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SOME ARITHMETICAL RESULTS
ON SEMI-SIMPLE LIE ALGEBRAS

T. A. SPRINGER

Introduction.

The present paper had its origin in an attempt to prove the existence of regular
unipotent elements in a semi-simple linear algebraic group G over an algebraically
closed field £ (of arbitrary characteristic ). The attempt was not completely successful,
it turned out to give results only under some (rather mild) restrictions on p. Our method,
which is given in § 4 of this paper, makes an essential use of the explicit formulas for
the structure of the unipotent part U of a Borel subgroup B of G, which are due to
Chevalley ([9]). The application of these formulas to our problem leads one to inves-
tigate an arithmetical problem about semi-simple Lie algebras. This is the following
problem. Let g be a Lie algebra over the ring of integers Z, associated with a complex

semi-simple Lie algebra. Let {¢} be the set of « root vectors ” of g, let n=2e,,
8

where the summation is over a set of simple roots. Determine the elementary divisors
of the endomorphism ad(a) of g.

This arithmetical problem is dealt with in § 2 of the paper (after some introductory
material in § o and § 1). The results for the case that the root system of g is simple,
are given in (2.6). Their proofs rely heavily on the explicit knowledge of the simple
root systems. We need, for example, for the exceptional simple types E;, E,, Eg, F,,
tables giving the positive roots when expressed in the simple ones (these tables are given
in an appendix). We also need some properties of the integral structure constants N,
of a semi-simple Lie algebra. From (2.6) we derive various characterizations of the
“ bad ” primes for g, i.e. (in the simple case) those which divide the coefficients of the
highest root of g. The results are given in (2.11). It would be interesting to have
a priori proofs of these characterizations, the proofs of the present paper are by ¢ checking
cases ’. In § g we make some remarks about the torsion of compact, semi-simple, simply
connected Lie groups. The results are obtained by comparing those of § 2 with results
which are proved in topology.

§ 4 contains results about regular unipotent elements in semi-simple algebraic
groups over algebraically closed ground fields. Their existence has been proved
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116 T.A. SPRINGER

meanwhile by Steinberg (in [17]), without restrictions on p, by a different method.
Our method leads to some further results about the structure of the centralizer of a
regular unipotent element (see (4.11) and (4.12)).

Finally in § 5, the discussion of § 4 is partly carried over to the corresponding
problem for the Lie algebra of a semi-simple algebraic group.

0. Preliminaries.

(0.x) Let E and F be two free abelian groups of finite rank; let ¢ be a homo- -
morphism of E into F. We define, as usual, the rank of ¢ to be the rank of #(E). We
call elementary divisors of t the elementary divisors of the module F/¢(E) ([7], Chap. VII,
§ 4, n°® 7). These are the prime powers which occur as orders of direct summands in
the decomposition of the torsion-group Tors(F/t(E)) as a direct sum of indecomposable
groups. An elementary divisor p" has a certain multiplicity, which is the number of
indecomposable summands of order p".

We say that ¢ has no elementary divisors if F[t(E) is torsion free (in particular, if ¢
is surjective).

Choosing bases in E and F, we can describe ¢ by an integral matrix M. Then the
elementary divisors of M are by definition those of ¢. It is known that the elementary
divisors of the transposed matrix ‘M and their multiplicities are the same as those of M.

(0.2) With the same notation, let E; be a submodule of E. We call E; primitive
if E/E, is torsion free or, equivalently, if E; is a direct summand. E, being primitive,
let ¢, be the homomorphism E/E; —F/¢(E;) induced by ¢.

We then have the following simple lemma, the proof of which is left to the reader.

(0.3) Lemma. — If t(E,) s primitive in ¥, then the elementary divisors of t and their
multiplicities are the same as those of t,.

I. Results about semi-simple Lie algebras.

In this section we recall a number of results about semi-simple Lie algebras and
their root systems, which we have to use. References are [9], [14] (exposés 14, 19).

(x.x) We start with a o0t system R in an [l-dimensional vector space V over R,
with an Euclidean metric (given by a symmetric bilinear form (x, »)). This is a finite
set of nonzero vectors, called roots, with the following properties:

a) R contains a basis of V

b) if reR, then —reR, no other multiples of r lie in R ;

c) if reR, then T, (R)=R, where T, is the reflection in V defined by

Tr(x):x_Q(r, r)—l(x, T)T;
d) for r,seR, ¢,=2(r,7)"1(r,s) is an integer.
/=dim V is called the rank of R. The root system R is called simple if it cannot
be decomposed into two mutually orthogonal subsets. The simple root systems R can
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SOME ARITHMETICAL RESULTS ON SEMI-SIMPLE LIE ALGEBRAS 117

be classified. The classification gives the simple types A, (/>1), B, (I>2), G, ({>3),
D, (I>4), E;, E,, E;, F,, G,. We do not enter into the classification here; in n° 2 we
shall have to use extensively the explicit description of the simple root systems.

(r.2) In a simple system R one defines the length of a root r as the ratio
(r, 1) (r, 7o) "%, where 7y is a fixed root in R such that (r,, r,) is smallest. The length
of a root is 1 in the simple types A;, D;, E;, E;, Eg, 1 or 2 in the types B;, G, F;, 1 or g
in the type G,. If all roots have length 1, then for 745 the integers ¢,, are 0o or +1.

(x.3) There exist sets of simple roots S in R. These are subsets S of R consisting
of [ roots, whose characteristic property is the following one: any reR is a linear
combination

r= Ens
s€8 879

with integral coefficients n,, all having the same sign. A(r) = g‘s”s is then called the

height of r. The root r is called positive if h(r)>o0, negative if k(r)<o (all this depends
on S). If S and S’ are two sets of simple roots, then there exists a unique element w
of the Weyl group W of R, the group generated by the reflections T, of (1.1) ¢), such
that S'=w(S). The Weyl group W is also the group generated by the T, (seS).

Let us recall too that, if R is simple, there is exactly one root r with maximal height;
we call it the highest root.

(x.4) Let T be the lattice in V spanned by the vectors 2(r, r)~!r (reR). Let I
be the lattice in V formed by the xeV such that

(x, r)eZ for all reR.

By (1.1) d) we have IVDT. The quotient I'/T' is a finite abelian group, the funda-
mental group of R. It is isomorphic to Z/(I+1)Z for type A,;, to Z/2Z for types B,,
C, and E,, to (Z/2Z)? for type D, (/ even), to Z/4Z for type D, (! odd), to Z/3Z
for type Eg, and is reduced to the identity in the other cases of a simple root system.
(x.5) Take any lattice A in V such that I'CACI" (hence (x,r) takes integral
values if xeA).
We now define a Lie algebra g over Z (*). Put

g=A+ X Ze,
reER

where the Lie algebra product is as follows:

[h3 er] = (7’, h)e, (flEA),
[e,, e—r] = Q(Ta r)—lri
[eT’ es] :Nrser+s (r’ ‘YER’ r+s:'=0)’

[k k] =o (h, i €A).

(1)

(*) The Lie algebra g over Z which we define here is somewhat more general than that discussed in [9], p. 32
where only the case A=T" is considered. We also have identified here V with its dual, by means of the inner
product.
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118 T.A. SPRINGER

Here the N,, are certain integers, o if r+s¢R. They are discussed in Chevalley’s
fundamental paper [g]. Below we shall review the results which we shall need. We
call the N,, the structure constants of g.

(x.6) Some comments on the structure constants must be made. In the first
place, in order for (1) to define a Lie algebra, Jacobi’s identity must hold. This gives
that the structure constants have to satisfy the following relations

Nrs = _Nsn
(2) N-—r,sNr,—r+s+Ner—r,r+s=crs’
NrsNr+ st + Nsth+ t,r +Nert+r,s =0

(it being understood here that N,,=o0 if r, s or r+s is not a root).

