ESAIM: M2AN 47 (2013) 717-742 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2012046 WwWw.esalm-m2an.org

SYMMETRIC PARAREAL ALGORITHMS FOR HAMILTONIAN SYSTEMS

X1A0YING DAr'?, CLAUDE LE BRis?, FREDERIC LEGOLL? AND YVON MADAY?*

Abstract. The parareal in time algorithm allows for efficient parallel numerical simulations of time-
dependent problems. It is based on a decomposition of the time interval into subintervals, and on a
predictor-corrector strategy, where the propagations over each subinterval for the corrector stage are
concurrently performed on the different processors that are available. In this article, we are concerned
with the long time integration of Hamiltonian systems. Geometric, structure-preserving integrators are
preferably employed for such systems because they show interesting numerical properties, in particular
excellent preservation of the total energy of the system. Using a symmetrization procedure and/or
a (possibly also symmetric) projection step, we introduce here several variants of the original plain
parareal in time algorithm [L. Baffico, et al. Phys. Rev. E 66 (2002) 057701; G. Bal and Y. Maday, A
parareal time discretization for nonlinear PDE’s with application to the pricing of an American put,
in Recent developments in domain decomposition methods, Lect. Notes Comput. Sci. Eng. 23 (2002)
189-202; J.-L. Lions, Y. Maday and G. Turinici, C. R. Acad. Sci. Paris, Série I 332 (2001) 661-668.]
that are better adapted to the Hamiltonian context. These variants are compatible with the geometric
structure of the exact dynamics, and are easy to implement. Numerical tests on several model systems
illustrate the remarkable properties of the proposed parareal integrators over long integration times.
Some formal elements of understanding are also provided.

Mathematics Subject Classification. 65L05, 65P10, 65Y05.

Received November 24, 2010. Revised February 14, 2012.
Published online March 4, 2013.

1. INTRODUCTION

Increasingly intensive computations now become possible thanks to the improvement of both the efficiency
and the clock rate of processors, the interprocessor’s connections and the access to different levels of memory.
In addition, parallel computing platforms, which allow many processors to work concurrently, also become

Keywords and phrases. Parallel integrators, Hamiltonian dynamics, long-time integration, symmetric algorithms, symmetric
projection, geometric integration.

I LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190, China. daixy@lsec.cc.ac.cn

2 Ecole Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France and INRIA
Rocquencourt, MICMAC team-project, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France.
lebris@cermics.enpc.fr; legoll@lami.enpc.fr

3 UPMC Univ. Paris 06, UMR 7598, Laboratoire J.-L. Lions, Boite courrier 187, 75252 Paris Cedex 05, France.
maday@ann. jussieu.fr

4 Division of Applied Mathematics, Brown University, Providence, RI, USA

Article published by EDP Sciences © EDP Sciences, SMAI 2013

http://dx.doi.org/10.1051/m2an/2012046
http://www.esaim-m2an.org
http://www.edpsciences.org

718 X. DAI ET AL.

available. This second feature can only be useful if the problem to be solved can be decomposed into a series of
independent tasks, each of them being assigned to one of the processors.

The design of efficient algorithms for parallel architectures is the subject of intense current research. In the
case of models governed by partial differential equations, most of — if not all — the contributions of the last
three decades perform domain decomposition. We refer to [35,42] for a review on recent advances, and also to
the proceedings of the Domain Decomposition Method meetings (see www.ddm.org) for various achievements.
When the problem is time-dependent, or when the problem is solely governed by a system of ordinary differential
equations, relatively few contributions are available. We refer e.g. to the book of Burrage [9] for a synthetic
approach on the subject (see also [10]). In this book, the various techniques of parallel in time algorithms are
classified into three categories: (i) parallelism across the system, (i) parallelism across the method and (iii)
parallelism across time.

The parareal in time method, our focus here, was first proposed in the work of Lions, Maday and Turinici in
2001 [30]. It belongs to the third category where parallelism is achieved by breaking up the integration interval
into sub-intervals and concurrently solving over each sub-interval. The obvious difficulty is to provide the correct
initial value for the integration over each of these sub-intervals. Most of the techniques in the third category
are multishooting techniques, starting from the precursory work by Bellen and Zennaro [6]. This next led to
the waveform relaxation methods introduced by Lelarasmee, Ruehli and Sangiovanni-Vincentelli [29], and to the
multigrid approaches introduced by Hackbush [19]. See also the contribution [11] by Chartier and Philippe.

