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ON COMBINATORIAL ISOTOPY
by J. F. P. HUDSON and E. C. ZEEMAN

We define four types of isotopy and show them to be equivalent under suitable
conditions of local unknottedness. In particular they are equivalent whenever the
codimension is ^3. /

We shall work in the category of polyhedral manifolds and piecewise linear
embeddings. All spaces and maps will be in this category unless otherwise stated.
By a polyhedral (or piecewise linear) manifold M we mean a topological manifold together
with a piecewise linearly related family of triangulations; each triangulation is a
combinatorial manifold, that is to say a finite or countable simplicial complex in which
each closed vertex star is a combinatorial ball. We shall consider embeddings of a
compact m-manifold M in a ^-manifold Q^, which may or may not be compact. The

• 0

manifolds may or may not be bounded; denote by M the boundary of M, and by M
the interior of M. An embedding f : M -> Q^ is called proper if /~1 Q^= M. In particular
if M is closed (compact without boundary) then any embedding of M in the interior
of Q is proper. In this paper we shall confine our attention to proper embeddings
of M in Q, and the generalisation of the results to i^on-proper embeddings will be
considered in a subsequent paper [2] by one of us.

Definitions of isotopy.

1) By a homeomorphism h of M we mean a homeomorphism of M onto itself.
In particular h is a proper embedding. If Y is a subset of M such that A|Y=the
identity, then we say h keeps Y fixed.

2) Let I denote the unit interval. An isotopy of M in Q is a proper level
preserving embedding F : MxI—'-Q^xI.

Denote by F^ the proper embedding M-^Q defined by F(x, ^)==(F^, t),
all xeM. The subspace U F^M of Qis called the track left by the isotopy. If YcM,
we say F keeps Y fixed if F(^, t)=V{x, o), for all xeM and teL

3) The embeddings f, g : M->Q are isotopic if there exists an isotopy F of M
in Q^ with To=f and Fl==,g^.
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70 J. F. P. H U D S O N AND E. C. Z E E M A N

4) An ambient isotopy of Qis a level preserving homeomorphism H : Q,Xl->Q^xI
such that Ho = the identity, where as above H^ is defined by H(.y, t)== (H^, t),
for all xeQ^. We say that H covers the isotopy F if the diagram

is commutative; in other words F^=H^Fo, for all tel.
5) The embeddings f, g : M-^Q^ are ambient isotopic if there exists an ambient

isotopy H of Q^ such that Hi/=^.
Remark. — If M=Q^, then a proper embedding MxI->-Q,xI is the same as

a homeomorphism Q^xI-^Q^xI. Therefore, since we have restricted attention to
proper embeddings, the only difference between an isotopy of Q in Q^ and an ambient
isotopy of Q is that the latter has to start with the identity; consequently two homeo-
morphisms of Q^ are isotopic if and only if they are ambient isotopic.

6) A homeomorphism or ambient isotopy of Q^ is said to be supported by X if it
keeps Q—X fixed. By continuity the frontier Xn (Q,—X) of X in Q, must also be
kept fixed.

7) An interior move of Q^ is a homeomorphism of Q^ supported by a ball, keeping
the boundary of the ball fixed. A boundary move of Q is a homeomorphism of Q^ supported
by a ball that meets Q^in a face. (A face of a ^-ball B is a {q—i)-ball in B). In a
boundary move the complementary face is the frontier that is kept fixed by continuity.

8) The embeddings f, g : M->Q^ are isotopic by moves if there is a finite sequence
AI, ^2, ..., h^ of moves of Q, such that h^. . . h^f==g.

9) A standard interior linear move is a homeomorphism A ->A of the standard
simplex A, defined by mapping A by the identity, mapping the barycentre to another
interior point, and joining linearly. A standard boundary linear move is a homeomorphism
A^A defined by mapping a vertex to itself, mapping the opposite face by a standard
interior linear move, and joining linearly.

10) A linear move of Q^is a move h supported by a ball B, for which there exists a
homeomorphism k : B->A such that khk~~1 is a standard linear move.

11) The embeddings f, g : M->Q^ are isotopic by linear moves if there exists a finite
sequence h^ Ag, . . ., h^ of linear moves of Q^ such that h^h^. . . h^f==g.

Lemma i {Alexander [i]). — Any homeomorphism of a ball keeping the boundary fixed
is isotopic to the identity keeping the boundary fixed.

Proof. — Since a ball is homeomorphic to a simplex, it suffices to prove the lemma
for a simplex A. Given h : A->A, construct H : A x I - ^ A x I as follows.
Let

hx,t=o,
H(^, t) == .

x, t = i or x eA.
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ON COMBINATORIAL ISOTOPY 71

This defines a level preserving homeomorphism of the boundary of the prism A x I;
complete the definition of H by mapping the centre of the prism to itself, and joining
linearly to the boundary. The resulting homeomorphism is also level preserving and
piecewise linear, and so is an isotopy from h to the identity.

Corollary. — Any homeomorphism of a ball keeping a face fixed is isotopic to the identity
keeping the face fixed.

Proof. — Let A be an Tz-simplex, v a vertex, and F the opposite face. Given an
n-ball and a face, then there is a homeomorphism of the ball onto A throwing the face•
onto yF. Therefore it suffices to prove the Corollary for the special case of a homeo-
morphism A of A keeping vV fixed. Since h \ F keeps F fixed, the lemma gives an
isotopy G, say, of T keeping F fixed from h\T to the identity. Define H on the
boundary of the prism A x I by

hx, t = o,
H(^,^)= x, t==i or xevf,

G{x, t), xeF.

Then extend H to the prism as in the lemma.

Description of results*

Using Lemma i and its Corollary, we can deduce at once that:

y, g isotopic by linear moves
V (3)

y, g isotopic by moves
V (i)

V, g ambient isotopic
V (2)

/, g isotopic.

Our purpose is to show in Theorems i, 2 and 3 that the arrows i), 2) and 3) can
be reversed. Therefore all four definitions are equivalent. At the top we have the
elementary intuitive idea of pushing the vertices of a complex around Euclidean space;
at the bottom is the definition of isotopy natural to the category.

To prove step 2)5 the covering isotopy theorem, it is obviously necessary to impose
a local unknottedness condition on the isotopy. For otherwise the knots of classical
knot theory give counterexamples of embeddings that are mutually isotopic but not
ambient isotopic. However, as we shall see, this phenomenon occurs only in codi-
mension 2, and possibly in codimension i.

Question. —— Can we extend the equivalence further ? For instance can we drop
the level preserving condition ? More precisely, call two maps pseudo-isotopic if they
are isotopic by an « isotopy » that is level preserving for t=o, i but not necessarily
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72 J. F. P. H U D S O N AND E. C. Z E E M A N

for o<t< i. In codimension 2 pseudo-isotopy is essentially weaker than isotopy, because
for example slice knots can be unknotted by a smooth pseudo-isotopy. But is pseudo-
isotopy equivalent to isotopy in codimension ^3 ?