That complex structure constants N,, exist, is a nontrivial classical result, due
to E. Cartan, proved usually by “ checking cases ”. In Cartan’s thesis ([8], Chap. V)
one already finds explicit integral solutions of (2). More detailed results are given in [g].
We collect those which we need in lemmas.

(x.%7) Lemma. — Suppose r,s,r+seR. The 1€Z such that s+ireR form a closed
interval [—p, q] in Z with p, ¢>o.

a) For any solution of (2) we have N,N_, _ =—(p+1)%

b) There exists a solution of (2) such that for all r,s,r+seR we have N,,==x(p+ 1),
where p is the integer defined above;

c) If (N,,) and (N,,) are two solutions of (2) satisfying b), then there exists a function
e:R—>{1, —1} with e(r)=c(—r) such that N;,=¢e(r)e(s)e(r+s)N,,.

For the proofs of these statements see [9], p. 22-23. In the next lemma (N,,)
is any solution of (2).

(x.8) Lemma. — Suppose that r,s,r+seR.

a) N_,,, (N_,,..)"" is a negative rational number;

b) If +r, +s, +(r+s) are the only linear combinations of r and s which are roots,
then N_,,, ., =—N_, .,

With the notations of (1.7) Jacobi’s identity implies

NrsN—r,r+s:q<p+ I)

(see [6], p. 22). A similar formula is true with 7 and s interchanged. Since N,,=—N,,,
a) follows. Under the hypothesis of 4) the right hand sides in these relations are 1, which
proves the assertion of &).

(x.9) Lemma. — Suppose that all roots have the same length. Assume that a set S of
simple roots has been fixed. Then there exist structure constants N, such that N,,=o0 or 1
if s is simple and h(r)>2 (1).

Suppose that the following assertion has been proved: (*) there exist structure
constants such that N,,=o or 1 if 5 is simple and A(r)>¢+ 1.

(}) I owe this lemma to H. de Vries. It replaces a more complicated lemma and it led to some simplifications
in the discussion of (2.9).
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SOME ARITHMETICAL RESULTS ON SEMI-SIMPLE LIE ALGEBRAS 119

We shall show below that if 722, (*) holds too with i+ 1 replaced byi. Since (*)
is obviously true for large ¢, (1.9) follows.

Since all roots have the same length, we may assume that (r,7)=2 for all reR.
It is known then, that if 7 and ' are linearly independent roots, we have (r,7')=o0
or +1 and moreover that (r,7)=—1 if and only if r+4+' is a root.

Fix r with A(r)=17 and assume that N,,#+ o0 where s and ¢ are simple and s+¢.
By our previous remarks we have (r,s)=(r,#)=—1. Now if (s,¢)=1, s—¢ would be
a root, which is impossible. Hence (s5,#)<o. If (s,f)=—1, we would have
(r+s,t)=—2, which is also impossible. So (s,t)=o0, and (r+s,t)=—1. Hence
r+s-+t is a root. Then Jacobi’s identity implies that

Nr+s,tNrs:Nr+l,ser'

By (*) we have N,,,,=N,,,,=1. It follows that N, ,=N,,. Changing the struc-
ture constants according to (1.7) ¢), with e(r')=1 if 7'+ +7, we may assume that
N,,=o0 or 1 for our fixed root r with height ¢ and for all simple s. If i>2, we can deal
separately with each 7, proving that (¥) is true with ¢ instead of ¢+ 1.

Remark. — The same argument shows the following. Let S=8,uS,, where S;
consists of orthogonal roots. Then structure constants exist which have, besides (1.9),
also the following property:

N,=1 if seS,, teS,.

(x.10) We now define on our Lie algebra g a grading as follows. Take a set S
of simple roots, let 2 denote the height as in (1.3). Define

g’=A
= X Ze, (i+o0).
g= 2 Ze, (i+0)

We put /,=rank ¢° (=number of roots r with height i if i+0). It is easily verified
that

[¢' g]cg™,
so that we have made g into a graded Lie algebra over Z.
The grading depends on the choice of the simple roots. However, if we take

another set S’ of simple roots, there exists weW such that w(S)=S’. Moreover,
by (1.7) ¢) we have ‘

Nw(,),w(s) =¢e(r)e(s)e(r+5)N,,,
where ¢ is a function R —{1, —1}. Define an endomorphism @ of g by
O()=w(h) (heA),
@ (e,) ==<(7)lyy-
It is easily seen that ® is an automorphism of the Lie algebra g. Let

g=2(g")’
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120 T.A. SPRINGER

be the grading defined (as above) by S’. Then
o(¢)=(g")’,
This shows that the graded Lie algebra structure on g is unique up to isomorphism.
(x.xx) Fix a set S of simple roots. Define then an element neg by

n= 2e,.

res

It is clear that 7 is a nilpotent element of g, i.e. such that ad 7 : x >[n, x] is a nilpotent
endomorphism of g. We call n a principal nilpotent element of g (such elements have been
investigated by Kostant ([12], [13]) for the case of semi-simple Lie algebras over the
complex field).

One may prove by an argument like that used in (1.10) that if n and »’ are two
principal nilpotents, defined by sets S and S’ of simple roots, we have n'=®(n) where ®
is an automorphism of g.

In the next section we shall investigate in detail the action of ad z in g.

Remark. — Our definition of a principal nilpotent is unsatisfactory in that it depends
on the choice of a particular basis in g. In Kostant’s paper [12] cited above, intrinsic
characterizations are given of principal nilpotent elements of a complex semi-simple
Lie algebra. For instance, they are those nilpotent elements whose centralizer has least
possible dimension. The author does not know similar characterizations for the algebras
over Z. Because it is not necessary for the purpose of this paper, we don’t want to
pursue this matter further here.

2. The action of a principal nilpotent element.

(2.1) In this section g is a Lie algebra over Z of the type considered in § 1. The
root system R is assumed to be simple, the structure constants N,, are assumed to have
the properties of (1.7) 4) and (1.9). A set S of simple roots is fixed, the grading of g
is that defined by S. If n denotes the principal nilpotent element, we define homo-
morphisms (of abelian groups)

f: g >gitt
by
t;(x) =[n, x].

It is the purpose of this section to investigate the elementary divisors of the ¢;.

But first we want to recall a known result about the ranks of the ¢;.

(2.2) Proposition. — t; is injective for i<o, rank =1 (=rank g'*') for i>o.

A proof of (2.2) is contained in [12]. For the convenience of the reader we
indicate one here.

Consider the Lie algebra gq=g®;Q. We imbed g in gq in the obvious way.
We choose

a= ‘Es (2(s, 5)"1s5) ®E,
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SOME ARITHMETICAL RESULTS ON SEMI-SIMPLE LIE ALGEBRAS 121

in ¢°®Q such that
(3) [2, 6]=e,.

That such a choice is possible follows from the definitions (1) in (1.5) of the product
in g: the & have to satisfy

() Zte,—1  (reS).

(4) can be solved in rational numbers, for the Cartan-matrix (c,), s iS nonsingular.
Moreover it follows from (4), that for all reR we have

(5) (2, ]=A(r)e,,
where % denotes the height (defined in (1.3)).
Now let n be as above (identified with n®1egq), put n'= Ese_s®€s. Then
s€

[7, n']=a, [a, n]=mn, [a, n]=—n’

a, n, n’ span a three-dimensional simple subalgebra s of gq. Moreover o is the only
element of gq annihilated by ad ¢, ad n, ad n’.  For such an element must lie in g§ (by (5))
and there both ad n and ad »’ act injectively, because of the non-singularity of the
Cartan-matrix. Also by (5), the eigenvalues of ad a are integral. It then follows from
the representation theory of ¢ (see [11], p. 85) that there exist elements x;, ..., x, in gq
and odd positive integers 2k; 41, ..., 2k, + 1 with the following properties:

a) xe0g”, (ad )ty =o;

b) (adn)ix; (1<i<h, 0<j<2k) is a basis of gq.