As it has been explained by Gander and Vandewalle in [17], the parareal in time algorithm can be interpreted
both as a type of multishooting technique and also as a type of multigrid approach, even though the bottom
line of the approach is closer to that of spatial domain decomposition with coarse grid preconditioners.

It is intuitively clear why so few contributions propose parallel in time algorithms: time-dependent problems
are intrinsically sequential. On the other hand, the development of parallel computing provides computational
opportunities that exceed the needs of parallelization in space. This motivates the development of efficient
parallel in time approaches.

The parareal in time algorithm is based on the decomposition of the temporal domain into several temporal
subdomains and the combination of a coarse and a fine solution procedure. The name “parareal” has been
adopted to indicate that the algorithm has, in principle, the potential to so efficiently speed up the simulation
process that real time approximation of the solution of the problem becomes plausible. Since the original
work [30], where the convergence of the algorithm is proven, the parareal algorithm has received some attention
and new developments have been proposed. In [4], Bal and Maday have provided a new interpretation of the
scheme as a predictor-corrector algorithm (see also Baffico et al. [2]). The scheme involves a prediction step
based on a coarse approximation for a global propagation of the system and a correction step computed in
parallel and based on a fine approximation. Bal (in [3]) and Ronquist and Staff (in [41]) next provided some
analysis on the convergence and the stability of the scheme. In [16], Gander and Vandewalle proved a superlinear
convergence of the algorithm when used on bounded time intervals, and a linear convergence on unbounded
time intervals.

In the past few years, the parareal algorithm has been successfully applied to various types of problems
(see [31] for a review): nonlinear PDEs [4], control problems [32], quantum control problems [33], Navier Stokes
equations [14], structural dynamics [13], reservoir simulation [18], ...

Although the plain parareal algorithm has proved to be efficient for many time-dependent problems, it also
has some drawbacks in some specific cases. This is for instance the case for molecular dynamics simulations (as
pointed out in [2]), or, more generally, for Hamiltonian problems. The exact flow of the system then enjoys many
specific geometrical properties (symplecticity, possibly time-reversibility, ...). Some quantities are preserved
along the trajectory: the Hamiltonian (e.g. the total energy of the system), and, in some cases, other quantities
such as the angular momentum, ...See the textbooks [22,27,40] for a systematic introduction to numerical
integration techniques for Hamiltonian systems. Symplectic and symmetric integrators are known to be suitable
integrators for Hamiltonian systems. It turns out that, even in the case when the parareal algorithm is based
on coarse and fine integrators that enjoy adequate geometrical properties (such as symplectic or symmetric

SYMMETRIC PARAREAL ALGORITHMS FOR HAMILTONIAN SYSTEMS 719

integrators), the global parareal algorithm itself does not enjoy any of these properties. Consequently, the long
time properties of the numerical flow (including e.g. energy preservation) are not as good as expected. In this
article, our aim is to design a parareal scheme that preserves some geometrical structure of the exact dynamics.
Our article is organized as follows. Sections 2 and 3 collect some preliminary material. We first briefly recall
the parareal algorithm, as presented in [2,4]. We next discuss numerical schemes for Hamiltonian problems, and
show the deficiencies of the parareal algorithm on such problems. In Section 4, we develop a symmetric version of
the parareal algorithm, in a sense made precise at the end of Section 4.1. This symmetric version unfortunately
provides unsatisfactory results. Modifications are in order. As an alternative to symmetrization, we explore
in Section 5 the idea of projecting the trajectory onto the constant energy manifold. Next, in Section 6, we
couple a projection step with the symmetric algorithm developed in Section 4, while keeping the overall scheme
symmetric. Combining these two ideas, symmetry and projection, yields the most efficient algorithms. The
performances of all the schemes proposed in these sections are illustrated by numerical simulations on two low-
dimensional systems, the harmonic oscillator and the two-dimensional Kepler problem. In Section 7, we consider
a test case in a higher dimensional phase space, namely the simulation of the solar system (see also [38] for
the derivation of algorithms specific to this test case, involving some parallel computations). We demonstrate
that the efficiency and the qualitative properties observed in the previous test cases carry over to this more
challenging example. Using the symmetric parareal scheme with symmetric projection developed in Section 6
(see Algorithm 1), we obtain a speed-up of more than 60 with respect to a fully sequential computation (provided
a sufficient number of processors are available), for an equal accuracy. Section 8 summarizes our conclusions.
An extended version of the present article is available at [12].

