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SOME ARITHMETICAL RESULTS
ON SEMI-SIMPLE LIE ALGEBRAS

T. A. SPRINGER

Introduction.

The present paper had its origin in an attempt to prove the existence of regular
unipotent elements in a semi-simple linear algebraic group G over an algebraically
closed field k (of arbitrary characteristic p). The attempt was not completely successful,
it turned out to give results only under some (rather mild) restrictions on p. Our method,
which is given in § 4 of this paper, makes an essential use of the explicit formulas for
the structure of the unipotent part U of a Borel subgroup B of G, which are due to
Chevalley ([9]). The application of these formulas to our problem leads one to inves-
tigate an arithmetical problem about semi-simple Lie algebras. This is the following
problem. Let Q be a Lie algebra over the ring of integers Z, associated with a complex
semi-simple Lie algebra. Let {^} be the set of c< root vectors " of 9, let TZ==S^,

where the summation is over a set of simple roots. Determine the elementary divisors
of the endomorphism ad(^z) of 9.

This arithmetical problem is dealt with in § 2 of the paper (after some introductory
material in § o and § i). The results for the case that the root system of 9 is simple,
are given in (2.6). Their proofs rely heavily on the explicit knowledge of the simple
root systems. We need, for example, for the exceptional simple types Eg, Ey, Eg, F4,
tables giving the positive roots when expressed in the simple ones (these tables are given
in an appendix). We also need some properties of the integral structure constants Nyg
of a semi-simple Lie algebra. From (2.6) we derive various characterizations of the
" bad ?? primes for 9, i.e. (in the simple case) those which divide the coefficients of the
highest root of 9. The results are given in (2.11). It would be interesting to have
a priori proofs of these characterizations, the proofs of the present paper are by " checking
cases ". In § 3 we make some remarks about the torsion of compact, semi-simple, simply
connected Lie groups. The results are obtained by comparing those of § 2 with results
which are proved in topology.

§ 4 contains results about regular unipotent elements in semi-simple algebraic
groups over algebraically closed ground fields. Their existence has been proved
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"6 T. A. S P R I N G E R

meanwhile by Steinberg (in [17]), without restrictions on p, by a different method.
Our method leads to some further results about the structure of the centralizer of a
regular unipotent element (see (4.11) and (4.12)).

Finally in § 5, the discussion of § 4 is partly carried over to the corresponding
problem for the Lie algebra of a semi-simple algebraic group.

o. Preliminaries.

(0.1) Let E and F be two free abelian groups of finite rank; let t be a homo-
morphism of E into F. We define, as usual, the rank of t to be the rank of t{E). We
call elementary divisors of t the elementary divisors of the module F/^(E) ([7], Chap. VII,
§ 4, n° 7). These are the prime powers which occur as orders of direct summands in
the decomposition of the torsion-group Tors(F/^(E)) as a direct sum of indecomposable
groups. An elementary divisor p " ' has a certain multiplicity, which is the number of
indecomposable summands of order ^n.

We say that f has no elementary divisors if F/^(E) is torsion free (in particular, if t
is surjective).

Choosing bases in E and F, we can describe t by an integral matrix Af. Then the
elementary divisors of M are by definition those of t. It is known that the elementary
divisors of the transposed matrix ^M and their multiplicities are the same as those of Af.

(0.2) With the same notation, let E^ be a submodule ofE. We call E^ primitive
if E/EI is torsion free or, equivalently, if E^ is a direct summand. E^ being primitive,
let ^ be the homomorphism E/E^ -^F/^(Ei) induced by t.

We then have the following simple lemma, the proof of which is left to the reader.
(0.3) Lemma. — If t(E-^) is primitive in F, then the elementary divisors of t and their

multiplicities are the same as those of t^.

i. Results about semi-simple Lie algebras.

In this section we recall a number of results about semi-simple Lie algebras and
their root systems, which we have to use. References are [9], [14] (exposes 14, 19).

(1.1) We start with a root system R in an /-dimensional vector space V over R,
with an Euclidean metric (given by a symmetric bilinear form (^,j/)). This is a finite
set of nonzero vectors, called roots, with the following properties:

a) R contains a basis ofV ;
b) if reR, then —reR, no other multiples of r lie in R ;
c) if reR, then T^(R)=R, where T,. is the reflection in V defined by

T,(^)=^—2(r, r)-1^, r)r;

d) for r, seR, c^=2(r, r)"1^, s) is an integer.
/==dim V is called the rank of R. The root system R is called simple if it cannot

be decomposed into two mutually orthogonal subsets. The simple root systems R can
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SOME ARITHMETICAL RESULTS ON SEMI-SIMPLE LIE ALGEBRAS 117

be classified. The classification gives the simple types A; (/^i), B( (/^2), C (/.>3),
D^ (^4)5 Ee 5 Ey, Eg, F4, Gg. We do not enter into the classification here; in n° 2 we
shall have to use extensively the explicit description of the simple root systems.

(1.2) In a simple system R one defines the length of a root r as the ratio
(r. ̂ o. ̂ "S where /o is a fixed root in R such that (ro, 7-0) is smallest. The length
of a root is i in the simple types A,, D,, Eg, E^, Eg, i or 2 in the types B,, C,, F,, i or 3
in the type G^. If all roots have length i, then for r+s the integers ̂  are o or ± i.

(1.3) There exist sets of simple roots S in R. These are subsets S o f R consisting
of / roots, whose characteristic property is the following one: any reR is a linear
combination

r == S ns,
ses s

with integral coefficients ^, all having the same sign. h(r) == S n is then called the
s£S

A^ ofr. The root r is called j^z^ if A(r)>o, 7^^ if A(r)<o (all this depends
on S). If S and S' are two sets of simple roots, then there exists a unique element w
of the Weyl group W of R, the group generated by the reflections T, of ( i . i) c ) , such
that S'= w(S). The Weyl group W is also the group generated by the T, (^eS).

Let us recall too that, ifR is simple, there is exactly one root r with maximal height;
we call it the highest root.

(1.4) Let r be the lattice in V spanned by the vectors 2(r, r)""^ (reR). Let P
be the lattice in V formed by the xeV such that

{x,r)eZ for all reR.

By (1.1) d) we have F'DF. The quotient F'/F is a finite abelian group, the funda-
mental group of R. It is isomorphic to Z/(/+i)Z for type A^, to Z/2Z for types B;,
C; and Ey, to (Z/2Z)2 for type D; (/ even), to Z/4Z for type D^ (/ odd), to Z/sZ
for type Eg, and is reduced to the identity in the other cases of a simple root system.

(1.5) Take any lattice A in V such that F C A C F 7 (hence (x, r) takes integral
values if A:eA).

We now define a Lie algebra 9 over Z (1). Put

9-A+ SZ,,,
reR

where the Lie algebra product is as follows:

[A,<] =(r,h)e, (AeA),

(i) ^r^-J-s^r)-1^
[ ,̂ e,] ==N,̂ ,+, (r,seR, y+j+o),

' [ h , h'} =o (A.^eA).

(1) The Lie algebra flover Z which we define here is somewhat more general than that discussed in fql p 9.2
^^Cc? case = is considerecL we also have ^ntified here V with its dual, by means of the inner
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n8 T. A. S P R I N G E R

Here the N^ are certain integers, o if r+s^R. They are discussed in Chevalley's
fundamental paper [9]. Below we shall review the results which we shall need. We
call the Nyg the structure constants of 9.

(1.6) Some comments on the structure constants must be made. In the first
place, in order for (i) to define a Lie algebra, Jacobi's identity must hold. This gives
that the structure constants have to satisfy the following relations

N,=-N,,
(2) • N_^N^_^+N^N_^,=^,

N..N^^+N^N^^+N^N^^=o

(it being understood here that N^=o i f r , j o r r-\-s is not a root).
That complex structure constants N^ exist, is a nontrivial classical result, due

to E. Gartan, proved usually by (< checking cases 9?. In Cartan's thesis ([8], Chap. V)
one already finds explicit integral solutions of (2). More detailed results are given in [9].
We collect those which we need in lemmas.