Local unknottedness.

A ball pair (B9, B^), q>m, is a pair of balls with B^cB^ properly. A ball pair
is unknotted if it is homeomorphic to the standard pair (SA, A), where A denotes the
standard m-simplex and S denotes {q—m)—fold suspension.

Given a proper embedding /:M->Q^ between manifolds, we say/is locally
unknotted if, for some (and therefore for any) triangulations K, L of M, Q^ such that
V: K->L is simplicial, the (^ball pair

(st(/., L),/(st(., K)))

is unknotted for each vertex yeK. If/is locally unknotted then so is the restriction
of/to the boundaries f:M.->Q^ (see [4, Corollary 5]).

We say that an isotopy F : MxI-^Q^xI is a locally unknotted isotope if

(i) each level F( : M->Q^ is a locally unknotted embedding, and
(ii) for each subinterval Jcl, the restriction F : MxJ->Q,Xj is a locally unknotted

embedding. If F is a locally unknotted isotopy, then so is the restriction to the
boundaries F:MxI^Q,x! (see again [4, Corollary 5]).

Lemma 2 [iceman [8]). — Any ball pair of codimension ^3 is unknotted.

Corollary, — Any proper embedding or isotopy of manifolds of codimension ^ 3 is locally
unknotted.

Knots exist in codimension 2, and possibly in codimension i, depending upon the
unsolved state of the combinatorial Schonflies conjecture. Therefore when we say
c( locally unknotted " in future we refer only to the cases of codimension i or 2.

Remark. — The above definition of locally unknotted isotopy is tailored to our
needs. There is an alternative definition of a locally trivial isotopy as follows (see [3]).
An isotopy F:MxI-^Q,xI is locally trivial if, for each {x, ^ ) eMxI there exists an
m-ball neighbourhood A of A: in M and an interval neighbourhood J of t in I, and a
commutative diagram

AxJ -̂  SAxJ

C G

M x l -^> Qxl

(1) We use the notation st(y, K) for the open star of a vertex v in a complex K, and st{v, K) for the closed
star. If K is a combinatorial w-manifold then the closed star is an w-ball.
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ON COMBINATORIAL ISOTOPY 73

where 2 denotes (^—m)—fold suspension, and G is a level preserving embedding onto
a neighbourhood ofF(^, t). It is easy to verify that

F is a locally trivial isotopy
V (i)

F is a locally unknotted isotopy
V (2)

F is an isotopy and a locally unknotted embedding.

It is an immediate corollary of Theorem 2 and Addendum 2. i below that the arrow (i)
can be reversed. Therefore a locally trivial isotopy is the same as a locally unknotted
isotopy. We conjecture that the arrow (2) can also be reversed; it is a problem involving
the unique factorisation of higher dimensional sphere knots of codimension 2, which is
another unsolved problem (see [4]).

Statement of the Theorems.

Theorem i. — Let h be a homeomorphism of Q^ isotopic to the identity by an isotopy with
compact support keeping a subset Yfixed. Then h can be expressed as the product of a finite number
of moves keeping Y fixed.

Addendum 1 . 1 . — Given an arbitrary triangulation of Q^ we can choose the moves to be
supported by the vertex stars. Therefore the moves can be made arbitrarily small.

Addendum 1 .2 . — Let H be an ambient isotopy of Q^ (not necessarily with compact support)
and let X be a compact subset of Q. Then there is a finite product h of moves such
that Hi|X=A|X.

Corollary 1.3. — The following three conditions between embeddings of a compact manifold M
in Q^ are equivalent :

(i) ambient isotopic ;
(ii) ambient isotopic by an ambient isotopy with compact support;
(iii) isotopic by moves.

Remark. — For Corollary 1.3 it is not necessary that the embeddings be either
proper or locally unknotted. In fact the corollary is true not only for embeddings but
for arbitrary maps M->-Q^

Corollary 1.4. — Let M be compact^ let f : M-^-Q^ be a proper locally unknotted embedding^
and let g be a homeomorphism of M that is isotopic to identity keeping M fixed. Then g can be
covered by a homeomorphism h of Q^ keeping Q^ fixed; in other words the diagram is commutative :

a-a
't 'T
M -̂ -> M

73
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74 J. F. P. H U D S O N AND E. C. Z E E M A N

Remark. — In fact Corollary 1.4 is improved by Theorem 2, to the extent of
covering not only the homeomorphism but the whole isotopy. However we need to
use Corollary i .4 in the proof of Theorem 5, in the course of proving Theorem 2.

Theorem 2 (Covering isotopy theorem), — Let M be compact^ and let F:MxI->QxI
be a locally unknotted isotopy keeping M fixed, and let N be a neighbourhood of the track left by
the isotopy. Then F can be covered by an ambient isotopy of Q supported by N keeping Q^ fixed.

Addendum 2 .1 . — Conversely if^^ is locally unknotted and F can be covered by an ambient
isotopy then F is locally unknotted and locally trivial.

Addendum 2.2. — Let X be a compact subset of Q, and N a neighbourhood of X in Q.
Then an ambient isotopy of Q supported by X can be extended to an ambient isotopy of Q^
supported by N. •

Corollary 2.3. — Theorem 2 remains true if the words " keeping M fixed " are omitted
from the hypothesis and " keeping Q^ fixed 5? from the thesis.

Corollary 2.4. — If the codimension is ^ 3, then any isotopy of M in Q^ can be covered by
an ambient isotopy of Q .̂

Remark. — The covering isotopy theorem can be generalised by replacing the unit
interval I by a simplex A of arbitrary dimension (see a subsequent paper by one of us [3]).
The statement is as follows. Let o denote the first vertex of A. Given a proper locally
trivial embedding F such that the diagram

M x A - ^ Q x A

is commutative, where n denotes projection onto the second factor, then there exists
a homeomorphism H such that the diagram

Q x A - ^ Q x A

" \ ] / 7T

A

is commutative, H()=I and F^=HF() all ^eA, where F^, H^ are defined by

F(^, t) == (F^, t), H(y, t) - (H^, t) all xeM, ye^ te^.

The proof is a generalisation of the proof of Theorem 2, and the main idea is the
use of collars, as in Lemma 8 below.

Theorem 3. — Let M be compact and let f,g : M->Q be proper embeddings that are
locally unknotted and ambient isotopic. If the codimension is > o, then f, g are isotopic by linear
moves.

Corollary 3 .1 . — If M is compact and the codimension ^3, then the four definitions of
isotopy are equivalent.
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ON COMBINATORIAL ISOTOPY 75

Remark i. — Notice the restriction codimension > o that occurs in Theorem 3,
but not in Theorem i nor in Corollary 1.3. Our proof of Theorem 3 breaks down
when M==Q, and leaves unsolved the question: is a homeomorphism of a ball that keeps
the boundary fixed isotopic to the identity by linear moves ? Possibly the answer is no, due to
an obstruction. Recent results of Kuiper [5] indicate that such an obstruction might
be related to the obstructions to smoothing manifolds.