2. THE PLAIN PARAREAL ALGORITHM

In this section, we review the plain parareal algorithm for a time-dependent problem in a general setting.
The reader familiar with this scheme can skip this section and directly proceed to Section 3.
Consider u solution to the Cauchy problem

— + f(u) =0, t €[0,T], supplied with the initial condition u(0) = ug. (1)

We assume standard appropriate conditions on f ensuring existence, uniqueness and continuity with respect to
perturbations of the solution w to this problem (which is hence well-posed in the sense of Hadamard). Let £ be
the exact propagator, defined by £ (ug) = u(7), where u(7) denotes the solution at time 7 of problem (1).

In what follows, for reference, we approximate the exact propagator £ by using an accurate numerical scheme.
We can use any of the classical one-step schemes (explicit or implicit Euler schemes for simple problems, velocity
Verlet scheme in the case of Hamiltonian dynamics) with a sufficiently small time step 0¢. The associated discrete
propagator is denoted as F, with no reference to the time step ¢, in order not to make the notation too heavy.
Fr(up) is thus an approximation of &-(up). Assuming that the approximation u, of u(7,) is known at some
time T5,, the approximation of u(7),4+1) at a latter time T}, is computed by performing (T, +1 — T),)/dt steps
of the fine scheme, that is denoted, with the previous notations,

Un+1 = an+1—Tn (un)
In this article, we consider the dynamics
G=M""'p, p=-VV(e), u=(qp) R xR’ (2)

where M is a diagonal matrix, and V is a smooth scalar function depending on ¢. We will integrate (2) using
the velocity Verlet scheme, which is explicit and of order 2, and reads

5t?
Qnt1 = Qn + Mil (6t Pn — TVV(QTL)) y

5t (3)
Potl =P = 5 (VV(gn) + VV(qnt1)) -

720 X. DAI ET AL.

The plain parareal algorithm builds a sequence of N-tuples u* = {uﬁ}l <n<y that converges, when k — oo,

to the solution given by the fine scheme F: limg_. o uﬁ = u,. In the sequel, we consider Hamiltonian problems,
for which designing schemes with a non-uniform discretization is not straightforward. We thus restrict ourselves
to the case of a regular discretization, namely T,, = nAT with AT = T/N for some N € N*, where [0, 7] is the
time interval of interest. We introduce another approximation G of the exact flow £, which is not as accurate
as F, but is much less expensive to use than F. For example, we can choose the same discretization scheme
as for F, but with a larger time step dT' > dt. Hence, computing G, amounts to performing 7/dT time steps
of length dT'. Here again, the dependency of G with respect to d7" is not explicitly written. Another possibility
is to define the solver G from a simpler problem, which does not contain as much information as the original
problem, and thus is easier to solve. We use this opportunity in Section 7. In all the other sections, the only
difference between G and F lies in the choice of the time step.

Assume that we know an approximation {uﬁ}0<n<N of the solution to (1), at the end of some iteration k.
For k = 0, this approximation is computed sequentially, using the coarse propagator Gar. Then the parareal

. ; : : k+1
scheme defines the next iteration {u%*!} 0<n<N by

ulty = Gar (uET) + Far(uk) — Gar (uf), (4)

+1 k

with the initial condition u’g = ug. At the beginning of iteration k + 1, we first compute Far(uk) — Gar(uf)
in parallel over each interval [nAT, (n + 1)AT]. Once this is completed, we only need to compute Gar(urt!)
and add to it the stored correction Far(uf) — Gar(uk). This is a sequential process, the complexity of which
is negligible compared to the computation of Far(uk). Note that an improved implementation in parallel has
recently been proposed in [8]. It will be explained in Section 3.3. The analysis of the complexities of the different
parareal schemes proposed here will use this implementation.

From the construction of the scheme, convergence in at most N iterations can be proved [2,4]. It can also
be proven that, on a fixed time interval [0, 7] and under some regularity conditions, the scheme (4) yields a
numerical solution u* at iteration k that approximates u(7},) with an error which is bounded from above (up
to a multiplicative constant independent of the time steps 6¢, dT" and AT) by err F + [err G]'*%, where err F
is the error on the solution at time T for the fine solver and err G is the error on the solution at time 7" for the
coarse solver (see [3,30,31]).

