Lemma (17.14) that for all weights (A of V\
but those in a certain finite subset, we have

i^'^-^rT^A.
The left side of this inequality is just {g^e~ ̂ ^(^ so

IO^-T^A,
for all but finitely many weights of V\ since W permutes the weights of V\ We
have thus found our set A^. Enlarging A^ if necessary, we may assume that
if (^eA^, then all weights of V\ of depth < dp ((A), are also in A^.

^ For veV^ we set IMI^df^L and for ^eF we set ^=Y-^V^ Fix
Yi^r arbitrarily, and let

(17.17) A^H^-^po.

We set V^j==J®zV^z, where V^z=V^nV^, for every weight (JL ofV\ For yer,
the vector m^ may be written as a sum, with respect to the weight space decomposition

v^nv^,
where [L runs through the set of weights of V\

If m^ has a non-zero component m^o) in V^j, with ^A^, and if we
choose [LQ of maximal depth (see § 12) among all pi such that m^ has a non-zero V^ j
component, then

\\Se-^m,\\=\\g^e-^m,\\^ ̂ -̂ .(Ml

=l(^-CD)lAO|[|^(^)[|^|(^-CI))'ol,

since [|^(^o)|| ls ^e (positive) square root of a non-zero, positive integer, and is
hence at least one. Summarizing:

II^-^II^IC^-'T0!.
But since [LQ^A^ we have

(17.18) H^-^PA.

Recall that if pieA^, then all weights of V\ of depth <dp({ji) are also in A^. Now
consider the set Ep of those y^r ^uch that m^=^.v^. satisfies

"^e"^^-

Then, thanks to (17.17) and (17.18), we have Yi^r- Also, (17.18) shows that
if y^Er, then [[^-^J^A. If we set ^)=\\ge-CJ)m^ y^, then for yeSp,
we have

yM-ll^u^^ll,
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where g^gv^^^^A' Since V^ is finite-dimensional, <p(y) achieves a minimum
as Y varies over Ep, say for y^Yo- Then, since yi^r? we have

<P(To)^A,

and thus for y^r

vCYo^A^I^-^JI,

by (17.18). Thus, for all y6^? we have

ll^-^jl^ll^-^ll.
This is obviously equivalent to (17.16), and so we have proved Lemma (17.15). •

18. A fundamental domain for Fn^u in ^u«

We recall that beginning in the last section we have adopted the notational
convention that in the remainder of this paper, with the exception of the appendices,
we take our field A to be R or C.

In § 8 we defined the group homomorphism
<D':G^(A)^G^(A).

Thanks to Lemma (8.14), and the fact that Q^(A) is perfect since char^==o, the
homomorphism 0' is injective. We now note that:

Lemma (18.1) . — The homomorphism
(D'oAd:G^G^(A),

is injective^ when restricted to the subgroup ^j C G .̂

Proof. — If ge^j, and if 0'oAd(^)==^, the identity of G^,^(A), then
^e kernel (Ad), since 0' is injective. But then ^eAut(V^) is a scalar multiple of the
identity, by Schur's lemma (Lemma (9.1)). However, relative to a coherently
ordered basis, the element g is represented by an upper triangular matrix with ones
on the diagonal (by (14.15)). Hence g must be the identity. •

We fix a Chevalley basis of 3 (A), and order this basis so that positive root
vectors are represented in the adjoint representation, by upper triangular matrices.
For any commutative ring R with unit, we may also regard this Chevalley basis as a
basis of 9R(A), and of course it is then still true that positive root vectors (in g^A))
are represented in the adjoint representation, by upper triangular matrices.

We then have:

Lemma (18.2) — The subgroup O'oAd(J^j) of G^^(A) is the subgroup of
all geG^^{A) such that relative to the Chevalley basis of 9 (A), ordered as above, g is repre-
sented by a matrix with coefficients in (P, and such that the reduction of g mod t is an upper
triangular matrix with ones on the diagonal.
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Proof. — From the definition of J^j, at the beginning of § 12, we see that
<&'oAd(.^j) is contained in the subgroup Ĵ j' of all ^eG^^(A), such that ^ is
represented, relative to our fixed Chevalley basis of 9 (A), by a matrix with coefficients
in (9, and with a reduction mod t which is upper triangular with ones on the diagonal.
To prove that J^jC O'oAd(J^j), we first note that, thanks to Theorems (2.5)
and (2.24) in Iwahori-Matsumoto [9] (where one interchanges the roles of A^(A)
and A_(A)), it suffices to show J^n($'oAd(T^)) C (D'oAd(^u)- This is in fact
proved in the process of proving (18.14), below. •

From now on we identify ^j with its image ^CG^^A), where this identi-
fication is made possible by Lemma (18.1). For each j^o in Z, we define the
subgroup J^ C J^j by

^={geJ^\g^i mod^'}.

In particular, j^==^. We let

r{f=rn^ ^i.jez.
We also set T^=Yr\^. We shall show that, for each j>^i in Z, there is an isomor-
phism of abelian groups

(18.3) Y^): ̂ /^•+1) ̂  g,(A), (j>i),

where Q^{A) is a group with respect to the vector space addition, such that if we let

^):^)^^uJ)/^+l), ^o,

denote the natural projection, then, for rek, aeA(A), J'^i, we have

(18.4) ^o^(^(^))=rE,,
Y^o^(^(i+^))=rH,,

and hence

(18.5) T^o^(r^)Dgj(A), j^i.

To prove the existence of the isomorphism Y^ satisfying (18.4), we consider the
ring ^==^/^4 '1^, which, as a vector space over k, has a direct sum decomposition

0.= U t'k.o<.i^
Then the algebra g^.(A) has a corresponding direct sum decomposition (as a vector
space over k):

(18.6) (^.(A)=^U^*9,(A).

We fix an ordered basis of g^. (A) relative to this decomposition, so that the basis
vectors of Qo. (A) consist of a union of basis vectors of the subspaces ^g^(A), so that
the basis vectors in each ^g^(A) appear consecutively, and so that for i^i'y the basis
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vectors in ^' 9/c(A) appear after those in ^g^(A). Then for ge^\ Adg determines
a ^-linear transformation of (^.(A), and relative to our basis, and the direct sum
decomposition (18.6)5 the matrix of this linear transformation has a block decomposition

/ I - . 0 \

\A,C?) ' - o 'I/

where Aj(^)eHom^(g^(A), f-'g^(A)) SEnd^(A). One sees directly that
(18.7) A,(^))==radE,,

A,(^(i+^))==radH»,

where reA, aeA(A), j^i, and thus, identifying (^(A) with its image under the
adjoint representation, we see that we may define Y01 by

Y^oTt-^A,,

and then note that Y131 satisfies (18.4), thanks to (18.7).
We also wish to consider the projection 7t°: ̂ j-^-^j/,^11. With a slight abuse

of notation, we let /^(r), oceA(A), rek, denote the automorphism of g^(A) defined by

^s^"-
We let Gad,^CGadj^ denote the subgroup of all elements which, relative to our
fixed Ghevalley basis of 9 (A), are represented by matrices with coefficients in (P.
Then n° is the restriction of the projection (again denoted by n°) from G^ o
to G^^l^\ where G^ ^/^1) may be identified with the subgroup G^CAutg^A),
generated by all /a(r), oceA(A), rek. Moreover (identifying <^j with a subgroup
ofG^), our notation is consistent, in the sense that if aeA^_(A), rek, then

^(XaW-XaW.

We let U^CG^; denote the subgroup generated by all ^ocW? a^A^.(A), rek.
Then

^W-u,,
7t°(I\j) 3 the subgroup j^j of U^,

generated by all ^{r), aeA+(A), rej.

We define a fundamental domain Q C k, for the action of J (acting as trans-
lations) as follows:

(xeR, |A;Ki/2, if A==R,
Q=\

[z=x+iy, x,jyeR, |^|^i/2, l^ i^ i /2 , if k=C.
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We define 9^(A)Cg^(A) to be the subset of all X€Q^{A) such that each coordinate
of x, relative to our fixed Ghevalley basis is in Q.

We now fix an order on A+(A). Then every element of U^ has a unique
expression as a product ^ ^/A^a^a)? ^^ where the product is taken with respect
to our fixed order on A , (A). We let U^CIL consist of all products II Y (s ),

^ aeA+(A)/Lav a/5

s^eQ (the product again being taken with respect to our fixed order on A_^(A)). A
straightforward induction then shows:

(i3.8) For all ^eU^ there exists y^u? such that ^yeU^.

Now we have fixed an order on A^_(A). This order, in turn, determines an
order on A_(A)=^—A^(A). We let

UQ = subgroup of G^ generated by the elements ^[o{t)),
aeA+(A), o(^,

U^= subgroup of G^ generated by the elements Xa^^))?
aeA_(A), c(t)e^.

We also recall, from Lemma (13.7), that T^CG^ is the subgroup generated by the
elements h^a{t)), aeA(A), a(t)e(y, and by the elements ^ ^(^), sek\ We note
that in the notation of § 13, we have

(18.9) U^=U^
U^=U_,c.

It thus follows from (13.22) that

(18.10) ^=U^T^,

and, from (13.23), that every element of Ug, (resp. of U^) has a unique expression
as a product

A)^^))- ^Eo

(resp. ^n^(cr^)), <(^)e^),

where the product is taken with respect to our fixed order on A_^.(A) (resp. on A_(A)).
It then follows from (18.10) and the above remarks, that every element x of ^ has
an expression

(18.11) ^(^"(A)^^^))^^^)^^^))-

with ^)^ aeA+(A), ^(^)e^, aeA_(A), heT 0̂)

where products are taken with respect to our fixed orders on A^(A). Moreover, we
have
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Lemma (18.12). — The subgroup ^C^ consists of all xe^ such that in an
expression of the form (18. n) for x, the element h may be written as a product

(18.13) A=n^(o^)),
with di{t)==i modt{(5,{t)e^), ^i,...,^ For j^ i , the subgroup J^ consists of
all xe^ such that in an expression of the form ( 1 8 . 1 1 ) for x, we have a^^omodt3,
aeA^(A), and a^{t) = o mod t3, aeA_(A), and in the expression (18 .13) for h we may
assume a^t) == i mod t3, for i == i, ...,/'.