(1 .7 ) Lemma.—Suppose r, j, r+jeR. The ieZ such that s+ireR form a closed
interval [—p, q\ in Z with p, q>_o.

a) For any solution of (2) we have NygN_y -s=—(j&+i)2;
b) There exists a solution of (2) such that for all r, s, r+^R we have N^=±(^4- i),

where p is the integer defined above;
c) If (NyJ and (N^) are two solutions of (2) satisfying b), then there exists a function

e:R->{i ,—i} with e(r)=£(—r) such that N;,==£(r)£(^£(r+^)N^.
For the proofs of these statements see [9], p. 22-23. In the next lemma (N,J

is any solution of (2).
(1 .8) Lemma. — Suppose that r, .y, r-)-j e R.
a) ^_r,r+s^-8,r+s)~1 ls a negative rational number•;
b) 7/' ±r, ±j, ±(r-\-s) are the only linear combinations ofr and s which are roots,

then N_r,r+s=—^-s,r+s'

With the notations of (1.7) Jacobi's identity implies

N^N_^^=^+i)

(see [6], p. 22). A similar formula is true with r and s interchanged. Since N^ = —N^,
a) follows. Under the hypothesis of b) the right hand sides in these relations are i, which
proves the assertion of b).

(1 .9) Lemma. — Suppose that all roots have the same length. Assume that a set S of
simple roots has been fixed. Then there exist structure constants N^ such that N^ == o or i
if s is simple and h(r)'>_2 (1).

Suppose that the following assertion has been proved: (*) there exist structure
constants such that N^=o or i if s is simple and h(r)>i-{-i.

(1) I owe this lemma to H. de Vries. It replaces a more complicated lemma and it led to some simplifications
in the discussion of (2.9).
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SOME ARITHMETICAL RESULTS ON SEMI-SIMPLE LIE ALGEBRAS 119

We shall show below that if ^2, (*) holds too with i + i replaced by i. Since (*)
is obviously true for large i, (1.9) follows.

Since all roots have the same length, we may assume that (r, r)=s for al] reR.
It is known then, that if r and r ' are linearly independent roots, we have (r, r')=o
or ±i and moreover that ( r , r ' )=—i if and only if r + r ' is a root.

Fix r with h{r)=i and assume that N,,+o where s and t are simple and s^t.
By our previous remarks we have (r, s) = {r, t) = — i. Now if (s, t) == i, s—t would be
a root, which is impossible. Hence (s, t)^o. If (s,t)=-i, we would have
(r+s,t)=—s, which is also impossible. So {s,t)==o, and (r+s,t)=—i. Hence
r+s+t is a root. Then Jacobi's identity implies that

N^,,N^=N,^Nrt.

By (*) we have N^,=N,^= i. It follows that N^=N,<. Changing the struc-
ture constants according to (1.7) c ) , with s(r')=i if r'+±r, we may assume that
N,, = o or i for our fixed root r with height i and for all simple s. If ^2, we can deal
separately with each r, proving that (*) is true with i instead of i+ i.

Remark. — The same argument shows the following. Let S=SiUSa, where S.
consists of orthogonal roots. Then structure constants exist which have, besides (1.9),*
also the following property:

N,(=I if j£Si, <eSa.

(1.10) We now define on our Lie algebra 9 a grading as follows. Take a set S
of simple roots, let h denote the height as in (1.3). Define

9°=A

9t=^(s-z^ ^°)-

We put /, ==rank 9* (= number of roots r with height i if i^ o). It is easily verified
that

[Q^C^,

so that we have made 9 into a graded Lie algebra over Z.
The grading depends on the choice of the simple roots. However, if we take

another set S' of simple roots, there exists weW such that w(S)=S'. Moreover,
by (1.7) c) we have

N^),^)=e(r)s(j)e(r+j)N,,,

where s is a function R->{i, —i). Define an endomorphism 0 of 9 by

<S>(h)==w(h) (^eA),
<D(^)=e(r)^.

It is easily seen that 0 is an automorphism of the Lie algebra 9. Let

Q-^-)'
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120 T. A. S P R I N G E R

be the grading defined (as above) by S'. Then

<IW)==(9%

This shows that the graded Lie algebra structure on 9 is unique up to isomorphism.
(1.11) Fix a set S of simple roots. Define then an element n eg by

n== S ̂ .
r6S

It is clear that n is a nilpotent element of g, i.e. such that ad n : x 1->[ ,̂ x] is a nilpotent
endomorphism of g. We call % a principal nilpotent element of 3 (such elements have been
investigated by Kostant ([12], [13]) for the case of semi-simple Lie algebras over the
complex field).

One may prove by an argument like that used in ( i . 10) that if n and n' are two
principal nilpotents, defined by sets S and S' of simple roots, we have n1 ===0(^) where 0
is an automorphism of 9.

In the next section we shall investigate in detail the action of ad n in g.
Remark. — Our definition of a principal nilpotent is unsatisfactory in that it depends

on the choice of a particular basis in g. In Kostant's paper [12] cited above, intrinsic
characterizations are given of principal nilpotent elements of a complex semi-simple
Lie algebra. For instance, they are those nilpotent elements whose centralizer has least
possible dimension. The author does not know similar characterizations for the algebras
over Z. Because it is not necessary for the purpose of this paper, we don't want to
pursue this matter further here.

2. The action of a principal nilpotent element.

(2.1) In this section g is a Lie algebra over Z of the type considered in § i. The
root system R is assumed to be simple, the structure constants Nyg are assumed to have
the properties of ( i . 7) b) and (1.9). A set S of simple roots is fixed, the grading of 3
is that defined by S. If n denotes the principal nilpotent element, we define homo-
morphisms (of abelian groups)

,i+lti:cf-^Q
by

t,{x)=\n,x\.

It is the purpose of this section to investigate the elementary divisors of the ^.
But first we want to recall a known result about the ranks of the ^.
(2. a) Proposition.—t^ is injective for i^o, rank ^==^^(==rank Q14'1) for z\>o.
A proof of (2.2) is contained in [12]. For the convenience of the reader we

indicate one here.
Consider the Lie algebra 9Q=9®zQ." We ^mbed g in QQ in the obvious way.

We choose
^=2(2(^r1.)^

&6S
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SOME ARITHMETICAL RESULTS ON SEMI-SIMPLE LIE ALGEBRAS 121

in 9°®Q, such that

(3) M^r-

That such a choice is possible follows from the definitions (i) in (1.5) of the product
in g: the S;g have to satisfy

(4) S^=i (reS).
S£b

(4) can be solved in rational numbers, for the Gartan-matrix (^s)^sgs ls nonsingular.
Moreover it follows from (4), that for all reR we have

(5) [^J^W^
where h denotes the height (defined in (1.3)).

Now let n be as above (identified with n^ieQo), put 72'=== S <?_g®^. Then
ses

[n, n'] == a, [a, n] = n, [a, n'] == — n'

a, n, n1 span a three-dimensional simple subalgebra 5 of QQ. Moreover o is the only
element ofQq annihilated by ad a, ad n, ad n ' . For such an element must lie in 9^ (by (5))
and there both ad n and ad n' act injectively, because of the non-singularity of the
Cartan-matrix. Also by (5), the eigenvalues of ad a are integral. It then follows from
the representation theory of 5 (see [n], p. 85) that there exist elements ^3 . . ., x^ in Qq
and odd positive integers 2A;i+ i, . . ., 2^4- i with the following properties:

a) X.EQ^^, {!idn)2ki+lXi=os,
b) (ad^)^ (^^i^h, o<::j^:^fci) is a basis of QQ.
It now follows that (ad^)^==o implies that x is a linear combination of the

(ad n^x^ (i^'^A), which implies the first assertion of (2.2) . The second one is
obtained by observing that from b) it follows that (ad ^Qq^cfo'1 for i^>_o. Moreover,
observing that rank gq == /, we find that h == /.

(2.3) Corollary. — a) If i<o we have ^^^4.1, if i>o we have 4+1^^;
b) Let the positive integers (^)i<z<^ be such that k-^<k^<. . .<^ and that for i>o

we have ^^^4.1 if and only if i==h for some j . Then h==l'y moreover for z<o we have
4-</^i if and only if i=—kj—i for some j .