It now follows that (adn)x=o0 implies that x is a linear combination of the
(ad n)%ix, (1<i<hk), which implies the first assertion of (2.2). The second one is
obtained by observing that from 5) it follows that (ad n)g§=gh"* for i>0. Moreover,
observing that rank gg=/, we find that A=/

(2.3) Corollary. — a) If i<o we have L;<I_ , if 1>0 we have [, <I;

b) Let the positive integers (k;)y; <y be such that ki<k,<...<Kk, and that for 1>o0
we have [>1, , if and only if i:ki—fo—r some j. Then h=1; moreover for i<o we have
<l y tf and only if i=—k—1 for some j.

Remarks. — a) It is known that the real cohomology algebra of the compact, semi-
simple, simply connected Lie group whose complexified Lie algebra is g®,C is an
exterior algebra on / generators of degrees 2k;+1 (1<:</) (see e.g. [12], where the
Betti numbers are discussed).

b) The property ) mentioned in the course of the proof of (2.2) can also be stated
in the following way: the Jordan normal form of ad » in gq is a direct sum of / Jordan
matrices, with 2k, 41, ..., 2k 41 rows, respectively.

We now want to investigate the elementary divisors of the homomorphisms .
First an easy special case.

(2.4) Proposition. — We have ¢°Jt_,(6 Y )=AT, g'/t,(¢°) =T"/A.

g~ " has as a basis the (e_,),cs and we have ¢_ (e_)=2(s, 5)”'s, which implies

481
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122 T.A. SPRINGER

the first assertion, taking into account the fact that I' is generated by the 2(s, s)~1s
with seS (this follows from the remark in [g], p. 16, lines 10-11 from below). I has
a basis (f,),es where (r,f,)=3, (r,s€S). Let g’=s§sa” f, be basis vectors of
g°=A (where a,,€Z). Then to(g,)=—8§sa,se,. This implies that g!/t°%(g%)=~I"/A.

(2.5) Corollary. — If A=T" then t_, has no elementary divisors and those of t, are:
the prime powers occurring in the decomposition of 1+ 1 for type A,, 2 for the types B,, D, (I even),
E,, g for type Eq, 4 for type D, (l odd). If A=T" then t, and t_, are to be interchanged in
the preceding statement.

This follows from the structure of I'/I', given in (1.4).

We now come to the main result of this section.

(2.6) Theorem. — For i>0 and i1<—1 ¢ has at most one elementary divisor. It is
a prime p and its multiplicity is 1. This occurs in the following cases

l I—

type B, (I>2) : p=2, i=2,4, ...,2[;],—3,—5, ...,_2[ 21]_1;
type C, (1>3) : p=2, i=2,4, ...,2l—2;

. l l
type D, (I12>4) : p=2, i=2,4, ...,2[;]—2,——3,—5, ...,-—2[;]—}—1;
tpe Eq P p=2, i=2,—3; p=3, 1=3, —4;
type E, i p=2, i=2,4,8,—3,—5,—9; p=3, i=3, —4;
UP&’ Es : PZQ, i=2> 4, 8a 14, —8, —5, —9, —Ij5; [’=3, 123’ 9, —4, —10;

p=5, i=5,—6;

type F, p=2, i=2,4,8,—3; p=3, 1=3, —4;
type G, p=2, i=2,—3; p=3, 1=3.

bh]

We shall prove (2.6) by ¢ checking cases
done, we give a few facts of a more general nature, which are used in the proof. First

Before indicating how this can be

observe that for i=o0, —1 the matrix of ¢ with respect to the bases of ¢, g'*! formed
by the appropriate e, is

(6) Miz(Ns—r, r)h(s)=i+1,h(f)=i

(the roots of height ¢ and 7+ 1 are supposed to be ordered in some way).

We assume that the structure constants N, satisfy (1.7) 4) and (1.9) (if applicable).

(2.7) Lemma. — If all roots of R have the same length, then the elementary divisors of t,
and their multiplicities are the same as those of t_; 4y (1>0).

If all roots have the same length, the condition of (1.8) &) is satisfied for all 7, s.
It then follows from (1.8) 6) that

M=—M_,, (>0),

which implies the assertion of (2.7).
(2.8) A method which we shall often use is the following one. Let s,S be a
fixed simple root. Decompose g'=m}-+mi, where m is spanned by the ¢, such that r
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SOME ARITHMETICAL RESULTS ON SEMI-SIMPLE LIE ALGEBRAS 123

contains sy, i.e. that in rzsgsnss we have n,+o0, and where m} is spanned by the
other ¢,. Decompose g'*! in the same manner. Let #, denote the restriction of ¢
to mj, let # , denote the induced homomorphism of mj into g'**/mit*=~mi*'. Suppose
first that £, is an isomorphism of m{ onto mj*!. Then by (0.3) the elementary
divisors of #; can be found from those of #;;. The way in which #, is constructed shows
that it is a mapping of the same kind as ¢, but for a root system R, of lower rank, whose
roots are those of R which do not contain s,. In this way we can use induction with
respect to the rank /. This is one method which we shall use. A second one applies
when ¢; ; is an isomorphism. In that case we know by (0.3) that the elementary divisors
of #; can be found from those of .

(2.9) We now turn to the proof of (2.6), for which we shall discuss the simple
types. These are described in [14] (exposé 19), we use the same description here.

We denote in all cases a set of simple roots by (r,);<i<;-
Type A, ({>1):

The roots are the vectors +(r;4...47) (1<i<;j<[). There are [—|i|+1
roots with height ¢, the highest root is r;+...47. All roots have the same length,
all N,, are +1.

We have to prove that the #; (¢ 0, —1) have no elementary divisors. By (2.7%)
we need only to prove this for i>o.

For every height i>o0 there is exactly one root s; which contains r, (viz.
si=ri+...+n). It follows immediately that f(e,)==e, . Moreover if [>2 the
roots which do not contain r, form a system of type A,;_;.

We can now apply the first method of (2.8). It is clear that induction with
respect to ! gives the result which has to be proved. The starting point /=1 is easy.

Type B, (I>2):

The roots are +7;, +7; with

ni=r+...+mn (1<:<;<),
ri=rt. g t2nt. . 42n (1<i<5<).
We have
h(ry)=j—141, h(rij) =2l—i—j+2.

There are [—i roots with height 27 or 2¢+1. The highest rootis r,+27,4...+27.
Not all roots have the same length, N,,==+1 or +2.
Again, for each height ¢4 o0 there is exactly one root s; which contains r;,. We
have s;=r; (1<i<l), s;=r; (I+1<i<2l—1), and s_;=—s;.
Moreover, for [>g the roots which do not contain r; form a root-system of
type B;_;. _
We prove the statement for type B, contained in (2.6) by induction with respect
to /. We start with /=2. In this case we have to prove that ¢, has an elementary
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124 T.A. SPRINGER

divisor 2 with multiplicity 1 and that the other ¢ (10, —1) do not have elementary
divisors. This is an easy check. Suppose that />2 and that we have already proved
the assertion for type B,_,. Now we have f4(e)=x=xe, if i+l 4(e)==%2¢, .

The first method of (2.8) establishes the assertion for ¢/ If / is even the
second method of (2.8) gives the desired result for i=/. Now let / be odd. Then

the roots of height [ are 7,7, ..., .. ., those with height (/+41) are
b i+, Lo+s)

! ’
Put € =G> O, = Eij- We then have

! !’

T8 T20—15 + - s ré(l—l). §(1+a)'
S

tiey) ==%2¢],, tx(‘«’,{.z—-wz)=i€§-1,z-i+2ﬂ:ef,t—i+1 (’<5 (I+1)),

4y )=xe

1 1 1 .
§(l+1)'§(l+ 3) é(’—l)» 5(‘+ 3)

It is now easy to check that # has no elementary divisors. This settles the case >o.
For i<o we put g'=mj+mj as in (2.8), where mj=2Ze,. We have

t(e,) =+e, (mod m'*?)

if i —1.
Applying (0.3) with E=g’, E, =Z¢, we get from the induction assumption the
assertion about £ for i<o, i —/. The case :=—1 is dealt with as in the case that :>o.