Proof. — Recall, we have identified <^j with its image under O'oAd. Relative
to a Ghevalley basis of 9 (A), ordered so that positive root vectors are represented by
(strictly) upper triangular matrices, the elements of <^j acting on Q^ (A), by means
of O'oAd, are represented mod t by unipotent matrices. Hence, the elements
of T^nj^ act on C^(A) as the identity mod t. On the other hand, for any AeT^,
we have

f
h== H ^.(3^)) mod(kernel O'oAd), 3^)e^, z=i , ..., i.

Each ?^) has an expression

S )̂ = G,{t)s^ s,ek\ ^(t) E(O\ a,{t) == i mod t.

Then we have

h^h'h" mod(kernel O'oAd),

where h' == IJ h^(t)),

A"=n^^(^).

Now, if AeT^nj^j? ^en

A"eT^nj^ mod(kernel O'oAd),

since A'eT^n^j, by Lemma (12.2). But then, A" acts on 9^ (A) as the iden-
tity mod ^. But O'oAd^") is equal to its reduction mod t. Hence h" e kernel ($o Ad).
But O'oAd is injective when restricted to <^j, by Lemma (18.1). Since, by
Lemma (12.2)3 A'GT^n^j, we thus have A=A'$ i.e., we have proved:

(18.14) If AeT^n^, then h has an expression as in (18.13)

with c^t) == i mod ty z=i, . . ., L

But now if xe^j, and if we express x as in (18.11), then Ae^jUT^, and hence the
first assertion of Lemma (18.12) follows from (18.14).

We now turn to the second assertion of Lemma (18.12). It is clear that
if xe^j has an expression (18.11), with cs^{t), CT^) =o mod ^, oceA(A), and with h
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expressed as in (18.13), with G,{t) E= i mod t\ then xe^\ The converse for j^2
follows easily from (18.7) and the result for j== i . For ,y=i, we have that if A-e^j
and if A: is expressed as in (18. n), with h as in (18.13), with a^t) =s i mod t, i=i, ...,/ ' ,
then

7tow= "^^a £ A+(A)

where q^ is the constant term of cr^), aeA_^(A). If xe^ then 7r°(;v)=i, and we
must have Sa^0 f01' a^ aeA^.(A); i.e., cr^)=omod^, for aeA^.(A). This
concludes the proof of Lemma (18.12). •

Definition (18.15). — We let O^ denote the set of all c[t)= S q^t3 in Q such

that q^Q, and 0^ the set of all cr(^)= S q^t3 in Q such that qo==i and q^2, J'^i. We

let ^j^ denote the set of all xe^\j such that in the expression ( 1 8 . 1 1 ) for x, with h as
in (18 .13) with a^t)e0*, a^t) = i mod t, i==i, ...,^, we have a^t), G_ ̂ (t) e Q ̂ , for
all aeA^(A), and ^(^)e^, for i==i,...,f.

Lemma (18.16). — For all xe^j, there exists y^u sucn l^

^ej^,^'

Proof. — We have observed that 7r°(I\j) contains e^jCU^, and, thanks to (18.8)5
we can find YO^U so t^3Lt if we express X^Q as in (18.11), then the constant term
of o-a(^), oceA^.(A), is in Q. For an integer j^,o, we let P(j) denote the following
assertion:

P(j): For each integer k with o^k^j, there is an element y^eFy such that

(i) T^T.+imodF^
(ii) There exist elements cr^(^), CT /_a(^)(aeA^(A)) in (5^, of order j (i.e., whose coeffi-

cients of f^ are zero for m>j), and with (j^^)6^ s^d there exist elements a^t)
(z=i, .. . 3 ^ ) in (9*Q, of order j, so that if Xy denotes the corresponding product
given by (18.11), with h given by (18.13)3 then

x^ == ̂  mod ̂  +1), o <k <_j.

We note that our initial comments in the proof serve to verify P(o), with yo
chosen as above. Assume then for some j'^o we have proved P(j). Then

x^=x^, ^^j+l}.

Moreover, thanks to (18.4) and (18.5), we can find Y'6!^^, such that
^•+i)^(i+D(^Y)eg^(A).

We set Yj+^YjY'9 ^d note that with this choice ofyj+i? we have that (i) of P(j+i)
is satisfied. We write Y^W^^.Y^eg^A) as

/
S yA+SftH,, q^q^Q.

a£A(A) i=l
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Now in (ii) of P(j) we have specified certain 0^)3 ^-y.W, o,(^). For P(j+i) we
replace these elements by

^W+^t3^ aeA^(A)

^-.W+q_^^\ aeA^(A)

^+^j+\ z=i,...^

respectively. We use these elements to define a corresponding A:-.^, by (18.11)
and (18.13), and note that y^ o^^j+i, and x^^ satisfy (ii) of P(j+i). We see
that moreover, the sequences y^r^, ^.eJ^^, have well defined ^-adic limits y6^,
XQ e ̂  ̂ , respectively, and

;VY==A^.

This proves Lemma (18.16). •

Remark (18.17). — Our proof of Lemma (18.16) shows more: If 1^^0:1^ is
the subgroup of r\j generated by all ^aC^))? aeA(A), cr(^)ej[[^]], the ring of power
series in t, with coefficients in J, then for all xe^j we may find y^o u? so

that ryeJ^^.

19. A fundamental domain from Siegel sets.

In accordance with the notational convention adopted in § 17, we continue to
take k==J{. or C. We define CQ>O by

f2/V3, k=-R

'°-tV2, k==C.

Definition (19 .1) . — For a>o we let H^ consist of all he~^^ where heH^^y
r==SSe c>o and

{he-^i^ z=i, ...,^+i.

Definition (19.2). — For (T>O, we let (3o=KHg^j^, and we call Gy a Siegel
set.

We set TQ equal to the subgroup of F generated by all ^{^{t)), aeA(A),
<7(^)eJ^j. We have

Theorem (19.3). — Let X be a dominant integral, linear functional in I)^(A)*, and
assume X(^)=i, for z=i, . ..,/'+i. Then for g^G^ and cek with r=^!e c>o, we
can find y^o suc^ ^a^

ge-^eG^.

Remarks. — (i) Later on we shall see that if ce'R, then we can drop the restric-
tion that X(^)==i for all i=i, ...,/ '+! (see Theorem (20.14)). (ii) Of course
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Theorem (19.3) also holds for F in place of to. We do not know the exact relation-
ship between F and f^. (iii) Needless to say, Theorem (19.3) is an analogue of
Theorem (1.6) in [i]. Indeed our proof is modeled after that in [i], though the
present case presents some new technical difficulties (e.g., we must introduce the
operator D, and the space V^ is infinite-dimensional), (iv) The appearence of D seems
to us to be natural. Indeed, the operator D is naturally related to the Fourier
expansion of automorphic forms on Sig (R) (see e.g. [6]). The picture which emerges
in Theorem (19.3)3 when k=C, may be described as follows: Let ^ denote the
Poincar^ upper half plane. For each ze^\ let P^^f^-^CG^, and let

<p,:r->r-
be the isomorphism defined by

y^T)-^-^.
We let f act on G^X^* by

(^ O-Y-^P^T). ^)-
We let (5^=all(^, z)eG^X^ such that ge^eQ^. Then Theorem (19.3) tells us
that

®oI\)=G^x^.
(v) When k==C, our methods in fact prove Theorem (19.3)3 whenever J is the

ring of integers in a Euclidean, imaginary quadratic field. Of course, for each
such J, one must make an appropriate choice for o-o. Also, one must utilize the
following for such a J:
(*) There exists s, with o<£<i, such that for all ^eC, there exists 7]eJ,

such that |^—T]|<£.

The proof of (*) follows from Hardy and Wright, An Introduction to the Theory of
Numbers, p. 213, Thm. 246 (and accompanying remarks).

Proof of Theorem (19.3). — The proof rests upon the existence of minima
(as in Lemma (17.15)). We recall that by the remark following the statement of
Lemma (17.15)5 the lemma also holds for Fg. Thus, given g^G^, we may choose
Yoef'0 so that
(19.4) Ik^woll^ll^-^oll,
for all yeFo. Now ge~CJ)^oecJ)eG^ and relative to our Iwasawa decomposition of
Lemma (16.14), we may write this element as

ge-^e^^g^g^

where g^-K, g^^+, and g^^j' we note that ^-^u^^u- we

choose Yi^o, so that ^^^df.Su'T^^u,^ (we are using Remark (18.17), following
the proof of Lemma (18.16)). We have

ll^-^YoYi^oll =11^-^0^11.
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since YI^O^^O* Hence (19.4) implies
(19.5) H^-^YoYi^ll^ll^-^YoYiT^II, for all ^0.

On the other hand, we have
ge-^W^gKgHg^-^^g^e-^g^.

We set this last element equal to g\ We have from (19.5):
(19.6) ll^oll^ll^oll2. for all yefo.

We will have proved Theorem (19.3), if we show that g'eG^. To prove this, we
take Y==^.(i), z=i , . . . ,^+i , in (19.6). The left side of (19.6) is, in any case,
equal to

(19.7) IQ^TI2.
On the other hand, thanks to Lemma (11.2) and to our assumption that

^(^)==i, for all i== i, . . . , ^+ i? we have

(19.8) ^(I)•y06VLa^ i==^ . . .^+1.

Also, identifying g^S) with 7T^(g^(X)) (recall from Proposition (6.11), that TT^ is
faithful, for k=R or C), we have from (7.8) that

^.(I)-l^^(I)=±S-o,, for all i=i, ...,^+i.

We note that ^==^(1) .̂ V .̂, by (19.8), and

(f.V^CV^, <zeA(A), (i= weight of V\

as one checks directly. Hence

ea^O-^^)-1^/!).^

^(ir^.^o,
since ^,.y^V^^., and V^==o because X+fl, is not a weight of V^ (see (6.7)).
But then, since ^o.(i) .^o6^-^., we have

^(I)-^=(I+Sa,)(I-S-a;)^0

=(l—S_^—Sa^-a,).^0

==—^-0..^.

and hence

(19.9) Sa.^(I)yo=—Ai•yO=--y05 ^^^ • . .^+1,

since X(A,)==i for z=i , ..., £-}-i.
We can now compute the right side of (19.6) for Y=z^(i). Indeed, we get

from (19.9):

(19.10) ll^^^).^!!2-!!^-^.^!!^!^-^'-^^!?!2!^^
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where

P==

[the constant term of G^.[t), in the expansion (18.11) for ^,
when z=i , .. .3 f.
the coefficient of ^ in c'_^(t) (oco= highest root of A(A), relative
to oci, . . . , a ^ ) in the expansion (18.11) for g ^ y when z==/'-}-i.