3. PARAREAL INTEGRATION OF HAMILTONIAN SYSTEMS

Our purpose is to design parallel in time numerical schemes, derived from the parareal in time algorithm (4),
for the integration of Hamiltonian dynamical systems. We first review the specificities of such dynamics before
discussing their numerical integration with the parareal algorithm (4). The reader familiar with numerical
integration of Hamiltonian systems can skip Section 3.1 and directly proceed to Section 3.2.

3.1. Numerical integration of Hamiltonian systems

In this article, we consider finite dimensional Hamiltonian systems, namely dynamical systems that read

OH OH
C_ = ’ 5
i=%, P="%, ()
where the Hamiltonian H (g, p) is a smooth scalar function depending on the variables ¢ = (q1, . .., qq4) € R? and

p=(p1,...,pa) € RL.

The evolution of many physical systems can be written as a Hamiltonian dynamics. Examples include systems
in molecular dynamics (where g and p respectively represent the positions and momenta of the atoms composing
the system, see [15]), celestial mechanics (where ¢ and p represent the positions and momenta of planets or
satellites [25,26,39]), solid mechanics (after space discretization, the wave equation modelling elastodynamics

SYMMETRIC PARAREAL ALGORITHMS FOR HAMILTONIAN SYSTEMS 721

yields a Hamiltonian dynamics of the type (5), see [23,24]). In all these cases, H(q,p) is, physically, the total
energy of the system.

Hamiltonian dynamics have very specific properties that we now briefly review (see [22,40] for more com-
prehensive expositions). First, the energy H(q,p) is preserved along the trajectory of (5). Second, the flow
of a Hamiltonian system is symplectic. It is well-known that symplectic schemes, such as the velocity Verlet
scheme (3), are appropriate schemes for long time numerical integration of Hamiltonian dynamics. They indeed
define a symplectic numerical flow, and thus preserve, at the discrete level, a fundamental geometrical property
of the exact flow. In addition, the numerical flow given by a symplectic scheme applied on the dynamics (5) can
be shown to be almost equal to the exact flow of a Hamiltonian dynamics, for a so-called modified Hamiltonian,
which is close to the original Hamiltonian H of (5). This is one of the main results of the celebrated backward
error analysis for Hamiltonian dynamics (see [7,21,36], and the comprehensive survey in [22], Chap. IX). As a
consequence, preservation of the energy can be shown, in the sense that, for all n such that ndt < Cexp(c/dt),

|H (qn,pn) — H(qo,p0)| < C(61)",

where 0t denotes the time step, r the order of the scheme, and the positive constants ¢ and C' are independent of
0t. The numerical error on the energy hence does not grow with the simulation interval (at least for time intervals
exponentially long in the inverse of the time step). In some cases (namely, the case of completely integrable
systems and of almost completely integrable systems, such as the solar system), the difference between the
numerical and the exact trajectories can be shown to grow linearly in time, rather than exponentially, as would
be the case for a generic integrator used on a generic dynamics @ = f(u).

In this article, we consider Hamiltonian systems for which the energy reads
1 _
H(q,p) = 5p"M~'p+V(q), (6)

where, as above, M is a diagonal matrix and V is a smooth scalar function depending on the positions ¢. For
such an energy, the dynamics (5) is exactly (2). Setting v = (g,p), we recast this system as @ = f(u). We
then observe that the system is reversible with respect to p defined by p(q,p) = (¢, —p), that is f satisfies
fop=—po f. As a consequence, for any t, the exact flow ¥ = & of (2) is p-reversible, that is

poW =0"1top (7)

Another class of interesting schemes for reversible Hamiltonian systems such as (2) is the family of p-reversible
schemes: a one-step scheme defined by u,+1 = Wst(uy,) is p-reversible if W, satisfies (7). Properties similar to the
ones obtained with a symplectic scheme (good preservation of the energy, ...) can be shown when a reversible
Hamiltonian dynamics is integrated using a p-reversible scheme. Conditions under which such properties are
proven are however more restrictive than those of the backward error analysis for symplectic schemes: the
Hamiltonian system should be reversible integrable (this implies that, if ¢ and p are in R?, then the dynamics
preserves at least d invariants) and a non resonant condition should be satisfied ([22], Chap. XI).