Type C, (I>3):

The roots are =7,
ri=r+...+7 (151550,
r,f,=7;+...+r,.__1+2f,-+---+2T;_.1+f; (1<:i<;<)).

+7};, where

We have
h(rg)=j—i+1, lz(r,-',-):2l——i——j—}— I.

There are [—i rootswith height 27 or 2¢+ 1. The highestrootis 27, + ... +2r_;+7,.

Not all roots have the same length, N,,=+1 or 42.

For each height i#+o0 there is exactly one root s; which contains r;, viz.
s;=r1y; 1<i<]), ;=r;; (+1<:i<2/—1) and s_;=—s;.

The statement regarding type G, is proved in the same way as that for type B,
we leave the details to the reader.

Type Dy(I>4):

The roots are 47, +r7i;, +ri, where

f,',‘=7,'+---+7,' (ISZS]SZ_I),
ri=rit ... Frigtend .oyt tn (1<i<G<I—1),
r; =T;+---+’l—2+’l (ISZSI~I)

We have
h(rg)=j—i+1, h(ry) = 2l—i—j, h(r) =1—i.
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There are /—:i roots with height 2¢</ and 2i+ 1</, there are /—i—1 roots with
height 2:>! and 2¢:+ 1>/ The highest rootis ry—+2r,+...+2n_,+nr_,+r, its
height is 2/—3. All roots have the same length, N,,==+1. So by lemma (2.7) it
suffices to prove the part of (2.6) about D, only for positive heights 7.

For each height i>o0, i&/—1 there is exactly one root s; containing r,, for
t==[—1 there are 2 such roots, which we call 5,_; and s;_;. We have s5;=r,; (1<i<I),
s;i=r; (<i<L2l—3), s;_;=r;. The roots which are linear combinations of 7,, ..., 7,
form a root system of type D,_; (of type A;if I=4).

We have
i(e,)=*e,, | for i+[—2,
and

tl—-l(es}_l) =iesl'

Using the first method explained in (2.8) we see that the elementary divisors of # for
type D, are the same as those of ¢ for type D,_; (A; for [=4), if i+[—a2.

So it remains to consider the case ¢=I{—2. In that case the assertion of (2.6)
is: #_, has the elementary divisor 2 with multiplicity 1 if / is even and does not have
elementary divisors if / is odd.

Let [>4. Theroots of height [—2 are 7 ;_5, 75, 4,75, 7 1405 (3_§i<§(l+1)),

. 1
those of height l—r1 are 7 ; 4, 71, 7,415 (2§z<§(l+ 1)). Put &=t 6=,
¢i=e;, we define ¢;=o if i>j.

Y

Assuming (1.9) for the structure constants, we have

t_oles1—9) =—€,1_1—6,
t_olle—1) =—€1_1—6 11>
t_(€5) == —-e{——-e;,,_l,

tz—z(’§.z+ 2—i)= —'3;-1,1+2-i“5€,1+ 1—4*

. , _ N . . "
If [ is odd, t,_z(eé(H_l), %(1+3)) eé(z-n,%(u-s)’ which is readily seen to imply that £_, i

surjective; hence has no elementary divisors.

If [ is even, t,_, maps ¢ ;.5 ;(1>3) in —¢ ;,, ; modulo the sublattice of g;_,
generated by 7, ; ,, rf, 7,,1,;(2<j<i). From this one infers that the elementary
divisors of #_, are the same as those of ¢, for type D,. In this case the preceding for-

mulas are easily seen to imply that there is only an elementary divisor 2, with multipli-
city 1.

Type Eq:
There is a basis (%) ;. of V such that the roots are x—ux; (i%]),
- 6
+(%+x+x—s) (i, k distinct) and +s5, where s=(1/3) _Elx‘-. The simple roots
are then r,=x—ux,,,(1<i<j5), ry=x,+%;+%—s. One can now write down all
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positive roots, expressed as linear combinations of the simple ones. The result is given
in table I (appendix). The highest root is r, + 27, + gry -+ 27, + 15+ 27¢.

All N,, are +1, the roots have the same length. So by lemma (2.7) it is suffi-
cient to consider positive heights.

One sees by inspection of table I that, except for ¢=2, 3, the following situation
prevails: the bases (¢,) of g and g*! can be numbered such (say e, ..., €, fi, - - /)
that we have tf(¢)=d=f,+a linear combination of f;, ..., f,_;.

It is then obvious that # has no elementary divisors. So only ¢=2,3 remain.
If :=2 we apply the first method of (2.8), with s=r,. There is only one root of height 2
or g containing r;, and the roots not containing r, form a root system of type D;. Hence
the case of height 2 for type Eg can be reduced to height 2 for type D;, which has already
been dealt with.

In the remaining case =3 we must make a computation. Making use of table I,
it is easy to write down the matrix M; for this case (which has 5 rows and columns).
Its entries are o or —1 (by (1.9)). There is no difficulty in finding its determinant,
it turns out to be +9g. This implies that #; has an elementary divisor g with multipli-
city 1, which proves the assertion about E;. For E, and E4 the argument is of the same
nature.

Type E;:
There is a basis (x);c;c, of V such that the roots are x—ux; (1)),

7
+ (%4 x4+ x%,—3s) (i, , k distinct), +(s—x;), where s=(1/3) §1x"° The simple roots

are then 7,=x—x;, (1<i<6), r,=x;+ x4+ x,—s. In table II the reader will find
the positive roots, expressed in the simple ones.

The highest root is 7, + 27, + 375+ 47, + 375+ 27 +27,. All roots have the same
length, the N,, are +1. So we need only consider positive heights.

Again, as for Eg, a verification based on the use of table II shows that one only
needs to consider the cases i=2, g, 4,8. The cases i=2, 3 are reduced to the corres-
ponding cases for type E4 (there is only one root of height 2 or g containing r; and the
roots not containing r, correspond to those of a system of type E;). For =4 we apply
the first method of (2.8) with s=r;. The roots not containing 7, form a system of
type D,, we may then reduce the case i=4 for E, to the corresponding case for D,
which has been dealt with. In the remaining case :=8 a simple computation shows
that det Mg==2. This settles type E,.

Type Eg:
V is generated by vectors (¥;);. ;.o With sum zero, such that the roots are

x,—% (i%)), £ (%+x+%) (4,4, k distinct). The simple roots are 7, =x;—x;, 1 (1<¢<7),

K
rg=%g+x,+%;. In table III we have given the positive roots, expressed in the simple ones.
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The highest root is 27, + 37,4473+ 57, + 675+ 47+ 27, +37. All roots have
the same length, N,,=241. We need only consider positive heights.

For i+ 2, 3, 4, 5, 8, 9, 14 a verification using table III shows that ¢, has no elemen-
tary divisors.

In the cases i=2, 3,4,8 we can reduce, considering the roots containing r,,
type Eg to type E,.

In the remaining cases ¢=5, 9, 14 one has to calculate the determinant of M;.
The method is the same as in the previous cases. The result is that in these cases det(M)
is, in absolute value, 5, 3, 2, respectively. This settles type Eg.

Type F,:

There is a basis (%);.;cq such that the roots are x—x; (i%j), =+x

, <ig
+(x,+ %) (6%7), (1/2)i§1€ixi’ where eg==%1. The simple roots are r,=x—ux,,

Ty=Xy—Xg, T3=12g, 7,=(1/2)(xq—x—%—2y). \

The positive roots, expressed in the simple ones, are given in table IV. The
highest root is 27,4+ 37,4+ 475+ 27,.

