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I. — INTRODUCTION AND STATEMENT OF THE RESULTS

1. Introduction.

The main aim of this paper is to classify codimension two singularities of vector
fields (i.e. those singularities which generically occur in 2 parameter families of vector
fields) and to show that, in a certain sense, such a classification is impossible for codimension
three singularities (at least in the dimensions >5). A more precise statement of the
results is given in § g of this chapter.

This study was mainly motivated by the desire to extend the Thom-Mather
catastrophy theory [19; see also the appendix by J. Mather in the English translation]
to systems which are not ¢ regulated > by a potential function (or rather by its gradient
flow) but which are regulated by an arbitrary (but generic) flow. For such an extension
of the Thom-Mather theory, the next thing to be done is to study the * unfoldings
of the codimension 2 singularities which are classified in this paper. I hope to deal
with these unfoldings in future publications.

I want to thank R. Thom for the many stimulating discussions, related with the
topic of this paper, I had with him. I also want to thank M. Shub and C. C. Pugh
for introducing me to their techniques on invariant manifolds which were essential in
chapter IV. Finally, I want to thank the Instituto de Mateméatica Pura e Aplicada
(LM.P.A.) for the hospitality they offered me in the time I prepared this paper.

2. Definitions.
We shall study germs of singularities of G®, or C/, vector fields on R" in o.

Definition (x.1). — A germ of a singularity of a C®- (or C’-) vector field on R"in o
is an equivalence class in the set of all C®- (or C/-) vector fields X on R" with X(0)=o;
X, and X, are (germ-)equivalent if there is a neighbourhood U of o0eR" such that
X,|U=X,|U. &" (or ¥»’) denotes the set of all these G*- (or C/-) germs.

Definition (x.2). — Let X, X,e%" (or ™!, t>kF). Then X, and X, are k-jet
equivalent if all the partial derivatives up to, and including, order 2 of the component
functions of X, in o coincide with those of X,. The equivalence classes are called &-jets.
There is a natural 1-1 correspondence between k-jets of singularities of vector fields
on R"” and vector fields X on R" with X(0)=o0 and with component functions poly-
nomials of degree <k. The set J} of z-jets of singularities of vector fields on R" is a vector
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SINGULARITIES OF VECTOR FIELDS 49

space (and hence it has the structure of an algebraic manifold); =, : ¥"—J? are the
induced projections; also the natural projections J;—J¢, /> %, are denoted by w,. We
take on ¥" the fopology induced by {m}i_; i.e.if Xe@", then a basis of neighbourhoods
of X is obtained by taking {n; (U, .)}>;_y, where, for each k, {U, ;}>, is a basis of
neighbourhoods of =, (X) in Jp. A (smooth or algebraic) submanifold Wc %" is a
subspace which is, for some %, of the form W=n=;*(W,), where W, is some (smooth
or algebraic) submanifold of Ji; (semi-)algebraic subsets of " are similarly defined.

Definition (x.3). — X,, X,e@™’ are Chequivalent if for some (and hence all)
representatives X, X, of X, and X, there are neighbourhoods U,, U, of o in R" and
a C-homeomorphism ¢ : U;—U, which maps integral curves of X’; to integral curves
of X, preserving the ¢ sense ” but not necessarily the precise parametrization; more
precisely: if peU; and D3 (p, [0, t;])cU,, t,>0, then there is some #,>o0 such that
Dz,(0(p), [0, t2]) =0(D%,(p, [0, £])). (Asusual, D%, : R"”XR—->R" denotes the integral

. 0 o
of X, ic. Dy(p,0)=p and - (Fx(p, 0)=K(@x(p, 1))

Definition (x.4). — Let X be a vector field on R* with X(o)=o0 and let U be
some bounded neighbourhood of 0 in R". Then L, y (#), the o-limit of p with respect
to U, for peU, is O if the positive integral curve of X, starting at p, leaves U
and otherwise is the set of those ¢geU for which there is a sequence £, f,, ... —> -+ o0
with ,;lin% D5(p, t,)=q.

L, x u(p) is defined analogously, i.e. by replacing ¢ positive integral curve > and
“t,t,...~>-+00” by ¢ negative integral curve ” and “#,4, ...—>—00 .

Definition (1.5). — X;, X,e@™* are weakly-C'-equivalent if for some (and hence
all) representatives fl, fz, of X, and X,, there are two bounded neighbourhoods U,
and U, of o in R* and a C-homeomorphism ¢ : U;—U, such that for any VcU,
with o€V, and any peV:

L, %, em(@(0) =0l %,v(p)) and L, g, ovie(d)=e(Ly 5, v(p).

Definition (1.5) has the advantage that it is clear that ¢ being weakly-
Ci-equivalent ” does not depend on the choice of the representatives X;, X,. In the
following lemma we shall give a useful criterium for ¢ to realize a weak-C'-equivalence.

Lemma (1.6). — Let X, and X, be two vector fields on R" with X,(0)=X,(0)=o.
Let ¢ : U,—U, be a C-homeomorphism; Uy, U, are bounded neighbourhoods of o in R*.  Let
K, be the set of those points peU; for which Ly, x; v;(p) or Ly x; v;(p) is non-empty. Then
o realizes a weak-Cl-equivalence between the germs of X, and X, if and only if:

1) o(Ky)=K,;

2) o| K, maps integral curves of X,  sense” preserving, to integral curves of X,.
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50 FLORIS TAKENS

Proof. — It is clear that if ¢ satisfies 1) and 2) then ¢ realizes a weak-C'-equivalence.
Also if ¢ does not satisfy 1) then ¢ does not realize a weak-G'-equivalence.

We suppose now that ¢ does not satisfy 2) (but satisfies 1)). We then can find
two points py, p,€K; such that p, lies on the positive X, integral curve (in Uj) starting
in p; but ¢(p,) not on the positive X, integral curve (in U,) starting in ¢(p,). If
L, x, u,(p1) 9, resp. Ly x, v,(p2)+9, we take V,=U,\{p,}, resp. V,=U\{p,}. We
then see that L, x v (#1)=9, resp. L, x, v (f2)=9, but, if ¢ realizes a weak-
Cl-equivalence, L, x, v, (®(#1))+9, resp. L, x, ovy(e(#2))+9D. By the definition
of K,, we have L, 5, v,(p1)#9 or L, x, v,(#2)#+9; this shows that ¢ does not realize
a weak-C'-equivalence.

Remark (x.7). — If X,, X,e¥" are C'-equivalent, then it is clear that they are
also weakly-C'-equivalent. The converse is not true; for example, if X; and X, are
germs of non-degenerate singularities on R? of saddle type, then X, and X, are weakly-
C~-equivalent (the equivalence is realized by a diffeomorphism ¢ with ¢(Wg )=W5,
and o(W%,)=W5,; Wg%,, resp. Wy, is the unstable-, resp. stable-, manifold of X;
in 0) but in general not Cequivalent (take for example )(1:29615—%i and

1

2 2 2 0%
X2=2x15;;~—x26—xz—|—x§a;—|-2x1x2a—x2, see also [17]).

Definition (x.8). — Let Kc %" and XeK. We say that X is K-(weakly)-Ci-stable
if there is a neighbourhood U of X in %" such that every X'eKnU is (weakly)-
Ci-equivalent with X.

3. Statement of the results.

In this paper we shall prove the following two theorems:

Theorem 1. — There are, for each n, closed semi-algebraic subsets V,DV,DV, in 4"
of codimension 1, 2 and g respectively, such that, with Vo=%" i=1, 2,3, each XeV,;_\V;
is V,_,-weakly-C -stable; moreover, each V;_\V; is a non-singular open codimension (i—1)-
manifold.

Theorem 2. — If n> 5, then there is no sequence V2 V,0V,0V, of closed semi-algebraic
subsets of 9™ as in theorem 1.

Remark (x.9). — We shall take V, to be the set of germs of those vector fields

X= '21X"3— on R" which have at least one eigenvalue on the imaginary axis (these
Q= X
i oX.
eigenvalues are the eigenvalues of the matrix (—)—(—‘) ) The fact that each Xe%"\V,
%i/i,i

is ¥"-weakly-Cl-stable, even ¥"-Cl-stable, is a reformulation of the theorem of Hartman
and Grobman ([5], [4])-
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SINGULARITIES OF VECTOR FIELDS 51

The singularities occurring. for XeV,\V, are described by Sotomayor in [16]
where they were proved to be V;-Cl-stable and where their unfoldings were studied.

In the proof of theorem 1 we shall also give a complete classification of the
singularities occurring for XeV,\V,.

Remark (1.10). — From [18] it follows that there is some positive 2 such that
there is no sequence V;2V,>...2V, of closed semi-algebraic subsets of #* as in
theorem 1 ; I do not know what the lowest such 2is. On the other hand it seems reasonable
to conjecture that in %2 there is an infinite sequence V,2V,5V,>... asin theorem 1.
I have no idea about the situation in %

It seems likely that theorem 1 remains true if we replace weakly-C’-stable by
C’-stable; however, I do not see how to prove that without having to go through very
long computations.

4. Reduction to the completely non-hyperbolic case.

We first restate two theorems which we then shall use to prove that it is enough,

in order to prove theorems 1 and 2, to prove certain theorems, namely (1.15), (1.16)
n

and (1.19), concerning germs of vector fields X= Z1Xi—6— for which all the eigenvalues
§= X.
oX,
of (—X') are on the imaginary axis.
%3

3,96. i j

1

< 0
Theorem (x.xx) ([6], [8]). — Let X = _§1X,-—a; be a C®-vector field on R" such that

. 0X; . . , e
¢ eigenvalues of (—X”) are on the imaginary axis and let ¢ be some positive integer. Then there
x. |. .

J/%)
is a Ct-c-dimensional manifold W5, containing the origin, and a neighbourhood U of oeR" such

& w0
that for any peWs 0 U, X(p) is tangent to Wy, and such that, if X= ‘E1Xia— is the restriction

1

X,
of X to Wy (94, ...,9, coordinates on Wg), then all the eigenvalues of (L) are on the
imaginary axis. Dj 14,5

Remark (x.12). — It should be noted that W5 in theorem (1.11), the so-called
center-manifold of X, is not unique. However, the /-jet of the restriction of X to Wy
is unique in the following sense:

Let %, ..., x, be coordinate functions on R" such that x, ..., x,, restricted to
Wi, form, near the origin, a coordinate system on W; let Wy be another C’-center-

~ ¢ oo a ~y i o~ a
manifold of X and let X= _EIX,.B—— and X'= 21X{ o be the restrictions of X to Wg
i= x; i= x;
and Wy respectively expressed in the coordinates x, ..., x, restricted to Wg, resp. Wy°.
Then the f<jets of X, and X',-’ are equal for i=1, ...,c.
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52 FLORIS TAKENS

Theorem (x.x3) ([6], [14]). — Let X, ¢, W5 and X=§1Xi(y1, e D)

— be as
Y;
in theorem (1.11). Then there is an m, with o<m<mn—c¢, such that the germ of:
P o ‘&t 0 : 2
Y=2X(, - sV) —+ = p—— X y—
i=1X‘('y1’ e) ayi+i=c+1y'ayi i=c+m+1y’8yi
is Cl-equivalent to the germ of X.
Definition (x.14). — W, W}, ..., W are the following semi-algebraic subsets

< 0
of ¥ (or ¥™%): WP is the set of those germs of vector fields X= X X;-— on R" for

i=1 7 ox;
which all the eigenvalues of (ﬁ) have non-zero real parts except:
355
t=1 :one eigenvalue is zero;
=2 : two non-zero (complex conjugate) eigenvalues are on the imaginary axis;
i1=g : two eigenvalues are zero;
t=4 : one eigenvalue is zero and two other non-zero (complex conjugate) eigen-
values are on the imaginary axis;
¢=5 : four non-zero eigenvalues are on the imaginary axis.

In chapter VI we shall prove the following two theorems, using the theory developed
in the chapters II, III and IV.

Theorem (x.x5). — There are closed semi-algebraic subsets W;=V;,DV,,0V,, and
W=V, DV, ,0V,, of Wi and W} such that each XeV; \V, ;. is V; -weakly-C-stable,
Jor i=1,2, j=1,2; V,; has codimension j in '

This holds also if we consider W! and W2 as subspaces of ™/ for ¢ sufficiently
large. The sets V, ;, resp. V, ;, have also the property that for any XeV, ;, resp. V, ;,
and any C®-diffeomorphism ¢ : (R, 0)—(R, 0), resp. ¢ : (R? 0)—(R? 0), o,(X)eV, ;,
resp. €V, ;.

Theorem (x.x6). — There are closed semi-algebraic sets W3=V, ,0V, 5, Wi=V, ,0V,
and Wy=V,,0V,, such that each XeV; \V,; is V, cweakly-Co-stable, i=3, 4, 5;
V., ; has codimension j in &'~*.

As in theorem (1.15) this also holds in ™ for ¢ sufficiently large and the sets V.
are also invariant under the action of diffeomorphisms.

Remark (1.17). — The number of different (non-weakly-C’-equivalent) singularities
in each of the above V; \V; ;. is as follows:

Vi, 1\Vye i1 Vo, 1\Vs 52
V5, 2\Vy5:2 Vi, 2\Ve 5 1 2
Va, 2\V3,3 ¢ I V4, 2\V4,3 °5 Vs, 2\V5,3 ¢ 10
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SINGULARITIES OF VECTOR FIELDS 53

We now give the
Proof of theorem 1 assuming theorems (1.15) and (1.16).
As in remark (1.9) we define V; to be the set of germs of those vector fields Xe%*

X, . . . .
such that (3—X’) has at least one eigenvalue on the imaginary axis. V;cV,_,,
%; )i ;

t=2,3, is thejcl,osure of the subset of those germs X in V;_, such that X, restricted to
a center-manifold, is not in V; ;_\V,;, j=1,2 if i=2 and j=1,2,3,4,5 if i=3.
V;, is the union of V] and the set of those points in V;_; where V;_, is not a non-singular
codimension (;—r1)-manifold. Note that V,=V,.

We first prove that V;, V, and V; are closed and semi-algebraic sets. We recall
that a set is semi-algebraic if it is the union of a finite number of sets which can be defined
by polynomial equalities and polynomial inequalities. Our proof will be based on a
corollary [g], due to Thom, of the Seidenberg-Tarski theorem [15] which, restated in
a form which is convenient for our purposes, reads as follows:

Proposition (x.18). — Let K be a semi-algebraic subset of ]y, then the set:
K’ ={aec]y| there is a k-jet of a diffeomorphism ¢ : (R, 0) —(R", o) suchthat ¢,(x)cK}

s also semi-algebraic.
Using this proposition it is easy to show that V, is semi-algebraic: the set K of
n

0
those «€]? which can be represented by X= X Aijxig~ with A; in Jordan normal

ij=1 x;
form and with A having at least one eigenvalue on the imaginary axis, is clearly semi-
algebraic; from (1. 18) it now follows that the set K’ of those a€]i which can be rep-
resented by X = E A,]x1 o with A; having at least one eigenvalue on the imaginary

1,j=1
axis, is semi-algebraic; V1—7-<:1 1(K').