Since ^£^^5 we have pe^, so

H.<|-/4. ̂
~(l/2, A=C,

and if we set p^ == i /4 when A = R and i /2 when A = C, we obtain from the fact
that (19.7) is at most equal to the last expression of (19.10) (by (19.6)) that

(i-p^K^-^)-01!2,
2

k==R
or (^-T^ v39

V2, A=C.

This proves that g'^Qy 5 which, as we noted earlier, is sufficient to prove
Theorem (19.3). •

20. The structure of arithmetic quotients (preliminaries).

As specified in § 17, we continue in this section, to take our field k to be R or C
(though this assumption is not always necessary; e.g., for Propositions (20.1), (20.2)3
and Lemma (20.4)). We let X^el)^(A)*, the dual space of I)^(A), be defined by the
conditions

x,(/y=8,,, zj=i, . . . , ^+ i .
The following proposition is an immediate Corollary of Lemma (15.7):

Proposition (20.1). — If XeD is any normal element, then there is a positive integer m,
such that S^.CE^, for each i==i, . . ^ l - { - i .

The next proposition is an immediate Corollary of Lemma (15.7) and
Theorem (15.9):

Proposition (20.2). — Let X, [ieD be two normal elements. Then there exists an
integer mQ>o, such that if mis any positive multiple of WQ, m==jmQ, j>o, there is a well defined
group homomorphism

7r(X,m(i): G^GF,
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satisfying (and uniquely determined by) the conditions

(20.3) <\m^^W))=^W), aeA(A), (^)eJ?.

The next result will be needed presently;

Lemma (20.4). — If, relative to a coherently ordered basis of V^, the element geG^ is
represented by a diagonal matrix, then g is in H^ (and, of course, conversely).

Proof. — Let ge^wJ^, we'W and assume that, relative to a coherently ordered
basis, g is represented by a diagonal matrix. We first show that w is the identity.
Assume this is not so. Recall that by Lemma (15.2)5 we have

(20.5) S^3^

and that in § 17, we proved that there is an isomorphism Oo: W->W, of W
onto W (WCAut^^A)*) being the Weyl group of g^A), defined in § 3—(also see
§ 17) uniquely defined by the conditions
(20.6) OoK(i)(^N))=r,, i=i, ...,^+i.

By Lemma (11.2), (i), and by (20.6), we see that if %eN represents w, then
(20.7) ^(V^)=V^^

for every weight [L of V\ Since SyCE^ (see (20.5)) we therefore have that
^o^Kp1')^^' ^or some weight [JL' of V\ The point here, is that since we have
assumed w different from the identity, and since $o is an isomorphism, ^o^w) cannot
be the identity. But then Oo^)? restricted to E,., is not the identity (see [8], § 2, the
discussion preceeding Proposition (2.5)). Choose a weight [L of V^ of minimal depth
among all weights [L' of V^ such that ^(^((Ji')^^' (for the definition of depth see
the beginning of § 12).

Also, write ge^w^ as
g=xny, x.ye^.

If yeV^, y=)=o, then, thanks to our minimality condition on the depth of \L, and to
Corollary (14.18), we have

g.v==cn.v (modulo summands of strictly smaller depth),

where cek*. But, by our choice of [JL, and by (20.7)3 we have that v and n.v are in
different weight spaces. Hence the element g is not represented by a diagonal matrix,
relative to a coherently ordered basis; i.e., our assumption that w=^e has led to a
contradiction. Hence ge^. But then ^eH^, by Corollary (14.18).

Now Theorem (14.10) implies that (G^, J^, N, S) is a Tits system. Hence, we
have the Bruhat decomposition

G^=^^WJF'wew

28]
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(see [3], Chapter IV, § 2, Theorem i, p. 25)3 and every element g of G^ is in ^w^,
for some z^eW. We thus obtain the Lemma. •

Now let XeD be a normal element, and let G^CAutV^ denote the subgroup
generated by the elements of G^ and by the elements ^rD, reR (recall from § 6 that
D acts on V^ (we assumed X(D)eZ) and hence on V^ for every field ^, and that e^
was defined in § 17). We then have:

Lemma (20.8). — Let X, (JieD be two normal elements and assume S^CE^. Then
the homomorphism

7T(X, (X) : G^G^

0/' Theorem (15.9) has a unique extension to a homomorphism

TT(X,(I): G^->Gr,

such that 7r(X, (A) (^D) == ̂ rD /or d7 reR.

Proof. — For each reR, the automorphism e^ of V^ normalizes G^ (y=^
or X) and one has

TT(X, ̂ (^^-^^^TT^, ̂ (^.-rD ^eG,\

Hence, in order to prove the Lemma, it suffices to show that

(20.9) G^^H^identity}.

Indeed, by Lemma (20.4)3 this intersection is contained in H^. However, (^rD)a*=I,
for i=i, ...,/'. Then, if ^eH^, we must have, as a consequence of these equa-
lities, that (^^i^i. But

r̂D .̂î

and thus r==o, and this proves (20.9), and hence proves Lemma (20.8). •
For cr>o, we write (5^ (resp. H^) for Gy (resp. for H(,CH^) whenever we wish

to keep track of the X-dependence (see Definitions (19.1) and (19.2) for the definition
of ©„ and HJ. We let

H^H?

consist of all A'eH^ such that

h'=he-^, AeH^+, r>o.

We set

^"-^dî H?^.

We write T^ for T^ in G^, and similarly, J^ for ̂  H^+ for H^, and ̂  for &,
whenever we wish to keep track of the X-dependence of these groups. We have
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Lemma (20.10). — Let X, (JieD be normal elements such that E^CS^. Let
7r(X, [L) : G^-^G^6 be the homomorphism given by Lemma (20.8). We then have

(20.11) 7r(^) (r^r?
n^^{K^==K^

^POOS^)-®^ (^>o).

Proof. — From Theorem (15.9) it follows that

(20.12) ^^{^MW=1^W. aeA(A), a{t)e^

and then, as a special case of this equality, we have

(20.12') TT(X, ^)(x^))=x^), ^A^(A), sek

(where we write ^(^) for 7^) (v=X or (i), to keep track of the dependence on the
highest weight). The first equality of (20.11) follows from (20.12) and from the
definition of f^ ( v = X or (i) in § 17 (after Lemma (17.15)).

In order to prove the second equality of (20.11) we note that if K^CG^
(v==X or [L) is the subgroup of JK^ generated by the subgroups ^^(K), i==i, . . . ,^+1
(see § 16 for the definition ofY^, ^zeA^(A), and of KCSL^A)), then the proof given
in § 16 for Lemma (16.14) also shows that

G^Ko-Hî , v=X or pi,

and then, by the uniqueness assertion of Lemma (16.14)3 we have

(20.13) K^K^, v=X or (JL.

On the other hand, if we write T^ for Y^: SL^)-^, v = X or pi, aeAw(A), then
from the definition of Y^ in § 163 and from (20.12'), we have

Y^7r(X,pL)o^, ^eA^(A),

and hence, from (20.13)3

Tt^pLKK^K^

i.e.3 we have proved the second equality of (20.11).
From (20.12') we also have

7r(X,^)(^(^))=^.M, sek\ i=i, ...^+i,

where (as usual) we write h^{s) for A^), aeA^(A), sek*, to keep track of the
dependence on the highest weight. The third equality of (20.11) then follows
from this, from the second equality of (20.11), and from (20.12). This proves
Lemma (20. lo). •

We can now prove the following extension of Theorem (19.3):
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Theorem (20.14). — Let XeD be normal. For any geG^ and r>o, we can
find y^o such that

ge-^^eQ^.

Proof. — Fix peD, such that p(^)=i, for z= i , . . . ^+ i . Then, by
Theorem (19.3), we know that Theorem (20.14) is valid for X = p . If XeD is any
normal element, then by Lemma (15.7), Proposition (20.2) and Lemma (20.8), there
is a positive integer m so that

^Sp
^s^

and we have well defined homomorphisms

7r(p,^p): G^->Gr'6,
7r(X,mp): G^G^'6.

Using Theorem (19.3), and Lemma (20.10) (with X = p , pi=mp) we see that
Theorem (20.14) is true for \=m^. Presently we shall prove:

(20.15) If X, [LED are normal, and if S^CE^ then the kernel of the homomorphism
7r(X,p i ) ; G^Gr

is contained in l^nH^n (center G^).
We note that (20.15), Lemma (20.10) and Theorem (20.14) for wp, which we

have proved, then imply Theorem (20.14) for X, thanks to the existence of 7r(X, wp).
We now prove (20.15). We first note that it suffices to consider TT:(X, pi) : G^->G^.
Then, using the Bruhat decomposition corresponding to the Tits system of
Theorem (14.10) (for both G^ and G^) we see that first n{\ (i) respects these Bruhat
decompositions, and then, as a consequence, that the kernel of 7r(X, pi) is contained
in J^CG^.

On the other hand, we have a commutative diagram
px Tr^) /^c^ ———> Gj?

(20.16) 0'oAd\ ^oAd

Gad,^(A)

where, of course, Q'oAd on the right and left are two different homomorphisms.
But (either) O'oAd is injective on J^ (by Lemma (18.1)). Since J^=VL^ (semi-
direct product) by Lemma (14.12), by (14.13) and (14.16), we therefore have that
kernel 7r(X, [L) is contained in H^=H^. Also, by Lemmas (8.14) and (9.1), we have:
kernel(d)'o Ad) C center G^, v = X or pi (recall that for A==C or R, the algebra g^(A)
is perfect). Hence, by the commutativity of (20.16), we have:

kernel 7r(X, pi) C center G^.

Thus, to prove (20.15), we need only verify that kernel TT(X, pi) C&\
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But from (16.13), we have H^H^+H^ (^=X or (Ji), where we introduce
the superscript v to keep track of the dependence on the highest weight. Also, we
clearly have from the equality

7T(X, ^(^.M)=^.M, S€k\ i==l, . . . , ^+1 ,

which we noted earlier, that
(20.17) 7r(X,^)(H^)=H,%

^.^(H^H^e.