Remark a. — We have phrased our theorems in polyhedral rather than combinatorial
terms, because we are working in the polyhedral category. In other words we have
assumed the embeddings to be piecewise linear, but without reference to any specific
triangulations of either of the manifolds concerned. Of course it is impossible to define
any useful form of isotopy by linear maps between fixed triangulations of both M and Q,
because this has the effect of trapping M locally, and preventing the movement of any
simplex of M across the boundary of any simplex of Q. This basic error of definition
can be found for example in [6, page 17] or [7, page 227]. The error arises from genera-
lising the special case of when Q, is Euclidean space, for which there is a more
combinatorial notion of isotopy by virtue of the linear structure of Euclidean space.
The manifold M is given a fixed triangulation, K say, and the isotopy is defined by moving
the vertices of K. At each moment the embedding of M is determined by the positions
of the vertices of K, and by the linear structure of Euclidean space. Under our
hypothesis Q^ has only a piecewise linear structure, not a linear structure, and so the
positions of the vertices of K do not determine a unique embedding of M. However,
our proof of Theorem 3 does furnish a much stronger statement in terms of moves that
are linear with respect to a fixed triangulation K ofM, which we now state. For simplicity
of statement we assume M closed, although the technique can be adapted to include
the bounded case.

Linear moves with respect to a triangulation.

Let A^ be the standard ^-simplex, and A^ an m-dimensional face, q>m. Let x
be the barycentre of A9, andj^ a point between x and the bary centre ofA^. Let a : A9 -^A^
be the standard interior linear move throwing x to y.

Let M be closed, let K be a triangulation of M, and let f, g be proper embed-
dings M->Q^. We say there is a move from f to g that is linear with respect to K if the
following occurs :

There is a closed vertex star of K, A=st(y, K) say, and a y-ball BcQ,, and a
homeomorphism A:B-^A9 ' such that

(i) /, g agree on K—A,
(ii) A-/-^^-^,

(iii) the composition hf maps the link of v in K homeomorphically onto A^ maps v to ^,
and maps A by joining linearly,

(iv) g\A=h-lah(f\A).
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76 J. F. P. H U D S O N AND E. C. Z E E M A N

We leave the analogous definition for the bounded case to the reader.

Addendum 3.2. — Let M be closed, and let K be an arbitrary fixed triangulation ofM.
Let /,5:M->Q^ be proper embeddings that are locally unknotted and ambient isotopic. If
codimension >o, thenf, g are isotopic by interior moves that are linear with respect to K.

The addendum becomes surprising if we imagine embeddings of a 2-sphere in
a manifold, and choose K to be the boundary of a 3-simplex, with exactly 4 vertices.
Then we can move from any embedding to any other isotopic embedding by assiduously
shifting just those 4 vertices linearly back and forth. All the work is secretly done by
judicious choice of the balls, or local coordinate systems in the receiving manifold, in
which the moves are made.

The rest of the paper consists of the proofs of the above theorems in the order
stated.

Proof of Theorem i.

We are given an ambient isotopy H : Q,Xl->Q,Xl with compact support, and
have to show that H^ is a composition of moves. We first prove the theorem for the
case when Q^ is a compact combinatorial manifold, that is to say Q^ has a fixed triangu-
lation and is embedded as a finite simplicial complex in some Euclidean space E^
Then Qxl is a cell complex in E^I. We regard E" as horizontal and I as vertical.

Let K, L be subdivisions of Q^X I such that H : K-^L is simplicial (in fact a
simplicial isomorphism). Let A be a principal simplex of L, and B a vertical line element
in A. Define 6 (A) to be the angle between H'^B) and the vertical. Since H : K -^L
is simplicial, this does not depend upon the choice of B. Since H is level preserving,

6(A)< -. Define 6 == max 6 (A), the maximum taken over all principal simplexes of L.

Then e<7^.
2

Now let 3 denote the set of all linear maps Q,->I (i.e. maps that map each simplex
of Q^ linearly into the unit interval I). Let

3,-{/e3; max/—min/<8}.

76



ON COMBINATORIAL ISOTOPY 77

If/e3, denote by/* the graph of/, given by

/*-ix/:Q^QxI.

Then/* maps each simplex of Q linearly into E^I. Let <p(/) be the maximum angle
that any simplex of/*Q^ makes with the horizontal. Given e>o, there exists 8>o,
such that if/e3§ then cp(/)<s, for choose 8 sufficiently small compared with i-simplexes

7T
of Q. Choose e<-—6, and choose S accordingly.

Now let/be a map in 3^, and let q be a point of Q. Consider the intersection
of the arc H~l{qx'l) with/*Qj we claim there is exactly one intersection.

Qxl

qxl

Q

For since/* is a graph,/* Q^ separates the complement Qxl—/*Q, into points
above and below the graph. If there were no intersection, then the arc would connect
the below-point H"1^, o) to the above-point H"1^, i), contradicting their separation.

At each intersection, since <?(/)+6 ̂ -5 the arc, oriented by I, passes from below to

above. Hence there can be at most one intersection.
Let p : Q^X I —^Q, denote the projection onto the first factor. Then

A:=^H/*:Q^Q,

is a i-i map by the above claim, and so is a piecewise linear homeomorphism of Q.
By the compactness of Q^ and I, choose a sequence of maps /o, /i, . . ., /„ in 3§, such
that /o(Q,) =09/n(QJ = I? ^d for each z, /_i and/ agree on all but one, ^ say, of
the vertices of Q. Define ^==j&H/^*. Then A:o=Ho==the identity, and A:^==Hi.
Define ^==A:^~_\. Then ^ is a homeomorphism of Q^ supported by the ball ^(st(^, Q)),
keeping A^(lk(^, QJ) fixed, and so is a move. Therefore Hi==A^_^. . ./^, which is
a composition of moves.

If H keeps Y fixed, then H,|Y=Ho|Y for all tel, and so ^|Y==A:o|Y.
Therefore AJY==the identity for each z; in other words the moves keep Y fixed. This
concludes the proof for the special case when Q^ is finite simplicial complex in Euclidean
space.

If Q,is compact, let K ->Q, be a triangulation; we have proved the theorem for K,
and therefore it follows for Q .̂
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78 J. F. P. H U D S O N AND E. C. Z E E M A N

Suppose now that Q, is not compact, but the isotopy has compact support X.
Let N be a regular neighbourhood of X in Q, and let Yo be the frontier of N in Q.
Then the ambient isotopy of Q restricts to an ambient isotopy of the compact manifold N
keeping Yo fixed, and so by what we have already proved, HJN is a composition of
moves of N keeping YQ fixed. The moves can be extended by the identity to moves of Q.
IfH keeps Y fixed, then the moves ofN keep NnY fixed, and so the extended moves
of Q keep Y fixed. The proof of Theorem i is complete.