Now we prove that V, is closed and semi-algebraic; the proof for V; goes in the
same way and is omitted. Let N be an integer, so large that each of the semi-algebraic

sets V; ; is of the form ng*(Vy). Then we define KcJy to be the set of jets of vector

fields X :ZX“G— in V,; with:

0

o0X.
a) (al(' (o)) is in Jordan normal form and has v (>o0) eigenvalues on the
Yo Jai
imaginary axis; oX
b) X;(%y5 ...,%,,0,...,0) =0 for i>v, all the eigenvalues of (8 ’(o))
1,5 <v

. . . %;
are on the imaginary axis;
v

J

~/ a
¢) X:]Z]lxj(xl, cior%,0,...,0)—¢€V,, for some p.

0%;

(Note that v and u are dependent: v=p if p<2 and v4+i1=p if p>3 (see defi-
nition (1.14)).) It is easy to see that K is semi-algebraic. Let K’ be again the orbit
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54 FLORIS TAKENS .

of K under the action of diffeomorphisms; then nx?(K’)=V} is semi-algebraic. The
set of points where V; is not a non-singular manifold of maximal dimension is closed
and semi-algebraic. So V,=V,uV, is closed and semi-algebraic. (The closure of V;
can be obtained by replacing < in defining equations everywhere by <.)

The fact that the codimension of V; is ¢ follows from (1.15) and (1.16).

Finally we prove that each XeV\V,,, is V;-C’-weakly-stable for i=o, 1, 2.
For i=o see remark (1.9). We shall prove the stability of XeV,\V,; the case
XeV,\V; goes in the same way. Let N be again an integer, so big that the sets V, ;
are all of the form ny*(V; ;) and let XeV,\V,. Let « be the N-jet of X, restricted to
a center-manifold; « is unique ‘ up to coordinate transformations .

According to the definition of V; and V,, « is a point of my(V; ,\V;,), i=1 or 2,
which has a neighbourhood U in V; ;\V;, which is a non-singular manifold. Let
UcJy be the set of those jets of vector fields X, for which the N-jet of its restriction
to a center-manifold is in U; U is a codimension 1 manifold. my(V,\V,) and U coincide
locally, i.e. there is a neighbourhood U, of wy(X) such that UlnﬂzUln-rcN(Vl\Vz).
We now assume that we have taken U so small that if X; and X, are C¥-vector fields
whose N-jets are in U, then X; and X, are weakly-C’-equivalent; this assumption is
justified, if N is large enough, by theorem (1.15). We also assume that U, is so small
that if X; and X, are vector fields whose N-jets are in U, nnty(V,\V,), then the number

1), 0X,,.
of eigenvalues with negative, or positive, real part is equal for (—X—“) and (TX‘ZJ)
% i i /i3
Now it follows from theorem (1.13) that any X;, X,e%" with =ny(X;)eU; nmyg(V\V,)
are weakly-C’-equivalent. This proves theorem 1.
As to the proof of theorem 2, we shall show that that can be reduced to proving the
following theorem (1.19), the proof of which will be given in chapter V using the theory

developed in the chapters IT and III.

Theorem (x.19). — There is a submanifold W CJ5 of codimension 3 which contains a
residual subset P such that for any BeP and any B'eJs, k>2, with m,(B')=B, there are two
representatives X;, X, of B’, such that for any two bounded neighbourhoods Uy, U, of 0eR® the
sets Ly, Ly, where L is the set of those points qeU,; for whick both L, 5. y.(g) and L, x, v,(9)
are the origin (in R®), are not homeomorphic.

Proof of theorem 2 assuming theorem (1.19).

Suppose there is, for some n>75, asequence V;0V,0V,;0V, in ¥ asin theorem 1.
Because V, has codimension 4, there must be some Xe®%", X¢V, such that the 2-jet
of X, restricted to some center-manifold, is in P; let X, be such a germ and assume
XoeV\V;_;, 1<3. According to the assumption there must be a neighbourhood U
of X, in V; such that each X'eU is weakly-C’-equivalent with X;. According to
the definition of the topology in %" and the definition of algebraic sets in %" there is
an integer &, such that every X’e%”, which has the same %-jet as X, isin U (and hence
weakly-Cl-equivalent to X;). In order to construct a contradiction we take two
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SINGULARITIES OF VECTOR FIELDS 55

representatives X;, X, of the k-jet of X, such that the restrictions X;, X, to their center-
manifolds Wg,, Wy, are as in the conclusion of theorem (r1.19), i.e. for any two
neighbourhoods U,, U, of o in Wi , Wg, respectively the sets L;, L, are topologically
different (L; is the set of those ¢eU; for which both L, ; ;(¢) and L, x; v;(g) are
the origin); such a choice of X, and Xj is possible by theorem (1.19). According to
theorem (1.13), if U is a neighbourhood of oeR" (small enough) and if ¢eU has
the property that both L, y; y(¢) and L, ; y(g) are the origin, then ¢ must be a point
of the center-manifold Wy,.

The above facts, together with theorem (1.13), show that X; and X, are not
weakly-CO-equivalent. This is the required contradiction proving theorem 2.

II. — NORMAL FORMS

The main theorem of this chapter is very close to the formal part in [17] and
was probably known to Sternberg and others; the applications are, however, new (as
far as I know) and rather surprising. We develop the theory of normal forms in § 1
in the generality we need for the final results of this paper; in appendices 1 and 2 we
give some extensions of the theory. Applications are given in § 2, § 3 and § 4; § 5 deals
with the geometric interpretation of the results of § 4.

1. The normal form theorem.

Let X be a Ct-vector field on R™ with X(0)=o0. We want to put X, or rather
its £-jet, /<k, in a simple form by “ changing the coordinates ”’ in R". For this purpose
we define X, to be the vector field on R" which has the same 1-jet in 0 as X and whose
coefficient functions are linear. H" denotes the vector space of those vector fields on R”
whose coefficient functions are homogeneous polynomials of degree #.

[Xy, =] : H*—~H" is the linear map which assigns to each YeH" the Lie-
product [X;, Y] which is again in H*. For X, fixed, we define a splitting H*=B"4 G"
such that B*=1Im ([X;, —],) and such that G" is some supplementary space.

Theorem (2.1). — Let X, X,, B* G be as above. Then, for ¢t<k, there is a
C=-diffeomorphism ¢ : (R 0) — (R" 0) such that o, (X)=X' is of the form:
X'=X+g+...+8+R,

where g,eG', i=2, ..., and R, is a vector field, the component functions of which have all
zero {-jet; {="Fk=o0 is not excluded. (¢ can be used to define new coordinates xy, . .., x, with
respect to which X is of the form of X'.)
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56 FLORIS TAKENS

Proof. — We prove the theorem by induction on /. For /=1, the proposition is
trivially true. Suppose now we have X=X, +g,+...+g _;+R,_, asin the conclusion
of the theorem. We can then write R, ,=g,+b,+R,, with g,eG*, b,eB’ and R,
a vector field, the component functions of which have all zero /-jet. We take YeH’ with
[X;, Y]=4, and consider (%D ,).X=X,, ((Dy,,) is the diffcomorphism (R" 0)—(R" 0)
obtained by integrating Y over time ¢ (see definition (1.3))). The (/—1)-jets of X
and X, are equal, £>2, so [Y, X]=—b,+R, ,, where R, ,is G*~*, but for some positive A,
and all |#|<1 and all xeR" with ||x||<1:

[ Ry, () [| <A ][

d
From differential geometry we know that _e_l;f(Xt)z[Y’ X,], so X, has the form

X=X,+g+...+g+b+th,+R,, with R,, C*¥ because X,=(%y ,),X and Dy,
is G®. Itis now clear thatif we take @,= 2, _, wehave ¢,(X)=X+g+...+g+R,
as in the conclusion of the theorem. This induction proves the theorem for the case ¢<co.

Suppose now ¢=o00; the above construction gives a sequence of diffeomorphisms
¥, : (R%, 0)—~>(R"0), {'=1,2, ..., such that ¥pu(X)=X,+g,+...+ g +R,, asin
the conclusion of the theorem with ¢’ instead of ¢, and such that the (¢'—1)-jets of ¥y _,
and ¥, are equal (the ¢, constructed above is so that we can take ¥, =¢, ¥, _, and
the (£'—1)-jet of ¢, was the (£’—1)-jet of the identity). By the theorem of E. Borel,
see [11], there is a diffeomorphism ¥ such that for each ¢, the ¢'-jets of ¥, and ¥" are
equal. It then follows that ¥, (X)=X, + g,+g;+ ...+ R, and the theorem is proved.

2. The singularity ¢ x1£ »,
2

We apply in this paragraph theorem (2.1) to the case where X is a C-vector
0
field on R? which has the same 1-jet as Xllea—. The image of [X;, —], in H,

or B!, is determined by the following formulas: 2

0 0 0 0
Xy, AP =ppa iyl xmgm o for gy >1
0%, 0%y 0%, 0%,

b} 0 0
X —, xTxTe | =pamtigne—l for >1
[ 1 ox, 1 % 8x2] Ttg X1 2 %, ¥

and:
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e . 0 -, 0 . .
From this it is clear that H is spanned by B, ¥, — and #,—. B’ has codimension 2

1 X2
. . . o 0
in H’ because the kernel of [X;, —], has dimension 2 (1t is spanned by x{a— and
X2

0 0 -
X — —I—x{_1x2~—). From this it follows that we may take G’ to be the subspace of H,
0%y 0xy

0
spanned by #— and x{—, and we have the following:
: 0xy 2 oxy

Proposition (2.2). — Let X be a Ct-vector field on R® whose 1-jet in 0 equals the 1-jet

0
of el Then there is a C®-map ¢ : (R? 0)—(R? 0) such that:
2

o & P
‘P*(X)Z"ﬁa‘l' Z(azxza +b[x2 )+Rk,
2

0x.
where the k-jet of R, is zero.

3. A single rotation.

We take X again as vector field on R? but now so that its 1-jet in o equals the

1-jet of X;=x,— Fr In order to determine B! and to choose G* it is convenient
X2 41

to have a basis of eigenvectors in H’; in order to be able to make such a basis we complexify

H’ to H’®C. The elements of H’‘®C can be written in the form Y,+4:Y, with

Y,, Y,eH!; the action of [X;, —], on H‘®C is given by:
[X1, Yy +iYe],=[Xy, Vil +i[ Xy, Vol
In order to construct a basis of eigenvectors in H’®C we define the following
vector fields: _
R N T
and the following functions:
"k (%, %) = (23 23)" (%, -+ 1x,)" for k>0, r>o,
Vrk(xy, %) = (2 +53)" (2, —ix,) "% for k<o, r>o.

0
— Xy — )V”‘ k.i. V’k
0%, 0%,

From this it follows that {V"*.Z} .,  forms a basis of H'®C, consisting of cigen-

j==+1
2r + k| =

vectors of [X;, —],. The eigenvalue of V’ k Z is (B+ ]) 7; so the kernel of:
[X;, —] : H'®C->H®C

It is easy to see that [X1,Zi1]=ﬂ:i-2i1 and (xl
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is 0 if Z is even and 2-dimensional if / is odd; in that case the kernel is generated by

te-1.1 Ye—1), -1
v? .Z_, and V? .Z,y. Next we observe that:
1 1 1
I S(€—1),1 ~(¢—1),—1 (-1 Fl P
SV Z VT2 )= W= () (a_+a—)
1 1 1
I . S(—1),1 . ~(¢—1),—1 Z(—1) Fi P
and (VDL Z =i VR 2 ) = W= ()’ (a__a_)

So the kernel of [X;, —],, in the complexified case, for £ odd, is generated by the “ real
vectors > W’ and W’. It is now an easy exercise in linear algebra to show that we
may take G’=o for ¢/ even and G’={the 2-dimensional vector space spanned by W
and W'} for ¢ odd; so we proved:

Proposition (2.3). — Let X be a Cr-vector field on R® whose 1-jet in o equals the 1-jet
0

0
of Xllea———xza— . Then there is a C®-diffeomorphism ¢ : (R?, o) — (R?, 0) such that
x, x
22(’ <k ! P P 2 <k P P
o (X) =X, + {El a, (x5 + x’g)’(xla—x1 +x28—x2) - l§1 by(«3 —|—x§)’(x13—x2 —xza—xl) +R,, where
the k-jet of R, ts zero.
An equivalent, but more geometric form of the above proposition can be given
as follows:

Proposition (2.4). — Let X be a CF-vector field on R® whose 1-jet equals the 1-jet of

0 0 . .
X,=x,——x,—. Let Ry:R*>R? be the linear rotation, given by:
0% 0%,
Ry (%1, x5) = (%;.c0s 6—x,.51n 0, x;.sin 0 -+ x,.cos 0).

Then there is a C°-diffeomorphism ¢ : (R%, 0) —(R?, 0) such that X' = ¢,(X) has the property
that for each 0, the k-jets of (Ry).(X') and X' are equal (or ¢ the k-jet of X' is invariant under
the rotations Ry ).

4. Several rotations.

In this paragraph we generalize § g to the case where X is a C*-vector field on R"

such that the 1-jet of X in o equals the 1-jet of X;= X )\i(xm._li 0 ) where
i=1

—_— Xy —————
2t
0%y 0%y 4
m

m
om<n. We assume that X a\;+0 whenever geZ and 1< X |o|<k41; this cor-
- i=1 —i=1 '

responds to excluding  strong resonances .
As in § 3 we consider the action of [X;, —], on H/®C. In order to describe a
basis of eigenvectors in H/® C we use the notation of § 3, i.e. V¥ (%g;_1, %g;) will have
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the same meaning as in § 3 but with x;, x, replaced by xp;_;, %5;; Z, 1(%3;_1, %,;) denotes

the vector field

0
+i——. Asin § g we have that:
Xgj_1  OXy;

[ Xy, Z;i:l(x2j—-1’ x9;) | =1 0. Z 1 (%g5_q, %p;)  foOr J<m
and:

m 0 0 .
( Zlh(xzvqﬁ ¥y ))V”k(xzj_l, o) =R.N.EV (x4, %)
v= 2v 2v—1

With this we can give a basis of eigenvectors in H’®C as the union of the following
two sets:

VR, x5), oo, Vi mm(xy 1 Xam) - W (Xapy 15 -+ 5 %) - Z1(X25,—15 X9;) )

where I=41, j,=1,2,...,m and where W is a homogeneous polynomial of degree
m m

t—2 Xr,— X |k|, and:
j=17 =1

0

Vn’kl(xlﬁ x2)> ) Vrm,km(me——D me) 'W(x2m+1’ Tt x”) . 5;_ ’
v

where v>2m-+1 and where W is a homogeneous polynomial of degree /—2 021 r— .21 |&;].
m i= i=
The corresponding eigenvalue is ( ‘21 N.k;.i)+ 1), .0 for an eigenvector of the
m =

first set and X A.k;.¢ for an eigenvector of the second set.
i=1

We now assume /<% and absence of ¢ strong resonances > (see the beginning of
the paragraph); then the eigenvectors with eigenvalue zero are all of the form:

W+ 43), ...y (331 + %30 Xom1s ++ -5 %n) Ve il("z;u,—p x2j,,) 'ZiFl(xzj.,—-l’ x2j.,)

a'nd: W((x%—}‘xg)’ MRS (xgm—1+x§m)3 x2m+11 Tt xn)b?’

v

v>om—+1,

with W an appropriate polynomial.