Also, H^ ^. n H^ Q consists of diagonalizable automorphisms of V^ (v == X or pi) each
of whose eigenvalues is positive and has modulus one (see § 16). Hence

H^nH^= {identity}.

Thus, since kernel 7r(X, pi) CH^, and since H^CjK^, we see from (20.17) that if
we show the injectivity of 7r(X, [L) restricted to H^, we will have kernel 7r(X, pi) CK\
But the fact that 7r(X, [ L ) is injective on H^ ^ follows easily from the fact that S
spans y(A)*. Hence we have proved (20.15), and, as we already noted, we obtain
Theorem (20.14) from (20.15). •

2i. The stucture of arithmetic quotients (conclusion).

As specified in § 17, we take our field k in this section, to be R or C. We
fix peI^A)" such that p(^)=i, i==i, . . ., /'+!. We set

(D,=A^(A)n^(A_(A)), ^eW,

and we let <0^,> denote the sum of all the roots in 0^,. Then from [8], Propo-
sition (2.5), page 50, we have
(21.1) <0^>=p—w.p , for z^eW.

Thus, for weW, we have an expression for p — w . p of the form
f+l

p-^.p=^^.^.,

where the ky are non-negative integers.
Let w = r^ . . . r^ be an expression of minimal length of w in terms of the

generators r^. Set
(21.2) ^=^...^(^.), J==I, . . . , T .

Then from Proposition (2.2), page 49, in [8], we have 0^={^i, . . . ,&J, and 0^
has exactly T elements. Hence the by are mutually distinct.

For each i == i, . . . , ^4 -15 we let W^ C W denote the subgroup generated by
the r-, j=t=z. We then have:
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Lemma (21.3). — Fix an integer z e { i , ...,/'+!}. If weW is not in W,, then
f+i- s /
3=1

^•P-P=-S^,, ^o, ^.eZ,

<W fc>o.

Proq/. — Let
w-r^-^

be an expression of minimal length of w in terms of the generators r,. Let x be the
smallest integer between one and T, such that i^==i {w is not in W,, so such a x does
exist). Then

^-V^x-X)

-^•••^(Ol!' • • tx-l<
^+1

and hence

^.S^ ft+°^.»=!'

^+1
p-^ .p=<0^>=^+. . .4-^= S^.^.,

with ^>o. •

Zmwa (21.4). — Fix an ie{i, .. .^+i}. TA^ ^^ ^ a yW ^m^r c>o, J^A
^ ^+ 1

^^ z/ 6eA+(A), and b== S ̂ , ^A ^>o, ^TZ

(21.5) ^^^(^).

Proo/. — Let aoeA(A) denote the highest root, and express ao as a linear
combination of the simple roots of A (A):

t
oco= S m^y.

£

We let m= S 7^.. Next, let L denote the imaginary root
f

L=S^.+^,
J'=l

and recall the description of A^.(A) given in (4.3).
Thus, if 6eA^.(A), then b has an expression

£ f+i
6=(,s^)+7^(,?^^^

where we have set m^=i, and where

°^<.^ j==i, ...^
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and 72^0. On the other hand, in the statement of Lemma (21.4)3 we have set
f+i

b== S A^, with ki>o for our fixed 2. We set

~~2(772+l)9

and we let ^+i==o. We have
(21.6) kj=q,+nmj, j = i , . . . , { + 1 ,

"1,^1, q^m,, j= i , ...,/+!.

where

(21.7)

Then
qi+nnii

, by (21.6)/+! — /+!
S ,̂ (S^,)+n(,»+i)

^^^ri)3 ^^•^
gi+^

-(m+i)(n+i)

>
, if n==o (then ^=A^i)

772+1

>
[72+1 772 + I" 2(772+l)

and in either case, we obtain (21.5). •

, if 72^:1,

Z<?772772a (21.8). — Fix an ie{i, . . ., y+i}. TA^ exists x>o ^^ that for
all weW—W^, ?/' z£;̂  set

/+!p—w.p=s^.^.,
J=l

^^72

("•9) A^x(/Sl^.
j=i

Proof. — For a root
^+1

/=S7Z^
j=l

in A+(A), we let ht(/)(=height of/) be defined by
/+!

ht(/)=S72,.
J-l

^7
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The set FCA+(A) of all roots /eA+(A), such that
/+!

/=SB.a. n,=o,
3 - 1

is a finite subset. We let/i, .. .,fy denote the elements of F, and we set

t.=^ht(/J.

Recalling (21.2), and that if w=r^...r^ is an expression of minimal length of w
in terms of the generators r,, then <D»={^, ..., ^}, we have from (21. i) that

p—w.p=^+. . .+^.
/+!

We write ^== S^^, a^i,. . .^
V == 1

T

and note that ky== S A^.

We set T(F)={^{I, ...,T}|VF},
^+1

and M= S S ̂ .,.MeT(D .?'==i ' .?M-

Then, since w(f:'W,, it follows that M^i. As a result:
f+l T ^+1 Ti•ts,i.)-l=(s,i")(s,.sy-

>(..JS„,^•)(M+-)-'
^^M(M+ti)-1, by Lemma (21.4),
=c{l+^M)-l^c{l+^-\

We may thus take x=c(i+pi)-1, in (21.9). •
For each cr>o, we defined H" in § 20, to be the set of all A'eH<, such

that h'=he~^, AeH^+, r>o. Thus, in particular
W<<T, Z=I, ...,^+I.

We now prove:

Lemma (21.10). — For all s>o, there exists M>o such that if r>M and
^':=^--rDeHR5 AeH/c,+5 then for some z = i , . . . , ^ + i , we have (A')^'<£. Conversely,
for all M>o, there exists an s>o, such that if h' == he-TI)eH^, AeH^+, ^^ z/ (A')^<£
for some z = = i , . . . ^ + i ^ ^^ r>M.

Pr^/. — If h'=he-^, with r>o and AeH^, then
(21.n) (A /)a-=Aas ,=i, ...^,

(A /)^+l=^-r^+l.
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Writing the highest root aoeA(A) as an integral linear combination of simple
roots of A (A), we have

£

ao= S m^.

For AeH^, we then have
t(21. is) ^+1 = n h-^j.

3=1

We let m== S ̂ . Assume we are given s>o, and let

Then choose M>o so that

€e-^<^

We then consider h'=he~^ in H", with AeH^+, and r>M. We claim that
{h'Y^z for some z = = i , .,..^4-1. If this is not true for some z==i , ...,/ ' , then
A^s, for z = i , . . . , ^ (by (21.11)). Hence, by (21.12), we have

/^i^e'.

But then (A')^^^"^)^!

=^+^-r^£^-r

<£^-M<£.

Conversely, assume, for some M>o, that A'^^"^ is in H", where heH^ +
and o<r<M. Then

A'^<cr, z=i , . . . , ^+l ,

and by (21.11) and (21.12), we have

A^i^',

where CT^CT"^. On the other hand

^-^-^(A')^!^,

by (21.11) and our assumption that h' is in H". Thus

G'̂ ^K:̂ .
/

For z = = i , . . . , ^ we let m{i)==m—m, and &(Q=( S m^—m^. We then have
j = l

h^i^h-^h-^, by ( 2 1 . 1 2 )
>(^M)-l<T-m(i), z=i,...,/,

289
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and thus the (A')0^^', z = = i , . . . , / ' (see (21.11)), are bounded below. But

^Yt^==ha{+le-r (by (21.11))
>ae-^

so all the (A')^', i==i, . . ., /'+!? are bounded below, and this proves Lemma (21.10). •
In the proof of Lemma (20.8), we showed that if we write g^G^6 as

(21.13) g-g'e^ g-eG^ reR,

then g ' and r are uniquely determined by g (see (20.9)). It follows from this fact,
and from the Iwasawa decomposition of Lemma (16.14), that in the decomposition

(21.14) S^KH?^, ^>o,

we have uniqueness of expression. For xeQ^y we let

X==X^XQX^J, A:^eK, x^eHyy ^ue&^u,^3

denote the decomposition of A:, relative to the decomposition (21.14).
The operator ^rD, reR, normalizes Gj^, and hence, from the uniqueness of the

decomposition (21.13), we have:

(21.15) If g^g^g^G^ if r',r"eR,
and if gze-^g^g^e-^ then r'=r".

For each i == i , . . . , / ' + T -> we let W^ C W denote the subgroup generated by
the elements ^.(i)(J^nN), with j 4= i. For F C { i , . . . , y+i}, we let Wp^.f^W,,
and we denote by PpCG^ the parabolic subgroup

P^j^Wp^.

Indeed, the fact that Pp is a subgroup of G^ follows from Theorem (14.10) and from
standard properties of Tits systems (see [3], Chapter 4, Theorem 3, page 27).

Theorem (21.16). — Fix G>O. Then there exists s>o such that if XyjyeQ^
if Y^O? if for some io==i, . . . ,^+1,

(21.17) A:§0<£,

and if

(21.18) A:Y=^,

then Y^i'o-

Proof. — We first note that as a consequence of Lemma (21.10) and of (21.15)5
we have that for all s'>o, there exists e>o such that if x^jyeQ^y Y^o ^ti^y (21.17)
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and (21.18), then J§<s' for some j = i , . . . , ^ + i . Thus, in order to prove
Theorem (21.16), it suffices to prove

(21.19) There exists e>o, such that if XyjyeG^ if y^o, if for some
Wo6^ • • • ̂  + i}, we have

(21.17') ^-<e, ^o<c,

and if x^==jy, then Y6^^,^}'

Now if ^.j/eS", yer'0 satisfy (21.18), we have

(21. 20) ^H^UY =J^H^U-

Moreover, ^.VQ==m^eV^ (see § 17 and recall we are taking G^CAutV^, where XeD
is normal). If (JL is a weight of V\ then the weight component m^{[L) of m^ in V^ is
also in V^ (see (6.3)). Thus, if [LQ is a weight of V^ of maximal depth such
that 77Z^((Jio)=t=°3 we have

\\WRW.Vo\\=\\x^.m^\>,\\x^.m^o)\\^x^

On the other hand, from (21.20), we have

H^K^H^uY-^o l l = IbKj^U-^oll ==:^-

Thus, if
/+!