Proof of Addendum i . i.

Suppose we are given a triangulation K-^$ we have to show that the moves
can be chosen so as to be supported by the vertex stars of K. Since the moves are
already supported by the compact support of the isotopy, it suffices to consider the case
when Qis compact, and so K is a finite complex. Let (B denote the covering of Qxl
by open sets

P=={s t (w,K)xI ;weK},

where w runs over the vertices of K. Let X be the Lebesgue number of the open
covering H-1? of Q,xl. Choose a subdivision K' of K such that the mesh of the
star covering of K' is less than X/2. In the above proof of Theorem i use K' instead
of Q, and choose 8 with additional restriction that 8<X/2.

Continuing with the same notation as in the proof of Theorem i, for each z, the ball
y^(st(^, K')) is of diameter less than X, and so is contained in H'^st^, K) xl) for
some vertex z^eK. Therefore the move ^ is supported by

^(st^K^^^H^st^.K'))
C^(st(^,K)xI)
=st(^,K).

In other words each move is supported by a vertex star of K.
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ON COMBINATORIAL ISOTOPY 79

Proof of Addendum i . 2,

We are given an ambient isotopy H (not necessarily with compact support) and
a compact subset X of Q. We have to find a product h of moves such that H^ | X == h \ X.

Choose a triangulation ofQ— call it by the same name — and let Y be the smallest
subcomplex containing X, and Z the simplicial neighbourhood of Y in Q. Then Z is
a finite subcomplex of Q^, because X is compact.

Fix IQ for the moment, o^ ̂  I- Let 3 be the set of linear maps f: Q^->I such
that /(Q— Z) == IQ. In particular let /< e3 denote the map determined by the vertex map

, (^ ^Y,
^L ^Y.

Since each map in 3 is determined by the image of the finite subcomplex Z, we avoid
he non-compactness of Q^, and can apply the machinery of the proof of Theorem i to
find 3g such that if /e3§ then ^nr:Q^Q
is a homeomorphism. LetJ be the S-neighbourhood of^ in I. Ifj, tej, then /g^eSg,
and the corresponding k^ k^ are homeomorphisms of Q. By the proof of Theorem i,
the composition A===^A;71 is a finite product of moves. But by construction
A, | X = HJ X, and the same for s, and so H^H;-1 [ H,X = h \ H,X.

Now consider the pairs (j, t), o^s<t^ i, for which the following statement is true:
there is a finite product of moves h, such that H^H^1 HgX = h \ HgX. We have shown it
to be true locally. If it is true for (r, s) and {s, t) then it is true for (r, t) by composition.
Therefore by the compactness of I it is true globally, and in particular for (o, i).
Since HQ==I , this is what we want to prove, Hi |X===A|X.

Proof of Corollary i . 3.

We have to show the equivalence of (i) ambient isotopic, (ii) ambient isotopic
by an ambient isotopy with compact support, and (iii) isotopic by moves, (ii) implies (i)
a fortiori. (i) implies (iii) by Addendum 1.2, for choose X==/M. Finally (iii)
implies (ii) by Lemma i and its Corollary.

Proof of Corollary i . 4.

Given an embedding f: M->Q^, the problem is to cover a homeomorphism g
of M by a homeomorphism h of Q .̂ Choose triangulations of M, Q — call them by the
same names — such that/is simplicial. We are given that g is isotopic to the identity, and
so by Addendum i. i we can write g as a composition of moves supported by vertex stars :

g-=glg2' ' -&p

where g, is supported, say, by the ball B^ =st(^, M), y,eM. Let B^ =st(/^, QJ. Then
the ball pair (B^/B^) is unknotted, because / is locally unknotted by hypothesis.
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80 J. F. P. H U D S O N AND E. C. Z E E M A N

Therefore the homeomorphism fgif~1 of the smaller ball can be suspended to a
homeomorphism, h^ say, of the larger ball. Since g keeps M fixed by hypothesis, the
move g^ keeps B^ fixed, for each i. Therefore the suspended homeomorphism h of
the larger ball keeps BJ fixed, and can be extended by the identity to a move h^ of Q.
The composition h=hji^.. .h^ covers g and keeps Q fixed.

The proof of Theorem i and its addenda and corollaries is complete.

Collars.

Before proving Theorem 2, we first need to prove a couple of theorems about
collars of compact manifolds. The theorems can be generalised to non-compact
manifolds, but since we only need the compact versions, we content ourselves with the
latter because the proofs are simpler.

Let M be a compact manifold; define a collar of M to be an embedding

c'.MxI^M

such that c(x,o)==x for all xeM.
Lemma 3. — Any compact manifold has a collar.
A proof is given, for example, in [8, Theorem 3].
Given a collar c of M, and given o<e< i, define the shortened collar c^ : MX I-^M

by the formula c^x, t) ==c(x, s^), for all xeM and tel.
Lemma 4. — The collars c, c^ are ambient isotopic keeping M. fixed.
Proof. — First lengthen the collar c as follows. The image of c is a submanifold

ofM of the same dimension, and so the closure of the complement is also a submanifold,
with boundary c(MxI). Therefore the latter has a collar by Lemma 3, which we
can add to c to give a collar, d say, of M such that c==d^. Therefore c^=d^.

2 i i
Let g : I->I be the (piecewise linear) homeomorphism that maps [o,-], [-, i]

linearly onto [o, e/2], [c/2, i], respectively. Then g is ambient isotopic to the identity
by an ambient isotopy, G say, keeping I fixed. Let i X G denote the product ambient
isotopy of MX I, and let H denote the image of i xG under d', since i xG keeps
M X t fixed, we can extend H by the identity to an ambient isotopy H of M keeping M
fixed. If A:eM and tel, then by construction

H^(^)=IV(^/2)
=^,G^/2))

=rf(^/2)

==c^t).

Therefore H^==Cg, and the lemma is proved.
In Theorem 4 we shall improve upon Lemma 4 and show that any two collars

are ambient isotopic. But first it is necessary to prove a couple of technical lemmas
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about constructing isotopies. Lemma 5 is about isotoping a homeomorphism which
is not level preserving into one which is level preserving over a small subinterval.
Lemma 6 is about two isotopies which are themselves isotopic. In both lemmas we have
to be careful that the constructed isotopies are piecewise linear, and not merely piecewise
algebraic (as for example in [6, page 14]).

Notation. — Let Ig denote the interval [o, e], where o<e^i.
Lemma 5. — Let X be a compact polyhedron, and y : X x I g — » - X x I an embedding such

that f \ X X o is the identity. Then there exists 8, o < 8 < e, and an embedding g : X X Ig -> X X I
such that :

(i) g is level preserving in I§.
(ii) g is ambient isotopic to f keeping X X I fixed.