As in § 3 we conclude that we can choose G/ to be the subspace of H’ consisting
of those elements which can be written as:

m 0 0
‘,‘_‘_:lﬁ((x%‘l‘xg), ceey (xgm—l_I_x;m)’ Komi1s + s %) (xw—l-a?c;_xﬁm)
% 2 2 2 4 4
+. 1&'((’& —}—xg), oy (Mg 25)s Xam 1y« o5 H) "2@'—13— + Xy
v= Xoi—1 0%,
% B((2+22), <oy (Xt Xom) s % x)i.
i—2mal (1 1 2/ > 2m—1 2m/3 2m+1> > ', 8x
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So we proved:

Proposition (2.5). — Let X be a Cl-vector field on R" which has in o the same 1-jet as:

n 0 0
X =i§1)‘i(x2i—1"_

0%y; O%g5_q

m

), am<n, with 2 ah+o

i=1

m
whenever o, and I§.§1[a¢|§k—|—1.

Then there is a C®-diffeomorphism o : (R 0) - (R" 0) such that ¢, (X)=X' is of
the form: ‘ '

, i 0 0
X :'E'lf;((x%"’_xg): R (xgm——l'l'xgm)’ Xom+15 ++ *> xn) (xzi—-la— —)

__x .
21
Xoi 054

mo 0 0
+i§1g¢((xf+x§), SO (xgm—l—i—xgm)’ Xom 15 + + =3 %) (x + Xy, )

217 P
0% 4 0%y,
n

0
+i=2zm+1hi((xf+x§)a MRS} (xgm-—l—}—xgm)’ x2m+1) st xn)—gj};—l_Rk’

with fi(o, ...,0)=x, go,...,0)=o0, ko,...,0)=0, —
0%;

1

and j>2m~+1, and R, a vector field with zero k-jet.
Analogous to proposition (2.4) in § 3 we have here:

(0, ...,0)=0 for all ¢

Proposition (2.6). — Let X, X; be as in the assumptions of proposition (2.5); let:
R} : (R 0) > (R%0), i<m,
be the rotation: R§(xy, ..., %)=(x1, ..., %) with x{=x if j+oi—1,21i, and:
Xy;_ 1 ="Hp;_1 €080 —xy;5in0, x5, =x,;, ,sin 64 x,, cos 0.
Then there is a C®-diffeomorphism ¢ : (R", 0) — (R" 0) such that X'=¢,(X) has
the property: ’
For any i<m and 0, (R}),(X’) and X’ have the same F-jet.

5. Jet reductions.

Definition (2.7). — Let X be a vector field on R" having a &-jet as X" in the conclusion
of proposition (2.5). Then the reduced k-jet of X, is the k-jet of the vector field X" on R*~™:

" - 0 i 0
X =i§1gi('y%’ o -:_y?,,, Xom+1> « - > Xy) '.yigi_l_i:;n_l_lhi())%) . . -:,yfrn Xom 415 =+ o> xn)a—x1

If the germ of X is as X’ in the conclusion of proposition (2.5) with R,=o0 and f;,
&, h; Ci-functions, then the reduced germ of X is defined by the same formula which
defined the reduced jet.
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Remark (2.8). — In order to see clearly the relation between a jet (or a germ) of a
vector field and its reduction, one has to consider the multivalued “ map” ®: R*—R*™"
defined by:

® .
(xia "'>xn) g (i\/xf—l—xg, ""i V xgm—1+x§m>x2m+1a "')xn)'

If Xis a germ on R” and X"’ its reduction, then ® maps integral curves of X to integral
curves of X’; X" then contains all the information about X except for the * speed of
rotation . For jets, of course, the same type of observation holds.

Proposition (2.9). — We consider R", with coordinates %y, ..., %,, and R"™™, with

coordinates 9y, ...y Vm> Xami1s ---» ¥n. The rotations Ry on R" are defined as in prop-
osition (2.6). T, :R*"™R"™™ i=1,...,m, is defined by:

Ti(.yl: e Vmos x2m+17 ] xn) = (_yl: s i1 _.yi)yH-l: s Vmos x2m+1: R xn)'

1) If X' is a germ (or a k-jet) of a vector field on R"™™ which is obtained by reducing a
germ (or a k-jet) of a vector field X on R", then X' is invariant under the maps T;.

2) If X" is a germ (or a k-jet) of a G®-vector field on R"~™ which ts invariant under the
maps 'T;, then there is a germ (or a k-jet) of a vector field X on R, such that X'’ is the reduction
of X. '

3) Let X be a germ (or a k-jet) of a vector field on R" and let X' be its reduction. If
" :(R*™ o) > (R""™ 0) is a germ (or a k-jet) of a C*-diffeomorphism, commuting with
Ty, ..., T, then there is a germ (or a k-jet) of a diffeomorphism ¢ : (R", 0) — (R 0) such
that @' (X'"') is the reduction of ¢, (X); @ commutes with all R}.

Proof. — 1) follows directly from the definitions.

We prove 2) only for the case that X"’ is a germ of a vector field (the case where
X" is a k-jet then follows). As X" is invariant under T,, ..., T,, we can write X"
in the form: - - '

S . : P r . : 0
X :i§1gi(.y1’ . '?)}m? x2m+17 T xn)yi’é.'y; +i=2§+1}li<))1: .. -3_ym: me—l—l{ ceey x")—é—x;.,

where %, and g; are C*-functions on R”, invariant under T, ..., T,,. So 2) is proved
once we know that if f is some G*-function on R"~"™, invariant under Ty, ..., T,, then

there is a G*-function f :R"""—R such that:
f(.yl" * '>.ym’ x2m+1, ct xn):f(.y§7 .- ")’fn) x2m+17 * ”'? xn)'

The existence of such an f? up to co-jet equivalence is easily verified (none of the y; can
occur in an odd power in the Taylor expansion of f). The existence of the function f
is then proved using Malgrange’s preparation theorem as in [10; see I, § 4].

To prove 3), it is enough to show that if ¢” : (R*™™ o) — (R"~™ 0) is a germ
of a diffeomorphism, commuting with T,, ..., T,, then there is a germ of a diffeo-
morphism ¢ : (R", 0) - (R" 0), commuting with all R} and such that ®p=¢"®
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where @ is as in remark (2.8) (the choices of =+ in the definition of ® must be the same
at both sides of the = sign).
To obtain such ¢, we first write ¢

r

in the form:

<P"()’1> e s Pmos Komg1s + 00 xn)—_“()’l: s ms Xomg1s -0 xn)
_I_(),l‘p'l(.ylﬁ e xn)’ . '>.ym’(“'m(})17 MR xn)’ P'm+1(.y17 s xn)’ st P‘n~m( Pis » o5 xn))'

Because ¢’ commutes with all the T, w,, ..., @,_, must be invariant under Ty, ..., T,;
this means that there are functions p; such that:

‘:i(.}}%, M '3)’12n’ x2m+1’ ] xn)=§1~i()’1> st xn)-
We can now define ¢ as the map which sends (%, ..., x,) to:

(x1> RS xn)—l_(xl'p‘l.(—(xf-l_xg)) MR ] (xgm—l—l_xgm)’ x2m+1’ ct e xn)’ _
_ xZ'l'Ll((x%'i_xg)’ . "_(xgm-—l_l_xgm): x2m+1! st xn)’_xs'fj‘z((x%—i"xg)’ st
AR xzm'um((x%_l_x;)’ L] xn)) p‘m+1((x%+x§)’ RS xn): R p’n——m((x% x2)> RS xn));

this ¢ has the required properties.

Remark (2.10). — If X"’ is a k-jet of a vector field on R~ ™, obtained by reducing
a k-jet X on R", then we have seen that X'’ is invariant under the involutions Ty, ..., T,.
A consequence of this is that all the hyperplanes y,=o, ¢=1, ..., m, are kept invariant
by the flow of X"’ (as far as A-jets go) ; hence the codimension two subspaces #,; ;= %,;=o0,
i=1,...,m, in R" are kept fixed by the flow of X, as far as k-jets go. It will be one
of the basic questions in the following chapters to decide whether there are really invariant

submanifolds for X, tangent in 0 to xy_,=x,=0, for each i=1, ..., m.

Appendix 1: On unicity.

Let X, X, and H*=B"4G" be again as in § 1. We assume that the dimensions
of G% ...,GM"" ! are all zero. According to theorem (2.1) one can find a diffeo-
morphism g, such that the ky-jet of ,(X)=X,+ g, for some g,eG™. In this appendix
we want to investigate the ‘“ extent to which g, is unique ”.

Let o be the group of linear isomorphisms A : R"—R" such that A, (X;)=X;.
There is a natural .7 action on H* for each %, defined by A(k)=A,(k) for Aes/ and
heH!.

Proposition (2.xx). — Let X be as above. Suppose there are two diffeomorphisms ¢ and ¢’
such that ¢ (X)=2X,+g, and o (X)=X,+g, (up to hy-jets). Then there is an A in o/
(see above) so that A(g,)= g, mod (B").

Proof. — Without loss of generality we may assume that ¢ is the identity (i.e. that
X was already in normal form). The 1-jet of ¢’ must obviously be an element of .27,
say A. From the proof of theorem (2.1) it follows that the (hy—1)-jet of ¢’ must be
the (hy—1)-jet of the linear map A in order to have the (k,—1)-jet of ¢,(X) equal to
the (hy—1)-jet of X;. We now observe that A,(X)=X,+A(g,); as G™is in general
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not invariant under the & action, A(g,) does not necessarily belong to G™, so we write
A(g,)=b-+g with beB® and geG™. According to the proof of theorem (2.1), for
any ¢’, with the same (4,—1)-jet as A, we have o¢,(X)=X,+06'+g (up to Ayjets) for
some b'eB%; from this the proposition follows.

Appendix 2: Normal forms in case X, =o.

In the case where X;=o0, see § 1, the conclusion of theorem (2.1) is trivial. In
that case however, one can proceed as follows. Let s be the smallest integer such that
the s-jet of X is non-zero; X, denotes the vector field, the component functions of which
are homogeneous polynomials of degree s and which has the same s-jet as X. Asin § 1
we define a map:

[X,, —],: H'—>Hts71,

For h>s we get H"=B"+G* with B*=Im[X,, —],_,,; and G* a supplementary
space. With these modified definitions theorem (2.1) remains true if we replace
X'=X+8+...4+5+R by X' =X,+g,.,+...+g+R,.

The proof is completely analogous to the proof of theorem (2.1) and is hence
omitted.

III. — THE “ BLOWING UP” CONSTRUCTION FOR VECTOR FIELDS

The construction to be described in § 1 of this chapter can also be found in [18]
for the C®-case. The CF-case is practically the same, but, for the sake of completeness,
we repeat the construction here anyhow. Our blowing up construction can be seen
as a refinement of the method used by Gomory in [3]; also the treatment of 2-dimensional
singularities in [12] suggests our blowing up construction. The examples we give
in §§ 3, 4 and 5, will all be used in the proofs of theorem (1.15) and (1.16); the technique
of ¢ blowing up ”* will also be used in the proof of theorem (1.19).

1. The construction and its properties.

Proposition (3.x). — Let X be a CP-vector field on R" with X(o)=o. Let:
o: " 'xR->R"
be the map defining polar coordinates (i.e. if Xy, ..., X,, with éic?:l, are coordinates on S"~*
and r is the coordinate function on R, then @ (xy, ..., %, r);(rfl, «os1%,)).  Then there is
a C¥-vector field X on S*~'XR such that in eack geS" xR, ®,(X(q))=X(®(g)) (or
o, (X)=X).
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Proof. — On R" we define the following vector fields:

- o I 0 0
R=2%x— and V.=—-|x.——x.—]|:
i=1 " 0x; Y9 (x, ox; % 3x,-) ’

note that V;=o0 and V;=-—V;. From a direct calculation it follows that:
(.Elx?).X=<R, X}.R+‘21<Vij, X>. V.
1= 1,j=

Next we define on S""'xR the vector fields R and IZJ. by ®,(R)=R and

~ . ~ a ., . . . .
o, (Vy)=V;, ie. R =r- and V; is the vector field, the integral of which is a rotation
r .

in $"~' in “the ¥, x; plane . 'We introduce the functions «,=<{R, X} : R"—>R and

a;=<Vs, X> :R">R. It is now clear that ®@,((«,®).R+ 2 (e;®).7;) =(Z4).X,
4] 1=

or O, (%((a, ®).R+ gj(aijd)) . 17;])) =X this last equation, however, does not necessarily

make sense for r=o.
Because in 0€R", X, R and Vj; are zero, (X, R) and <X, V;;> have their 1-jet
zero. 'This implies that the 1-jet of «,® and «;® is zero in each point of:

S"~tx{o}={r=o0}.

.. . I I .
By the division theorem it then follows that — («,®) and —(«;®) are C*~2 if we take
o r r
for r=o the limit.
As J. J. Duistermaat pointed out to me, this argument can be refined to obtain

;Ié(a,cb) and riz(%.cb) to be C*1 as follows:

n n
. 0 . .
We write X= 2 X‘-a— , the X;’s are C*-functions. «, is then 2 x,X(x,, ..., x,)
i=1 X; i=1

and «®= 2 x.r.(X,®) and %.(oc,@): 21;?,.. .(X;®); so we have to divide only
1=1 r i=

R

once by r and hence the resulting function iz(oc,(l)) is C¥=1, A similar argument works
r
I
for ;é(ocijd)).
o~/ I o~/ ~y
We now have that X=—((«,®).R + Z (a;®).V;) is a C*~'-vector field; we had
r Y]

that for r+0 ®,(X)=JX; hence, by continuity, we have it everywhere. This proves

the proposition.

Remark (3.2). — If the vector field X in proposition (3.1) has a sufficiently
degenerate singularity in oeR", i.e. if its 1-jet is zero, then X will be identically zero
on S""!'x{o}. In such cases the geometrical structure of X, or X can be made more

64



SINGULARITIES OF VECTOR FIELDS 65

~

“visible > by dividing b'¢ by a sufficiently high power of r (i.e. so often that ii is not
r

identically zero in S""!'x{o}). This division is possible in S"~*xR, loosing each time
only one degree of differentiability, because the vector field is zero on a manifold of
codimension one.

Proposition (3.3). — Let X be a vector Sield on S*~'x R which is of the form:

n
S EROE GRS AR 2D KLV CRNE AN A
k<N

where f, and g, are polynomials in %, ..., x,, R and 17” are the vector fields introduced in the
proof of proposition (3.1) and %y, ..., %,, r are the coordinate functions introduced in the statement
of proposition (3.1). T :S* " *xXR — S" xR s the involution defined by:

T, ..., By r)=(—%, ..., —%,, —7).