[lo^^— S fta,, ^eZ, y^o,
»=i

/+!
(see (6.7)), and if we set 2'== S q^a^ we then have,=i
(21.21) ^^4^H^-

Now in § 17, we defined an isomorphism

Oo ^ W-^W,

and hence we may identify W with W, by means of $o- ^e observe that if ^e^w^,
weW, we may take

f+i
[LQ==\— ̂  q,a,=w.\

thanks to Lemma (11.2), Corollary (14.18) and the definition of OQ.
On the other hand, interchanging the roles of x and y, we also obtain

^+1
(2i.2i') 4^H^H6. where w-\\)=\-b, with ?= S p,a^ p,eZ, p^o.

i = 1

Combining (21.21) and (21.21'), we find
^+1 ^ f+l

(21.22) î HjH. fl/= S q,a^ b = SM.
i =1 < = 1

^,^eZ, pi,qi>.o, z=i, ...^+i,

^(X) = X— 2; w-1 (X) = X— ?1

^PJ
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Now assume X is a multiple of p; i.e., assume that for some positive integer n,
we have

X(/y=7z, i==i, . . . ,^+1.

To prove (21.19) for this choice of X, we first note that from Lemma (21.3)3
Lemma (21.8) and (21.22)3 we can conclude that there exists 2/>o so that if (21. i j ' )
holds for s' in place of s, and if xy =J^, then either y is in P^ or y is in P^. Fixing
such an s', we may in particular, assume y ^les m one OI nmtely many double
cosets ^w^y weVf. We then obtain from Lemma (21.3) and from (21.22) that there
exists c>o so that if (21.17') holds, and if x^==y, then y is in both P^ and P^; i.e., We
obtain (21.19)3 and hence Theorem (21.16), for X==%p. The theorem for general X
then follows in a manner parallel to the proof of Theorem (20.14). •

For r>o, we set (5R(r)=QRerJ)r\G], and F^e-^r^C G^. Then
G^e^wr, (r>o),

and we also have

Corollary 1. — For r sufficiently large and y^r suc^ ^la^

S^T^M-M,

we have yeP^ for some i=i, . . . ,^+ 1 -

Proof. — This follows from Theorem (21.16), from Lemma (21.10) and from
the fact that ^P^^P,.

Corollary 2. — For r sufficiently large, Fy acts on IS./G^ with finite isotropy groups.

Proof. — This follows from Corollary i, and from the fact that F^nP^ intersected
with a conjugate of K is finite. Indeed, G=&^=KP^ (see Theorem (16.8)), and
hence our last assertion is equivalent to the assertion that the intersection of KnP,
with a conjugate ^(F^nP^)^"1, j^eP^ is finite. But if M^CP^ is the finite-dimensional
subgroup generated by the ^±0(^)3 J^1? se^^ then KnP^CM^ is compact, and
^(r^nP^-^nM, is discrete. •

Corollary <3. — For r sufficiently large, Fy is not conjugate to FQ by an element of G .̂

^ ^ t^>
Proof, — The group F^nK is infinite, as it contains all w^{i), <2eA(A). Hence

Corollary 3 follows from Corollary 2. •
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Appendix i

We note that D, the ^+ist degree derivation of 9 (A), maps 9z(A) into itself.
Hence, as m § 6, we may adjoin D to 9z(A), to obtain the extended integral
algebra Q^A)==Q^=Q^A)@ZD. We then set %(A)= ̂ = l)z(A)®ZD, and for a
commutative ring (with unit) R, we let

%(A)=%=R®zI)L
9R(A)=9R=R®z9z.

For ^eAw(A), seR, we let ^(J) denote the automorphism of g^ defined by

W=^/^ij\).

For jeR*, the group of units of R, we set

^M=TO^-a(-^-W),

^aM-^aM^1)"'1-

We then have:

Lemma (A.i). — .fw he^, and jeR*, <zeA^(A),

^MW-^-^W^a.

Proof. — The following equalities are obtained from a direct computation:
WW=h-sa{h)^

^-a{-^l){h-sa{h)^)=h-a{h)^-sa{h)^

W {h- a{h)h,-sa{h)^) = h-a{K)h^

The lemma follows. •

We now proceed to prove Lemma (11.2). First we take s to be an indetermi-
nate over Z, and consider

V^=Z[s,s-1]®^

^d 9z[s,s-](A)=Z[^^-l]®23z(A). We fix an embedding of Z[s,s-1] in C, and
thus obtain embeddings of V^ ,-.p 9z[.,^](A) in V^, gc(A), respectively. We
may define w^s), ^(^)GAut(V^), as automorphisms of V^ which leave V^,-^
invariant. Thus, if we can prove Lemma (11.2) over C, we may then specialize s
and so obtain Lemma (11.2) over an arbitrary field k.
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So now take k==C. Our argument follows that in Steinberg [21], Lemma 19,
page 27. For jeC, yeV^, we set y^)=^^).y, and we note that we may
write v[s) as

(A.2) yM== S .̂ (finite sum), ^eV^,.

On the other hand, noting that Lemma (A.i) implies w^^^w^s)-1^),
for AeI^A), we have

^W.{w^).v)=r^){h)w^s).v,

where r^)== (Ji-(Ji(AJa.

Hence, in (A. 2), we have ^.=o unless ^((Ji)= [JL+^; i.e., unless j==—^{h^). Thus,
taking y '=^, for j=—^{h^), we obtain Lemma (11.2) (i).

To prove Lemma (11.2) (ii), we first note that, by a direct computation from
the definition of w^{s) (see (7.23)), we have

^a^^^W^-s),

and thus for, yeV^,

(A.3) W.v=w^-s)-lw^-I).v.

Now, by Lemma (11.2) (i),
W^-l).V={-l)-^V'

w^-s).v=(-s)-v'{h-)uf,

and it then follows from (A. 3) that
h^s).v==s^.v,

so we obtain (ii) of Lemma (11.2). •
We now wish to prove an analogue of Lemma (i i . 2) for the adjoint representation:

Lemma (A. 4). — Let k be any field, and let a, &eA^(A); then in Cfc(A) we have

^M(y=^-flw^),

where sek, Y=y(&,fl)=±i is independent of s and A, with y(^, a)==^{b, —a), and
where r^{a)==a—a{h^b.

Proof. — For the most part, the proof of Lemma (A. 4) is parallel to that of
Lemma (11.2), so we only give a sketch of the proof. Thus, just as in the proof of
Lemma (11.2)3 we may take k=C and then show that

^(^(^-Y^-^^a),

for some yeC. But taking j=i, and noting that ^(i)(^) is in 9z(A), and is in fact
a primitive vector, since 2^(1) ls an automorphism of 9z(A), we see that y=±i .
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Finally, noting that R^S-J=^, and then applying S^(i) to both sides of this
equality, we obtain (using Lemma (A.i));

y(6, a)^{b, -a)h^-=h^-b[h^=h^a),

and so y(6, a)=^(b, —a). The independence assertion is clear, and so we obtain
the Lemma. •

Appendix It

In this appendix, we take k to be the finite field with q elements. We wish to
prove

Theorem (B.i). — Assume XeD is normal, and that X(^) is divisible by < 7 — i , for
each i=i, ...,/ '+!. Then the homomorphism ^:G^-^Gj^ of § 12 is an isomorphism.

Proof. — By definition of -K^, we know that the kernel of T^ is the group C
generated by the central elements

h^i)h^h^^-\ aeA(A), ^, ^eJSf;.

By Lemma (10.1), we have the homomorphism
Y6: E(G^G,\

defined by

^(X^))-^), aeA(A), ocJ^.

We let G(?CE(G^) be the subgroup generated by the central elements

^i)^)^(a^)-1, aeA(A), cr,, o,e^.

If (3 is a fixed long root in A(A), then by Moore [i8], Lemma (8.2), C^^Y^C6) is
generated by the elements

^(^i^^^^iW^V^a)"1? ^i? ^a602?-
By Theorem (12.24), we have

h^i^ ̂ =^1^2)^

where I denotes the identity operator of V^, where co=—2X(^)((B, P)~1, and
where ^( , ) denotes the tame symbol (see (12.20)). However, the only thing we
have to note here is that ^(^ ^)^=k\ Now 2^'/(a, a) is an integral linear combi-
nation of^i, . . ., A^i (see the discussion preceeding Remark (4.7)). Hence, since X(^)
is divisible by q—i, for each i==i , . . . , f+i, we must have

^(0-1, 0-2)°== i,

and TCI is injective. Since n^ is in any case surjective, we obtain the Theorem. •
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The locally compact group G^ admits a certain irreducible, unitary represen-
tation, called the special representation (see [2]), which is an analogue of the
Steinberg representation of a finite Ghevalley group. On the other hand, when XeD
satisfies the conditions of Theorem (B. i), we have a well-defined modular representation

^=^lo^: G^—G^CAutV^,

where TT^ : G^ ->G]y is defined in § 12. In analogy with known results concerning
the Steinberg representation of a finite Ghevalley group, we propose:

Conjecture. — Let peD satisfy p(AJ==i, for i==i , . . . , ^ + 1 - The special repre-
sentation of G^ admits an integral subrepresentation such that, when we tensor this
integral representation with k, we obtain the modular representation '^:(q~l}p (1).

Appendix III

In this appendix we wish to discuss how one can extend some of the results of
this paper to the non-split case. The idea is to use the universal properties of our
central extensions in order to lift Galois automorphisms, and then use descent.

In this section we take A to be a field of characteristic zero. We let Q denote
a split, simple Lie algebra over k, and we let g^^^; denote the infinite-dimensional
A-Lie algebra

^-^a-
We define

To: oSf,XoSf,->A
by

(Ci) To((7i, (13)= residue^ Ara), o-i, ^a6^-

Then the T() of § 2 is just the restriction to k\t, r^jx^, t~1] of the T() defined here.
We then define

T: Q^X^-^k

exactly as in § 2; i.e., we set
(Ca) T((7i®A:, ^®y)-=—^{a^^{x,y), ^,a^^, x,ye^.