(iii) If Y is a subpolyhedron of X such that f \ Y x Ig is already level preserving, then we can
choose g to agree with f on Yxlg and the ambient isotopy to keep y(YxIg) fixed.

Proof. — Let K, L be triangulations of X x I g , X x I such that f:K-^L is
simplicial (in fact a simplicial embedding). Choose 8, o<8<£, so small that no vertices
o f K o r L lie in the interval o<^8. This is possible because K, L are finite complexes,
since X is compact. Choose first derived complexes K^, L^ of K, L according to the
rule: if the interior of a simplex meets the level Xx8 then star the simplex at a point
on Xx8; otherwise star it barycentrically (the derived complex is formed by starring
all the simplexes in some order of decreasing dimension). Let g : K^-^Li be the
derived map of/. Notice that/, g agree on any simplex not meeting the level Xx8;
if a simplex of K does meet the level Xx8, then, although it has the same image
under f, g setwise, the two maps of the simplex in general will differ pointwise. We
verify the three properties.

Property (i) holds because by construction g is level preserving at the levels o
and 8, and any point in between these two levels lies on a unique interval that is mapped
linearly onto another interval, both intervals beginning (at the same point) in Xxo
and ending in Xx8.

To prove property (ii) define another first derived complex Lg of L by the rule :
if a simplex of L lies in/K then star it so that /: K-i—^Lg is simplicial; otherwise star
it barycentrically. Then the derived map K^-^Lg is the same as f. Now the
isomorphism Lg-^L^ between two first derived complexes is ambient isotopic to the
identity as follows. (The obvious isotopy by straight paths in the simplexes of L is
no good because it is piecewise algebraic and (1) not piecewise linear.) The isotopy H
is constructed inductively on the prisms B X I, where B runs over the simplexes of L

(1) For example consider the ambient isotopy H of I given by the family H( : I —> I of piecewise linear

maps, where H( maps the intervals [o, -], [-, i] linearly onto [o, ——], [——, i], respectively. In other
o 3 3 3

words H is the obvious isotopy by straight paths from Hp = i to H^. But although each H( is piecewise linear,
H itself is not, only piecewise algebraic, because for example the line segment 3^ == t is mapped into the parabolic
segment y = t +12-
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in some order of increasing dimension. H is already defined on the boundary of the
prism, for H | B x I is given by induction, H | B x i by the isomorphism, and H [ B x o by
the identity; map the centre of the prism to itself, and join linearly to the boundary.
The isotopy keeps fixed any subcomplex of L on which L,i and Lg agree. Therefore H•
moves / to g keeping X X I fixed.

To prove property (iii) we put extra conditions on the choices of K and L.i.
Choose K so as to contain Yxlg as a subcomplex. Having chosen K, K^, and there-
fore L.2, then choose L^ so as to agree with Lg on /(YxIJ, this being compatible with
the condition of starring on the 8 level, because / [ Y x Ig is already level preserving.
Therefore H keeps /(YxIJ fixed.

Lemma 6. — Let g : Xxl ->Xx I be an ambient isotopy of a polyhedron X. Let h be
the ambient isotopy of X defined by

o^^-,
hi=

&<-i^^1-
_ •
Then g, h are ambient isotopic keeping Xxl fixed.

Proof. — Triangulate the square I2 as shown, and let u : P->I be the simplicial
map determined by mapping the vertices to o or i as shown.

'Define G : (Xxl) X I ->(XxI) Xl by

G((x,s),t)=={{g^x,s),t).

Then (i) G is a level preserving homeomorphism by definition.
(ii) A map is piecewise linear if and only if its graph is a polyhedron.
G is piecewise linear, because the graph FG of G is the intersection of two

subpolyhedra of (Xxl2)2 :
^G={{lxu)2)-l^g^(x2x^i),

where (i Xu)2 denotes the map (Xx I2)2 ->(X X I)2, where Fg is the graph of g, and H
the graph of the identity i on I2.

Therefore G is an isotopy of X X I in itself. By the construction of u, G moves g•
to h and keeps X X I fixed. Therefore G(g~1 X i) is an ambient isotopy moving g to h
keeping X X I fixed.
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Theorem 4. — If M is compact, then any two collars of M are ambient isotopic keeping M
fixed.

Proof. — Given two collars, the idea is to (i) ambient isotope one of them until
it is level preserving relative to the other on a small interval, (ii) isotope it further until
it agrees with the other on a smaller interval, and then (iii) isotope both onto this common
shortened collar.

Let c , d : M . x l — > M . be the two given collars. Since each maps onto a
neighbourhood of M in M, we can choose £>o, such that c(MxIJ crf(MxI).
Since c, d are embeddings, we can factor c == df, where / is an embedding such that
the diagram

M x L v

Mxl

is commutative and y|Mxo is the identity.

I.

0 S 2S £r^

By Lemma 5 there exists S,o<2S<e, and an ambient isotopy F of Mxl
moving f to g, say, keeping Mxl fixed, and such that g is level preserving for o^ ̂  2 8.
The reason for making g level preserving is that we can now apply Lemma 6 to g [ M X Ig§,
and obtain an ambient isotopy G of Mxigs moving ^[Mxigg to A, say, keeping
Mxigg fixed, and such that h is the identity for o^<8. Extend h to an embedding

• • •
h :MxIe-^MxI by making it agree with g outside Mxigg, and extend G by the•
identity to an ambient isotopy of Mxl.
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Then GF is an ambient isotopy moving / to h keeping M x I fixed. Let H be
the image of GF under d. Since GF keeps M x i fixed, we can extend H by the identity
to an ambient isotopy H of M keeping M fixed. Let e==H^c. Then e is a collar that
is ambient isotopic to c and agrees with the beginning of d, because if xeM and tel then

e,{x,t)==e{x,St)
=H,c{x,St)
=dG^d-lc{x,St)
==dG^f{x,St)
=dh(x,St)
==d{x^t)
=^(^).

Therefore eg==d^, and so by Lemma 4 there is a sequence of ambient isotopic collars :
Cy e, ̂ =^, d. The proof of Theorem 4 is complete.

Compatible collars.

So far we have only considered collars on a single manifold; we now consider
pairs of manifolds. Let f : M->Q^ be a proper locally unknotted embedding between
two compact manifolds. Define two collars c, d of M, Q to be compatible with f if the
diagram

Q x I — — Q .

/ X I /

Mxl —> M

is commutative, and im afnim y===im fc.
Lemma 7. — Given a proper locally unknotted embedding between compact manifolds then

there exist compatible collars.
For the proof see [8, Theorem 3 and Corollary]. The proof is a straightforward

labour of constructing the collars inductively on the boundary simplexes of some
triangulation of the manifolds, in some order of increasing dimension.

We now improve Lemma 7 to the extent of transfering the smaller collar from
the thesis to the hypothesis.