The construction of p-reversible schemes is often done by first designing symmetric schemes. A one-step
scheme defined by w41 = Wst(uy,) is symmetric (see [22], Def. V.1.4) if, for any dt,

Wsp 0 W_g = 1d, (8)
where Id is the identity map. If a symmetric scheme satisfies the additional property
poWst =¥ _s0p, 9)

then the scheme is p-reversible in the sense of (7) (see [22], Thm. V.1.5). In practice, condition (9) is much less
restrictive than the symmetry condition (8), and is satisfied by many schemes (including e.g. the forward Euler

722 X. DAI ET AL.

scheme). In what follows, we will design symmetric schemes, satisfying (8), and check a posteriori that they
indeed satisfy (9). These schemes are hence p-reversible, namely satisfy (7).

Despite the restrictions on the type of Hamiltonian systems for which p-reversible schemes allow for good
long-time properties, symmetric schemes represent a very interesting alternative to symplectic schemes, because
they are often easier to design.

We conclude this section by recalling that the velocity Verlet scheme (3), which is symplectic, as pointed out
above, is also symmetric and p-reversible.

3.2. Parareal integration of Hamiltonian dynamics

We observe that, even if the coarse and fine propagators employed in the definition of the parareal algo-
rithm (4) are symplectic (respectively symmetric), then, for a given parareal iteration k > 1 and at a given time
step n, with n > k, the application ug = (qo, po) +— uf = (¢¥, pF) is not symplectic (respectively symmetric).

This lack of structure has immediate practical consequences when employing the plain parareal algorithm (4)

on Hamiltonian systems. Consider as a first example the one-dimensional harmonic oscillator, with Hamiltonian

1 1
H(g,p) = 5192 - 5612, pER, g€R, (10)

that we integrate up to time T' = 10*. Choose the initial condition ¢(0) = 1.2, p(0) = 0.01, set AT = 0.2, and
consider the velocity Verlet scheme (which, we have recalled, is both symplectic and symmetric) for the fine and
the coarse propagators, with time steps 6¢ = 10~3 and dT" = 0.1, respectively.

As a confirmation of the lack of geometric structure, we observe the lack of energy preservation. On Figure 1,
we plot the relative error on the energy preservation, defined, at time nAT and iteration k, as

r [H(gk,pk) — H(qo,p0)|
err, = . (11)
|H (g0, po)|

We note that, for short times (say up to 7' = 103 for the iteration k = 5), energy preservation is equally good
for the parareal algorithm and for the sequential fine scheme. However, it deteriorates for larger times. Not
unexpectedly, we do not observe the traditional behavior of geometric schemes (either symplectic or symmetric),
namely a good preservation of energy, even when the numerical trajectory is very different from the exact
trajectory.

On Figure 1, we also plot, for several iterations k, the error

erry, = |lan — @t || + [[pn —]| (12)
ref)

ref
)

on the trajectory (q,p), with respect to a reference trajectory (¢**',p computed with the velocity Verlet
algorithm — used sequentially — with the time step 6¢/10, where ¢ is the time step of the fine propagator F.
For k = 5, on the time interval [0, 103], we note that results are very good: the parareal trajectory is very close
to the fine scheme trajectory, for a much smaller computational effort. Indeed, at k& = 5, assuming that the
complexity of the coarse propagations is negligible, each processor has only computed 5 fine scale trajectories of
length AT, in contrast to the situation when a sequential algorithm is used, and the processor has to compute
T /AT = 5000 fine scale trajectories of length AT to reach the time 7" = 10%. However, we also see that the
error at iteration k = 5 increases for ¢ > 103, and becomes unacceptable for times t of the order of 10%. With
more iterations (say k = 15), convergence of the trajectories up to the time 7' = 10 is obtained (see [12]).
Similar observations hold for the two-dimensional Kepler problem, where

1 1
H(q,p)=§pr—m, p€eR? geR? (13)

1
for which we have considered the initial condition ¢(0) = (1 — e, 0) and p(0) = (0, \/ 1—4__:2), with e = 0.6. We

do not include them here for the sake of brevity.

SYMMETRIC PARAREAL ALGORITHMS FOR HAMILTONIAN SYSTEMS 723

10000 T T T T 100

P
S0

Doaw=o

100 |-

0.1 |
0.01 -

0.01 -
0.0001
0.001
1e-06 |-
0.0001

1e-08 -
1e-05 -

1e-10 | 1606 -

1e-12 |- oo | TN |

1e-14 1e-08 L L L L
0.1 0.1

1 10 100 1000 10000 1 10 100 1000 10000
time time

FIGURE 1. Error (11) on the energy (left) and errors (12) on the trajectory (right) for the
harmonic oscillator problem, obtained by the parareal method (4) with 6t = 1073, dT = 0.1,
AT =0.2.