Then reZ^g^, k) (where we regard k as a trivial g^ module), and corresponding to T
we have the central extension

(€3) o^-^Sft^o,

(1) Recently, J. Annon has proved a modified, topological version of this conjecture. Roughly speaking,
Annon introduces a topology on V^"1)'3, and then proves that a Worm of the special representation is isomor-
phic to a dense subrepresentation of TT^"1^ (the density being with respect to Annon's topology).
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where we take

(€4) Q^='Q^@k (as a vector space over k),

with multiplication defined by

(C5) [(S, ̂ , (^ ̂ )]=(R, n, r(S, ̂ )), ^ ̂ eg,% ., .'eA;

and where S^ is the projection of g^=/Q^@k onto the first factor.
We note that §^ is perfect. Indeed, it is obvious that g^ is perfect, since g is

perfect. But then it suffices to show the commutator subalgebra of g^ contains the
direct summand k of (€4). For this we need only check that r(^, ^/) is not zero for
some pair ^, ^'. But if XEQ is any element such that {x, x) 4=0, then

T^^r^^+o,
by (Gs). Thus we have proved:

Lemma (C6). — The Lie algebra g^ is perfect.

We may now recall the comments of Remarks (5.11) to the present context.
Thus we let 9^C§^ denote the A-subalgebra

Q^^0/^

where ^=^CoS^ is the subring of formal power series (see Remarks (5.11)). By
a congruence subalgebra of level n in §̂  we mean the subalgebra of all ^eg^ such
that ^ EES o mod F. We then note

Lemma (€7). — The central extension (€3) is universal in the category of all central
extensions of §^ which split over the congruence subalgebra of level n, for some n.

The proof is as in § 2, with the one additional point discussed in Remarks (5.11).
Since §^==j§^®^g, we may topologize §̂  by means of the ^-adic topology of J§^.

We call g^ the universal topological covering of g^.

Lemma (C8). — For every automorphism
< /̂ /̂ <' /* /^/ /•
^ : 9&^9&,

iw'fA ^ a»</ '5?~1 continuous, there is a unique automorphism

x : 9^§^

•racA fAflf fAe diagram

^ -^ ̂

^k ^k

^c -^ ^

is commutative.
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Proof. — The existence of x follows from the universality property of Lemma (Cy).
The uniqueness of x follows from Lemma (1.5) and Lemma (C6). •

Now let k' 3k be a Galois extension. Then we have oS^DJS^ and ^ is a
Galois extension of <JS^. Moreover, we have a natural inclusion

(€9) Gal^'/A)^Gal(^/^)

of the Galois group of k ' over k into the Galois group of oS^ over oS^, and this
inclusion is an isomorphism, as one sees immediately from Galois theory. We now
let I denote an absolutely simple Lie algebra which is defined over oS^ and which splits
over oS^,,. We let §̂  denote the Lie algebra

(Cio) 9^^®^ I.

By assumption, we have an isomorphism of Lie algebras over oS^ (and hence over k ' )

(Cn) 9^^®.9 (^^(^9))

where Q is a simple Lie algebra which is defined and split over k. We fix the isomor-
phism in (Cn).

We now wish to show that we can lift Galois automorphisms of 9^==°^®^ I,
to the corresponding central extension g^ of (03). Thus, let x:oS^->oS^, be an
element of Gal(oS^/JS^), and let 9? : (^—^9^ be defined by

^®S)=x((7)®S, ^^, ^el,

(see (do)). Then we have

Lemma (Ci2). — For every xeGal(o2^/oS^), there exists a unique y.: ^'->Q^ such
that x preserves brackets and sums, such that

[Ci3) x(^)=xMx®, sek-, Se^,

and such that the diagram

Qi' —^ Ql'

[ ^ k ' W

9k0 —> Qk0

is commutative.

Proof. — Assume ^ and ^-1 are continuous (relative to the isomorphism (Cn)
and to the ^-adic topology introduced just before Lemma (C8)). We note that ^i
preserves brackets and that

(€14) ^])=^)^), sek', 7]£9^.
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We wish to define a second such mapping

123

^9^^.

To do this we use the isomorphism (Cn):

(Cl5) X^((7®A:)=x(Gr)®A:, CTEJS^, XEQ.

Then Xs preserves brackets and sums, and satisfies

(Ci6) x^73)=xMxtf(7]), sek, T]^.

But then ^(x^)"1 still preserves brackets and sums, and is ^'-linear by (€14) and
by (Ci6); i.e., ^(x^)-1 is a Lie algebra endomorphism (over k ' ) of§^. In fact, 'X
and Xs are each clearly bijective, so ^(x^)"1 is a Lie algebra automorphism of Q^,
(as a Lie algebra over A'). But x^ and (x*)-1 are clearly continuous, and hence, so
are (^(x^-1)^, by our assumption that ^ and ^-1 are continuous. Hence, by
Lemma (G8), there is an automorphism x^cj^-x^ such that the diagram

Qv Qk'

v ~ tt y
w ̂  »

is commutative. On the other hand, if we let Xs :§^-^ be defined, relative to
the decomposition (€4)

9l'=Q^k\

by

xff((^))=(x^),xM), ^Q^ sek^

then Xs preserves brackets (as one checks from (€5)) and sums (as one checks directly),
and thanks to (Ci6), one has

X^7])=xMxff(7]), SEk', 7 .̂

Moreover, from the definition of Xs, we have
^ -^ft •tt /^
CO^ 0 X41 == X'" o 0)̂ . ,

and hence, if we set
^^ ^<t * ît
X = X 0 X^,

we obtain the Lemma.
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The only remaining point then, is to show that ^ and ^-1 are continuous.
To see this, we consider the tensor product decomposition (Cn) and we fix a
basis Xi, . . ., X^ {n==dim Q) of 9. We then have

^(X,)=S^X,,
3 - 1

where ^<=»S^, i,j=i, . . . , n . But then if

X=Sa,X, a,e^•^^^31=1

is a general element of ft^^0^ we have from the definition of ^ (preceeding
Lemma (Gi2))

^(X)=S<X,,

where

CT;=S %^(^-), ^=1, . . . ,^
J"l

Since cr, and x((^) have the same ^-adic absolute value (x only acts on the coefficients
of the Laurent series <^), we obtain the desired continuity of ^. The same argument
shows that ^-1 is continuous, and hence we obtain the lemma. •

We let ^= Gal(J^/JS^Gal(A7A), and note that if we consider the ^-module k\
then we have
(€17) Hi( '̂)=o.

This is a simple consequence of the facts that ^ is finite and k' has characteristic zero.
Now, consider the central extension

o ̂ '-^ 9î  ft^-> o.

Then, by Lemma (Ci2), for every xe^, we have maps x, ^ of §^, ^c, respectively,
which preserve sums and brackets, satisfy (Gig), (€14), respectively, and satisfy
S^ox==^oSy. In particular, note that for A 'Cg^, we have from (€13):
(Ci8) xM=x(.)x(i).

Since x is unique (given xe^), we have
XiXa=XiXg, x^.x^e^.

Thus, we obtain the following from (Ci8):

X^(l)=Xi(x2(l))xi(l)$

i.e., xh^x( i ) is an element of Z1^, k ' * ) , the one-cocycles of ^ with coefficients in k'\
By Hilbert's theorem 90, there exists s^ek'*, such that, for all xe^,

(Cig) x(i)=x(^o'1.
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But then
K{s^)=^s,lW•^), by (Ci8)

^^o)-1^)^1), by (CIQ)
•̂ 0 5

and hence
^O"1)^^)^^1). ^ (^S)

=x(^Jo"1,

by the above computation; i.e., we have

(C2o) x(^o-l)=x(•s>)<yo'^ s ek ' .

We let I denote the A-subalgebra of §^

(C2i) I={^^[x(S)=^ for all xe^}.

We also have, of course
1=={^W)=^ for all xe^}.

Hence S^ induces a homomorphism of A-Lie algebras
7T:I->I.

We now wish to show that n is surjective, and has kernel isomorphic to k. Indeed,
if ^el, there exists S'e§^ such that

W)=^
But then, since ^ is ^-invariant,

^^(x^'))^^^'), for all XG^.

Utilizing the decomposition 9^=§/?®^'3 °^ (^4)? we may ^^ ^==(^0)5
^e^, and we see that for xe^, there exists s ( K ) e k ' such that

x(^)=(S^(^o-1).

But then for x^.x^e^

XiXa^^^^XiXg)^"1),

and on the other hand

x^(^)=xiXa(S')
=xi(^, J(x2)j>o~l)=(^ ̂ (^i)^^^^)^1))
=(^(^)+x^(x2)))^1), by (C2O).

Thus, xh-^(x) satisfies the cocycle identity
j(x^X2)=J-(Xi)+X^(x2)), Xi, XgG^,

and hence by (Ci7), there exists s^ek' such that

(C22) ^W^h—^l)^ xe^-
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But then for xe^,

x((^, ^o"1)) = (S, •y(x).$o"1 +%(^i^o'1))
^^^-x^^-'+x^.o-1), by (C20) and (€22)

=(S,^^0-1)5

and so

(^o-1)^.

Moreover we have

^((^ Vo"1))^^^ Vo"1))^,

and thus we have shown TC is surjective. Moreover, thanks to (C2o), we see that
kernel TC={(O, sso~1) \ sek} is isomorphic to k. Hence we obtain the central extension

(€23) o->A->?-^I->o.

We summarize what we have just proved in:

Theorem (€24). — Let I denote an absolutely simple Lie algebra which is defined over oS^

and splits over the unramified Galois extension oS^., with ^®.^I^i^. We let IC§^

be the k-subalgebra defined in (C2i), and we let n : I—^I denote the restriction of S^ : (^'-x^'.
Then n is surjective, and kernel n^k. We thus obtain the central extension (€23) of I.

Remark. — We can generalize Theorem (€24) to the case when I is semi-simple,
and we will now sketch the necessary argument. In this more general case, we
have °^'®^ I^§/?3 where §̂  is a direct sum of simple components. We then
let §^ be the corresponding direct sum of universal topological coverings of these
components, and note that, in an obvious sense, g^ is the universal topological covering
of§^. Then, as in Lemma (Gi2), the action of ^ on § /̂ lifts to g^ (we let x denote^
the lift of xe^), and we again let I denote the fixed points in 9^, of ^. As before,
the projection S^: §^->§^ induces a Lie algebra homomorphism n: I->I. Since
H l(^,V)==o whenever V is a finite-dimensional vector space over k with ^-action
(recall char. A is now assumed equal to zero), we obtain that TC is surjective. Moreover,
if n =dim^ (kernel 2y, then dim^ (kernel n)=n. This last assertion follows from

(*) Let V be a finite-dimensional vector space over A', and assume we are given a
^-action on V, where each element of ^ acts as a semi-linear automorphism;
i.e., for oe^, we have

(y(ay)==(r(a)(7(y), aeA', yeV,

where (r(a) denotes the Galois action of a on a. Let V C V be the space of fixed
points of this action; then V'^A'^V.
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The following proof of (*) was communicated to us by T. Tamagawa:
Let co^, . . ., ̂  be a basis ofk' over k, let ^eV, and for each z'=i, .. ., r, let

ĵ S^).