Theorem 5. — Given a proper locally unknotted embedding f: M->Q between compact
manifolds, and a collar c of M, then there exists a compatible collar d of Q .̂

Proof. — Lemma 7 furnishes compatible collars, c\ d* say, of M, Q. By Theorem 4
there exist an ambient isotopy G of M keeping M fixed, such that G^c*=c. By
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Corollary i . 4 we can cover Gi by a homeomorphism h of Q^ keeping Q fixed. Let d = hd\
Then the commutativity of the diagram

Q.XI

/ x l

Q

Mxl M

and the fact that
im dr\ im/== im hd* n im hf

==A(im d*nimf)
==h[imfc*)
=imfc,

ensure that the collars c, d are compatible with/. The proof of Theorem 5 is complete.
We now prove the crucial lemma for the covering isotopy theorem.
Lemma 8. — Let M, Q, be compact, and let F : MxI->Q^xI be a locally unknotted

isotopy keepingMfixed. Then there exists s>o, and a short ambient isotopy H : QxIg—QxIg
of Q^ that keeps Q^ fixed and covers the beginning of F. In other words the diagram

is commutative.

Proof. — For the convenience of the proof of this lemma we assume that Fo = F^.
For, if not, replace F by F", where

F^, t) =
F(x, t), o^t^-

2

¥{x, i—t) -^t^i.
2

Then, since F^=F^, the proof below gives an H covering the beginning of F*, which

is the same as the beginning of F if s^-.
2

Therefore assume Fp == F^. This means that the two proper embeddings F, Fg x i
of MX I in Q,xl agree on the boundary (Mxl)', because F keeps M fixed. Choose
a collar c of Mxl, and then by Theorem 5 choose collars d, d^ of Qx I such that c, d are
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compatible with F, and c, do are compatible with F() x i. We have a commutative
diagram of embeddings

(Qxl)-xl
(?«./ ^ \d
^ ^ \

Q.XI (Mxl)-xl ^Q.xl
Fo Xlsss. \c /F

Mxr
Notice that both the collars d, do map (Q,xo) xo to Q^xo. Therefore im d contains
a neighbourhood of Qxo in Q^xl, and so contains Q^Xlp, for some p>o. Similarly
rfo^-l(Q,xIp) contains a neighbourhood of Q^Xo, and so contains Q^xia, for
some a, o<a^P.

Let
G==^o-^Q.xla->Q.xl3.

Then G has the properties
(i) G|Q,xI==the identity, because d, do agree on (Q^xI)'Xo.

(ii) G|Qxo=the identity.
(iii) G covers the beginning of F in the sense that the diagram

is commutative. For if ^eM and tely^ then by compatibility

(FoA:, t) eim(Fo x i) n im do = im(Fo x i )c.
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Therefore for some j /e(MxI) 'xI ,

(Fo^)=(FoXi)^=rfo(Fxi)^.
Therefore

G(FoXI)(^)=(^o-lWXIlr
=rf(Fxi)j
==¥cy
^(FoXiF^FoXi)^
=F(FoXI)-l(Fo^)
=F(^).

In other words G(FoXi)==F, which proves property (iii).
By Lemma 5 there is an s, o<s<a, and an embedding H : Qxl^ -^ Q,Xlp

ambient isotopic to G, such that H[Qxo=the identity and H is level preserving
in Ig. Further, since G is already level preserving on (Qu Fo M) x I^ 5 we can by
Lemma 5 (iii) choose H to agree with G on this subpolyhedron. In other words, the
restriction H : Q^x Ig -> Qx Ig is a short ambient isotopy covering the beginning of F
and keeping Q fixed.

Proof of Theorem a, the covering isotopy theorem.

We are given a locally unknotted isotopy F : M X I —^ QJX I keeping M fixed,
and a neighbourhood N of the track left by the isotopy, and we have to cover F by an
ambient isotopy H of Q supported by N keeping Q^ fixed. We are given that M is
compact, and we first consider the case when Q is also compact and N == Q.

If o<^<i, the definition of locally unknotted isotopy ensures that the restrictions
of F to [o, t] and [t, i] are locally unknotted embeddings, and therefore we can apply
Lemma 7 to both sides of the level t, and cover F in the neighbourhood of t. More
precisely, for each tel, there exists a neighbourhood J^ oft in I, and a level preserving
homeomorphism H^ of QxJ^, such that H^ keeps Q^ fixed, HS°==i, and such that
the diagram

QX.J\^)
.F,xlt ^QXJ'"

MxJ"17"
is commutative. By compactness we can cover I by a finite number of such intervals J^.
Therefore we can find values t^, t^, ..., t^ and o=Ji<^<. . ,<s^^^==i, such that
for each i, [,?,, J.+JCjC*'. Write H'̂ H".'.

We now define H by induction on i, as follows. Define Hg=i . Suppose
H, : Q,->Q, has been defined so that H(FQ=F(, for o^t^s^. Then define

H,=HKHy-1^, for ^^^.
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HF^H^Hy-^FoTherefore
^(Hy-^=H^
-Ff

At the end of the induction we have H^ defined and H^Fo=F^, all tel. Moreover H is
piecewise linear, because it is composed of a finite number of piecewise linear pieces,
and H keeps Q fixed because each H' does. Therefore we have completed the proof
for the case when Q^is compact and N=Q^.

We now extend the proof to the general case when Q^ is not necessarily compact,
and NcQ. We may assume that N is a regular neighbourhood of the track, because
any neighbourhood contains a regular neighbourhood. Therefore N is a compact
submanifold of Q, because the track is compact. By the compact case F can be covered
by an ambient isotopy of N keeping N fixed, which can be extended by the identity to
an ambient isotopy of Q^ covering F supported by N and keeping Q fixed. The proof
of Theorem 2 is complete.

Proof of Addendum 2.1 .

The converse of Theorem 2 is trivial, because ifF^ is a locally unknotted embedding,
then the constant isotopy Fg x i is locally unknotted and locally trivial. If F is covered
by H then F=H(F()X i), which is again locally unknotted and locally trivial, because
these properties are preserved under the homeomorphism H.

Proof of Addendum 2 .2.

Given an ambient isotopy H of Q^ supported by a compact subset X, we have to
extend H to an ambient isotopy of Q^ supported by a given neighbourhood N of X in Q,.
We cannot deduce the addendum as a corollary to Theorem 2, because the embedding
QxI^-Q^Xl induced by H is not proper, and therefore not an isotopy according to
the definition that we are using. However the use of a collar provides an alternative
proof as follows.