Remarks. — a) It is known that the real cohomology algebra of the compact, semi-
simple, simply connected Lie group whose complexified Lie algebra is Q®^C is an
exterior algebra on I generators of degrees 2^+1 ̂ ^i^l) (see e.g. [12], where the
Betti numbers are discussed).

b) The property b) mentioned in the course of the proof of (2 .2) can also be stated
in the following way: the Jordan normal form of ad n in g^ is a direct sum of / Jordan
matrices, with 2^4""I? • • • ? 2/^+ i rows, respectively.

We now want to investigate the elementary divisors of the homomorphisms ^.
First an easy special case.

(2.4) Proposition. — We have g^^^g-^^A/F, g^^^^F'/A.
9~1 has as a basis the (^_g)g^g and we have t_i(e_s)==2{s, s)~ls, which implies

481
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122 T.A. S P R I N G E R

the first assertion, taking into account the fact that F is generated by the 2{s,s)~ls
with seS (this follows from the remark in [9], p. 16, lines 10-11 from below). F' has
a basis (/Jsgs where (r,/J==8^ (r, jeS). Let gy== ^ v-rsfs be basis vectors of

sGS

9°=A (where a,,eZ). Then ^,)==— S a,,<?,. This implies that S^g^r'/A.
sGS

(2.5) Corollary. — If A==r then t_^ has no elementary divisors and those of IQ are:
the prime powers occurring in the decomposition of I -\-1 for type A;, 2 for the types B,, D, (I even),
£7, ^for type Eg, 4^ for type D; (/ odd). If A==r" ^TZ ^o an(^ t-! are t° ^e interchanged in
the preceding statement.

This follows from the structure of F'/F, given in (1.4).
We now come to the main result of this section.
(2.6) Theorem. — For i>o and z<—i ^ has at most one elementary divisor. It is

a prime p and its multiplicity is i. This occurs in the following cases

m \l~l'\j&=2, z=2,4, . . . ,2 ^ ,—3,--5, . . . ,—2-^-J—i;

j&==2, Z=2,4, . . . ,2 /—2;

p=2, i=2, 4, . . ., 2 - —2, —3, —5, . . .,

j&=2, 1=2,—3; p=^ z=3 .—4;
^==2, x = 2 , 4 , 8 , — 3 , — 5 ? —9; P==3, i=^—^\
p=2, z=2 , 4, 8, 14, —3, —5? —9? —^ ^=3? ^^S? 9? —4? — I 0 5
^:=5> ^=5.—6;
j&=2, z=2,4,8,—3; p==3, i==3,—4',
^==2, i=2,—3; j&=3, 2=3.

^ B, (/>:2)

type C,(^3)

^ D,(/^4)

W^ Ee
^ £7
^ Eg

type F^
^ Ga

We shall prove (2.6) by <( checking cases ". Before indicating how this can be
done, we give a few facts of a more general nature, which are used in the proof. First
observe that for z==o, — i the matrix of^ with respect to the bases of g1, g^1 formed
by the appropriate Cy is

(6) ^^(^-r.r^^+l^r)^

(the roots of height i and z+ i are supposed to be ordered in some way).
We assume that the structure constants Nyg satisfy (1.7) b) and (1.9) (if applicable).
(2.7) Lemma. — If all roots of R have the same length, then the elementary divisors of t^

and their multiplicities are the same as those of t_^^.^ (z>o).
If all roots have the same length, the condition of (i .8) b) is satisfied for all r, s.

It then follows from (1.8) b) that
^.^—M-(*+!) (Z>0),

which implies the assertion of (2.7).
(2.8) A method which we shall often use is the following one. Let ^eS be a

fixed simple root. Decompose cf==TT^+rr^, where m'o is spanned by the Cy such that r
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SOME ARITHMETICAL RESULTS ON SEMI-SIMPLE LIE ALGEBRAS 123

contains SQ, i.e. that in r== S n^s we have n^o, and where m{ is spanned by the

other € y . Decompose g^1 in the same manner. Let t^o denote the restriction of ^
to m^, let ^ i denote the induced homomorphism of ml into cf'^/m^^m^'1. Suppose
first that t^ is an isomorphism of m'o onto m'o4"1. Then by (0.3) the elementary
divisors oft, can be found from those of^i. The way in which t^ is constructed shows
that it is a mapping of the same kind as t^ but for a root system R^ of lower rank, whose
roots are those of R which do not contain SQ. In this way we can use induction with
respect to the rank /. This is one method which we shall use. A second one applies
when t^ is an isomorphism. In that case we know by (0.3) that the elementary divisors
of ^ can be found from those of ^ o.

(2.9) We now turn to the proof of (2.6), for which we shall discuss the simple
types. These are described in [14] (expose 19), we use the same description here.
We denote in all cases a set of simple roots by (^)i<^<;.

Type A, (^ i):

The roots are the vectors ±(r ,+ . . .+r , ) {i<,i<,j<^V). There are l—\i\+i
roots with height i, the highest root is 7-1+. . .+r;. All roots have the same length,
all N^ are d=i.

We have to prove that the ,̂ (z+o, — i ) have no elementary divisors. By (2.7)
we need only to prove this for z>o.

For every height i>o there is exactly one root s, which contains r^ (viz.
si=rl+• ' - + r i ) ' It follows immediately that ^(^.)==±^. . Moreover if l>_2 the
roots which do not contain 7-1 form a system of type A;_^.

We can now apply the first method of (2.8). It is clear that induction with
respect to / gives the result which has to be proved. The starting point I == i is easy.

TypeB^2):
The roots are ±r^., ±^. with

^r:=r.+•••+r, (i^^'^O,
^r=^+...+r,_l+2r,+...+2r, (î <;^).

We have

h{ri,)==j—i+i, h{r^)==2l—i—j+2.

There are l—i roots with height 2 i or 2^+1 . The highest root is r-^+2r^+ .. . +27";.
Not all roots have the same length, N^=±i or d=2.
Again, for each height z'+o there is exactly one root ^ which contains /i. We

have s,-=r^ (i_<^/), s,=r^ (l+i<:i^2l—i), and j_,=—^.
Moreover, for l^ the roots which do not contain r^ form a root-system of

type B,_i.
We prove the statement for type B; contained in (2.6) by induction with respect

to /. We start with 1=2. In this case we have to prove that ^ has an elementary
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124 T. A. S P R I N G E R

divisor 2 with multiplicity i and that the other ^ (?4= o, — i ) do not have elementary
divisors. This is an easy check. Suppose that l>2 and that we have already proved
the assertion for type B^_i. Now we have ^(^.)==±^. if i-^l, t^{e^)==±2e^^.

The first method of (2.8) establishes the assertion for i^l. If / is even the
second method of (2.8) gives the desired result for i==l. Now let I be odd. Then
the roots of height / are r^, r^, . . . ,^ ^ , those with height (^+ i ) are

a\* T- ••-/» g\"

^^-i---^),!^)- P^t ^-^ ̂ -^ We then have

t^)==±2e^ ^-^-^i^^^n-i (^<^+1)).

Ue\ i )=±< i
l^1).!^4'3' l^1^4-^

It is now easy to check that ^ has no elementary divisors. This settles the case z>o.
For i<o we put g^m'o+mt as in (2.8), where m^Z^. We have

^)=±^(modm^1)
if z+—i.

Applying (0.3) with E==Q\ Ei==Z^. we get from the induction assumption the
assertion about ^ for i<o, i=t=—/. The case i==—I is dealt with as in the case that ?>o.

Type C,(/>3):
The roots are ±r^, ±r^, where

^=r,+ ... +r, (i^^^O.
^=^+ • • • +^-i+2r,+ ... +2r^,+r, (i^^J^O.

We have
A(r,,)-/-^+i, A(^,)=2/-z-j+i.

There are l—i root^with height 2z or 2t + i • The highest root is 2r^ + ... + 2r;_i + ^«
Not all roots have the same length, N^=±i or db2.
For each height i^o there is exactly one root ^ which contains r^, viz.

^-^(i^'^), ̂ ==^^+I^^2/—I) and s^^—s,.
The statement regarding type C, is proved in the same way as that for type B^,

we leave the details to the reader.