If T(X)=X or T(X)=—2X, then there is a vector field Y on R” and an integer m>o0
such that ¥Y=12X, where ¥ is such that (D,,(?)zY as in proposition (3.1).
Proof. — We assume T,(X )=2X (the case T,(AN’ )=—X goes in the same way).
Because T*(I?):k and T,(%):IZP the functions fj and g, satisfy:
ﬁjk(fb R Er»):("'l)k‘f;ﬁk(_;{l’ SRR —’77;)
and: a(x, o, x)=(—1) g (=%, ..., —%).

This means that g, say, for # even, can be written as g,(x;, ..., %)= 2 g,(%1, - - -, %,),

n
for some s,, with g,, homogeneous of degree 25s. Because 1;19_6"2: 1, we may replace g,
by the homogeneous polynomial g, of degree 2s,: -

@l s B)= B (D) g (R, -0 )

8<8 1=

without changing the vector field X. The same holds for Jix with & even; for & and ¢
odd, f; and g, can be replaced by homogeneous polynomials f;; and g, of odd degree.
Now we choose m so that (m+k—deg(fy)) and (m-1—deg(g,)) are all
positive and even for all ¢, j, £ and /.
The vector field:

%(m + ¢ —deg(gp))

V=5 (4. .+ By ) R

%(m+k—deg

(i) =
+ 5: (G4 ..+ 4 ik Sl o %)V

k<N

will then have the required properties.

Remark (3.4). — If X is a Ct-vector field on R" with X(o)=o0 and if X is the
corresponding vector field on S"~!xR, then X can be written in the form:
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¥=( 2 rgl®, ... 5)+G).R+( R ICTRRRE AR S I
- v g’k-1
where g, and f, are homogeneous polynomials of degree (£4-2), resp. (¢/'42), and
where the (k—1)-jet of G and F;; is zero in each point of $"~*x{o}; the polynomials g,,
JSir» (6,¢'<k—1) determine the %-jet of X and vice versa.

2. The homogeneous case (in R?),

Let X be a vector field on R? which is at least C*** and such that the (k—1)-jet
of Xin 0eR? is zero. Let X, denote the vector field whose component functions are
homogeneous polynomials of degree 2 and which has in o the same k-jet as X. We
consider the following two functions:

? o 0

d
J= XlwxlaTﬁ +x25x_2 and g={ %

In the following we assume that o is not the only o-point of g.

Proposition (3.5). — For X, X,, f and g as above, and f, g in ¢ general position ™ (i.e. for
each p+o, peR® with g(p)=o0, we have dg(p)+0 and f(p)+0) each C¥ -vector field Y
which has the same k-jet as X, is C-equivalent with X (i.e. the germs of X and Y are C-equivalent).
Progf. — We blow up our vector field X as in § 1 to obtain a vector field on S'xR.
On S'xR we take coordinates ¢ (mod 27), such that ¥ =cos ¢ and x=sin ¢, and r;

we have ®(q,r)=(r.cos ¢, 7.sin ¢): usual polar coordinates. X then gets the form:
X:ri2 ((g(r.cos @, 7.sin @) +r* 1. (r, cp))a— +(f(r.cos @, r.sin @)+ ¥, flr, <p))ra—),
® r

where f, g are homogeneous of degree & +1 in r and where f{o, ¢)=%(0, ¢)=o0; fand g
are at least Cl. Following remark (8.2) we now define X as:

X = s X= (g(cos g sin @) + 205 9)) - +(flcos 9, sin o)+ 7, @)1y .

o or

Because f, g are in general position, X |S'x{o} is a Morse-Smale system and
also, in each point (gy, 0)eS'x{o} where X is zero, X has a hyperbolic singularity.

If Y has the same k-jet as X and is at least C**!, and if Y and Y are defined analogous
to X and X, then all the above remarks concerning X also hold for Y. This means
that, using the techniques of [1], we can make a homeomorphism % of a neighbourhood U,
of S'x{o} in S'x{reR|r>o0} onto another such neighbourhood U, such that & maps
integral curves of X to integral curves of Y, i.e. if peU, and 23(p, [o, t,]), t,>o0, is
contained in U,, then there is a #,>0 such that A(Dx(p, [o, t,]))= Dz (k(p), [0, t,]).

Using k, we construct a C’equivalence between the germs by taking:

¢ : O(U;)—>0(Uy)
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defined by ¢(0)=o0 and o(p)=0rD(p) for p+o0, where ®1(p) has to be chosen
so that its r-coordinate is positive. The fact that ¢ is a homeomorphism which sends X
integral curves to Y integral curves follows immediately.

In order to give an idea of what kind of singularities can occur under the
assumption of proposition (3.5), we consider a neighbourhood in S'x{reR|r> o} ofan
arc ¢ in S'x{o} joining two succeeding points p;, p, on S!x{o} where X is zero. At
each such point the direction of X changes; without loss of generality we may assume
that between p, and p,, X “ flows ” from p, to p,. Four different situations can occur
in a neighbourhood of ¢, according to whether X is normally expanding or contracting
in p; and p,:

2 ’/.J g{ z
P4 Py p1 p2

(<) @ (d) &_._}_\}
P P Py P2

F1G. 1

Below we show how the integral curves of X look in the corresponding ¢ sector *’

Fic. 2
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Remark (3.6). — Proposition (3.5) can be somewhat sharpened in the sense that
it is sufficient to require that the (#—1)-jet of Y is zero and that the &-jet of Y is close
to the k-jet of X. The same proof applies in this case.

Remark (3.7). — For CF*'-vector fields X on R" with zero (k—1)-jet we can do
also our blowing up construction and obtain a vector field on 8"~ (=S""!x{0}). This
vector field may be very complicated (say non structurally stable); on the other hand
it is not a C’-invariant in the following sense: Let X; and X, be two vector fields whose
(k—1)-jets are zero. Then it is possible that the germs of X; and X, are C’-(but not
Ck-)equivalent, without their corresponding vector fields on S"~! being C’-equivalent.

3. The homogeneous case with one symmetry in R?2,

We consider vector fields X on R? which are at least C* and such that X(o)=o,
the 1-jetof X is zero in 0 and T.(X)=X, where T, : (R? 0) - (R?% 0) is defined by
Ty (%1, %g) =(—xy, %)

Germs and jets of vector fields as above occur as germ-, or jet-reductions of vector
fields on R3, with one eigenvalue zero and two non-zero eigenvalues on the imaginary
axis, which are in normal form (see chapter II).

In this paragraph we shall apply the method of § 2 to the above type of vector
fields under the assumption that the 2-jet is in * general form * (to be specified below).
However, as it may not always be possible to bring germs in normal form, we cannot
“ easily ” carry over our results on vector fields on R? invariant under T; as above to
vector fields on R?® which have one eigenvalue zero and two non-zero eigenvalues on
the imaginary axis.

Because of the above requirements the 2-jet X, of X must be of the form:

0

0
X, = (ax? + bx3) P + cxlxza—x1

We may, and do, assume that ¢>0; because if not we replace the x, coordinate by —x,.

Proposition (3.8). — Let X, X,, a, b and ¢ be as above (i.e. also- a>0). Suppose the
Sollowing conditions are satisfied:

1. a=%o0;
2. (b—c)*o0;
3. b=*o;

4. if (b—c)<o then c=o.

(Observe that these conditions are satisfied on an open dense subset of {(a, b, c)eR*|a>o0}.)

Then every C3-vector field on R® with zero 1-jet and 2-jet close enough to X, is C'-equivalent
with X.
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Moreover, there are 5 topological types (i.e. Cl-equivalence classes) possible for X, according
to which of the following conditions is satisfied:

1. a>o
II. a>o
III. a>o
IV. a>o
V. a>o

(Observe that a>o, (b—c)<o,

(b—c)>o0
(b—c)>o0
(b—c)<o
(b—c)<o
(b—¢)<o

b>o0;
b<o;
b>o0 c¢>o;
b<o c¢>o;
b<o c¢<o.

b>o0, ¢<o cannot occur.)

The diagrams below show the topological types:

X1

1
(blown up)

1I

74
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Proof. — According to proposition (3.5) we first have to determine the zeros of
<X2, xlgi—z ——ngjc—l > = ax} + bxy x5 — cx, x5 = %, (axi + (b —c)x3).  {x,=o0} is clearly a line of

zeros, and hence a line, invariant under the flow of X, (from now on we call these lines
of zeros ‘“invariant lines’). As in the statement of proposition (3.8) we assume that
a>o0, and hence because of condition 1, a>o0; if (b—¢)>0 then x =o0 is the only
invariant line (cases I and II); if (/—¢)<o then we have also a pair of invariant lines

—b
x1=:i:A/€ Pt (cases III, IV and V).

d .o .
Because we have a>o0, we always have <X2, —x25;> positive on the posi-
1

x —_—

10x,
tive x;-axis; it changes sign at every invariant line because the invariant lines have all
multiplicity 1 (because of the conditions 1 and 2 in the proposition).

Finally, we have to determine the sign of:
a a 2 3 2
Sy, ) =( X (%4, %), xla_xl +x28_xz = ax; X, + bxy + cx; %,

along the invariant lines in order to determine whether the flow goes in or out along
these lines.

Along {x;=o0}, fequals f(o, x,)=>5+3, so along {x,=o0} the flow goes up, resp.
down, whenever 6>o0, resp. b<o (see cases I, III, resp. II, IV, V); b=o0 is excluded
by condition §. Now we assume (b—¢)<o and determine the value of f in points

—b
of the form x1=—|—A/C

a

Kyt

f( ? gy xz)z(a. c_b—l—b-{—c. c_b)xgzi.xg(ac—ab + ab+c2—be)=- . x3(a+c—b).

a a

[l

. . c—b
Because according to our assumptions, a>o, (¢—b)>o0, f ( / — Xy, xz) has the same
a

—b
sign as ¢.x,. So the flow is going up, resp. down, along x; =+ A/ ‘
a

.Xy, whenever

¢ is >0, resp. <o, as in the cases III, IV, resp. V. The corresponding statements

about the invariant line x;=— / c—b .x, follow from the fact that X, and hence X,,
is invariant under T,. ¢

From the above considerations it follows that, because of the conditions 1, 2, 3 and 4
in proposition (g.8) the assumptions in proposition (g.5) are satisfied. Our proposition
follows now directly from proposition (3.5) (and remark (3.6)).
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4. The homogeneous case with 2 symmetries in R2,

We consider now vector fields X on R? which are invariant under:
Ty (Ti(xy, xe)=(—21,%5)) and Ty (Ty(xy, x2) = (11, —x3))
and which have 1-jet zero in the origin; throughout this paragraph X will be assumed
to be at least Ct. We shall carry out, for these vector fields, a program analogous to
that of § 3. From the above assumptions it follows that the 2-jet of X is zero; its g-jet X;
can be written in the form:

0
2 2 2 2
Xy = x,(a13 %1 + 15%5) 7— + %o (@51 %] + ap25) —
0%y 0%,y

It will turn out that we have to distinguish between the following cases:
L (@91 — a11) > (agp — a15) >0;
II. (a3 —ay)>0>(a35—ay,);
III. 0> (ag—ay1) > (22 —a13) ;
IV.  (ay —ay) <(as—ay,) <o0;
V. (@91 —ay1) <0 <(agp —ay5) ;
VI, 0<(ay,—ay1) <(@2 —a15)-

In order to reduce the number of cases we actually have to investigate, we first
notice that if we replace X; by —Xj, then cases I, II, III are changed to the cases IV,
V and VI respectively and vice versa. If we interchange the x; and x, coordinates,
then case I is carried over to case III and case II is carried over to itself. So by changing,
if necessary, the sign of X, and Xj, and permuting, if necessary, x; and x,, we can always
come down to case I or case II; if we come in case II we can arrange, by permuting x,
and x, if necessary, that a;;>> ay,.

From the above it is clear that we only have to consider the cases:

L (agy —a11) > (@3 —ay5) >0 and

I, (a3 —0a11)>0> (a5, —y3), @13 as,.

Remark (3.9). — Replacing X by —X may change the C’-equivalence class of the
germ of X; this must, and will, be taken into account when we list all the C’-equivalence
classes of singularities of vector fields as considered in this paragraph (with generic 3-jet).
It is clear that permuting x; and x, does not change the C’-equivalence class of the
singularity.

Proposition (3.10). — Let X, X, and a;; be as above (such that X, belongs to case I or 11").
Then generically one of the following nine conditions 7s satisfied (in which A=ay,099—a15a4,):

Ia (ag —ay;) > (aga—ayp) >0 and  ayy, 4z >0;

Ib — and  a;;>0>ay;
I¢ — and  ay,3>0>a4y;
1d — and  0>ay, dg;
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IT"a (ay—ay)>0>(ae—ay3), 11> a0 and  ay;, ap>>0;

II' 5 — and  a;;>0>ay,, A>0;
Ir'e — and a11>o>a22,' A<o;
II'd — and  0>ayy, a4y, A>0;
II' e — and  0>ay;, ag9, A<o.

For any of these nine conditions there is an X satisfying that condition.

For any X, such that the corresponding X satisfies one of the above conditions, any Cl-vector
field Y, with 2-jet zero and 3-jet close enough to X, has a germ which is Cl-equivalent to the
germ of X.

Below it is indicated how the vector field X; (or rather ¢ its integral >’) looks if
one of the above nine conditions is satisfied (only the part in x,, ;>0 is indicated,
the rest follows by symmetry).

Proof. — First we determine the zeros of:

0 0
g=4;, x13_x2 '—xza; =x1x2((a21—an)xf +(a22—a12)x§).

In case I ((ay—ay;)> (G —ay,)>>0) there are only two lines of zeros, or invariant
lines, namely {x =o0} and {r,=o0}. In case II there are two more, namely:

{ (@3 — ayy) % = (ay,— a%)xg}

First we consider case I. — For x,, %,>0, g is positive, so the flow is ¢ turning to
the left > (figure 4). Now we determine the sign of:

0 0
= <X3, x1a; + x23—x2> =ay %1+ (e + azl)x%xg + ay%;

on the invariant lines: on {x, =0} this sign is positive, resp. negative, if ay, is positive,
resp. negative (cases I a, I ¢, resp. 15, 1d); on {x,=o0} this sign is positive, resp. negative,
if a,, is positive, resp. negative (cases I a, I 5, resp. I ¢, I d). This proves, using prop-
osition (g.5), that if X is so that X; satisfies one of the conditions I 4, ..., d, then every
Ct-vector field Y with 2-jet zero and 3-jet close to X; has a germ which is C’-equivalent
to the germ of X.

The case II'. — All our considerations will be restricted to the region x;, x,>o0.
The invariant lines we have are the x;-axis, the x,-axis and one in between, which we shall
denote by £. From the formula above for g and the fact that (@ —ay;)>0> (@95 —ay5)
it follows that g is positive between the x;-axis and ¢ and negative between ¢ and the
xy-axis (figure 4).