Without loss of generality we can assume that X is a subpolyhedron, because the
support of H is a subpolyhedron contained in X, and that N is a regular neighbourhood
ofX in Q^, because any neighbourhood contains a regular neighbourhood. Therefore N
is a compact submanifold of Q. The given ambient isotopy H restricts to X, and then
extends by the identity to an ambient isotopy, G say, ofN keeping N—X fixed.

ii————————T|O
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Triangulate the square I2 as shown, and let u : I2 ->I be the simplicial map deter-
mined by mapping the vertices to o or i as shown. Define G* : (NX I) X I ->(Nx I) X I
by G\{x,s),t)={{G^^s),t).

As in the proof of Lemma 6, it follows that G* is an ambient isotopy of NX I keeping
( N x i ) u ( N — X ) x I fixed.

Choose a collar c : NX I ->N and let H* be the image of G* under c. Since G*
keeps NX i fixed, H* can be extended by the identity to an ambient isotopy of N;
and since G* keeps (N-X)xo fixed, H* keeps the frontier of N fixed, and so can be
further extended to an ambient isotopy H* of Q supported by N.

Finally we have to show that H* is an extension of H. If xf^X then both H
and H* keep x fixed; if^-eX then

H^-^G^-1)^
=cG^{x, o)
=c(G^,o)
=G^x
=H^.

The proof of Addendum 2.2 is complete.

Proof of Corollary 2.3.

Corollary 2.3 is concerned with the case when the isotopy F of M in Q does not
keep M fixed. Let T denote the track ofF in Q, which is compact because M is compact.
Let F :MxI->Q,xI denote the restriction of F to the boundary, which is locally
unknotted because F is. Let X be a regular neighbhourhood of the track TnQ, of F
in Q, and let No be a regular neighbourhood of X in Q. Then X, No are compact,
and by choosing sufficiently small regular neighbourhoods we can ensure that the given
neighbourhood N of T in Q^ is also a neighbourhood of No.

Now use Theorem 2 to cover F by an ambient isotopy of Q supported by X,
and by Addendum 2 .2 extend the latter to an ambient isotopy, G say, of Q supported
by No. Then G^F is an isotopy of M in Q keeping M fixed, with track contained
in TuNo. Since N is a neighbourhood of TuNo, we can again use Theorem 2 to
cover G^F by an ambient isotopy, H say, of Q supported by N. Therefore GH
covers F and is supported by N.

Proof of Corollary 2.4.

By Corollary 2.3 and the Corollary to Lemma 2.

We now proceed to the proof of Theorem 3.
Lemma 9. — Any homeomorphism between the boundaries of unknotted ball pairs can be

extended to the interiors.
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For do it conewise (see [8, Lemma 2]).
Lemma 10. — Let (B^, B™) and (C^ C^) be two unknotted ball pairs. Then any

homeomorphisms h^\W->G1 and ^rB^-^C^1 that agree on B^ can be extended to a
homeomorphism h : B^CX

Proof. — By Lemma 9 extend h^ to ^3 : W->G1, the composition h^1 : C^C^
keeps C^ fixed, and, since (C9, C^ is unknotted, can be suspended to a homeomorphism
^ : 0 -> 0 keeping C^ fixed. Define A == h^1 h^. Then A | B9 == ^3 [ B^ == Ai, and
h \ B7" == (̂ 3-% | Bw == Aa, as desired.

Lemma n (interior linear moves). — Let M be a compact m-manifold, and Q^a q-manifold,
such that m<q. Let K be a triangulation of M, and A=st(y, K) a closed a vertex star of K
contained in the interior ofM. Let K be a q-ball in the interior ofQ^. Suppose f, g : M—-Q, are
embeddings such that

(i) /? g ^^ on M—A,
(ii) A^/^B-^B,

(iii) (B.yA) and (B, gA) are unknotted ball pairs.

Then f, g are isotopic by two interior linear moves that are linear with respect to K.
Proof. — The geometrical idea of the proof is quite simple : we are faced with two

maps A->B which may criss-cross each other in the interiors but which agree on the•
boundary. So we move one onto a nice clean ball in B, and then move that back onto
the other.

Let A9 be the standard y-simplex, A^ a face, and /^-m-1 the opposite face.
Let x be the barycentre of A^, and y a point between x and the barycentre of A^* (see
figure i). Let a : A^-^A9 be the standard interior linear move throwing x to jy.

Choose a homeomorphism h^ IJ^A-^A^, and by the unknottedness of the balls
concerned, extend h^ to a homeomorphism h^: B-^A^A^A^"™"1. Extend the• • •
composite homeomorphism h^f: A—^A^ to a homeomorphism A-yA™ by mapping v
toj/3 and joining linearly; define ^3 so that the diagram

A ————> jA^

is commutative. By Lemma 10 extend Ag and ^3 to

^ : B-^A^A^-1.

Let C^/^^A^"'"'"1), which is a (^—-i)-ball facing B. We now construct a
y-ball N contained in Q, meeting B in the common face C, and meeting fM. in fA.
We can either construct N explicitly, or else observe that N is a regular neighbourhood
of G mod(Cu/(M—A)) in Q^—B that meets the boundary regularly, and appeal
to the existence theorem [4, Theorem i] for such relative regular neighbourhoods (using
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that C is link-collapsible on G). An explicit construction for N is as follows : let K be
a triangulation of Q—B containing G and /(M-—A) as subcomplexes. Then K is
a manifold since B lies in the interior ofM. Let K" be the second barycentric derived
complex of K. Let N be the simplicia) neighbourhood of C in K", that is to say the
union of all closed simplexes of K" meeting C. By construction N has the desired
intersections with B and/M. Finally N is a ball because by [4, Theorem i] N is a manifold
that collapses to C, and so N is collapsible; but any collapsible manifold is a ball.

Since C is a face of N3 we can extend h^\C : C -> xt^'k1^'1 to a homeomorphism

^ :N -^A^-^-1.

Therefore h^ and h^ together define a homeomorphism h: BuN-^A^. Now define
an embedding e : M.->Q^ by

<? |M—A=/[M—A
e\A=.h-lG-lh(f\A).

Since /"^(BuI^^A, the move from e to/ is linear with respect to K. But the
construction of e depended only on k^ which in turn depended only on B and/|A.
By hypothesis /|A==^|A, and so e depends symmetrically on / and g. Therefore
there is also a linear move from e to g, and so /, g are isotopic by two linear moves.

Lemma 12 (boundary linear moves). — Let M be a compact m-manifold, and Q^a q-manifold,
where m<q. Let K be a triangulation ofM. and let A==st(y, K), where v is a boundary vertex
o/'K. Let B be a q-hall in Q, that meets the boundary in a (q— i)-ball. Suppose fyg : M->Q
are proper embeddings such that

(i) /? g ^^ on M—A,
(ii) A^f-^^g-^

(m) (B,fA) and (B, gA) are two unknotted ball pairs, that meet the boundary Q^in an unknotted
face. Thenfy g are isotopic by two boundary linear moves, that are linear with respect to K.