Type D,(^4):
The roots are ±r,,, ±r^, ±r,', where

r,,==r,+ . . . +r, (i^^'^^-i),
r;,==r,+ . . . +r,_i+2r,+ . . . +2r^+^-i+^ (i <^<7^—i).
r; -r,+...+r^2+^ (i^^^-i).

We have

A(r,,)=j-z+i, h{r^)=2l-i-j\ h{r,)=l-i.
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There are /— i roots with height 2i<l and 2z+i</ , there are /— i— i roots with
height 2z'> / and 21'•-\-1 .> /. The highest root is r^ + 2r^ + . .. 4- 2^_g + r^_^ + r,, its
height is 2l—3. All roots have the same length, N^=±i. So by lemma (2.7) it
suffices to prove the part of (2.6) about D, only for positive heights i.

For each height z>o, i-^l—i there is exactly one root ^ containing r^, for
i==l— i there are 2 such roots, which we call ^_^ and ^_r We have .$»=== yi» (i^^/)?
^==r^. {1^1^21—3)3 ^-i=^. The roots which are linear combinations of r^, ..., r,
form a root system of type D;_i (of type A3 if /=4).

We have

^(S^^^i for ?+/—2,
and

^ik/.i)^^-

Using the first method explained in (2.8) we see that the elementary divisors of ^ for
type D^ are the same as those of ^ for type D,_^ (A3 for ^==4), if i-¥l—2.

So it remains to consider the case z==/—2. In that case the assertion of (2.6)
is: ^_2 has the elementary divisor 2 with multiplicity i i f / i s even and does not have
elementary divisors if / is odd.

Let f;>4. The roots of height 1—2 are r^^g, r^_i, r^ r^g., (3^'<;^+i)),

those of height l—i are r^.^, r^, r,^^, (2^z<^(/+1)). Put ^-^^ <==^
e^==e/'.., we define ^•==0 if i>y.

Assuming (1.9) for the structure constants, we have

^-2(^.,1-2) ==—^1,1-1—^l?

^-2(^2,;-l) ==——^1,!-1——^2,(—l5

^-2(^2) ^—^i—^i-i?
^-^(^-^—^^ —^»—1,?+2-»——^i, l+l-i'

If I is odd. ^7 of^ i )=—^ i , which is readily seen to imply that ti o is3 ^-2V I^+D.1^4-3)7 j(f-i),j^4-3)5 y r y i-2

surjective; hence has no elementary divisors.
If / is even, ^_g maps ^^+2-»(^3) m —^^-n-i modulo the sublattice of g,_i

generated by yi^_i, ^, ^^i.-y (2^j<z). From this one infers that the elementary
divisors of ^_g are the same as those of^g for type D^. In this case the preceding for-
mulas are easily seen to imply that there is only an elementary divisor 2, with multipli-
city i.

Type Ee:

There is a basis (^)i<i<6 °^ V such that the roots are ^—^•(2=t=^),
~~ ~ e

±(^.+x-+^—^) (^, ^ distinct) and ±s, where ^==(1/3) 2^. The simple roots»==i
are then ^==^-—^41(1^^5)5 TQ== ̂ 4+^5 +^6—^ Ch^ can now write down all
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positive roots, expressed as linear combinations of the simple ones. The result is given
in table I (appendix). The highest root is r^ + 2/2 + y^ + 2/4 + r^ 4- 2rg.

All N^ are ±1, the roots have the same length. So by lemma (2.7) it is suffi-
cient to consider positive heights.

One sees by inspection of table I that, except for z==2, 3, the following situation
prevails: the bases (^.) ofg1 and g14"1 can be numbered such (say e^y .. ., ^,^1, .. .,^)
that we have ^(^;)==b^+a linear combination of j^, .. .,j^_r

It is then obvious that ^ has no elementary divisors. So only z=2,3 remain.
If i = 2 we apply the first method of (2.8), with s == r^. There is only one root of height 2
or 3 containing r^, and the roots not containing r^ form a root system of type Dg. Hence
the case of height 2 for type Eg can be reduced to height 2 for type Dg, which has already
been dealt with.

In the remaining case i'.= 3 we must make a computation. Making use of table I,
it is easy to write down the matrix M^ for this case (which has 5 rows and columns).
Its entries are o or — i (by (1.9)). There is no difficulty in finding its determinant,
it turns out to be ±3. This implies that ^3 has an elementary divisor 3 with multipli-
city i, which proves the assertion about Eg. For Ey and Eg the argument is of the same
nature.

Type E,:

There is a basis (^)i<i<7 of V such that the roots are ^—Xy {i+j),
~~ ~~ 7

±(x.-{-x.+Xj,—s) (z, 7, k distinct), ±{s—^), where ^==(1/3) S ̂ .. The simple roots
' i=l

are then r,==^—x^^ (i^^6), 7-7 == x^ + XQ + x^—s. In table II the reader will find
the positive roots, expressed in the simple ones.

The highest root is /i + 2 r^ + 3 r^ + ̂ r^ + 3 r^ + 2 r^ + 2 r^. All roots have the same
length, the N^g are ±1. So we need only consider positive heights.

Again, as for Eg, a verification based on the use of table II shows that one only
needs to consider the cases i== 2, 3, 4, 8. The cases i= 2, 3 are reduced to the corres-
ponding cases for type Eg (there is only one root of height 2 or 3 containing r^ and the
roots not containing r^ correspond to those of a system of type Eg). For 1=4. we apply
the first method of (2.8) with S=TQ. The roots not containing TQ form a system of
type Dg, we may then reduce the case z==4 for Ey to the corresponding case for Dg,
which has been dealt with. In the remaining case i = 8 a simple computation shows
that detAf8=±2. This settles type Ey.

Type Eg:
V is generated by vectors (^)i<i<9 with sum zero, such that the roots are

x!—^ (^J*)? ±(^+^4-^) (^J? k distinct). The simple roots are r,==^—x^^ (1^^7)3
7g==A:6+^7+A:8. In table III we have given the positive roots, expressed in the simple ones.
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The highest root is 2rl+3 r2+4 r3+ 5ri+(>r5+4^+2r^+srs. All roots have
the same length, N^===bi. We need only consider positive heights.

For i^= 2, 3, 4, 5, 8, g, 14 a verification using table III shows that ^ has no elemen-
tary divisors.

In the cases t==2 ,3 ,4 ,8 we can reduce, considering the roots containing r^,
type Eg to type Ey.

In the remaining cases 1=5, 9, 14 one has to calculate the determinant of M^.
The method is the same as in the previous cases. The result is that in these cases det(Af^)
is, in absolute value, 5, 3, 2, respectively. This settles type Eg.

Type F^:

There is a basis (^)i<i<4 such that the roots are ^—Xy (?=t=j), ±^,
4 ~ ~

±(^+^-) (^4=^)5 ( i /2)Ss^, where £^==d=i . The simple roots are r^=x^—x^y
7"2=A:2—^3, ^3=^3, T^ = (l /2) {x^——X^——X^—— ̂ 3).

The positive roots, expressed in the simple ones, are given in table IV. The
highest root is 27•l+3 r2+4^3+2r4.

The roots do not have all the same length, N^=±i or ±2. For i>o one
checks, using table IV, that except for i'.== 3, we may take bases ^, ..., ^ and j^, . . . 5^
of 9' and 914'1 such that

^(^)==a4+a linear combination of ̂ 5 ...,^;-i5

where a=±i or ±2.
One checks that a =±2 can only happen if i==2, 4, 8. It is easily verified in

these cases that the assertion of (2.6) holds. For i<—i a similar argument gives the
desired result if z=t= —4. There remain the cases z=3, —4. There again we calculate
a determinant. In this case we have to use a more complicated argument, because
the [N^[ may have different values.