The roots do not have all the same length, N, ,==+1 or +2. For i>0 one
checks, using table IV, that except for i=3g, we may take bases ¢,, ..., ¢, and f;, ..., [,
of g and @¢'*! such that

t,(e,) =of; +a linear combination of f, ..., fi_;,

where a==+1 or =+a.

One checks that a==2 can only happen if i=2,4,8. It is easily verified in
these cases that the assertion of (2.6) holds. For i<—1 a similar argument gives the
desired result if ¢+ —4. There remain the cases :=3, —4. There again we calculate
a determinant. In this case we have to use a more complicated argument, because
the |N,,| may have different values. v

First let i=g. We then find without difficulty that

:!:det M3= N"+ "x."aNr"' "ay'tN'+ Tas Ty + N’+ T1 "JNf'f‘Tn":NT'FTn"l’

where r=r,+7r; (which is a root).
Now by Jacobi’s identity (viz. the last formula (2)) we have

Noyrr N, =Nop N,
(8) Nr+ Ty 1 Ty Ty =Nr+r,, r.Nr, T
N, T3 r.Nr,rs_Nr-&- Tas rer,r. + Nerr.,r‘ =0,

where s=r;+47,.
Now it follows from lemma (1.7) 4) that N, , ==1. Then the first 2 formulas (8)

give

N

r+n,raNr+r.,nNr+ e T nNr+rnﬁNr+r:,r.Nr.raNr.r.’
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It follows that
+det My=N,,, N, , (N, , N N +N.., ),

which (using again lemma (1.7) b)) yields
+det M3=N,,, . N, , +N,,, N, =2N

LARLY

N,,N

r+ r.,r,Nr,r._' sriVr,, e
by the last formula (8).
Another application of Jacobi’s identity gives

N" + 6T NS, oo Nsr Nf‘n rs°

Since N;, ==+1, we have

+det My=2N,,, N, N, —N,N,

8, Ts™ Ty Ty T3, 7 N"i

= Nsr<2Nr. r‘Nr.. r.——Nr.,r.Nsr,)‘

Now N, ,N, ,=—N, , N, (again by Jacobi’s identity), and these integers as well
as N,,, are +1 (by lemma (1.7) )). So det M;==3, which settles the case i=3.
Finally for ¢=-—4, we find an expression for det M_, like the one for det A,

with which we started. Using lemma (1.8) a) one gets

(9) Nr,s—r(N—-s,s—r)—-lz"—lNr,s—rl ]N

—s,s—rl_la

if r and s are positive roots (such that s—r is one). By lemma (1.7) 4) one knows |N,,|.
Now (g) allows one to compare the expression which one finds for det M_, with the
above one for det M;, the result is that both have the same absolute value, which has
been found to be 3.

Type G,:

The roots are =471y, +7,, +(r+71), (ri+27), £(r;+37), £(2r;+37).

The highest root is 27,4 37,. We have N,,=o0, +1, +2, +£3. There is no
difficulty, using lemma (1.7) &), to verify the assertion of theorem (2.6). This finishes
the proof of theorem (2.6).

(2.10) We shall say that p is a bad prime for the simple root system R or for the
corresponding Lie algebra g if p divides a coefficient of the highest root of R (this
obviously does not depend on A).

If R is not simple, then we say that p is a bad prime if it is one for one of the simple
components of R.  Otherwise p is called a good prime. In the course of the proof of (2.6)
we have indicated the highest roots of the various types. From this it follows that the
bad primes are for the simples types:

A :none; B,C,D :p=2; E;GE,F,G:p=2,3; Eg:p=2,3,5.
From (2.6) and its proof we can now extract various characterizations of the bad primes
(R is supposed to be simple).
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(2.xx) Theorem. — p is a bad prime for g if and only if one of the following conditions
holds:

(1) ¢ has an elementary divisor p for some i>o0;

(i) &, has an elementary divisor (which is then p with multiplicity 1);

(iil) 4,=14;

(iv) =1l—1 if 2<i<p+1.

(As in (1.10), /; denotes the number of roots with height 7).

(1) and (ii) are read off from the statement of theorem (2.6). (iii) and (iv) are
read off from the explicit structure of the root systems of the simple types. This is an
entirely straightforward verification (using tables I, II, III, IV for types Eq, E,, E;, F,
and the results cited in (2.9) for the other types).

(2.12) Proposition. — If 1 (:>0) has an elementary divisor, then ;=1 .

This is also proved by using (2.6) and checking the possible cases.

It would be interesting to have a priori proofs of (2.11) and (2.12).

3. On the torsion of compact Lie groups.

(3.1) In this paragraph we denote by G a compact, semi-simple, simply connected
Lie group. We denote by g the Lie-algebra over Z defined in § 1, defined by the root
system of G. For definiteness we assume g to be of ¢ simply connected ” type (A=1I").
It is known (see [6]) that if R is simple, G has a p-torsion exactly in the following cases:

p=2, types B;, D;, Eg, E;, Eq, Fy, Gy;

p=3, types Eg, E;, Eg, F,;

p=5, type Eq.

Combining this information with that given by theorem (2.6) one obtains the
following result (in which we use for g the notations of § 2).

(3.2) Theorem. — Let G be a compact, semi-simple, simply connected Lie group. Then G
has p-torsion if and only if t_,, 4 has an elementary divisor.

For the simple types this is checked at once; the extension to the general case is
then immediate.

(3-3) (3.2) indicates that there is a connection between the topology of G and
the structure of §. We shall give now a few more results which point in the same direc-
tion. All these results are obtained by ‘“ checking cases . We first recall some facts
about the structure of the cohomology algebra H(G, k) for a field £. It is known that
this algebra is a Hopf algebra. The structure theory of Hopf algebras (see e.g. [4])
then implies that

H'(G, k) =k[Xy, ..., X,,]/(X{M, ..., Xy,
where [X,, ..., X,] is a graded anticommutative polynomial algebra with gene-

rators X; of degree A(i) (1<:<m). The d(i) are 2 if char(k)=o0 and are either 2 or
a power of char(k) if char(k)+0. We now list some known results.
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a) If char(k)=o, then H'(G, k) is an exterior algebra on !/ generators (where
[=rank G). These generators have degrees Ah(i)=2k;+ 1, where the £ the integers
defined in (2.3). They can be read off from the root system R, as follows from (2.3).
These matters are dealt with in [12].

b) Take now k=F,, the prime field with p elements. If G has p-torsion, then
we assume the X; to be numbered such that d(1),...,d(a) are >2 and
dla+1)=...=d(m)=2. We call

KXy, oo, X)X X

the extraordinary part of the cohomology algebra H'(G, F,).
First let p be odd. Let G be simple. In the cases where p-torsion occurs (which

are enumerated above) the extraordinary part of H'(G, F,) is known (see [5] for F,,
[2] and [6] for Eg¢, E;, Es), the following holds: all d(z) (1<:<a) are equal to p, the A(7)
are respectively,

8 if p=g, for types Eq, E,, F,,

8,20 if p=3g, for type Eg,

12 if p=s5, for type Eg.

Comparing this with the results stated in (2.6) we obtain the following statement.

(3-4) Proposition. — Let G be a compact, simple, simply connected Lie group. If p is
odd, the extraordinary part of H'(G, E,) is k[Xy, ..., X,]/(X%, ..., X2) where h(i) runs
through the integers 2j such that ¢_; has an elementary divisor p.

(3-5) For p=2 a corresponding statement is not true. For then the d(i) occurring
in the extraordinary part of H'(G, F,) are not always equal (this is the case, for example,
in type Eg, as follows from the results of [3]). The known results (see [1], [3], [5])
show however that the following holds: the degrees h(i) (1<i<a) occurring in the extra-
ordinary part of H'(G, F,) are the integers j such that t_; has an elementary divisor 2.