Proof. — Denote by a superscript star the restriction of everything to the boundary :
M* =M,jf* ==/|M : M* ->Q*5 A* == An M\ etc. Since (B*,yA*) is an unknotted ball pair,
we can find, by the proof of Lemma n, a ball N*, a homeomorphism A* : B^uN^-^A^"1,
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and an embedding e* : M*->Q* such that e*,f* differ by the interior linear move deter-
mined by the standard interior linear move cr* : ̂ q~l—^^q~l.

Regard A^^VA9"1 as the cone on A^"1 with vertex V. Let c^A3-^ be the
standard boundary move induced by o*. We want to find e : M ->Q^ such that e, f differ
by the boundary linear move determined by <r.

Since (B^/A*) is an unknotted face of (B,/A), the complementary face is also
unknotted (see [4, Corollary 4]). Therefore using Lemma 9 twice, extend A*|B* to
a homeomorphism onto the cone pair

A:(B,/A) ->(V(A*B*),V(AyA*)).
Let

No^N'u/z-^V^B^N*)))

which is a {q—i)-ball, because it is the union of two balls meeting in the common face
B*nN*. Let N be a regular neighbourhood of No mod(NoU/(M—A)) in Q—B that
meets the boundary regulary. Then N is a y-ball meeting N*uB in the face No, and
so we can extend the embeddings h* : N*—^ and h: B-^A^ to a homeomorphism

h :BuN-^A^.
Define e : M->Q^ by

e\M—A=f\M—A
e\A==h-lG-lh(f\A).

Then Lemma 12 follows as in the proof of Lemma 11.

Proof of Theorem 3.

We are given proper embeddings f,g:M.->Q^ of codimension >o, that are
locally unknotted and ambient isotopic. We have to show that they are isotopic by
linear moves. Since M is compact, we can assume that the ambient isotopy has compact
support by Addendum 1.2; therefore by restricting attention to a regular neighbourhood
of this support, we can assume that Q is also compact.

First consider the case when M is closed. Choose triangulations of M, Q^ — call
them by the same names — such that / :M—^Q, is simplicial and the simplicial
neighbourhood of/M in Q^ lies in the interior of Q. Now apply the machinery of the
proof of Theorem i. We obtain a sequence A:o, k^ .. ., k^ of homeomorphisms of Q,
such that A:o== i, k^f==g, and, for each z, k^_^ and A, agree outside some vertex
star of Q. Let f,==k,f. Fix i for the moment. Suppose k,_^ and k, agree
outside st(^, QJ. If u^fM then f,_^=f,. If uefM, let v=f~lueM, and let
A=st(y,M),B==^(st(^Q)). Then A^^B^/^B, and the ball pairs (B,^_,A),
(B, f^A) are unknotted since / is locally unknotted. Therefore we have precisely the
situation of Lemma n, and so /,_i,/, are isotopic by two interior linear moves.
Therefore f, g are isotopic by interior linear moves.
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Now consider the case when M is bounded. As before choose triangulations M, Q
such that/is simplicial, and let M', Q' be the barycentric first derived complexes ofM, Q .̂
Apply the above machinery to Q'. Fix z, and suppose that k^_^, k^ agree outside st(z/', Q'),
where z/'e/M'. There are two possibilities according as to whether or not st(u', Q")
meets the boundary Q. If not, proceed as above and use Lemma 11. If it does meet
the boundary, then s^z/', CY) Cst(^, Q), for some uefM. Reverting to stars in the
underived complexes M, Q,, we are then in the situation of Lemma 12, and so /_i,/ are
isotopic by two boundary linear moves. Therefore /, g are isotopic by linear moves.
The proof of Theorem 3 is complete.

Proof of Corollary 3.1.

By Corollary 1.3, Corollary 2.4 and Theorem 3.

Proof of Addendum 3.2.

M is closed, and we are given a specific triangulation K of M. Choose a
subdivision K.i of K and a triangulation L^ of Q^ such that f: K-i—^Li is simpliciaL
Let Kg, Lg be the second barycentric derived complexes ofK^, L^. Then /: Kg—^Lg is
also simplicial.

In the above proof of the closed case in Theorem 3 use Kg, Lg to construct the
sequence /:o, k^, . . ., k^ of homeomorphisms of Q^, and embeddings fi=k^f : M~>Q^.
Fix i for the moment. The proof of Theorem 3 showed that /-i?/ differ by two moves
linear with respect to Kg; we want them linear with respect to K, which is not immediately
obvious because the simplexes of K may be large compared with those of Kg; whereas
the vertex stars of Kg are embedded locally, those of K may be spread globally over Q.

Let Mg be the vertex of Lg such that k^_^k^ agree outside st(^g, Lg). Assume
z/gE/M, otherwise j^_^==/ and the problem is trivial. Therefore we can define
^g=/-^geKg,Ag==st^g,Kg), and Bg=A,(st(^g, Lg)). Then Ag^^Bg^/^Bg.

Now since Lg is the second derived complex of L^, every closed vertex star of Lg is
contained in some open vertex star of L^.

Therefore st(z/g, Lg) Cst(^i, L^), for some ^eLi. Then u^efM., because st(^, L^)
meets/M, and so there exists ^ ̂ /'^eKi. Let A^ = st(z/i, K^) and B^ == ̂ (st(z/i, L^)).
Then A^/^Bi^/^Bi, because BpBg. Also (Bi,/,_iAi), (B^Ai) are unknotted
ball pairs by the local unknottedness off.

Since M is closed, v-^ is an interior vertex of K^, and so u^ is an interior vertex of L^,
because f is proper. By our choice of ^, BgCB^, and therefore

Ag^/^BgC/^B^Ai.

Since K^ is a subdivision of K, st(z^, K^) Cst(y, K), for some vertex z/eK. Let
A==st{y, K). Then A^CA. Therefore both the balls A, A^ are regular neighbourhoods
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of A^ in M. Therefore there is an ambient isotopy, G say, of M moving A^ onto A and
keeping A^ fixed (see [4, Theorem 3]). The composition

{M-\)xl -^ {M-\)xl ̂  (Q-B^xI

is an isotopy of M—A^ in Q—Bg keeping A^ fixed, and so by Theorem 2 can be covered
by an ambient isotopy, H say, of Q—B^ keeping 63 fixed. Extend H by the
identity to an ambient isotopy H of (^keeping Bg fixed. Let B^H^i. Then BDBg,
and so

A^/^B^y,-^,
because the same formulae hold for A^, B^ and the homeomorphism Hi throws B^ ,f, _ ̂  ,/,Ai
to B,/,_iA,/,A, respectively. Similarly (B,^_^A), (B,/,A) are unknotted ball pairs,
because the same is true for Ai and B^. Finally f,_^,f, agree on M—A because by
construction they agree on M—Aa, and AgCA. Therefore by Lemma n, f,_^f, are
isotopic by two moves linear with respect to K. Consequently/, g are isotopic by moves
linear with respect to K, and the proof of Addendum 3.2 is complete.
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