Now we determine the sign of f on the three invariant lines. Using the above
formula for f (see case I), we see that f has on the x;-axis the same sign as a4;; and on
the x,-axis the same sign as ay,; this agrees with figure 4. To determine the value of f
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) y ) %
Tc¢ oi 1d Z‘
Il a .J - Ir s ._%
X2
1l ¢ X1 11’ d k i 2
I’e e

Fic. 4
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on / we substitute 22=2A.(a,—ay) and xi=A.(ay—a;) in the formula for f and
obtain:

JO) = N(ayy (a4 — a30)? + (@45 + apy) (@45 — 39) (g — @4;) + g — a)%)
=2 A, ((ay — a3) — (2 —ayy)),

where A (as in the proposition) is (a;,a9— a12a5;). Because 3*>0, (a5, —a,5)<0 and
(a9, —ay;)>0, the sign of f on ¢ equals the sign of —A.

In case II' a, we have a;;>>0 and (ay;—ayy)>0, hence ay,>>a;,>>0, in the same
way we have a,,>>a5,>>0; from this it follows that in case I’ a, A= a,,a5,— a;3a5,<0.

This proves, according to proposition (3.5), that if X is such that Xj satisfies one
of the conditions II’ g, ..., ¢ then every C*vector field Y, with zero 2-jet and 3-jet close
to Xj, is C’-equivalent with X.

It is immediate that if X; belongs to one of the cases I, II’, then, generically,

one of the nine conditions I a, ..., II' ¢ is satisfied.
The fact that for each of the conditions I g, .. ., d and IT' a there is an Xj satisfying it,
is also very easy to check because the conditions are all linear; for the condition I’ b, ..., ¢

that fact is shown by the examples below:

an ayo s (7
’ I _
II' 5 I ; 4 I
I’ ¢ I 0 2 —1
II' d —1 o) o) —1
’ _ I _
II' ¢ I ; 4 1

This proves our proposition.

Remark (3.11). — If X, X, and X', X, are as in proposition (3.10) and if X,
resp. X, , satisfies condition I d, resp. I1’ d, then both X and X’ are local contractions,
i.e. for any point peR? close to the origin, }Lrg x(p, t)=o0, resp. tlLrg x(p, t)=o0.
From this it is clear that the germs of X and X’ are C’-equivalent. A same type of
remark holds for the types I a and II' a. Using this we can make a list of all different
topological types (C’-equivalence classes) of germs of vector fields X on R? which have
zero 2-jet and the g-jet X; of which is invariant under T, and T, and satisfies the generic
non-degeneracy condition.

This generic non-degeneracy condition is satisfied whenever X; or —JXj, if
necessary after interchanging x; and x,, satisfies one of the nine conditions I'a, ..., II'¢
in proposition (3.10).

In the following list of C’-types Xel 4 means that X,, if necessary after inter-
changing %, and x,, satisfies condition I &.
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Type Occurs for
1 Xela, Xell'a, —Xeld, —Xell'd
1I — Xel a, —Xell'a, @ Xeld, Xell'd
III Xel b, — Xelb
v Xelo, —Xele¢
\'% Xell’ b
VI —Xell’ b
VII Xell’ ¢
VIII —Xell' ¢
IX Xell’ e
X —Xell' e

As a matter of fact the last two types are C’-equivalent; we want to consider them,
however, as distinct types because there is no conjugacy ¢, commuting with T, and T,
which carries a germ of type IX over in a germ of type X.

The fact that all the other types are different is easily checked by comparing the
sets of points in R? which have as a- or «-limit the origin, for all the different types.

. . a
5. The singularity ¢ ¥ »,
2

In this paragraph we analyse vector fields X on R? which are at least C° and whose

. . 0 . -
I-jet equals the 1-jet of o According to proposition (2.2) we can choose our
X2

coordinates so that the 4-jet X, of X takes the form:

0 0 0
(1) X,= x15x' +(ay 4 + ay 1y + a,x3) 7 + (ba 4y + by a3 + byx3) Ee
2 1 2
From now on we shall assume that a,+0. We then may also assume that a,>o,
because the case a,<o can be reduced to the former by the coordinate transformation
(%1, %5) > (— %1, —x5). We shall prove the following:

Proposition (3.12). — Let X be a CP-vector field on R® as above (i.e. also with a,>>0).
0 0
Then the germ of X is Cl-equivalent to the germ of X ':xla —I—xggx— .
2 1
Progf. — Let X be as in proposition (g.12); we assume that X is already in the
form (1). We shall analyse X by a sequence of three successive blow ups, which are

illustrated in the following figure.
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B
—»/
—+ . blow up A
| T\.,/ , 4 —
B T
blow up B
blow up C
~— C
S

FiG. 5

We will calculate these blowing ups below, but want first to indicate how this
sequence of blowing ups is used to determine the topological type of X.

After the last blowing up, and * dividing by r ”’, we have a situation as in prop-
osition (3.5); hence, the topological type of C is fixed. The topological type of the
other singular point in 5 ¢) is also determined because the vector field in figure 5 ¢)
is invariant under (¥, %, r) = (—X;, —X,, —r) (coordinates as in I, § 1) because it
is obtained by the blowing up construction. So the topological type of the vector field
near S'x{o} in figure 5 ¢) is as in figure 6.

Jd (e ~_
N A

Fic. 6 Fic. 7

From this it then follows that the topological type of the vector field near B in
figure 5 ) must be as in figure 7. Using that the vector field in figure 5 4) is also
invariant under the involution (x;, X, r) - (—%;, —X,, —r) it is easy to see that the
topological type of the vector field along S'x{o} in figure 5.5) must be as follows:
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So in 5 a) we have:

Fic. g

The lines of points in figure 9, with «-, resp. w-limit the origin, are the images,
under the three successive blowing down maps, of the unstable, resp. stable manifolds s, ,
resp. Sy, in figure 5 d). 'The above considerations hold for any vector field X satisfying
the assumptions of proposition (8.12); from this it easily follows that any such vector

d

0
field is C’-equivalent with any other such vector field, and hence with X ’=xla— —l—x§a .
Xy 1

We now come to the calculation of the three blow ups.
We consider the functions:

0 0
&(xy, x2)=< X (g, %), xla;~—x2a—1>=xf—x2(a2x§+a3xg—|— .. .)+x1(b2x§+b3xg+ .

and:
0 0
Sxy, x2)=<X, xla—xl+x23—x'2>=x1x2—|—x1(a2x§+a3xg—|— .- -)+x2(b2x§+b3xg+ e )

On S'xR we choose coordinates 7, ¢ such that ®@(r, ¢)=(—rsin ¢, r cos ¢).
From § 1 it then follows that the vector field X;, on S'XR, obtained by blowing up

X is Xlzg(_"”in 9, 7 €08 ¢) 2 +f(—r sin g, rcos @) &
r aCP r or
It is easy to see that X,|S'x{o} has two singularities, namely B=(r=o0, ¢ =0)
3
and (r=o0, p==). We now determine the 3-jet [ X;]; of X, in B using sin <p=cp——% ...
2 .

and COS<p=I—3'—|—... and obtain:
2!

I 0 0
[Xil;= (cp2-a27——a372—~a473+1 ;azan_bz"P“‘bsrz‘P) 5; +(_7‘P—‘1272(P+b272+b373) P
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This terminates the first blow up; we now change the notation in the sense that we
substitute — x, for ¢ and x, for r, so that we get:

0
0%y

I
[Xls= (=1 +ayx + a3 + a5 —1 2 @y 23 2y~ by 0y Xy— by 20, X3)
0
+ (%2 2223 + by 3 + by 13) Fl
2
In order to blow up this singularity we determine the 4-jet of:
0 0
ga(%1, %2) =< X%, %9), xla_xz —x2%>
and the 3-jet of:
J1(x1, x9) = Xq(%1, %) xi-l—x—a— ;
1\ *2) — 1\*1s 72/ lax] 23x2’
they are:
81(%y, %p) = —ay25 + 241 %5 + 202,05 — ayx] + 26,2, 43 4 2%“2"%"2"‘“4"3
Ji(xys %) = a2y 2y — %3 — by a3 2y + (@ 1) %, 25 + by 3.

We take now coordinates 7, ¢ in S'X R such that ® maps (r, ¢) to (r cos ¢, 7 sin ¢);
after blowing up we then obtain (neglecting terms of order >2 in r):

] i 0 i P
X2=gl(r CcOS @, 7 sin @) 9 +f1(r cos @, 7 sin @) 0

2

r o9 r or’

X,|S'x{o} has two singularities, namely in C=(r=o0,9=0) and in (r=o, p=m).
We now calculate the 2-jet [X,], of X, in C and obtain:

0 d
[Xo]o = (—a,¢* + 2r9) 70 + (agro —1%) —.
© or

This concludes the second blow up; we now change our notation again in the sense
that we substitute x, for r and x, for ¢, so we get:

0 0
[ X5]o = (2%, %, — a5 %3) 3—)(72 A (— %+ ayx, %5) 3_xl .
To this singularity we apply the method of § 2:
0 0
&a(%15 %) ={ [Xs]s, x15x_2 *‘xzbz = Xy %y(3%; — 20, %y)

0 0
NACT x2)—_—< [Xo]as xra;l +xza—x2>=—xi+dgx§x2+ 2%, X5 — Ay 3.
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There are three invariant lines (lines of zeros of g;), namely {x =o}, {x,=o} and
{3%,=2a,x,} =1; the sign of g, is changing at each of these lines and is positive between
the x;-axis and 1. On the x;,-, resp. x,-axis, the sign of f, is the sign of —x,,
resp. —x, (using a,>>0). To determine the sign of f, on 1 we substitute (22,2, g2) in f,
and obtain f,(A) =»3(—84} + 1245 + 36a,—274,) = »*(443 + 94,); because a,>0, this has
the same sign as A. All this agrees with figure 5 and the statements about the blow
ups made there; so our proposition is proved.

IV. — INVARIANT MANIFOLDS

In § g and § 4 of the preceeding chapter we studied germs of vector fields ¢ with
symmetry >’ and it turned out that there were certain invariant curves (in the blown
up situation stable or unstable manifolds of hyperbolic singularities). Jets with symmetry
as in § g and § 4 occur as reductions of jets with certain rotations; the invariant curves,
found in chapter III, § g and 4 should correspond to certain invariant (singular) manifolds
in the non-reduced situation. It is the purpose of this chapter to show the actual existence
of such invariant (singular) manifolds. The methods we use here are rather close to
those of Hirsch and Pugh in [7].

1. The invariant manifold theorem.

We consider a torus, embedded in some manifold, with coordinate functions,
defined in a neighbourhood of that torus, %;, ..., %, P15 -+ ., Jps 2 (%1, ..., %, are all
defined modulo some constant ¢); {y;=...=y, =z=0} is the torus in question. All
our considerations will be restricted to the set on which these coordinates are defined.
Points will be denoted by (x, y, z), where x, y stand for x,, ..., x,, Tesp. Yy, - ., I+

=

[|v]] is defined to be .21| ;|- Vectors will be denoted by (X, Y, Z), where X, Y and Z
ji=

8 v 3 8 = = - n i
—, BY, and 25 [|X[, 19| or [|Z] means Z|X,|, Y|
1= )=

R
%, i=1 " 0y;

n
stand for X X
or |Z]. PO
Let ¢ be a diffcomorphism of a neighbourhood of the torus to a neighbourhood
of the torus, at least of class C™*!, such that the sets {y=0} and {z=o} are invariant

and such that if (o, i)’, 0) is a vector in some point (#, ¢, 2) then (}_Z’, ?', 2’) = ¢,(0, ?, 0)
satisfies:

(1) Y 1<(—Cy 2. || Y|
(2) XN+ Z]) <Gyl 211 Y ]
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and also such that if (:7(, o, Z) is a vector in (%, 0, 2) then (}2’, o, Z')=¢,(§, o, 2)
and (', 0, 2')=4¢,(¥, 0, 2) satisfy:

(3) |2 XA+ 27| 2 (1 +Co 2 (| 2] XL+ Z]1)

(4) (142G, | 2[")| 2| 2] 2| 2 (14 Cy | 2[) | 2].

C,, ..., G, above are all positive constants. In view of (3) we define a second
“mnorm ”: if (X,Y,Z) is a vector in (x,, 2), then [X,Z]=|z|.||X]||+||Z]|]. The
numbers &, £ and m are supposed to be positive integers. Now we suppose we also have
positive integers &’ and 4 such that &, &/, ¢, k and m satisfy:

(5) h>k—t

(6) E>E+h+1
(7) k>t

(8) m>k-4-R.

Our main purpose in this paragraph is to prove the following:

Theorem (4.x). — Assume the above situation. Let ¢ be a C™*-diffeomorphism (from
a neighbourhood of the torus to a neighbourhood of the torus) such that in each point of z=o0 the
m-jets of o and ¢ are the same. Then, for each positive constant A, there is an e, such that there
is a manifold Wc€,={(x, 2) ||| 2||<A.|z|¥, | 2|<e} of dimension n+1, which is semi-
invariant under @, i.e. @(W)D W, which contains the torus and which is, along the torus, tangent

to {y=o0}. The manifold W will be of the form {(x,, 2)||z|<e and y=f(x, z)} where
the function f is Lipschitz.

The theorem will follow from a sequence of lemmas. From now on we assume ¢
in theorem (4.1) to be fixed.

Lemma (4.2). — For each A>o0 there is an >0 such that if:
(%9, )e€.={(x,2, 2) ||| D||I<A.|2[F, | 2|<e} and (¥',), 2)=0(x,), 2),
then |2 |>|z| and ||y ||<A.|z[F.

Proof. — In this proof, as well as in the proofs of the following lemmas, we use
the following conventions:

D,, D,... are positive constants (each to be chosen so that the formula in which
it first occurs is right);

means: the inequality holds for ¢ sufficiently small and |z|<e;

IAZ o|A

means: we use formula (i) to obtain this inequality;

(%), (**) means: we explain below how to obtain this inequality.

Let (x,9, z) and (x', ', 2')=¢(x, 9, z) be as in the lemma, i.e. such that:
(9) I]1<A.| 2.
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Then we have:

(1)
151l < =Cy| )| 3|[+ Dy | 2P+ Dy [ 2"+ (%)
(9)
S (I——Cllzlk)'A'lzlkl+D3-|Z|2k'—l—D2[z|"‘+1
(6) 8) 1 , ,

and: @) ,
|2 = (1+GCy| 2[) | 2| =Cy| 2|*.[| 2 || =Dy l| » [[P—Ds | 2" ** (%%)

®
2 (1+Cy| z[)| 2| =Ds| 2|/ *¥ —Dy | 2 [ —Ds | 2" +*

(6)(8) 1 "
= (12l 2P 1212 21.

The inequalities (x) and (#%) were obtained by first replacing ¢ by “ its linear
part in (x, 0, 2) ”°, i.e. by a map ¢ which is affine in the %, y and z coordinates and which
hasin (x, 0, z) the same 1-jet as @; this gives, using (1), (2) and (4), ||’ ||<(1—Cy| 2|")||»||
and |2/|>(14+GC,|2[")|z|—Cy|z|*.||»||]- The terms D,.||»|[>? and D,.||»|]* count
for the difference between ¢ and ¢; the terms D,|z|™** and Dj| z|"**! count for the
difference between ¢ and ¢.