First let ?=3. We then find without difficulty that

±detM3=N^^,,N^^^N^^^+N^^^N^^^N^^^,

where r == r^ + ^3 (which is a root).
Now by Jacobi's identity (viz. the last formula (2)) we have

N^,..N^=N^^N^
(8) N,^N^=N^^N^

Nr+r3.r<N^,-N^^,,N^^+N,N^^=0,

where s==r^-{-r^.
Now it follows from lemma (1.7) b) that N^ ^ = ± i. Then the first 2 formulas (8)

give
N N N —N N N N N•'•'r+rnra-^r+ra^-^r+r^ri — l' lr+rl,r41' lr+r3,rt l' lr+r3,r41' lr,r31' lr,r,•
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It follows that

±detM3=N^^^N^^^N^^^N^.N,,^+N^^J,

which (using again lemma (1.7) b)) yields

±detM3=N^^^N^^+N^^^N^.=2N^^^N,,^-N,N^^,

by the last formula (8).
Another application ofjacobi's identity gives

N ]\j —]\T ]NJ
'•+»•4,rsl'ls,r, —•"'W'r,,^'

Since N^ = ± i, we have

±detM3=2N^^^N^,N^^-N,N^^N,.
=N,(2N^N^.-N^NJ.

Now N^^N^^^==—N^^N^ (again by Jacobi's identity), and these integers as well
as N^, are ± i (by lemma (1.7) b}). So detM3==±3, which settles the case ^'==3.

Finally for i=—4, we find an expression for detM_4 like the one for det M^
with which we started. Using lemma (1.8) a) one gets

(9) N^.^N.^^r^-IN^^IIN^^I-1,

ifr and s are positive roots (such that s—r is one). By lemma (1.7) b) one knows [NyJ.
Now (9) allows one to compare the expression which one finds for detAf_4 with the
above one for det^, the result is that both have the same absolute value, which has
been found to be 3.

Type G^:

The roots are ±7-1, ±r^ ±(^+^2). d^i+s^), dL(ri+3^ ^(^i+S^)-
The highest root is 2^+37-2. We have N^=o, ±i , ±2, ±3. There is no

difficulty, using lemma (1.7) b}, to verify the assertion of theorem (2.6). This finishes
the proof of theorem (2.6).

(2.io) We shall say that p is a bad prime for the simple root system R or for the
corresponding Lie algebra 9 if p divides a coefficient of the highest root of R (this
obviously does not depend on A).

IfR is not simple, then we say thatj& is a bad prime if it is one for one of the simple
components ofR. Otherwise p is called a good prime. In the course of the proof of (2.6)
we have indicated the highest roots of the various types. From this it follows that the
bad primes are for the simples types:

At .-none; B^, C;, D; :^=2; Eg.E^F^Gg : j&=2 ,3 ; Eg ^==2,3,5.

From (2.6) and its proof we can now extract various characterizations of the bad primes
(R is supposed to be simple).
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(2.n) Theorem. —p is a bad prime for Q if and only if one of the following conditions
holds:

(i) ^ has an elementary divisor p for some z>o;
(ii) ty has an elementary divisor {which is then p with multiplicity i);
(iii) lp==lp+^
(iv) li=l—i if 2_<r<^+i.

(As in ( i . 10), 4. denotes the number of roots with height i),
(i) and (ii) are read off from the statement of theorem (2.6). (iii) and (iv) are

read off from the explicit structure of the root systems of the simple types. This is an
entirely straightforward verification (using tables I, II, III, IV for types Eg, Ey, Eg, F4
and the results cited in (2.9) for the other types).

(2.12) Proposition, — If ^ (i>o) has an elementary divisor, then 1^=1^^.
This is also proved by using (2.6) and checking the possible cases.
It would be interesting to have a priori proofs of (2.11) and (2.12).

3. On the torsion of compact Lie groups.

(3.1) In this paragraph we denote by G a compact, semi-simple, simply connected
Lie group. We denote by 9 the Lie-algebra over Z defined in § i, defined by the root
system of G. For definiteness we assume 9 to be of" simply connected 5? type (A == F').
It is known (see [6]) that ifR is simple, G has aj^-torsion exactly in the following cases:

j&=2, types B,, D,, Eg, E^, Eg, F^, G,;
j&==3, types Ee.E^Eg.F^;
P==5. type Eg-
Combining this information with that given by theorem (2.6) one obtains the

following result (in which we use for 9 the notations of § 2).
(3. a) Theorem. — Let G be a compact^ semi-simple^ simply connected Lie group. Then G

has p-torsion if and only if ^-(p+i) has an elementary divisor.
For the simple types this is checked at once; the extension to the general case is

then immediate.
(3.3) (3.2) indicates that there is a connection between the topology of G and

the structure of 9. We shall give now a few more results which point in the same direc-
tion. All these results are obtained by <( checking cases 5). We first recall some facts
about the structure of the cohomology algebra H*(G, k) for a field k. It is known that
this algebra is a Hopf algebra. The structure theory of Hopf algebras (see e.g. [4])
then implies that

H'(G, k)==k[X,, ..., XJ/(X^, . .., X^)),

where ^[X^, . . . ,X^] is a graded anticommutative polynomial algebra with gene-
rators X^ of degree h(i) (i^^^). The d(z) are 2 if char(A:)==o and are either 2 or
a power of char (A:) if char (k) 4=0. We now list some known results.
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a) If char(A;)==o, then H\G, k) is an exterior algebra on / generators (where
/==rankG). These generators have degrees A ( z ) = = = 2 ^ + i , where the ^ the integers
defined in (2.3). They can be read off from the root system R, as follows from (2.3).
These matters are dealt with in [12].

b) Take now k=fp, the prime field with p elements. If G has ^-torsion, then
we assume the X .̂ to be numbered such that d{ i ) , . . . , d{a) are >2 and
r f ( f l+ i )= . . .= r f (w)=2 . We call

A[X,,..,XJ/(Xf),..,X^)

the extraordinary part of the cohomology algebra H*(G, F ).
First let p be odd. Let G be simple. In the cases where j^-torsion occurs (which

are enumerated above) the extraordinary part of H^G, Fp) is known (see [5] for F^,
[2] and [6] for Eg, £7, Eg), the following holds: all d(i) {i<,i<,d) are equal top, the h{i)
are respectively,

8 if p=s, for types Eg, E,, F^,
8,20 if p==^ for type Eg,
12 if p=^ for type Eg.

Comparing this with the results stated in (2.6) we obtain the following statement.
(3.4) Proposition. — Let G be a compact, simple, simply connected Lie group. If p is

odd, the extraordinary part of H\G, Fp) is k[X^, .. ., XJ/(X?, ..., X^) where h(i) runs
through the integers 2J such that t_ • has an elementary divisor p.

(3.5) For p=2 a corresponding statement is not true. For then the d{i) occurring
in the extraordinary part ofH^G, Fg) are not always equal (this is the case, for example,
in type Eg, as follows from the results of [3]). The known results (see [i], [3], [5])
show however that the following holds: the degrees h{i) {f-^i^a) occurring in the extra-
ordinary part o/H*(G, Fg) are the integers j such that t_^ has an elementary divisor 2.

4. The centralizer of a regular unipotent element of a semi-simple alge-
braic group.

(4.1) In this paragraph we shall give an application of the results of § 2 to a
problem in the theory of algebraic groups over an algebraically closed ground field k.

We denote now by G an algebraic group over k (== smooth affine group scheme
of finite type over k) which is connected and semi-simple. For the standard facts about
such groups we refer to [14], to which we conform. We recall some notions. Let T
be a maximal torus in G. With G there is associated a root-system R (in the sense of§ i),
the reR are rational characters of T. For any reR there exists a unipotent subgroup X^
ofG, which is isomorphic over k to the additive group G^ and which is normalized by T.
Fixing a set of simple roots, let U be the subgroup ofG generated by the X,. with r>o,
let B be the group generated by T and U. The group B is then a Borel (== maximal
connected solvable) subgroup of G, U is a maximal connected unipotent subgroup of G.
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The Borel subgroups of G are conjugate, so are the maximal connected unipotent
subgroups.

In the next result the structure constants Nyg will occur of a Lie algebra 9 discussed
in § i, belonging to the root-system R of G. These structure constants are assumed to
be integers satisfying (1.7) b ) . We then have the following important result, due to
Chevalley (see [9] and [10]).