Since ((r(co,)), ̂  is a non-singular rx r matrix, it follows that A: is a linear combination
of the^. Since x was arbitrary, and since the ̂  are in V, we obtain (*).

We will continue to use the notation suggested by the last Remark. Thus if Q is a
semi-simple Lie algebra defined and split over k, and if 8^==^®^ 9, then we let 9^
be the direct sum of the universal topological coverings of the direct summands
of 9^, and we let S^: 9^—^ cf^ denote the projection map.

Our next topic is to investigate the possibility of obtaining an analogue of
Lemma (Ci2), and of Theorem (€24)3 for the groups G^. In view of Theorem (12.24),
one expects such an analogue to be intimately connected with some universal property
of the tame symbol. However, here we take a different approach, and continue to
utilize the Lie algebra point of view.

We begin with some representation theory. We let 9 denote a semi-simple Lie
algebra which is defined and split over A. We fix a Gartan subalgebra f) C 9, and let A
denote the set of roots of 9 with respect to I). We fix an order on A and let A^ denote
the corresponding set of ± roots. We let b C 9 denote the Borel subalgebra spanned
by I) and the positive root vectors. We set Q'^k'^Q, 6'==A'(g^b and I)'==A/®^t).

/•^ <"̂
We let iC^,(^9 (resp. iu^^/®^) denote the A'-subalgebra of elements whose
reduction mod t is in b' (resp. is in [5', b']). We then set

(C25) i'^S,-1^'),
<^ /^/» /^/_ 1 /» \t ^^.(t),

tu-^^iu).

We remark that if 9' is simple, with corresponding classical Gartan matrix A,
then §^ is just the algebra 9^ (A) of § 5. In general, 9' decomposes into a direct
sum of simple algebras 9^, ielo, each with corresponding classical Cartan matrix A,.
We write A for the direct sum matrix of the A, (so A is the Gartan matrix corresponding
to 9'), and we let A denote the direct sum matrix of the affine matrices A,. We then
write 9^ (A) for the direct sum .11 9^ (A,). Then the algebra §^ is isomorphic
to 9^ (A), and we let p : 9^(A)-^ denote the isomorphism. We set I)'(A)= p"1^'),

<^» ^s. ^^

^P" W? tu^P"1^)- We may regard 9^'(A) as the completion of the Kac-Moody
algebra (see § 3) 9^ (A). Then I)'(A) is contained in 9^ (A), and in fact may be
taken to be the Gartan subalgebra defined in § 3. We say that ^(I)')* (the dual
space of I)') is dominant integral, in case XopeI) '(A)* is dominant integral, and that X
is normal if XopG^^A)* is normal (see § 15) in the sense that for each zei, XopL^- )
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is normal. We let D denote the set of dominant integral elements of (I)')*. Then
given XeD, we let M(X) denote the one dimensional i-module, with generator VQ, and
defined by

fx(^o, W,
^o=

[o, ^tu.

We let V^^^g^^MM, and note that left multiplication gives V^
a ^(^7)- (and hence a cj^-) module structure. We let ^ also denote i®^ in V^.
We then let V^,, be the quotient of V^ by the (unique) maximal g^-submodule,
not intersecting k ' v ^ , and we let VQ also denote the image of VQ^V^ in V^. We
may regard V^,, as either a 9^- or (^(^)- module, and hence also as a g^(A)-module.
The same holds for V^.

Now each A^, x'elo, is an ^X^ matrix for some positive integer ^. We
set ^'=^ (^+ i), so A is an fx^ matrix. We let ^, ..., ̂ ,/,, .. .,/^ Ai, . .., ̂

be the canonical generators of the algebra 9^ (A), given by the Kac-Moody construc-
tion (see § 3). When we regard V^ as a g^(X)-module, as above, then V^ is
quasisimple in the sense that there exists a positive integer 72 such that f^.Vo=o for
all z = i , . . . , r (see [8], § 6). Indeed, since X(^)^o, and X(^)eZ, for each
i==i, ...,/" (i.e., since X is dominant integral), we may take 7z==._max (x(^)+i).
Also since X is dominant integral, it follows from a theorem of Kac (see [8], Corol-
lary (9.8)) that V^ is the unique quasisimple g^ (A) -module with highest weight X.
We can then use V^ to construct Chevalley groups G^, exactly as in § 7 (of course,
we now allow that A correspond to any semisimple algebra).

We now return to the context of Theorem (€24), and of Lemma (Cis). Our
goal is, for each

xe^=Gal(J^/J2y,

to define a bijection x:V^-^V^ (actually—see (€34) below—one must replace V^
by a direct sum of V^'s, in general) such that x^ preserves sums, and satisfies
(€26) K^{SV)==K{S)K\V), sek\ yeV^,

x\^)==x0;)x^), S ,̂ ̂ .

If A is a classical Gartan matrix (and so, corresponds to a simple Lie algebra),
we have defined, in § 10, the simply connected Ghevalley group G^,(A). More
generally, if A is the finite direct sum of the classical Gartan matrices A^, zeio, we
let Gg^(A) be the direct product

G^(A)==,^I,G^(Ai)•
f>^ /s/

We now consider ^(i), the image of i under ^. From the results of Bruhat and
Tits (see [5]) we know that ^(i)==Ad ^(i), for some ^eG^A).
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We let S7': §^ —" End V^ denote the representation corresponding to the
g^-module structure of Vj^. We set (^'^(^(g^), and we let S^g^-^c^ denote
the Lie algebra homomorphism defined by the condition that S^oS^S^. We
choose -y^eG^ and (by universality) a Lie algebra automorphism W of 9^, such that

(C27) ^^=^\WY\ W,
W^r^Ad x(^(7])), 7^9^.

We then have, from Lemma (Ci2), from (C25), and from the above, that

(C28) {l(i)=i;

where p.==®r- lox. We define J^CG^, as in § 7 (but now for our more general A).
If A is a Classical Gartan matrix (so corresponding to a simple Lie algebra), we

have defined the adjoint group G^^(A) in § 8. More generally, if A is the finite
direct sum of the classical Gartan matrices A^, ielo, we let G^ ^ , be the direct
product group

Gad,̂ (A)=.n^G ,̂(A,).

Also, as in § 8 (but for our more general A) we construct the group G^(A) and the
homomorphism <D': G^(A) -> G^^,(A). We let y=0'oAd(^"), where

Ad: G^G^(A)
f>j r^i

is the adjoint representation. We let <^j C ̂  be the subgroup of all elements whose
reduction mod t, is in the unipotent radical of the Borel subgroup corresponding to b'.

/•^ <"»>/ /^/ /-^/
We let J^=j^, and for j^i, we let J^ be the subgroup of all elements in e^j
(and in ^) whose reduction mod t3, is the identity. As in § 18 (but again, for our
more general A) we can define the Lie algebras Qo.{A) over the truncated power series
ring .̂, 7^0.

^i -\ ^We let tff C ty be the subalgebra of all elements whose reduction mod t3 is zero,
/^/ ^/

for j>_ i, and we let i^ = iy. For subgroups H^, Hg of a group G, we let [H^, HJ C G
denote the subgroup generated by the commutators h^h^lh^l, A^eHi, A^eHg. By

/^ ^/ <" /̂ /^/
considering the adjoint action of ^^^+1} on 9<p.(A), we see that J^/J^'4'15 is a Lie

/^>//^/
group, and a linear algebraic group, with Lie algebra i/i^4"^. By considering Lie
algebras, it then follows that there are integer j&>o, y>o, such that

r y y\— yL ^ » ^ J — ^ u ?
j&-times^T^D?^^^^ î.

^-times

K,[•..,[^,K,^]]...]]=^ul)•
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/^/ /^/
It follows that for each j'^o, the group J^ is a characteristic subgroup of J^.

Hence, Ad^^o^ induces an automorphism of ^'/^+1), for each j^o. Since
0^ /-f _

J\^^ is algebraic, it follows that, regarding I)' (the Gartan subalgebra of g') as a
subalgebra of i/i^4'1^ we have that Ad^o^I)') is conjugate to I)' by an element

r>j f>j

of^/J^04'^. By a simple argument one can then pass to the limit as j->oo, and show
that I)' and Ad ')C~lo^(y) are conjugate in i by an element of^ (to pass from J^/J^4'^
to J^0'4-^, it suffices to conjugate by an element of J^'4'^/^'4'2^. Thus, multi-

/^/
plying ^ by a suitable element of <^, we may assume (setting p^Ad x"10^)?

(Gag) ?:(T)=T
W)=()',

and hence we may assume in (GsS) that we also have

(GSO) W)=V.

From (€29)5 we have the map y : I)' ->()', which induces a dual map (still denoted
by (?) on (I)')*, the A'-dual space of I)'. From (€29), and from our earlier observation

^> /^/
that i^ is a characteristic subalgebra of i, it follows that ^ (on (I)')*) leaves the set of
roots A (and the set of simple roots, relative to our fixed order on A) invariant.
Hence p" induces an isomorphism of the root system A, and this isomorphism extends
to an automorphism p of g. Of course, by oS^,-linearity, p extends to an automorphism
°f 9^ (which we also denote by p). Then p^o^ still satisfies (€29)5 and induces
the identity on I). We let H^, . . . ,H^ (^=dimt)) denote the simple coroots in I)
(we had fixed an order on the roots A). Also, let

{HI? -^ah=l,...,^; a G A ?

be a Ghevalley basis of g. Thus, in particular, for each oceA, E^ is a non-zero vector
in the a root space and [E^, E_J=H^, the coroot corresponding to oc. In particular,
for each simple root a,, z = = i , . . . , ^ , we let E,=Ea., F,==E_^., and we then
have [E^, FJ=H^, z=i , ...,/ ' . We also have, as we just noted

(€31) p-̂ H^H,, i=i,...,^.
/^/ i^

Also, since p^o^ (in place ofj?) satisfies (029), it induces a map on iy/i^, and (€31)
implies that this induced map leaves each root space invariant. Hence for each aeA^,
we have

p-^EJ^E,, ^e0\

^(C^CoS^,) denoting the group of units in the ring Q of formal power series with
coefficients in k ' . But then (€31) implies for aeA_

p-^EJ^E,, O,E^.
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But for oceA^.