4. The centralizer of a regular unipotent element of a semi-simple alge-
braic group.

(4-1) In this paragraph we shall give an application of the results of § 2 to a
problem in the theory of algebraic groups over an algebraically closed ground field £.

We denote now by G an algebraic group over ¥ (= smooth affine group scheme
of finite type over k) which is connected and semi-simple. For the standard facts about
such groups we refer to [14], to which we conform. We recall some notions. Let T
be a maximal torus in G.  With G there is associated a root-system R (in the sense of § 1),
the reR arerational charactersof T. For any reR there exists a unipotent subgroup X,
of G, which is isomorphic over £ to the additive group G, and which is normalized by T.
Fixing a set of simple roots, let U be the subgroup of G generated by the X, with r>o,
let B be the group generated by T and U. The group B is then a Borel (= maximal
connected solvable) subgroup of G, U is a maximal connected unipotent subgroup of G.
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The Borel subgroups of G are conjugate, so are the maximal connected unipotent
subgroups.

In the next result the structure constants N,, will occur of a Lie algebra g discussed
in § 1, belonging to the root-system R of G. These structure constants are assumed to
be integers satisfying (1.7) ). We then have the following important result, due to
Chevalley (see [9] and [10]).

(4.2) Proposition. — There exist isomorphisms x,: G, — X, (reR) such that if r4s+o
we have for &, n€G,,

xr(E)xs(“’))xr(E)_lxs("))—l:i,goxirﬂ's(cimg")j),
where the product on the righthand side is over the integral linear combinations of r and s which are
contained in R, taken in a suitable order and where the Cy,, are integers with Cyy,,=N,,.

We shall apply this to obtain information about the structure of U. Henceforth
the x, will always denote isomorphisms G,—X, with the properties of (4.2).

(4.3) Lemma. — Let S be the set of simple roots of R defining the ordering of R. Let
x:rl;on,(E,) (the product being taken in some order) be an element of U such that .+o

Jor reS.  Then x is contained in exactly one Borel subgroup of G, namely B.  The centralizer G,
of x is the direct product of the center C of G and U,, the centralizer of x in U.

The first assertion is proved in [17] (lemma g.2), for the convenience of the
reader we indicate the proof. Suppose gxg='eB for geG. Applying Bruhat’s lemma
([14], exposé 13, th. g, Cor. 1) we see that we may take g=oc,b, where beB and
where o, is a representative in G of the element we W =N(T)/T (N(T) denoting the
normalizer of T in G). If x satisfies the condition of (4.3) then (4.2) implies (together
with the facts that B=TU and that T normalizes all X,) that bxb~! satisfies the same
conditions. It suffices then to take g=o,. However since ¢,X, 0, '=X,, it follows
that w(s)>o0 for all seS. This is known to imply that w=1. Hence gxg~'eB
implies geB, which proves the first assertion.

As to the second assertion, the preceding argument shows that G,=B. Take
g€G, and write g=tu (teT, ueU). It is well-known that

tx, ()t 1 =x,(r(2)E).

Using this it follows that s(¢)=1 for all seS. This implies that teC.

Let X denote the set of all unipotent elements of G. Let / be the rank of G, i.e. the
dimension of the maximal tori of G.

(4-4) Proposition. — X is an irreducible Zariski-closed subset of G of dimension dim G —I.

Since every unipotent element of G is conjugate to an element of U, X is the union
of the conjugates of U. Then (4.3) implies that the normalizer of U in G is the same as
the normalizer of B in G, which is B itself. Application of a well-known result ([14],
exposé 6, lemma 5, a more general version is in [15], exposé XIII), taking into
account (4.3) and the fact that G/B is a complete variety, proves that X is closed and
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has the asserted dimension. The irreducibility of X follows easily from the proof of
the cited result.

For xeG, let G, denote its centralizer in G.

(4.5) Proposition. — For any x€G we have dim G,> 1.

If x is unipotent this follows from (4.4): then the orbit of x in X under the adjoint
action of G has dimension <dim G—/, hence dim G, >I.

If x is arbitrary, write x=su (where s and « are the semi-simple and unipotent
parts of x). Then the identity component G) of G, is a reductive group (i.e. a connected
algebraic group whose radical is a torus) and the centralizer of x in G coincides with
that of u in G;. Now ueGj ([14], exp. 6, cor. 2 of Th. 6). We can then apply the
statement for x unipotent to G? modulo its radical.

(4.6) We define an element x of G to be regular if its centralizer G, has dimension /.
The regular elements of a semi-simple group are the subject of [1%], where various charac-
terizations and properties are discussed. One of the crucial points of [17] is the proof
of the existence of regular unipotent elements for any semi-simple G. We shall show
that the results of § 2 of this paper enable one to give a different existence proof (however
under some restrictions on the characteristic of £). Moreover with the results of § 2
one can get information about the connectedness of the centralizer G, of a regular
unipotent element x. The study of these connectedness questions is the main object
of this paragraph.

(4.7) Lemma. — Suppose that G contains a regular unipotent element. Then any element
xeU with the property of (4.3) is regular. Two regular unipotent elements are conjugate.

This follows from Theorem g.g of [17]. A direct proof is as follows: suppose
that y:rl;lox,(ir)eU is regular. The set Y of conjugates wu~' (ueU) of y in U is

closed in U by a theorem of Rosenlicht (Trans. Am. Math. Soc., 101 (1961), p. 221),
moreover it is clear that dim Y>dim U—I/. On the other hand it follows from (4.2)
that if z= l;[oxr(nr)eY, we have »,=E; for seS. It follows that dim Y=dim U—/

and that Y is precisely the set of elements z satisfying this condition. In particular,
u=IIx,(%,) liesin Y and hence is regular. Now if £ =o for some s,€S, there is a
8

non-trivial subtorus of T which centralizes u, therefore dim G,>[+ 1, which contradicts
the regularity of u. Hence, all £, are #0 and the first assertion follows.

The second assertion can be derived from the first one. Another proof is as
follows: let x and y be regular unipotents. Consider their orbits (under adjoint action
of G) in the set X of unipotent elements.. Because of dimensions, these orbits contain
Zariski-open subsets of X. X being irreducible, these open sets have a non-empty
intersection and the conjugacy of x and y follows.

(4.8) It follows from (4.7) that, if regular unipotents exist,

(10) v=Ix,(1)
(the product taken in some order) is a typical one.

492



SOME ARITHMETICAL RESULTS ON SEMI-SIMPLE LIE ALGEBRAS 133

From (4.3) it follows that v is contained in exactly one Borel subgroup, namely B
and that G,=U,C. We shall now investigate, generally, the group U,.

Denote by U, the normal subgroup of U generated by the X, with A(r)>7 (:>1).
We have UpDU;,,, U;=U, U,={¢} for large n. U,/U,,, is an abelian algebraic
group, isomorphic to (G,)" (where, as in § 2, /; is the number of positive roots r with
height 7). All this follows from (4.2).

Put for i>1,

V,={ueUl|ouv~'u"teU, },

this is a closed subgroup of U, containing U;. Let W, be the canonical image of V,
in U/U;. W, is a unipotent algebraic group over £. The canonical homomorphism
U/U;,, — U/U; induces a homomorphism

Ji i Wi =W,

W, is reduced to the identity, on the other hand for sufficiently large » we have W, =U,.
We now study Kerf, and Imf,. Let weKerf,. Then w is the coset of an
element

u=II x(¢)

Ta)=i "
modulo U, ,.
Using (4.2) one sees that for an u of this form one has

-1, —1__ )
vuv~™u —h(r)l—[iﬂx,(v;,) mod U, ,,
where
(II) nrzagst,r—szr—s'
Here s runs through the set S of simple roots, the N, ,_, are the structure constants

of the Lie algebra g belonging to R (with the convention that N, =0 if r—s is

not a root).