(4.2) Proposition. — There exist isomorphisms Xy : G^ -> Xy (reR) such that if r+^=t= o
we have for !;, ^eG^,

^(^^(^^(^-^.(^-^^^.^.(C,,,^),

where the product on the righthand side is over the integral linear combinations of r and s which are
contained in R, taken in a suitable order and where the G .̂yg are integers with C^s^^rs.

We shall apply this to obtain information about the structure of U. Henceforth
the Xy will always denote isomorphisms G^->Xy with the properties of (4.2).

(4.3) Lemma. — Let S be the set of simple roots ofR defining the ordering of R.. Let
x== I! ̂ (^) (the product being taken in some order) be an element of U such that ^4=0

for reS. Then x is contained in exactly one Borel subgroup of G, namely B. The centralwr G^
ofx is the direct product of the center G of G and U ;̂, the centralwr of x in U.

The first assertion is proved in [17] (lemma 3.2), for the convenience of the
reader we indicate the proof. Suppose gxg~le'B for geG. Applying Bruhat's lemma
([14], exposd 13, th. 3, Gor. i) we see that we may take g==^^ where 6eB and
where o-̂  is a representative in G of the element ^eW==N(T)/T (N(T) denoting the
normalizer ofT in G). If x satisfies the condition of (4.3) then (4.2) implies (together
with the facts that B==TU and that T normalizes all Xy) that bxb ~~1 satisfies the same
conditions. It suffices then to take g==a^. However since o^X^o^^X^ it follows
that w{s)>o for all jeS. This is known to imply that w=i. Hence g x g ^ ^ ' e ' S
implies ^eB, which proves the first assertion.

As to the second assertion, the preceding argument shows that G^B. Take
g^G^ and write g==tu {teT, ueV). It is well-known that

tx^t-^x^W).

Using this it follows that s(t)==i for all seS. This implies that teC.
Let X denote the set of all unipotent elements ofG. Let / be the rank ofG, i.e. the

dimension of the maximal tori of G.
(4.4) Proposition. — X is an irreducible ^ariski-closed subset ofG of dimension dim G—/.
Since every unipotent element ofG is conjugate to an element ofU, X is the union

of the conjugates ofU. Then (4.3) implies that the normalizer o f U i n G is the same as
the normalizer of B in G, which is B itself. Application of a well-known result ([14],
expose 6, lemma 5, a more general version is in [15], expose XIII), taking into
account (4.3) and the fact that G/B is a complete variety, proves that X is closed and
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has the asserted dimension. The irreducibility of X follows easily from the proof of
the cited result.

For xeG, let G^ denote its centralizer in G.
(4-5) Proposition. — For any xeG we have dimG^l.
Ifx is unipotent this follows from (4.4): then the orbit of A: in X under the adjoint

action of G has dimension ^dimG—/, hence dim G^>/.
Ifx is arbitrary, write x=su (where s and u are the semi-simple and unipotent

parts ofx). Then the identity component G^ ofG, is a reductive group (i.e. a connected
algebraic group whose radical is a torus) and the centralizer of A: in G coincides with
that ofu in G,. Now ueG^ ([14], exp. 6, cor. 2 of Th. 6). We can then apply the
statement for x unipotent to G^ modulo its radical.

(4.6) We define an element x of G to be regular if its centralizer G^ has dimension /.
The regular elements of a semi-simple group are the subject of [17], where various charac-
terizations and properties are discussed. One of the crucial points of [17] is the proof
of the existence of regular unipotent elements for any semi-simple G. We shall show
that the results o f§2 of this paper enable one to give a different existence proof (however
under some restrictions on the characteristic of k). Moreover with the results of § 2
one can get information about the connectedness of the centralizer G, of a regular
unipotent element x. The study of these connectedness questions is the main object
of this paragraph.

(4.7) Lemma. — Suppose that G contains a regular unipotent element. Then any element
xe\J with the property of (4.3) is regular. Two regular unipotent elements are conjugate.

This follows from Theorem 3.3 of [17]. A direct proof is as follows: suppose
that ^ = n x^)eU is regular. The set Y of conjugates uyu~1 {ueV) of y in U is
closed in U by a theorem of Rosenlicht [Trans. Am. Math. Soc., 101 (1961), p. 221),
moreover it is clear that dim Y^dim U—/. On the other hand it follows from (4.2)
that if z=^n^,(7],)eY, we have 7],==^ for seS. It follows that d imY=dimU—/
and that Y is precisely the set of elements ^ satisfying this condition. In particular,
^=II^(y lies in Y and hence is regular. Now if ^ =o for some ^S, there is a
non-trivial subtorus ofT which centralizes u, therefore dim G^l+ i, which contradicts
the regularity ofu. Hence, all ^ are 4=0 and the first assertion follows.

The second assertion can be derived from the first one. Another proof is as
follows: let x andj/ be regular unipotents. Consider their orbits (under adjoint action
of G) in the set X of unipotent elements. Because of dimensions, these orbits contain
Zariski-open subsets of X. X being irreducible, these open sets have a non-empty
intersection and the conjugacy of x andj^ follows.

(4.8) It follows from (4.7) that, if regular unipotents exist,
10 y = n ^ ( i )

s£S sv 7

(the product taken in some order) is a typical one.
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From (4.3) it follows that v is contained in exactly one Borel subgroup, namely B
and that G^,==UyC. We shall now investigate, generally, the group Uy.

Denote by U^ the normal subgroup of U generated by the X,. with h{r)>_i (z\>i).
We have U^DU^i, Ui==U, V^=[e} for large n. U^/U^+i is an abelian algebraic
group, isomorphic to (GJ^ (where, as in § 2, ^ is the number of positive roots r with
height z). All this follows from (4.2).

Put for z^i,
V^^eUI^-^-^U,^},

this is a closed subgroup of U, containing U^. Let W^ be the canonical image of V,
in U/U^. W^ is a unipotent algebraic group over k. The canonical homomorphism
U/U^+i -> U/U^ induces a homomorphism

f • w ->Wj^ • vv^+l "»•

Wi is reduced to the identity, on the other hand for sufficiently large n we have W^ = U^,.
We now study Ker^ and Imj^. Let weKerf^ Then ^ is the coset of an

element
u== n ^(^

/»(r)==i ^^"^

modulo U^i.
Using (4.2) one sees that for an u of this form one has

vuv"1!!"1^ II ^.(^r) mod L L . o ,
Mr)=»+l r v " / t+2?

where

( l l ) yi —— S N Ev / 'Jr— '"-- ' - ' 's^—s^r—s*
s£S

Here s runs through the set S of simple roots, the Ng ,._g are the structure constants
of the Lie algebra g belonging to R (with the convention that N g ^ _ g = = = o if r—s is
not a root).

If weW^i, we have vuv~lu~leU^^, hence the ^ have to satisfy the linear
equations obtained by putting the ^ in (n) equal to o.

Next Im^. Map V -̂ homomorphically into U^^/U^g by sending ueV^
into vuv~lu~l. Under this homomorphism U^ is mapped onto a subgroup U^^/U^g
of U^i/U^g, where UJ^.i denotes the group generated by U^g and the elements

Ft ^rf^r)?
fc(r)==l+l r v " /

with 7]y of the form (11).
By passing to quotients one gets a homomorphism of W^ into U^^/U^^. It

follows at once that the kernel of this homomorphism is Im^.
One gets in this way the following inequality

(12) dim Im^dim W,—dim U.^/U^i.
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(4.9) (n) shows that the matrices M, defined by (6) enter the picture here.
We now tie up the problems considered here with the results o f§2 . Let 3 be the Lie-
algebra of the type of§ 2, whose root system is that ofG (the choice of A is immaterial).

put Qk^Q^z^ Q^Q^z^ ^fe^^id. Let p be the characteristic of A:. Define
4-.p=rank^

(this depends only on the characteristic of A:), then
dim^(Ker^)=^—^.

(2.2) asserts that 4.^==/^i, (2.11) asserts that /,^==/^ is p is a good prime for g.
(4.10) Proposition. — a) Kerj^ is isomorphic to (GJ^""^;
b) dimIm^dimW,—^i+^.
In fact, both of these results are direct consequences of what was established

in (4.8). For example, b) is another way of writing (12). (Actually, equality holds
in b ) , as follows from [17]. We will use this in the proof of (4.12).)