Lemma (4.3). — Let A be again as in lemma (4.2). There exists an €>0 such that

—>

if (X,Y,Z) is a vector in (%, 9, 2)eb, with ||Y||<A.|z]'.[X,Z] then:
X, Y, ZV=0.X,Y,Z) and (¥,y,7)=0(x, 2)

satisfy: o .
X', 212 [X, Z]
|2 >] 2| (see lemma (4.2))
and: Y [|<A.| 2P [X, Z],
and hence: Y | <A 2 P X, Z1.
Proof. — We assume:
(ro) IVII<A 2 X, Z)

and also (9), i.e. ||7||<A.|z[¥. We then have:
= 1) - - = -
YN < (=C 2 Y [ +DN I+ 12 AXN+ Y T+ Z1D (%)
(9) - , - - >
S (=Gl zMIY NI H+Do(l [+ T2 MUY T+ 12|78 [X, Z])

(8)(10)

< (1=Cy| 2[f). A | 2 [X, Z]+ Dy |2 (AL 2|27 [X, 2]

€

6

a|\Z

(1—~£Cl|z|") AP (X, Z)<AL 2P X, 7],

81
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and:

- —> (2)(3) - > -
X, 2] > (14Gy| 2K, Z1—Cal /|| ¥ | S
DIl + 1M AXN I HHNZI) (o)
(9) (10)

> (14Gy| 29 [X, Z]—Dy| 2| *H[X, Z]
—Dy(| 2[¥ + | 2[™) (| 2 P[X, Z1 4| 2| 1K, Z])
(8)

> ((14GCy| 2[) =Dy 2 +* =D, | 2| | 2|7 [X, Z]
(5) (6) I > = > =
> (1+503]z|")[X, Z21>[X, 7).

The inequalities (x) and (%*) were obtained by first using (de), o, , instead of
(dcﬁ)x, vz this gives, using (1), (2) and (3):
IRGISCER ARV
and: X', Z1>(14Cy| 2| [X, Z]—GCy| 2 || Y ||, for |z|<I.

-

Then we added terms of the form (const.).||y]||.(length of ()2, ?, )), resp.
const. | z|™. (length of (X, Y, Z)), counting for the difference between (dg),, , and
(d

(d®)s,4, 2> TSP (d9),,y,, and (d@),,,, .-

Lemma (4.4). — Let A be again as in lemma (4.2). For any B>o, there is an >0
such that if (o, Y, 0) is a vector in (x,y, 2)€¥€,, then ()—Z', Y',ZY=¢,(0, Y, 0) satisfies:

—>’ 1 -
1711< (=2l H) T

and: X+ 11ZI<B. | 2|~ Y]

Progf. — The lemma follows from the following computations (the inequalities (%)
and (**) below are obtained just as in the proof of lemma (4.3)):

1911 2 (=Gl e I+ Dyl N+ T (*)

APV M (ES NP

(6) I N

< (s—2a=H)Ti

UK HIZ ) S Gl NN+ DN+ ] (+3)
ESAPIAES NP ]

Q) .
< Bz H|Y).
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We now choose the B in lemma (4.4) so small that (1+2GC,)" A.B< iCl and

take 0<e<\1 so small that the conclusions of lemmas (4.2), (4.3) and (4.4) are valid.

Definition (4.5). — Let A and ¢ be as above. £ is the set of Cl-mappings
Sxy, .oy %, 2), defined for |z|<e, with values in (yq, ...,7,) such that:

L || A 2) | <Az and

2. If (X, Y, Z) is a vector, tangent to {(x,, 2)|| z|<e,y=f(x, 2)} in (%, flx, 2), 2),
then ||Y[|<A.|z|.[X, Z].

The metric p on & is defined by:

o furfo= sup B A=A D]

(z, 2) | 2 lk '

Z denotes the completion of & with respect to the metric p.

Remark (4.6). — It follows from the lemmas (4.2) and (4.3) that if fe%#, then
there is an f'e&# such that:

o({(%S(x, 2), 2)|| 2| <e}) n{| 2] <e}={(%.S/"(%, 2), 2) || 2| <e}-

This f' is of course unique; we define I' : #—>% to be the map which associates
to each f the f’ as above.

Remark (4.7). — For any two f,, f,€%, there is a point (¥, 2), | 2|<e, such that:

P(ﬂ,ﬁ)zllﬁ(x’ z)I;'I{;,(xs Z) ” ;

this follows from the fact that 2'>% (6) and hence:
— K
o WA D=fls DNl . 24l _

lz]~0 | z|* —lal>o | z[F

Lemma (4.8). — If fi,/;eF and o(f1,fo)+0, then o(T(f1), T(f2)) <e(/1,/2)-
Proof. — We take some point (¥, 0, 2), 0<|2|<e¢, and two elements f;, f,e6# and
consider the following five points:
(x:fl.(x’ Z), z)? (x>f2(xa Z)’ z)> 6(x1f1(x> z)’ z)=v(x1’rl(fl) (xl’ 2'1), zl),
?(% fo(%, 2), 2) “="" (%2, D(fo) (%2, 22), 2)  and  (xy, (o) (%1, 21), 21);
we assume that all these points are in %,, except perhaps ¢(x, fy(¥, 2), 2) (in which
case ““ =(xy, I'(f3)(xa, 25), 25) > does not make sense).
From lemma (4.4) it follows that:

[IT( ) (%1, 21) —T'(fe) (%25 22) HS(I-gCIZI") /(% 2)—falx, 2) |

and: |2y —sa ]| + | 21— 22 | <B.| 2| 2| il 2) =Sl 2) ]

(in case o(x, fo(x, 2), 2)¢%., I'(f3)(xs, 25) has to be replaced by * the y-coordinate  of
¢ (%, fo(%, 2), 2)).
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From (4) and definition (4.5) we have, using the above formulas:
(1+2C)" A.B< G and  [X, ZI<|IX(I+1Z]),
[| T(f2) (%25 20) —T(fa) (%1, 2) [|<A. ((142Cy| z[¥) | 2])".B.| 2| 7| fi(%, 2)—fal#, 2) ||

(5) 1
S;Cd z[*|| Al 2)—falx, 2) |-
So, using:

[IT(f2) (%15 21) =T (fo) (%1, 20) [| ST T( ) (%1, 20) =T (f) (%25 22) ||
+ 1 T(fe) (%25 22) —T'(f2) (x15 21) [l

we obtain:
[| D(f1) (%15 20) —T(f2) (%1, 21) IIS(I—iCd Zl")llfl(x, z2)—fa(%, 2)||-

Now we choose (x, z) so that (x;, z;) becomes a point where:

[ T(f2) (15 20) —T(Se) (%1, 20 [ _

|Z1|k

e(T(A)s T(f2)-

We then have, because |z |<|z|:
LA 2)—fale 2l
| z[* B _Ic k
1 2 1| 2]

This proves the lemma.

P(.fl’fz) _>_

2(L(f), T(f2)>e(L( A1), T(fa))-

Remark (4.9). — Because I' is a contraction with respect to p, it is continuous
in the topology defined by p and it has a unique continuous extension to & ; this extension
is also denoted by I

Lemma (4.10). — (F, p) is a compact metric space.

Proof. — Let fi,fs, ...€% be an infinite sequence. It is enough to show that,
for any 3>o, there is an infinite subsequence £, f,, ... such that for any j, 5, o(f;, f;)<8.
We fix such & and choose 3; such that 2.A.3¥<3.3%; then for any f,,f,e# and (x, 2)
with 0<|z|<3$,;, one has:

—_— k' k'
|[f1(x, 2) J:z(x, Z)HSQ.A.|kz| SQ.Ak.81<8.
I 2]| | 2| o

So we only have to find a subsequence {f,}7_, such that for any j, j* we have:

max ||f,1(x, Z) —ﬁj'(x’ z) “

k
Bl Il 2l

<9;

the existence of such a subsequence follows from Ascoli’s theorem [2].
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Lemma (4.11). — T has a unique fixed point in F.
Proof. — Let Kc & be the set of all w-limit points of T, i.e.:

K={feF |3f,eF, ty, tr, ... >+o0 with lim T4(f)=f}.

K is clearly invariant and contains all the fixed points of I'; because & is compact,

K, the closure of K, is non-empty and compact. Let po= sup (f;,fs); because K
o _ fi €K .
is compact there are f, f,eK with po(f;,fs)=¢go- From the definition of K it follows

that there are g, 2,eK with I'(Z)=f;; by the definition of g, we have (g, &)< po;
using lemma (4.8) this means that py=o0. Hence K is one point: the unique fixed point.

Remark (4.12). — All the elements of & are clearly Lipschitz functions. If f,
is the unique fixed point of I', then clearly W={(x, 5, 2) |y =/f(#, 2), | z| <<} is a semi-
invariant manifold, so theorem (4.1) is proved. In the following we give two extensions
of theorem (4.1).

Proposition (4.13). — Suppose for some §>0 we have: if (o, ?, 0) s a vector in (x, 9, 2)
and if ||p]],|2|<8, (X, Y',Z")=¢,(0,Y,0) and (¥',)', 2')=0(x,9, 2), then:

(1) Y I <(—Cy 2z Y],
(2') XN A1Z]) <Col 2| Y |,
4) (14+2C, | 2[) | 2| > |2 |>(14+Cy| 29| 2.

(Suppose furthermore that all the assumptions in theorem (4.1) are satisfied.)

Then there is a & >0, 3 <e such that the invariant manifold W in the conclusion of
theorem (4.1) is such that WnUg={qe{Us\{| 2] =0}| ¢ ™(g) €Uy for Yn>o}, where
Uy ={(%0, )| ||y —fola, 2)|| <8 and | 2| <d'} and f, is such that:

W={(%9, 2) |7 =fo( 2), | 2| <&},

Proof. — First of all we take &' so small that 84 ||fy(x, 2)|| <3 for all x and
| 2] <3" (below we give more conditions on the smallness of 8'). Let (x,y, z) be some
point of Uy and (#',)', 2')=¢(#,, 2). For & small enough we have, if |2z'|<¥,

| —Sfol#', z’)]]f_(1—~i01|z|").”_y—ﬁ,(x, z)||; this inequality follows by the same

methods as we used in the proofs of lemma (4.4) and lemma (4.8). From the above
inequality and (4’) one easily obtains, for 8 small enough:

(I~§c4|z'l")lz'lz|zlz(r—404lz'l’°>lz’l

I
and: Ly—fs z>nz(x+gcl E I")Ily’ s )l

8
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Now we choose two positive integers «; and «, such that for any |z'|<3§":

(r—4c41z'|'°)~x.(x+§cl|z'lk) >
it then follows that:
| 2| ||y —folx )| =] 2 |%. ]| ' —folx's 2')||

This expression can be interpreted as follows:

Define the function L :Uyg—R by L(x,», 2)=|z|“.||y—fo(x,0)]||*. Then if
peUy and ¢7(p) €Uy it follows that L(e~*(p))>L(p) (so Lis a sort of a weak Liapunov
function). Now assume that p¢WnU, and p¢{|z|=o0}, we have to show that there
is some positive 7 such that ¢7*(p)¢Us;. We assume that ¢ %(p)eU, for all positive :
and derive a contradiction. Let /,=L(p); from the assumptions it follows that ¢,>o.
Let 5°'=)'—fy(«', 2), where (&, ), 2)=0"%p); from our previous inequalities it
follows that 3°>7%° %°+0 because p¢WnU,. Let z,>0 besuch that L(x,y, 2)<¢,
whenever || y—fy(x, 2)||<¥ and |z|<z, (from the definition of L it is clear that such
a positive z, exists). From the fact that L(¢™*~%())>L(¢~*(p)) we conclude that each

| #|>2,. This implies that, for all positive 4, ||?i+1||_>_(1 —}—éClzf;)H}'i || and hence

17> (1 —{—101 z'g) [|5°||; however, this becomes, for large ¢, greater than &'. This is
5

the required contradiction and the proposition is proved.

Corollary (4.14). — Under the assumptions of proposition (4.13), the semi-invariant
manifold W is unique.

Proposition (4.15). — We make the same assumptions as in proposition (4.13) but instead
of ¢ and @ we assume we have vector fields X and X such that for some t,>>o, Dy, satisfies the
assumptions for ¢, such that {||y||=o0} and {|z|=0} are invariant under eack Dy ,, and such
that the m-jets of X and X are the same in each point of {|z|=0}. Then we obtain a semi-
invariant manifold W for X, i.e. such that, for all t>o, D5,(W)DW, as in theorem (4.1)
and proposition (4.13).

Proof. — We take ¢=95z, and ¢=%z,. Let W be an invariant manifold
for ¢ as in theorem (4.1) and let 3’ be as in the conclusion of proposition (4.13). Take
some &'>o0 such that for any te(o, ¢;), Px ,(Us:)CUs. It is clear that:

WUy, ={geUs\{| 2| =0} | 97%(g) €U for Vi>o}
={geUy\{| 2| =0} | ¢7%(g) €U, for Vi>o}.

From this it follows that:
Wn Uy, ={geUs\{| z| =0} | 25 ,(g) €Uy, for Vi<o}.

From this last formula it follows that WUy, is semi-invariant for X.
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2. Applications.

Let X be a vector field on R* which is at least C° and which has a 1-jet X, of
the form:

X, = 4 o A 4 4 ith A A
1= 1(}’1@)2 )’26}11)‘*‘ 2('}’3@}’4 )’4%) w1 a1yt apreF0
whenever w,eZ and 1<|oy |+ |2y |<9g.

Modulo changes of coordinates, X can be decomposed as X=X, + X, with X, G
and invariant under the rotations R} (see proposition (2.6)) and X, having its 8-jet
equal to zero.

We shall denote the vector fields on $*x R, obtained by blowing up X, X, and X,,
by X, f,, and X, . X, denotes the vector field on R? obtained by reducing X, (see defi-
nition (2.7)). It is clear that the 1-jet of X, is zero and that X, is invariant under
the involutions Ty, T, : R2>R? (T,(x;, %) =(—x, %); To(x;, %) =(x,, —,)); hence
also the 2-jet of X, is zero. We now also assume that the 3-jet of X, satisfies condition 11’ ¢
of proposition (3.10). As we have seen in chapter III, there are four lines invariant
under the flow of X,, namely the x;-axis, the x,-axis and two lines ¢, ¢, of the form

ti= {0 ) 5y =) with o) =0, (= () 010, (0] @)<0 and; =

X1 X1

Lemma (4.16). — In the above situation there is a (germ of a) G -diffeomorphism
A : R*>R?% which commutes with T, and T, and which maps ¢, and ¢y to straight lines.

Proof. — Because X, is invariant under T, and T,, T;({;)=¢, and T;(¢,)=/,.
Hence fy(x;)=—f1(%;) and fi(—x,)=—fi(x;) and there is a C*-function g:R—->R
such that g(x)=g(—=%,), g(0)>o, fi(x)==x,.2(x;) and fo(x;)=—x.g(x;). Now we
define A by A(xy, x5) = (%1, (g(%,)) 1. x,); this has, at least locally, the required properties.

In view of proposition (2.9) sub 3, we may assume that the invariant lines at X,
are all straight, say {x,=o}, {*;=o0} and {x,=+a.x,}. From this it follows that X,
has invariant varieties of the form {y,=y,=0}, {y;=y,=0} and {(Hi+33)=2(Hi+)h)},
the last of them being a cone on a 2-torus. We now want to answer the following basic
question: does X have invariant varieties ¢ close > to the above three invariant varieties
of X,?