If weW,,.,, we have wuvo~'u~'€U,,,, hence the £, have to satisfy the linear

equations obtained by putting the %, in (11) equal to o.
Next Im f;. Map V; homomorphically into U, ,/U;,, by sending ueV;

into vuv~'x~'. Under this homomorphism U, is mapped onto a subgroup U/, ,/U;,,
of U;,,/U;,,, where U;,, denotes the group generated by U, , and the elements
w5 (1)

with #, of the form (11).

By passing to quotients one gets a homomorphism of W; into U, ,/U;, . It
follows at once that the kernel of this homomorphism is Im f;.

One gets in this way the following inequality
(12) dim Im f;, > dim W;—dim U, _,/U;_,.
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(4.9) (11) shows that the matrices M; defined by (6) enter the picture here.

We now tie up the problems considered here with the results of § 2. Let g be the Lie-
algebra of the type of § 2, whose root system is that of G (the choice of A is immaterial).
Put g, =g®;k, 6i=0'®zk, t,,=#®id. Let p be the characteristic of £. Define

L

p=Tank

(this depends only on the characteristic of £), then

(2.2) asserts that [ o=/, ,, (2.11) asserts that [ =/, is p is a good prime for g.

(4.10) Proposition. — a) Ker f; is tsomorphic to (G,)45 s

b) dim Im f;>dim W;—[, .+ ,.

In fact, both of these results are direct consequences of what was established
in (4.8). For example, b) is another way of writing (12). (Actually, equality holds
in b), as follows from [17]. We will use this in the proof of (4.12).)

We can now prove the main results of this paragraph. We shall say that a prime
is a good (or bad) prime for G if it is a good (or bad) prime for its root system R
(see (2.10)). p always denotes the characteristic of £.

(4.xx) Theorem. — Let p be o or a good prime for G.  Then there exist regular unipotent
elements in G.  The centralizer of a regular unipotent element is the direct product of the center of G
and a connected unipotent subgroup.

It has already been established in (4.7%) that we only need to prove that the element »
of (10) isregular. Our assumption about p implies by (2.11) that .=/ ,, then (4.10) 5)

shows that f; is surjective and (4.10) a) shows that dim U,=2(};—/_,) =L

The connectedness statement also follows: assuming W, to be connected, the
surjectivity of f; and the fact that Ker f; is connected (it is a vector group) implies
that W,,, is connected. Since W;={¢}, W,=U, for large n, U

The counterpart of (4.11) for bad primes is

(4.12) Theorem. — Let p be a bad prime for G. Then there exist regular unipotent
elements in G. A regular unipotent element is not contained in the identity component of its centralizer,
hence the centralizer of a regular unipotent element is the direct product of the center of G and a
non-connected unipotent subgroup.

, is connected.

The fact that regular unipotent elements exist in all cases has been established
by Steinberg ([17], § 4) by a different method. We will use this now, to prove the
other statements of (4.12).

Let v be the element defined by (10). We know by (4.7%) that v is regular, hence
dim U,=/. From (4.10) one infers that

dim W, ,—dim Ker f,> dim W;—[,, +/ ,,
hence by (4.10) a)
dim W, —dim W, > [, —F
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whence
I=dim U,=Z (dim W;, ,—dim W)>Z (,—4, ) =L

It follows that

(13) dim Im f;=dim W;—[ , +/, dim W, , —dim W;=[—1[

’p’

for all i>1.

If p is a bad prime we know from (2.11) that # has an elementary divisor for some i
and then we read off from (2.6) that [ ,=[, ,=Il—1 for i=1,...,p—1 and
byp=lt1—1=I1—2 (where I/=rank G). Then (13) implies that dim W;=1 for
2<i<p. Moreover it also follows from the first formula (13) that f; is surjective
for 1=1,...,p—1.

We now obtain from the first formula (13)

dim Im f,=o,

0 fo(Wp+1) is a finite group. A fortiori the canonical image of U, in U/U, is a finite
group. This image contains the coset of v modulo U,, which is not the identity element
(since »¢U,). It follows that » is not contained in the identity component U] of U,.
This proves (4.12)

(4.13) Remarks. — a) It would be interesting to know the exact order of U,/U?
in the case considered in (4.12). Of course this order is a p-power.

The only result in this direction which is known to the author (and which will be
stated here without proof) is the following one. Suppose that there is exactly one i>o0
for which ¢ has an elementary divisor p. Then U,/U? has order p. This result covers
the following cases of asimple G: p=2, typesB,, B;, E¢, Gy; p =3, types Eq, E;, F,, G,;
p=5, types Eg.

b) That regular unipotent elements behave differently in low characteristics was
first brought to the author’s attention by J. Tits.

From (4.11) one can derive the following result about semi-simple groups over
nonalgebraically closed ground fields.

(4-14) Theorem. — Let k be a perfect field. Suppose that G is a semi-simple algebraic
group of adjoint type, defined over k, suppose that the characteristic p of k is o or a good prime for G.
Let G(k) denote the group of k-rational points of G. Then any two regular unipotent elements
in G(k) are conjugate in G(k).

If G(k) does not contain any regular unipotent element of G, the assertion is
vacuous. Assume now that x,ye€G(k) are regular unipotent elements of G(k).
By (4.11), the centralizer G, of x is a connected unipotent subgroup of G. x being rational
over the perfect field £, it is well-known that G, is defined over £. Put

P={geG|gxg~ =y}
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By (4.7) P is not empty. Hence P is a principal homogeneous space of G,, which is
defined over £. G, being connected and unipotent and £ being perfect, P contains a
point geG(k) (see [16], III-8, prop. 6). This proves our assertion.

(4.15) Remarks. — a) It seems likely that the condition for £ to be perfect can be
dropped from (4.14). Since the result about principal homogeneous spaces, used in
the proof of (4.14), is false for non-perfect fields (counterexamples are in [16], III-16),
the proof does not carry over.

b) From [17], Theorem 1.6, it follows that G(£) contains regular unipotent elements
either if G is split over £ or if G contains a Borel subgroup over £ (the quoted result
gives the existence of regular unipotent elements if G contains a Borel subgroup over £
only if G does not have a component of type A, with n even; this restriction can however
be removed).

¢) If pis a bad prime for G the argument used in the proof of (4.13) shows that the
number of conjugacy classes of regular unipotent elements of G(%) is either o or the
number of elements of H(k, G,/GY). It can be shown that the number of elements
of H(k, G,/GY) is at least 2. Consequently, if £ is a perfect field, the condition that p
is a good prime is also necessary for the conjugacy statement of (4.14) (provided, of
course, that G(k) contains regular unipotent elements).

5. Regular nilpotent elements in the Lie algebra of a semi-simple algebraic
group.

(5-1) As in § 4, let G denote a connected, semi-simple, linear algebraic group
over the algebraically closed field £&. We consider now the Lie algebra of G. It is
known that this Lie algebra is isomorphic to g®,k, where g is of the type discussed
in § 2 (its root system R is that of G). However, to abbreviate notations, we write
throughout this paragraph g instead of g®,£.

Let T, U, B, X, have the same meaning as in § 4. The structure of g is then as
follows. @ is a direct sum

g=t+ TERke,

where t is the Lie algebra of T and #%e, that of X, (both identified with a subalgebra
of g). With the notations of § 2, t corresponds to A®zk and ¢, to ¢,®1.
The Lie algebra of B is

b=t+ X ke,
r>0
that of U is
n= 2 e,.

G acts on g by means of the adjoint representation Ad. For xeg, we denote by G,
the centralizer of x in G, i.e. the subgroup of G formed by the geG with Ad(g)x=ux.
We denote by g, the centralizer of x in g (which contains the Lie algebra of G,).
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We shall say that x g is nilpotent if x is contained in the Lie algebra of a connected
unipotent subgroup H of G. Since H is conjugate to a subgroup of U, x is nilpotent if
and only if Ad(g)xeu for some geG. We shall give presently some results about
nilpotent elements in g, similar to those proved in § 4 for unipotent elements in groups.