We can now prove the main results of this paragraph. We shall say that a prime
is a good (or bad) prime for G if it is a good (or bad) prime for its root system R
(see (2.10)). p always denotes the characteristic of A:.

(4. n) Theorem. — Let p be o or a good prime for G. Then there exist regular unipotent
elements in G. The centrali^er of a regular unipotent element is the direct product of the center of G
and a connected unipotent subgroup.

It has already been established in (4.7) that we only need to prove that the element v
of(io) is regular. Our assumption about p implies by (2.11) that 1^=1^^ then (4.10) b)
shows that f, is surjective and (4.10) a) shows that dim U<,=2(/,--^)==/.

The connectedness statement also follows: assuming W^ to be connected, the
surjectivity of^ and the fact that Kerj^ is connected (it is a vector group) implies
that W^i is connected. Since Wi={<7}, W^=U^ for large n, U,, is connected.

The counterpart of (4.11) for bad primes is
(4.12) Theorem. — Let p be a bad prime for G. Then there exist regular unipotent

elements in G. A regular unipotent element is not contained in the identity component of its centrali^er,
hence the centralist of a regular unipotent element is the direct product of the center of G and a
non-connected unipotent subgroup.

The fact that regular unipotent elements exist in all cases has been established
by Steinberg ([17], § 4) by a different method. We will use this now, to prove the
other statements of (4.12).

Let v be the element defined by (10). We know by (4.7) that v is regular, hence
dimU^,==/. From (4.10) one infers that

dimW,+i—dimKery,>dimW,-^,+^,

hence by (4.10) a)
dim W.^—dim W,^—/,.^,

494



SOME ARITHMETICAL RESULTS ON SEMI-SIMPLE LIE ALGEBRAS 135

whence

/==dimU,=5:(dimW^i-dimW^S(/,-^,)=/.

It follows that

(13) dimIm^=dimW,—^+^, dim W,^—dim W,=^—Z,^

for all i^ i.
If^ is a bad prime we know from (2.11) that t, has an elementary divisor for some i

and then we read off from (2.6) that ^p^+i^—i for z = = i , . . . ^ — i and
^p^p+i—i^—2 (where /==rankG). Then (13) implies that dimW,==i for
2^'.<A Moreover it also follows from the first formula (13) that ^ is surjective
for i = = i , . . ^ p — i .

We now obtain from the first formula (13)

dimlm^==o,

so fp^p+i) is a finite group. A fortiori the canonical image ofU,, in U/Uy is a finite
group. This image contains the coset ofv modulo Up, which is not the identity element
(since v^Vy). It follows that v is not contained in the identity component U^ of U .
This proves (4.12)

(4.13) Remarks. — a) It would be interesting to know the exact order of UJV0,
in the case considered in (4.12). Of course this order is a j&-power.

The only result in this direction which is known to the author (and which will be
stated here without proof) is the following one. Suppose that there is exactly one i>o
for which ^ has an elementary divisor p. Then UJU^ has order p. This result covers
the following cases of a simple G: p=2, typesBg, B3,Ee, G^p==^ types Eg, £7, F^ Gg;
P=5^ types Eg.

b) That regular unipotent elements behave differently in low characteristics was
first brought to the author's attention by J. Tits.

From (4.11) one can derive the following result about semi-simple groups over
nonalgebraically closed ground fields.

(4-'4) Theorem. — Let k be a perfect field. Suppose that G is a semi-simple algebraic
group of adjoint type, defined over k, suppose that the characteristic p ofk is o or a good prime for G.
Let G{k) denote the group of k-rational points of G. Then any two regular unipotent elements
in G{k) are conjugate in G(k).

If G{k) does not contain any regular unipotent element of G, the assertion is
vacuous. Assume now that x,yeG{k) are regular unipotent elements of G(k).
By (4.11), the centralizer G^ of x is a connected unipotent subgroup of G. x being rational
over the perfect field k, it is well-known that Gy, is defined over k. Put

P=={geG\gxg-1^}
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By (4.7) P is not empty. Hence P is a principal homogeneous space of G^, which is
defined over k. G^ being connected and unipotent and k being perfect, P contains a
point g^G(k) (see [i6], III-8, prop. 6). This proves our assertion.

(4- ̂  Remarks. — a) It seems likely that the condition for k to be perfect can be
dropped from (4.14). Since the result about principal homogeneous spaces, used in
the proof of (4.14), is false for non-perfect fields (counterexamples are in [i6], III-i6),
the proof does not carry over.

b) From [17], Theorem i. 6, it follows that G(k) contains regular unipotent elements
either if G is split over k or if G contains a Borel subgroup over k (the quoted result
gives the existence of regular unipotent elements if G contains a Borel subgroup over k
only ifG does not have a component of type A^ with n even; this restriction can however
be removed).

c ) Ifp is a bad prime for G the argument used in the proof of (4.13) shows that the
number of conjugacy classes of regular unipotent elements of G{k) is either o or the
number of elements of H^, G^/G^). It can be shown that the number of elements
of H^A;, G^/G^) is at least 2. Consequently, if k is a perfect field, the condition that p
is a good prime is also necessary for the conjugacy statement of (4.14) (provided, of
course, that G{k) contains regular unipotent elements).

5. Regular nilpotent elements in the Lie algebra of a semi-simple algebraic
group.

(5.1) As in § 4, let G denote a connected, semi-simple, linear algebraic group
over the algebraically closed field k. We consider now the Lie algebra of G. It is
known that this Lie algebra is isomorphic to Q®^k, where 3 is of the type discussed
in § 2 (its root system R is that of G). However, to abbreviate notations, we write
throughout this paragraph 9 instead of g®^.

Let T, U, B, Xy have the same meaning as in § 4. The structure of 9 is then as
follows. 9 is a direct sum

9=t+ S ke,
T GR

where t is the Lie algebra of T and key that of X,. (both identified with a subalgebra
of 9). With the notations o f § 2 , t corresponds to A0zA and ^ to ^.OOl.

The Lie algebra of B is
5=t+ S ke,,

r>0

that of U is
u= 2 ^

r>0

G acts on 9 by means of the adjoint representation Ad. For XGQ, we denote by G^
the centralizer of x in G, i.e. the subgroup ofG formed by the geG with Ad{g)x=x.
We denote by Q^ the centralizer of A: in 9 (which contains the Lie algebra of GJ.
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We shall say that x e 9 is nilpotent if x is contained in the Lie algebra of a connected
unipotent subgroup H of G. Since H is conjugate to a subgroup of U, x is nilpotent if
and only if Ad(g)xeu for some g^G. We shall give presently some results about
nilpotent elements in 9, similar to those proved in § 4 for unipotent elements in groups.

(5.2) Remarks. — a) The definition of a nilpotent element, given above, is the most
convenient one for our purposes here. However, because of the definition of semi-simple
and unipotent elements in algebraic groups ([14], expose 4, n° 4), another way of defining
nilpotent elements in the Lie algebra 9 of any connected linear algebraic group G (semi-
simple or not) over the algebraically closed field k would be the following one: Suppose G
is a subgroup ofGL(^, A), then 9 is a subalgebra of the Lie algebra Ql{n, /;), in which the
notion of nilpotent element is known. Define then xeQ to be nilpotent if it is nilpotent
as an element of gl(%, A:).

One can show that this definition is equivalent to the one given above.
b) One can define an element x of Q to be semi-simple if x is contained in the Lie

algebra of a torus of G. The remarks made under a) hold too in that case.
It can be proved that ifG is a connected linear algebraic group over k (algebraically

closed) any element x of the Lie algebra Q of G can be written in the form x=Xy-^-x^,
where Xg (xj is a semi-simple (nilpotent) element of 9, such that [^g, x^]==o. Moreover
such a decomposition is unique (1).

c ) In the case that the characteristic of k is o, the statements about nilpotent
elements of 9 to be given below can be derived easily from the corresponding ones about
unipotent elements in G (e.g. using an <( exponential mapping 5?).