The answer is yes. We will only prove this for the variety {()2+3)=d*()5+5)},
because all the complications are already available there. At the end of this paragraph
we shall give a criterium for the existence of invariant varieties in other cases, namely
in those cases where a reduced jet satisfies one of the conditions in proposition (3.8)
or (g.10).

We now want to show that the vector fields X, and X satisfy the assumptions
in proposition (4.15), with k=2, {=2, k=1, B'=5 and m=7. First we have to
define suitable coordinates on S®xR near the ¢ invariant torus . Consider coordinate
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functions 0,, 0,, y, zon S*xR, 6;is only defined mod 2=, such that the “ blowing down
map @ :S*xR—->R* takes the form:

(0, 05,9, 2)=
(2.cos(y+9,).cos 0y, z.cos(y+9,).sin 0;, z.sin(y+y,).cos 0,, z.sin(y+y,).sin 6,),
where y, is such that cos®y,=a?.sin?y,. (This is not yet the final coordinate system:

0,, 0, will be replaced by x,, x, with ¢.6,=x, (mod 2mc).) We can express X, in these
coordinates in a neighbourhood of the torus y=z=0 and we get:

~ 0
8= i+ g 2.5 9) g PS5 0) 2800 A g PO D

with g(0, 0)>0 and £(o, 0)<o. Hence the time one integral Pz, ;=¢ in a neigh-
bourhood of y=z=0 must be of the form:

9(01, 05,9, 2)=(0s + a0, +2 f1(2,9), B+ a+2. (%)), y+2.h(p, )9, 2+2.8(3, 7)),
with g(0, 0)>0 and k(o0, 0)<o. Replacing 6; by x, with ¢.0,=x; (mod ¢.2x) gives then:
P (%, Xy, 9, 2)= B _
(xy4c.ay+c. 2. f1(2,9), %+c.ay+c. 22 f5(2,9), y+2. k0, 2) ., 2+2.80, 2)).
We show first that for ¢ small enough (3) (see theorem (4.1)) is satisfied in a
neighbourhood of {y=z=o0} in { y—o} Let (Xi,Xz, o, Z) be a tangent vector of
{y=0} in (%, x5, 0, 2); let 0.(X,, X5, 0, Z)=(X}, X}, 0,Z') and let o(x,, %, 0, z) be
(%1, %3, 0, 2'). Then, for |z|<s, e small enough, there is a constant D, independent
of ¢, (%, %y, 0, 2) and (Xl,X2, o, Z) such that:
1K1 1K —e.D. | 2] | Z],
IRl = 11Xl —e.D.| 2] | 21l
Z'|| = (1+D.|zP) || Z]]
and: |2| > (1+D.|z )| z|.

Using this we obtain:

2 [ (X 1K D +11 271>
(1+D.[2[). | 2| (| Xy|| +]| Xe|| —2-¢.D.| 2| | Z||)+ (14D | 2P) || Z|| >
(t+D.|2P)(| 2] (1K || + [|Xe )+ | ZI)—2. (14 D. | z)e. D] 2 .|| Z]].

For ¢ small enough we have that:

2.(1—}—D.|z]z).c.D.|z|2<§D|z|2 whenever | z|<e;
from now on we assume that ¢ is so small that this inequality holds. We then obtain:
- —> =, I - > -
L2 |- (1 Xg ]+ 11X )+ 2 IIZ(I+;D-|Zlg)(lZI(I|X1|I+||X2||)+|IZII)

and hence condition (g) is satisfied.
The verification of the conditions (1’) (2’) and (4) for ¢ is trivial, using the above
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explicit formula for ¢. Itis also clear that k=2, =2, k=1, k'=5 and m=17 satisfy
the conditions (5), (6), (7) and (8). Using the results in chapter III it follows that
the 7-jets of X, and X are equal in each point of {|z|=o0} and that X, and X are C%
So all the assumptions in proposition (4.15) are satisfied, hence X has an invariant
manifold close to {y=o0} and X has a singular invariant manifold close to:

{2 =i+ n)}

Thus we have proved one case of the following proposition; the other cases can be proved
by the same method (in some cases X has to be replaced by —X).

Proposition (4.17). — Let X be a vector field on R* which is at least C° and whose 1-jet X,
s of the form:

X —» 0 0 0 tj h N
1=MN )’15)72—’)’2a + 2 )’35}:‘—)’45)‘); wt oM+ oA F0

whenever a,€Z and 1< | ey |+ |y | <9, and whose 3-jet is in normal form. Let X, be the reduced
g-jet of X and let Z be some C®-representative of X, on R?, invariant under Ty and T,. Let V4
be the vector field on S'X R obtained by blowing up Z and “ dividing by r* > (see chapter 111, § 2).

If (f,=0,%=1,7=0)eS'XR is a hyperbolic singularity of Z with one expanding and
one contracting eigenvalue, then X has an invariant manifold which is close to {y, =y, =o}.

If (x,=1, %=0,r=0)eS'XR s a hyperbolic singularity of Z with one expanding and
one contracting eigenvalue, then X has an invariant manifold which is close to {ps=y,=o}.

If (Fi=a, %=b,r=0)eS'XR, a, b+o, &+ =1, is a hyperbolic singularity of Z
with one expanding and one contracting eigenvalue, then X has an invariant variety which is close
o (B = ().

Modulo a few modifications (to be indicated below) the following proposition is
proved in the same way:

Proposition (4.18). — Let X be a vector field on R® which is at least C7 and whose 1-jet X,

B o, B N
the reduced 2-jet of X and let Z be some C®-representative of X, on R®, invariant under Ty. Let Z
be the vector field on S'XR obtained by blowing up Z and dividing by 1.

If (x,=o0, %=1, r=0)eS'XR is a hyperbolic fixed singularity of Z with one expanding
and one contracting eigenvalue, then X has an invariant line close to {y,=yp;=o0}.

If (%,=a, %=b,r=0)eS'XR, a%o0, @+b=1, is a hyperbolic singularity of Z
with one expanding and one coniracting eigenvalue, then X has a (singular) variety close to
(RO o) e g3).

In the proof of this last proposition one has to apply proposition (4.15) with
k=1, t=1, h=1, k'=4 and m=5. Also, in the application of proposition (4.15) to
the vector field X, obtained by blowing up X, on S?*XR, one has to restrict oneself to

0 0 -
is of the form Xl=)\( N ), A£o0, and whose 2-jet is in normal form. Let X, be
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S$2x [0, 0) or S2X(—oo, 0], because if in S*x[o0, ©) the flow is « going away from
$?x{o}” thenin S*X(—c0, 0] the flow is “ tending towards S*x{o}”. Also a zero-
dimensional torus has to be interpreted as one point.

V. — NON-STABILIZABLE JETS; PROOF OF THEOREM (1.19)

The non-stabilizable jets we shall construct, have a non-stability of the same sort
as in [18]; here we also show that they occur with codimension §.

1. A special singularity in R3,

0 0 0
In R® we take the vector field X=(x+x2—a3) Pkt P + e and
A %g

. . . . 0%y %o
investigate some of its properties.

Property (5.1). — X is invariant under Ty« and Tou; Ty(%q, %9, ¥3) =(— %y, %3, X3)
and Ty(xy, x5, x3) = (¥, — 5, ¥3) (the proof of this property is trivial).

Property (5.2). — Let X be the vector field on S?xXR obtained by blowing up X

~

and let X =; .X. Then the singularities of X|S*x{o} are (X;=o0, %=0, H3==1)

and (Elzo, 552:11\/-3-, Eazztl).
2 2
Proof. — As we have seen in chapter II the singularities of X |S$*x{o} correspond

(in the case where the coefficient functions of X are homogeneous polynomials of degree 2)
to invariant lines in R® or to lines where:

.. . 1( 0 0
(X, V;>=o0 for 1<i;j<g with I/'ij=g(x,-5;j——xj5;).

1,

By a short calculation we get:

(X, Vigd=2.%,.%,.%

(X, Vigd =~ (A + 4+

(X, Vo> = éxz(xf-l—xg—gxg).

The set of points where these functions are simultaneously zero is {x,=x,=0} and
{x,=0, 22 =343}. The set of points in S’ R which are mapped by ® on this set is:

_ — — . — — I — I .
{x,=0, ¥=0, Z3==1, rarbitrary}u{ ¥, =o, % =+-4/3, %=, rarbitrary ).
2 2

This proves property 2.
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Property (5.3). — All the singularities of X |[S®x{o} are hyperbolic; in
_ _ _ . _ I~ _ I
(¥=0, X3=0, Xx3=:£1) there are saddles, in (x1=o, 5n=+-V73, x3=+—) there are
2
. N _ I~ _ I
sinks and in [X; =o, Tp==2-1 3, ¥3=——| there are sources.
2 2

Proof. — First one should notice that X|{x,=o0}, resp. X|{x,=o0}, satisfies
condition II, resp. IV, of proposition (3.8). From this the statement about the points
(¥y=0, =0, x3==1) follows immediately. From the fact that X|{x,=o0} satisfies
condition IV in proposition (3.8), it follows that for X |{¥;=r=0} the points

_ _ I~ _ 1 _ _ I _ I .
(x1=o, x2=:l:;\/3, Xg= —2-), resp. (xlzo, x2=:i:;\/—, x3=—~;), are sinks, resp. sources.
The same fact for X |{r=o} instead of X |{X;=r=o0} follows from the fact that in

each point of {x;=o0}\{o}, A

0%y

(X, Viz>>o.

Property (5.4). — The only recurrent points of X |S*x{o} are the points in which
X is zero.

Proof. — Because of the symmetries we may restrict our attention to:
S*x{o}n{x;>0}n{x,>0}.

The boundary of this set is invariant under the flow of X and does not contain any
recurrent points of X other than the zeros of X. If $*x{o}n{x>o}n{x>0}=W
would contain any recurrent point, then, because X is nowhere zero there, it would have
to contain a closed integral curve y :S'-W or a closed embedded curve v’ :S'->W
which is everywhere transversal to X [13; proposition (7.1)]. From the existence of
a closed embedded curve as y or v’ it would follow that X is somewhere zero in W;
this is a contradiction and the property is proved.

Remark (5.5). — From the above properties it follows that:
X|$*x{o}n{x>0}n{x,>0}

must be topologically equivalent to the flow indicated below.

_ I B (%;=0, Xy,=0, X3=1)
(x1=0: X2=E'\/3, x8=;) o ~ »R »
_ | S 1 (¥3=0)
x=o0, xz=;\/3, By=— |9
(¥1=0, Xg=0, Xg=—1) ®
Fie. 10
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Remark (5.6). — Because X|{x,=o0}, resp. X|{x,=o0}, satisfies condition II,
resp. IV, in proposition (3.8), all the points on $?*x{o} where X is zero are hyperbolic
singularities of X (this time not restricted to S*x{o0}). In the figure below it is indicated
how the flow of X looks in {x,>0, x,>0} (compare also figure 3).

X2
{xs=—1/3%} ——{m=1/3%}
\/C/ s
X7
Fie. 11

%1, %3 and x3 are placed at the positive side of their axis.

Remark (5.7). — Let U be some bounded open neighbourhood of R? containing o.
Then the set of points peU such that L, y y(p) is the origin (see definition (1.4))
consists of two half open pieces of line:

{x;=0, x,= +'3 . x5, x>0} and {x,=o0, Xy=—"3 . %, x,<o}

and one open piece of {¥,=0}. An analogous statement holds for those points peU
with L, x y(p)=o0. The set of those points peU for which both L,  y(#) and L,, x v(#)
is the origin, is an open set of {r,=o0}, containing a non-empty neighbourhood of o
in the x;-axis.

Remark (5.8). — Given any bounded neighbourhood U of 0 in R?, there is a sequence
of points {#,};°; in Un{x,=0} converging to o and a sequence of (3-dimensional)
neighbourhoods {U;}, of these points, i.e. p;eU;, such that:

1. U;,cUn{x,+0}, U;nU;=@ for all ij.

2. For each ¢eU; there are positive real numbers ¢ and £ such that:

D2l (—17, +1D)CT,;
and such that for each ¢>tf, resp. ¢t<—#, either D(q,?) ¢;91U" or there is a
t'e(tt, 1), resp. t'e(t, —t;), with Dg(q, t')¢U.

3. For each ¢'eUn{x,=o0}, L, x y(¢') and L,, x y(¢’) are both the origin.
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The existence of sequences {#;};2; and {U;};2, as above follows easily from the
following considerations:

In the half-plane {x;=o0, x;,>>0} X is non-zero, except in the origin, and is pointing
in the direction of the positive x3-axis. Because of this, and the fact that the planes {x,=o0}
and {x,=o0} are invariant under the flow of X, an integral curve, starting in a point
of {#;=o0, x,>0, 4} 4 x>0}, will never come back to the half-plane {x;=o, x,>0}. If
we now choose the points p; on the positive #;-axis and the sets U; as small flow-boxes,
it is clear that the above three conditions will be satisfied. The role played by U is
completely inessential, but introducing the U here makes the following remark easier
to formulate.

Remark (5.9). — All the properties and remarks concerning X, stated in this
paragraph, also hold for any C®-vector field X’ which is invariant under Ty, and T,.,
the 1-jet of which is zero in the origin and the 2-jet of which is close to the 2-jet of X;
only the following modifications must be made:

a) The points (:71=0, a?zzi%\/ §, a?azié) in property 2 and further may be

slightly different for X', but they will still be in x; =o.

b) Instead of the lines {x, =o, Xy =2V §x3} other lines, C!-close to them, and
also lying in {x; =0}, will be invariant under the flow of X’ (see also chapter II).

¢) The neighbourhood U in remark (5.7) and remark (5.8) must be chosen
sufficiently small (depending on X").

2. The proof of theorem (r1.19).

Proposition (5.10). — Let Y be a C®-vector field on R® which has a 1-jet Y, of the form
Yi=Nn ( yli — 9 5%) 42y ( ysai — 94 5;—3) with Ay, Ny independent over the rationals. Let X,
be the 2-jet obtained by reducing the 2-jet of Y (with respect to some coordinates in which Y s in
normal form). Let X, be so close to the 2-jet of X in § 1 that for any representative X' of X,,
which is invariant under Ty« and Ty, all the properties and remarks, in § 1, are valid.

Then there are two C®-vector fields Y' and Y'' on R, both having the same infinite-jet as Y,
such that their singularities in o are not weakly-C -equivalent.

Proof. — Let the oo-jet of Y be in normal form with respect to the coor-
dinates y,, ..., ; i.e. [Y], is invariant under the rotations R (see proposition (2.6)),
i=1,2, Oefo,2m). We choose the vector field Y’ so that it is invariant under these
same rotations R; let X’ be the vector field on R® obtained by reducing Y’ (this goes
in the same way as reducing a germ, see definition (2.7)). Following remarks (5.7),
(5.8) and (5.9) we can choose, for any sufficiently small neighbourhood U of 0eR3,
a sequence of points {$,}> ; in U converging to o and neighbourhoods {U;}° , of these
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points as in remark (5.8). We want to obtain something analogous for the vector
field Y'.
First we observe that the ¢ map ”:

F(gys -0 =(E VI8, £VIE+IE, )

maps integral curves of Y’ to integral curves of X’ (and hence also preserves a- and
w-limits). We take U’=¥~!(U), p; is chosen so that W(p;)=p; and Uj; is a small
flow-box for the flow Y’, contained in ¥~*(U,).