[(T.E,, (T^E.J-p-^H^H,,

and so a_^==G^1; in particular, a_^e0*. We also have (oceA^)
P-^E.J^T^E..,,
p-^r^EJ^r^E,, T,E^.

To summarize:

Lemma (032). — The map ^~lo^i on cj^ satisfies the following:
(i) p-1 o^(I)') ==!)', and p^o^ restricted to I)' ^ /^ identity.
(ii) 7w :̂A aeA^, ^ Aa^

P-lo?(EJ=^E^
p-^E.J^^E.,,
p-^^E.J^^^.,,
p-^^r^J-r^.E,,

^^r^ Ga^T^e^*.

We may lift p to an automorphism p of 9^ and we will now show that
p^o^A)^, for all Aet) (where ^==^1^), with S^:g^->g^ being the natural
projection). To do this, it suffices to assume Q simple (and hence absolutely simple,
since Q is assumed to be split). But then we have Qy ==§^©^'3 and p is defined by
setting p(^, j )=(p(S) ,J-) , S£§/?, sek\ Moreover, for aeA+

r^m.. o)=p-lopL([(E„ o), (E_,, o)])
-[(^Ea, o), (o^^^, o)]=(H,, o),

since c^ is a unit. Also, for aeA^.

p-^^H.,, ̂ y) ̂ ^-^^([(ffi.,, o), (r^, o)])

=[(^lE_„,o),(rlTA,o)]

= ^H_^,—Res(^1 ̂ (r1^)) —2—'l, where Res = residue,
\ (a, a)/

-/H -^-}
-^-"(a^);'

and thus we have proved (also see (€30))

(C33) ^~lo^{h)=h, for all Ae^.

But then it follows that if ^(I))116 is dominant integral, (1(X) is dominant integral,
where, by definition, we set

{l(X)(A)=X(jl(A)), hei).
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Also, since p on I) induces an automorphism of the root system A, it follows that p on 6',
and hence (by €33)3 p. on I)' has finite order. As x varies over ^, p, (which depends
on x) varies over a finite group. We let {\, \, ..., Xj denote the set of distinct
elements in the orbit of X under this group and we set

(C34) V=oJ&^

We note that the group G^ and the Lie algebra §̂  admit diagonal actions on V, and
also that if

x=(Ad^)op

(see (€28), and the subsequent definition of p.) then x induces a bijection x^ ofV, and
that this X71 satisfies (€26) (but with Vj^ replaced by V—we note that if the Cartan
matrix A has no non-trivial automorphisms, then \^==V^).

Now, as earlier in this appendix, we let I denote a semi-simple Lie algebra
which is defined over oS^ and which splits over JS^,. Let L denote the group
of oS^-rational points of the simply connected, linear algebraic group with Lie algebra I
(more precisely, we should here replace I by its tensor product with an algebraic
closure ofoS^). We let G^, denote the group of JS^-rational points of this algebraic
group, and for xeGal(oS^/oS^), we also let x denote the corresponding automorphism
of G^ . We then construct the fibered product

E^G^) C G^ X G^, X dominant integral,

as in § 12 (see (12.14)), but now for our more general A. Then x^ induces an
automorphism x of G^, by conjugation. We let

^ h)==Wg), x(A)), (g, A)eE\G^),

and thus obtain a lift of our Galois action on G^, to E^G^). We let LCE^G^)
denote the Galois fixed points. Then the projection onto the second factor

E\G^)->G^

induces (by restriction) a group homomorphism
L-^L,

and by Hilbert's theorem 90, this latter homomorphism is suriective, and hence yields
a central extension of L.
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LIST OF NOTATIONS

o. R, -S^B, R* (also, see the discussion at the end of § o, concerning the use of (<^")
1. C, R, Q, Z

after (i .8): B^a, V), Z^a, V), H^a, V) (where a is a Lie algebra over a field k). Of (for /eZ^d, V))

2. g,^^,^1],^
after (2.1): g, C
after (2.2): T, (,) (on 9), co
after (2.19): I), A, ga (for aeA), Ha, Ea
after (2.25): (,) (on y )
after (2.35): h[

3. B, gi(B), ^,/,, h,
after (3.2): g(B), b, ^(B), ^(B), ^(B)', ^, ...,^, A(B), A±(B), R, a, Di, . . . , D ^
after (3.3): r, (in Aut(y(B)*)), W=W(B)

after Proposition (3.3): A, A, A, A^, I), E^, F^-, H^, ai, ..., a^, ao, D, b (as the span of D)
in (3.8): TT
in (3.9): ^

4. in (4.1): r
in (4.2): T
after (4.2): i,
in (4.3): A+(A)
after (4.3): Aw(A), Ai(A), AW,±(A), AI.±(A)
after (4.5): Do, ̂  SzW, h,
in (4.6): 0
after (4.8): U^A), co^, u±, Qz(A), ^(A), ^(A), ^CA), SR. ^z» HZ^A), U^, U^(A), U^, ^(A), ^(A),

^B. ̂ . "E. SR

5. 9E(A),, §B,,
in (5.2); [ |
after (5.6): ^(A), o^
after (5.7): UR, UK, (OR
in Remark (5.8): (J^B =)R[P, ^-1]]
after (5.9): CR
after (5.12): 0

6. U^B), p6, ^(a) (for a Lie algebra a over a field k), D, M(X), ̂ e, V^^^ V\ z/o, ^z(A), Vz, V^, Q, Q^, V^.z
after (6.i): V^

in (6.2): V^s

after (6.3): I)z(A), gz, ()E(A), QR

after (6.7): Qz(A), ^(A), I)z(A), ^(A), V^, V^.z, V}.E
after (6.io): TT^, Tr^
after (6.12): ?&
after (6.13): ^, r, (in Aut(^(A)))
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7. before (7.1): k
after (7.1): ^(A), 7^, adn( ), /̂ ,M
after (7.3): (̂.)
after (7.6): r^
in (7.9'): w^
in (7.14): %^)
after (7.17): ^, ^<1

in (7.I9): /^(^Xa^M)
Definition (7.21): G=G^=G^(A)
in (7.22): ^(<7(0)=^(aM), ^(^))=^(CT(f))
in (7.23): w^s)==w^s), h^s)=h^s)
Definition (7.24): ^

8. in (8.2): ^a(<^))
after (8.7): ,̂ ^oc(^))
after (8.12): Gad.j?= Gad.^(A), Gad(A)
after (8.13): 0'

9. after Lemma (9.1): { , } , * , x* (for A:eg(A))

after (9.3): u* (for K£^(9(A)))
10. G^=G^(A), ^(o), ^(o), A'a(CT), G, E(G^), ^((T), cp6

in Lemma (10.1): ^F6

n. U^ ^(o), ^(a), T6, M^

in Proposition ( i i . i ) : U^, Ul
after Remarks (11.2): Ua, U+, U-, T, ra, ha
after (11.3): T\ U^, U^, U^
after (11.4): B6, N6

after (11.5): M^
after (11.7): v, v^, v^, Va, Ma, v;, U;, M;, T*
in Lemma (11 .8) : U^ ^

12. dp(|ji), coherently ordered basis, J^u
after (12.4): g11

in (12. n): (o
after (12.13): TTi, TTg, E^G^), G^

after (12.14): (p^=cp^, z = = i , 2 , 7 r
in (12.15): ^((T,T)
after (12.15): h^(a)
in (12.17): &a(<T,T)
after (12.17): M, S(^, M)
after (12.18): S°(^, M)
in (12.20): CT( ? )
after Theorem (12.26): p^

13. in (13. i'): s^+v
after (I3.I'): definition of ^equipollentes"
after (13.1'): N*, ^
in (I3.3): r^
in (13.4): n. \i*
after (13.5): A, ^,wX,m. S, <f, a^,^, ̂ ^
in Proposition (13.6): p{n), \Ja
after Proposition (13.6): T^
after (13.13): A
after (13.i6'):/^, U^=U^, U^^



^ H O W A R D G A R L A N D

in Remark (13.17): G

after (13.19): W, N\ S
14. in Proposition (14.8): N

after Theorem (14.10): H^=H^
15. in (15.1): \i

after (15.1): E, S,., S^
in Theorem (15.9): 'n:(\, Xg)
in (15.11): ^(CTI,^)
after (15.12): T^ x

after (15.18): Hjk
16. after (i6.i): { , }

Lemma (16.3): ^Fo
Definition (16.7): K^K^
after (16.12): H^ + , H^e

17. before (17.1): %(A)*
after (17.1): <D()
after (17.27): 0
after (17.9): ^

after Lemma (17.14): J, oSfj, r==r^
18. after Lemma (18.2): J^, T^, TV

after (18.3): y^, TT^
after (18.5): ^•
after (18.7): 7r°, Gfc, Ufc, j^u, ^, ^(A), U^
after (i8.8): Ug), U^
in Definition (18.15): GQ,, 0*^, ̂  ^
in Remark (18.17): T^v,][[.t]]

19. before Definition (19.1): CTQ
in Definition (19.1): Ho
in Definition (19.2): <3?o
after Definition (19.2): Fp
before (19.5): go;

20. before Proposition (20.1): Xi
before Lemma (20.8): G^'e

before Lemma (20. lo): (5^,^, H^H^, S1?-^11, ̂  =r^ ^=^u, H^=Hfc+, K^K
21. before (21.1): 0^

m (21. i): <0^>
in (21.2): ^
before Lemma (21.3): W^
after (21.5): oco, Wj, m
after (21.15): W,, Wp, Pp
after (21.22): f,., ©"(r)

Appendix I. before Lemma (A.i): ^(A), gR(A), ^M, ^(^, Aa(^
in Lemma (A. 4): ^=^(b,a)
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