(5.3) Lemma. — Let S be the set of simple roots of R, defining the ordering of R. Let
x= S ^y€y be an element of U such that ^y4=o if reS. Then there is exactly one Borel

r>0

subgroup of G whose Lie algebra contains x, vi^. B. G^ is the direct product of the center of G
and ofV^ the centrali^er of x in U.

The proof of this is completely analogous to that of (4.3), so we leave it to the
reader.

Let X denote the set of all nilpotent elements of 9, let / be the rank of G.
(5.4) Proposition. — X is an irreducible ^ariski-closed subset of the affine space W(9)

determined by 9, whose dimension is dim G—/.
This is proved like (4.4), using (5.3).
(5.5) Remark. — By a similar argument one derives from (5.3) the following result

ofGrothendieck: 9 is the union of the Lie algebras of its Borel subgroups ([15], expose XIV,
th. 4.11, the proof given there is different).

(5.6) Proposition. — Let x be a nilpotent element of Q, then dim G^>_1.
Because the orbit of x under the adjoint action of G is contained in X, we have

dim G/G^ dim X, which implies (5.6).

(1) (Added in proof.) Proofs of these statements can be found in a note of A. BOREL and the author
in Proc. Sympos. Pure Math., vol. 9 (Amer. Math. Soc., Providence, 1966).
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Remark. — (5.6) is true for all XGQ.
(S-7) ^e now define X€Q to be regular if dimG^==l and smoothly regular if

dimc^==/ (1). Since dim G^ dim g^ it follows from (5.6) that a smoothly regular
nilpotent element is regular (it will follow from (5.9) that the converse is not true).

(5.8) Lemma. — Suppose that Q contains regular nilpotent elements. Then any XCQ
with the property of (5.3) is regular.

The proof is like that of (4.7).
(5.9) Theorem. — a) Smoothly regular milpotent elements exist in Q if and only if the

characteristic ofk is either o or a good prime for G, which does not divide the order of the fundamental
group of R.

b) Ifp is either o or a good prime for G then regular nilpotent elements exist in g, the centra-
li^er G^of a regular nilpotent element x is then the direct product of the center of G and a connected
unipotent subgroup of G.

c) The regular nilpotent elements of Q form one orbit of G under adjoint action.
From (5.8) it follows that if Q contains regular nilpotent elements, then x == S Cy

rG 8

is one (S is the set of simple roots). So in order to prove a) it suffices to investigate
when dim g^ = I.

This one can read off from (2.5) and (2.6) (using (2.11)).
b) is proved in the same way as (4.11), the details may be left to the reader.

The conjugacy statement of c ) is proved as the corresponding statement of (4.7).
(5.io) Remark. — One can ask whether (4.12) has a counterpart for 9. The

proof of (4.12) depended on Steinberg's result that regular unipotent elements exist
in all characteristics. The author does not know whether the corresponding result is
true for Lie algebras.

Mathematisch Instituut der Rijksuniversiteit, Utrecht.

(1) The name smoothly regular has been chosen because the centralizer of a regular element x in the sense
of group schemes is smooth over k if and only if x is smoothly regular.

Manuscrit refu Ie 14 juin 1965.
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APPENDIX

We give here tables for the positive roots of the root-systems of type Eg, Ey, Eg, F4, when expressed in the
simple roots. Description of these root-systems are given in (2.9). We use an evident abbreviation in the tables:
for example, in the case Eg, 012211 denotes the root rg +2r^ + 2r^ +TQ+ r@, where the r^ are the simple roots
given in (2.9).

TABLE I

Positive roots of Eg

Height

i . . . . . .
2. ... . .

3.. . . . .
4 . . . . . .
5 . . . . . .
6
7 . . . . . .
8
9. . . . . .

10. . . . . .

i i . . . . . .

Positive roots of E^
Height

i . . . . . .
2. .....

3... . . .
4.. . . . .
5. . . . . .
6
7 . . . . . .
8
9.. . . . .

10......

i i . . . . . .
12.... . .

13......
14... . . .
15..... .
i6
17. . . . . .

100000

II0000

II1000

II1100

I I I 110

I I 2 I O I

• I22IOI

122II I

I222I I

I232II

I232I2

1000000

II00000

II10000

III1000

I I I I100

I I I I I I O

I I I 2 I O I

I I 2 2 I O I

I222IOI

I222 I I I

I2222II

I2232II

12332ii
I2332I2

1234212

I2343I2

1234322

010000

011000

011100

II1001

I I I I O I

I I I I I I

I I 2 I I I

I I 2 2 I I

0100000

0110000

Oil 1000

01II100

III1001

I I I I I O I

1111111

1112111

I I 2 2 I I I

I I 2 2 2 I I

I I232II

II232I2

I2232I2

001000 0

001100 0

011001 0

O I I I I O 0

OI2IOI 0

0121II

O I 2 2 I I

0010000

00II000

001I100

Oi l 1001

O I I I I I O

01I2IOI

OI22IOI

O I 2 2 I I I

I I I 2 2 I I

OI232II

OI232I2

00100 000010 000001

OIOOI 000110

OHIO OOIIOI

I I 101 001III

I I I I I

TABLE II

0001000 0000100 0000010

0001100 OOOIOOI 0000110

0011001 0001110 0001101

001II10 0011101 0001III

O I I I I O I OOI2IOI O O I I I I I

O I I I H I O O I 2 I I I

O I I 2 I H OOI22I I

O I I 2 2 I I

OI222II
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TABLE III

Positive roots of Eg

Height

i . . . . .
2. . . . .

3.. . . .
4. . . . .
5. . . . .
6
7 . . . . .
8
9. . . . .

10. . . . .

i i . . . . .
12. . . . .

13... . .
14.. . . .
15.....
i6
17 . . . . .
i8
19. . . . .
20. . . . .

21 . . . . .

22. . . . .

23. . . . .

24 . . . . .

25. . . .

26

27. . . .

28

29. . . .

10000000

I1000000

II100000

I I I I O O O O

IIII1000

I I I I I 1 0 0

I I I I I I I O

I I I I 2 I O I

I I I 2 2 I O I

I I 2 2 2 I O I

I2222IOI

I2222I I I

I22222II

I22232II

I22332II

I233321I

I2333212

I2334212

12344212
12344312
I23453I2
12345322
12345422
12345423
12346423
12356423
12456423
13456423
23456423

01000000

01100000

01IIOOOO

01II1000

01III100

I I I I I O O I

I I I I I 1 0 1

I I I I I I I I

I I I I 2 I I I

I I I 2 2 I I I

I I 2 2 2 I I I

I I 2 2 2 2 I I

I I2232II

i123321i
I22232I2

I22332I2

12234212

122343^

i23343I2
12334322
12344322
i23453^
12345323

00100000

00II0000

00111000

00111100

O I I I I O O I

O I I I I I I O

01 I I 2 I O I

01I22IOI

OI222IOI

I I I I 2 2 I I

I I I 2 2 2 I I

I I I 2 3 2 I I

I I I 2 3 2 I 2

II2232I2

II2332I2

II234212

i12343^
I1234322
12234322

00010000

000II000

00011100

001IIOOI

001 I I I 10

O i l I I I O I

O i l I I I I I

01I121I I

01I22I I I

O I 2 2 2 I I I

OI2222II

OI2232II

OI2232I2

OI2332I2

01234212

012343^
01234322

00001000

0000II00

0001IOOI

0001 I I 10

001II101

001I2IOI

OOI22IOI

O O I 2 2 I I I

O I I I 2 2 I I

O I I 2 2 2 I I

OI I232 I I

oi123212
OI2332II

00000100

0000IOOI

0000III0

0001I101

000I2IOI

001 I I I I I

001121II

O O I I 2 2 I I

OOI222I I

OOI232II

OOI232I2

00000010

00000110

00001101

00001III

0001II I I

000121II

000I22II

TABLE IV

Positive roots of F^

Height

i . . ...
2. . . . .

3.. . . .
4.. . . .
5... . .
6
7 . . . . .
8
9 . . . . .

10. . . . .

i i . . . . .

1000

1100

I I I O

1120

1220

I22I

1231
1232

1242

1342
2342

0100

0110

0120

I I I I

I I 2 I

1122

1222

0010

0011

O I I I

0121

0122
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