The vector field Y’ will be obtained by changing Y’ in each of the sets U;; this
change, to be described below, can be made C® and arbitrarily C*-small for any % so
the total change can be made so that Y’ is still G® (and hence will have the same co-jet
as Y’ and Y).

The fact that Uj is a flow-box means that there is an open (bounded) 4-dimensional
submanifold W;, containing p; and transversal to Y’, and positive numbers ¢ and ¢
such that U;=2,(W,, (—¢, +¢)). For each, sufficiently small, vector field Z
with support contained in Uj, there is a unique map P, : W,—W, such that for each
weW,;, Dy(w, —¢7) and Dy (P,(w), +¢') are on the same integral curve of
Y'4+Z (in Uj); clearly Py=id. We now take Z so that P,(W;n{y;=y,=0}) and
W,;n{y;=y,=0} have some isolated points of intersection (possible because dim (W;)=4
and dim (W;n{y,=y,=o0})=2); we then take Y"|U;=(Y'+2)|U,.

We now investigate what the difference is between Y’ and Y. For Y’ we have:
if ¢eUj, then 9y.(g,t) leaves U for both positive and negative time if ¢¢{y;=y,=o}
and 92y.(q,t) stays in U and tends to the origin for both ¢{—+4o0 and ¢—-—o if
ge{ys=y,=0}; this follows from the properties of {U;};2, in remark (5.8) and the
construction of {U;};®;. For Y” we see that the set of points ¢ in U; with:

La,Y",U’(q) = Lw,Y”,U'(q) =0

contains isolated lines (because of remark (5.8) sub 2, the changes in the different U;’s
do not interfere). Hence we have:

For any small enough bounded neighbourhood U” of o in R® the set of points
geU” with L,y y(¢9)=L, y y-(¢)=0 is an open 3-manifold; the set of points geU"”
with L, g ¢y (¢) =Ly y(g)=0 contains locally isolated (1-dimensional) lines.
From this it follows that the germs of Y’ and Y"’ are not weakly-C’-equivalent.

The proof of theorem (1.19). — Let W, cCJ5 be the set of 2-jets of those vector

fields X on R® for which the matrix (%) has eigenvalues o, £A;7 and )¢ with
oy + oy F0 whenever 1< oy | 4| og| _<_; W, is clearly an open codimension g sub-
manifold of J5. According to proposition (2.5) any element of W, can be transformed
(by a diffeomorphism) into normal form. We take W,cW, to be the subset of those
«eW, whose 2-jet is in normal form and whose reduced 2-jet «’ (on R®) is so close to
the 2-jet of X in § 1 that for any representative X’ of a’ which is invariant under T,.
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and T, all properties and remarks in § 1 are valid. It is clear that the set W,c]J3,
consisting of jets which can, by a diffeomorphism, be transformed into W,, is a subset
of W, and contains an open subset of W;. We choose W to be an open subset of Wy,
contained in W5. The residual subset PcWj is the set consisting of those «eW; for
which the eigenvalues of the “ linear part ”’, 0, £ 7, £ 7,1, satisfy oyA;+asry#+ 0 whenever
oy, 0g€Z and 1<|ay|+|ay]. It should be remarked that P consists of jets, all satisfying
the conditions imposed upon the 2-jet of Y in proposition (5.10). From this proposition
it now follows that if «eP and o«’€J;, £>2, issuch that m,(«')=«, then o’ has two
representatives whose germs are not weakly-C’-equivalent (taking a Z-jet instead of
an oo-jet does not change the situation), and the proof of proposition (5.10) shows that
it has two representatives satisfying the condition in the conclusion of theorem (r.19).
This proves the theorem.

VI. — THE PROOF OF THEOREMS (1.15) AND (1.16)

1. The proof of theorem (1.15).

Case 1: the subsets of W;. — Every germ in W} can be represented by a vector field
of the form:

0 0
X= azxza—x + asxsa - higher order terms;
a, and @3 are determined already by the 3-jet. We define V, ,, resp. V, j, to be the
subset of those germs « in W for which w,(x)=o0, resp. m;(x)=0; V,, and V| 4 are

clearly closed (in Wi=V, ;) and (semi-)algebraic and have the right codimension.
Let now «, «’ be arbitrary germs‘in V,; ;\V; ,. Then representatives X, X’ of «, o’

0 0
will be of the form X=x2f(x)a—x and X'= 2.f’(x)5x- with f(o) and f’(0) non-zero.

We now prove that if f(o) and f’(o) have the same sign, then the germs « and «’ are
Cl-equivalent. By continuity of f and f’ there is an €>o0 such that |f(x)[, | f'(x)|>0

whenever |x|<e. Then both X and X', restricted to U={xeR| [x]< is}, have only
three different orbits, namely: 2

01={xeR]—§s<x<o}, 02={o} and 03=[xeR|0<x<§s}.

So the identity on U maps integral curves of X to integral curves of X’; because f{0)
and f’(0) have the same sign the X- and X'-orbits have the same sense. Also the germs

0 0
of the vector fields xza and —-—ngc are C’-equivalent (because if ¢ : R—R is defined
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0 0
by ¢(x)=—=x, then <p,(x2a—x)=—x25;). Hence it follows that any two germs

, «'€Vy \V; , are C™-equivalent and hence any «eV; \V, ; is V, ;-(weakly-)C'-stable.
For a, «’ two germs in V, ,\V, 3 we can proceed in the same way: let X, X’ be

representatives, X=x%. f(x)% and X'=4.f ’(x)ai with f(0), f'(0) non-zero. As above,
x
if f(o) and f’(0) have the same sign, then « and «’ are C’-equivalent. On the other
0 0
hand, xaa and —x"’a— are not (weakly-)C’-equivalent, the first being a source and
x

the second being a sink. If, however, « and «’ are close enough they will be in the
same C’-equivalence class; hence any «eV, ,\V; g is V; ,-(weakly-)C-stable.

The sets V, 1, V, », V; 3 were defined in terms of 3-jets and the proof works also
for CG-germs, hence V,,, V;, and V;; may be considered as subvarieties in &"?
(C3-germs on RY).

Case 2: the subsets of W2. — We first observe that if « is a germ, belonging to W3,
then we can bring its 5-jet in normal form by a coordinate transformation. Such a
5-jet in normal form is of the following type (see proposition (2.3)):

Xo 0%

(7\+a1(x1—|—x2)—|—a2(x2—l—x2)2) (x1—a“_x2 3)

(b)) (ai +xzi), ro.
%y 0%,
From now on we shall use the following notation: if «eW3 and its 5-jet is in normal
form, then the coefficients in the above expression, which are determined by «, are
denoted by A(«), 4(«), b;(x). Note that for every «eW3, with 5-jet in normal form,
AMa) Fo0.

We define V2 , to be the set of those germs «eW: whose 5-jet is in normal form
and for which &,(«)=o0; we define V2 5 to be the set of those germs «€W2 whose 5-jet
is in normal form and for which &,(«)=>5,(«)=o0. The sets V,;, i=2,3, are now
defined by:

V,;={xeW|3p: R®>R® such that ¢,(x)eV, }.

Using the Seidenberg-Tarski theorem (1.18) asin § 1 it easily follows that V, ;is a closed
semi-algebraic subset of W3 with the right codimension for i=1,2,3 (V,;=Wj).
To show that _any ocEV2 AVsir1, is V, ;-weakly-Cl-stable, it is clearly enough
to show this using V2 i V2 ;41 instead of V,; and V, ;. ;. Let now «, a’€V, \V, 5;
if «’ is in a small neighbourhood of «, then b,(«) and &,(«’) will have the same sign and
hence « and «’ are both sinks (if &,(«), b,(«’)<0) or both sources (if 5,(«), by(a’)>0).
Hence « and o are (weakly-)C’-equivalent. A similar argument works when:

’
o, o GVz, 2\V2, 3.
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Finally, the sets V, ; are defined in terms of 5-jets, and for the proof it is enough
to assume that all germs are C°,so V, ;, V, , and V, ; may be considered as submanifolds

of @%5,

2. The proof of theorem (1.16).

Case 1: the subsets of W3. — We define V, , to be the set of those «aeW} for which
there is no diffeomorphism ¢ with the property that the 2-jet of ¢,(«) is of the form
(<p,(a))2=x1—a—-+a2x§~a— —{—1123\72i with a,#0. By the same arguments as before, V, ,

0%y 0%y 0%, ’
is a closed semi-algebraic subset of W3; by proposition (2.2), V; 5 has codimension 1
in Wi and by proposition (3.12), every «€Vy,\Vy, is V, ,-(weakly-)C’-stable
(V3 ,=W3). The set V,; is defined in terms of the g-jet, but in the proof of prop-
osition (3.12) we need the vector field to be C°. Hence V; ,, V, ; may be considered
as subsets of &>°.

Case 2: the subsets of W;. — We define the subset V, ; as follows: «€V, ; if the
reduction of the 2-jet of « (with respect to any system of coordinates which brings the
2-jet of « in normal form) does not satisfy the assumptions in proposition (3.8). As
in case 1 it is clear that V,; is a closed semi-algebraic subset of W;=V,, with
codimension I.

The only non-trivial thing to prove is that each «eV,,\V,, is V, ,-weakly-
C’-stable. To prove this it is enough to show that if «, a’€V, ,, if the 2-jets of both «
and o' are in normal form and if the reduced 2-jets «,, «, satisfy both the same of the
conditions I, II, III, IV and V in proposition (3.8), then « and «' are weakly-
Cl-equivalent. To prove this last statement we have to distinguish between the five cases.

Case 2, I (a,, a, satisfy condition 1 in proposition (3.8)).

Let X and X’ be representatives of « and «’. By propositions (3.8) and (4.8)
there are invariant manifolds (lines) ¢ and ¢’ for X and X' along which the flow is
contracting at one side and expanding at the other side. Using the same reasoning
as in the proof of proposition (4.13) it follows that for sufficiently small neighbourhoods U
of 0 in R%, all points geU with L, x 4(¢) or L, x y(¢) non-zero are on /nU; a similar
statement holds for X’ and #’. Hence a weak-C’-equivalence between X and X' only
has to map orbits of X to orbits of X’ as far as they are in /, resp. #’. This is easy to
construct.

Case 2, II. — Let X and X’ be again representatives of « and «’. Let «, be the
reduced 2-jet of X and let X, be the vector field on R? representing «, and having, as
coefficient functions, polynomials of degree 2.

97
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In R? we want to make two subsets Q,; and Q, such that:

(1) 0Q; is a smooth manifold and T,(Q;)=Q, (X is also invariant under T,.);

(i) int(Q,) nint(Qy)—0;

(iii) int(Q,u Q4303

(iv) in each point ¢eQ;, the component of X, (g) normal to 9Q; has
length>C. (p(g, 0))? for some positive constant C; p(g, 0) denotes the distance from ¢
to the origin; X, points at 9Q) , to the inside of QQ, and at 9Q , to the outside of Q ,.

The following figure makes clear that such Q, and Q, exist:

A

N

Q,

/4

Fic. 12

We define ¢.Q,; to be the set of points (¢.x,, £.x,) with (x;, %,)eQ;. Now we
consider the map @ : R®¥—>R? defined by ®(,, %, %) =(V 3 +%,9); modulo terms
of order>3, ® maps X equivariantly to X,. Hence, for ¢ small enough, say ¢<¢,,
£.Q,=®"1(¢.Q,) has the following properties:

(') 8(¢.Q,) is smooth;

(") int(¢.Q,) nint(¢.Q,)=0;

(iii') int(¢.Q,ut.Q,)s0;

(iv') in each point qed(¢.Q,), the component of X(¢), normal to 2(¢.Q,) has

length > é C.(e(g, 0))? for the same positive constant as above in (iv); X points at d(¢. Q)

to the inside of t.Ql and at 2(¢.Q,) to the outside of £.Q,.
Let ¢.Q, t<#, be a family of subsets of R?® having the same properties with
respect to X’'. Take a #,<t;# and a homeomorphism:

¢t (8(t- Q) v At Q) — (3t Q) v Aty Q) 5
we may, and do, assume that such a homeomorphism exists. It is now easy to see that
there is a unique extension & : (£.Q,ut.Q,) > (¢.Q,)u(¢.Q,) of ¢ which maps
integral curves of X, parameter preserving, to integral curves of X’. ¢ hence realizes
a Q-equivalence between « and o'

Case 2, IIl. — Let X and X’ be again representatives of « and «’. By prop-
osition (4.18) X has an invariant variety W close to {()}+5)=a.yi} for some a>o.
From chapter IV, § 1 it follows that for r small S,n'W is Lipschitz close to:

S, 0 {0+ =a0it S, ={0nomm) i +0i+oh =17
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Hence, for 7 small enough, S,\W consists of three components, one containing (0, 0, —r)
(the closure of this component will be called R, _) and homeomorphic with an open
disc, one containing S,n{y;=o0} homeomorphic to S'Xx (o, 1), and one containing
(0, 0, +7) (the closure of this component will be called R, ,) homeomorphic with an
open disc. Again for r small enough X will be transversal to S, in all points of R, ,
and R, _, pointing inside S, in the points of R, _ and pointing outside S, in the points
of R, .. Also for any ¢eS\(R, ;UR, _), neither the positive nor the negative
X-orbit through g stays for all time in D,={(,, 55, 3s) | )2 +5+72<r} (this last statement
is proved by the methods used in the proof of proposition (4.13)).

For X’ we take the analogous sets S,., R, . and R}, _. We now take homeo-
morphisms ¢, and ¢_, ¢, :R, ., >R, . and extend them to a homeomorphism
¢ : D,—D, insuch a way that for any geR, resp. geR_, the negative, resp. positive,
X integral curve through ¢ is mapped, parameter preserving, to the corresponding X’
integral curve through ¢, (¢). Such an extension realizes a weak-C’-equivalence
between « and «’.

Cases 2, IV and V. — These cases can be handled by the same methods as were
used in the previous three cases.

Finally, the subsets V, , and V, ; may be considered as subsets of *7 because in all
our arguments we used only differentiability up to order 7 (see also proposition (4.18)).

Case 3: the subsets of Wy. — This is completely analogous to case 2, but based this
time on propositions (3.10) and (4.17); the sets V; , and V, ; may be considered as
subsets of ¥%° (see proposition (4.17)); V; , is defined by:

If «xeVy,, then a¢Vy ; if and only if:

a) the eigenvalues +2y¢, 2yt satisfy:

nyA 1A+ 0

whenever neZ and 1<|n|4|ny|<9;
b) a or —a has a reduced 3-jet which satisfies one of the conditions Iaq, ..., d,
II' a, ..., e in proposition (3.10).
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