(5.2) Remarks. — a) The definition of a nilpotent element, given above, is the most
convenient one for our purposes here. However, because of the definition of semi-simple
and unipotent elements in algebraic groups ([14], exposé 4, n° 4), another way of defining
nilpotent elements in the Lie algebra g of any connected linear algebraic group G (semi-
simple or not) over the algebraically closed field £ would be the following one: Suppose G
is a subgroup of GL(r, k), then g is a subalgebra of the Lie algebra gl(n, £), in which the
notion of nilpotent element is known. Define then x€g to be nilpotent if it is nilpotent
as an element of gl(n, £).

One can show that this definition is equivalent to the one given above.

b) One can define an element x of g to be semi-simple if x is contained in the Lie
algebra of a torus of G.  The remarks made under a) hold too in that case.

It can be proved that if G is a connected linear algebraic group over £ (algebraically
closed) any element x of the Lie algebra g of G can be written in the form x=x,+ x,,
where x, (x,) is a semi-simple (nilpotent) element of g, such that [x,, x,]=o0. Moreover
such a decomposition is unique (1.

¢) In the case that the characteristic of £ is o, the statements about nilpotent
elements of g to be given below can be derived easily from the corresponding ones about
unipotent elements in G (e.g. using an “ exponential mapping ).

(5-3) Lemma. — Let S be the set of simple roots of R, defining the ordering of R. Let
x= rgoi,e, be an element of W such that E,+0 if reS. Then there is exactly one Borel

subgroup of G whose Lie algebra contains x, viz. B. G, is the direct product of the center of G
and of U,, the centralizer of x in U.

The proof of this is completely analogous to that of (4.3), so we leave it to the
reader.

Let X denote the set of all nilpotent elements of g, let / be the rank of G.

(5.4) Proposition. — X is an irreducible ariski-closed subset of the affine space W(g)
determined by @, whose dimension is dim G—I.

This is proved like (4.4), using (5.3).

(5.5) Remark. — By a similar argument one derives from (5.3) the following result
of Grothendieck: g is the union of the Lie algebras of its Borel subgroups ([15], exposé XIV,
th. 4.11, the proof given there is different).

(5-.6) Proposition. — Let x be a nilpotent element of @, then dim G,> .

Because the orbit of ¥ under the adjoint action of G is contained in X, we have
dim G/G,<dim X, which implies (5.6).

(%) (Added in proof.) Proofs of these statements can be found in a note of A. BoreL and the author
in Proc. Sympos. Pure Math., vol. 9 (Amer. Math. Soc., Providence, 1966).
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Remark. — (5.6) is true for all xeg.

(5.7) We now define xeg to be regular if dim G,=! and smoothly regular if
dim g,=! (*). Since dim G,<dim g, it follows from (5.6) that a smoothly regular
nilpotent element is regular (it will follow from (5.9) that the converse is not true).

(5.8) Lemma. — Suppose that @ contains regular nilpotent elements. Then any xeg
with the property of (5.3) is regular.

The proof is like that of (4.7).

(5-9) Theorem. — a) Smoothly regular milpotent elements exist in g if and only if the
characteristic of k is etther o or a good prime for G, which does not divide the order of the fundamental
group of R.

b) If p is either o or a good prime for G then regular nilpotent elements exist in @, the centra-
lizer G, of a regular nilpotent element x is then the direct product of the center of G and a connected
unipotent subgroup of G.

c) The regular nilpotent elements of § form one orbit of G under adjoint action.

From (5.8) it follows that if g contains regular nilpotent elements, then x= Ese,
re

is one (S is the set of simple roots). So in order to prove a) it suffices to investigate
when dim g,=/.

This one can read off from (2.5) and (2.6) (using (2.11)).

b) is proved in the same way as (4.11), the details may be left to the reader.
The conjugacy statement of ¢) is proved as the corresponding statement of (4.7).

(5.10) Remark. — One can ask whether (4.12) has a counterpart for g. The
proof of (4.12) depended on Steinberg’s result that regular unipotent elements exist
in all characteristics. The author does not know whether the corresponding result is
true for Lie algebras.

Mathematisch Instituut der Rijksuniversiteit, Utrecht.

() The name smoothly regular has been chosen because the centralizer of a regular element x in the sense
of group schemes is smooth over £ if and only if x is smoothly regular.

Manuscrit regu le 14 juin 1966.
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APPENDIX

We give here tables for the positive roots of the root-systems of type Eg, E,, Eg, F,;, when expressed in the
simple roots. Description of these root-systems are given in (2.9). We use an evident abbreviation in the tables:
for example, in the case Eg, 012211 denotes the root 7, + 273+ 2r, + 7,474, where the r; are the simple roots
given in (2.9).

TABLE I

Positive roots of Eg

Height
S 100000 0I0O0O0  00IO00  000I0O0  0000I0 000001
2...... 110000 OIIO00 O0OII00 001001 000110
L P 111000 OIIIO0  OII00I 00IIIO0  0O0IIOI
fevennn 111100 111001 OII110  OIIIOI 001111
Bevunn . 111110 111101 012101 OIIIII
6...... 112101 ITIIIL OI2I11
T + 122101 112111 012211
8...... 122111 112211
Quvrnnn 122211
10..... . 123211
IT...... 123212

TABLE 11

Positive roots of E,

Height
| ST 1000000 0I00000  00IOO00  000IOO0  0000IOO0  00000IO  Q00000I
2.0, 1100000 OIIO000 OOIIOO0  000IIO0  O00IOOI 0000110
L T . 1110000 OIIIO00 OOIIIO0  0O0IIOOI 000I1I0  000110I
4oennnn IIII000 OIIIIO0 OIIIOOI 00IITIIO  O0OIIIOI 0001111
Beveunn 1111100 1111001 OIITII0O  OIIIIOI 0012101 0O0IIIII
6...... IIII110 1111101 0112101 OITIIII 0012111
Teeannn 1112101 IIIIITI 0122101 OII2III 0012211
8...... 1122101 1112111 0122111 0112211
Quvnnn . 1222101 1122111 1112211 0122211
10..... . 1222111 1122211 0123211

1222211 1123211 0123212
1223211 1123212

1233211 1223212

1233212

1234212

1234312

1234322
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10000000
11000000
11100000
11110000
11111000
ITIIIII00
ITIIITIIO

III1I2I01I
11122101
11222101
12222101
12222111
12222211
12223211
12233211
12333211
12333212
12334212
12344212
12344312
12345312
12345322
12345422
12345423
12346423
12356423
12456423
13456423
23456423

1000
1100
1110
1120
1220
1221
1231
1232
1242
1342
2342

0100
o110
0120
I1r:
1121
1122
1222

01000000
01100000
01110000
OI11I000
OIIIIIO0O
ITIII0O0I
IIITIIOI
TITIITII
ITII2III
ITI22I11
11222111
11222211
11223211
11233211
12223212
12233212
12234212
12234312
12334312
12334322
12344322
12345313
12345323

0010
0011
OIIIl
0121
0122

T.A. SPRINGER

TABLE III

Positive roots of Eg

00100000
00110000
00111000
00111100
01111001
OIIIIIIO
01112101
01122101
01222101
11112211
11122211
11123211
11123212
11223212
11233212
11234212
11234312
11234322
12234322

00010000
00011000
00011100
00111001
00IIIIIO
OIIIIIOI
OITIIIII
OIII2III
OII22I11
01222111
01222211
01223211
01223212
01233212
01234212
01234312
01234322

TABLE 1V

00001000
00001100
00011001
00011110
00II110I
00112101
00122101
00122111
OI112211
01122211
01123211
01123212
01233211

Positive roots of F,

0001

00000100
00001001

00001110
00011101
00012101
OOIIIIII
00II2I11
00112211
00122211
00123211
00123212

00000010
00000110
00001101
0000IIII
OOOIIIII
00012111
00012211

00000001
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