3.3. Evaluation of the complexity of the plain parareal algorithm

In this section, for future reference, we assess the computational complexity of the parareal algorithm (4) for
the integration of the Hamiltonian dynamics (2). We perform this evaluation under the assumptions that (i) the
coarse and the fine propagators integrate the same dynamics, using an algorithm that requires the same fixed
number of calls (set here to one) to the right hand side of (2) per time step (we consider that the complexities
of evaluating VH or VV are equal, and we denote it by Cy), and that (ii) we have all the necessary processors
to perform all the fine scale computations in parallel.

We use here the implementation proposed in [8]. It consists in starting the computation of Farp (uﬁ“)
immediately after uf*! has been computed in (4), and not waiting that all (uf*!);<,<x are available. This
allows us to start the parareal iteration k4 2 much sooner. The complexity of the first coarse propagation scales
as Cy T/dT. We next distinguish two extreme cases, whether the complexity of the fine propagator on a time

interval of size AT is smaller (respectively larger) than the complexity of the coarse solver on the whole interval

A T
[0, T]. The first case corresponds to the situation when 50 < T the second case when 50 > T

In the first case, the complexity of each iteration is dominated by the complexity of the coarse solver on the
whole interval [0, T]. The complexity of such a parareal iteration is thus again of the order of Cy T/dT. In the
second case, the complexity of each parareal iteration is of the order of Cy AT/dt. In both cases, a final coarse
iteration needs to be performed.

Denoting by Kp the number of parareal iterations, the approximate complexity of the scheme (4) is of the
order of

T
= (K 1 —
Cp (P+)Cv a7
in the first case, and
AT
Cp =KpCy —
P plv

in the second one.
In comparison, the complexity of the fully sequential algorithm, using the small time step dt, is

T
C'seq = OV E

724 X. DAI ET AL.

Note that the second case above corresponds more to the paradigm of the parareal scheme (remind also that,
if possible, the coarse solver should be based on a less expensive dynamics than the fine solver, as in Section 7
below), especially for the integration of large Hamiltonian systems as the one considered at the end of the article.

In that case, the speed-up is of the order , which is the number of processors divided by the number of

T
KpAT
iterations.

For the complexity analysis, we assume that we are in the second case above, i.e. we assume that

ar T
ot dT

4. A SYMMETRIC VARIANT OF THE PARAREAL IN TIME ALGORITHM

In [5], a symplectic variant of the parareal algorithm has been introduced. The strategy there is based on
the reconstruction of the generating function S : (¢,p) € R? x R? +— R associated with the symplectic map
Far o QZ%. An interpolation procedure is used to obtain an approximation of that generating function. The
optimal way to perform the interpolation is still an open question, especially when working with high dimensional
problems (d > 1). In this article, we limit ourselves to the design of a symmetric scheme, using the fact that
it is often simpler to symmetrize a given scheme than to make it symplectic. We hope to return to symplectic
variants in future publications.

4.1. Derivation of the scheme

Our idea is based on the following well-known observation (see [22] Chap. V). Consider a general one-step
scheme Uy, 11 = War(U,,). Then the scheme

Un+1=%ars20 (Q—AT/2)71 (Un) (15)

is symmetric. For future use, we introduce the intermediate variables Uy, 11 /o = (JL AT /2) -t (Up), and write the
above scheme as

Un =%_ar/2 Uns1s2), Uni1 =%ars2 (Uny1)2) - (16)

We now write the parareal algorithm (4) in a form more appropriate for our specific purpose. Consider the first
K iterations of the parareal algorithm, and denote

Uy, = (ug ul ~-~,uK).

s Yo

Then the parareal scheme (4) can be written as
Un+1 - WAT(Un)a
where the map Yar is defined by

Gar(uy)
WAT(UTL) _ gAT(u}L) + Far (u%) —Gar (U(T)L)

Gar (ul) + Far (uE~Y) = Gar (uf1)
We now apply the symmetrization procedure (16) to the map Yar, and consider the scheme

Un =Y_ar/2 (Uns1s2), Uni1 =%ars2 (Uny1)2) - (17)

SYMMETRIC PARAREAL ALGORITHMS FOR HAMILTONIAN SYSTEMS 725

We next write this scheme in a more detailed manner. The first equation of (17) reads

u% = ngT/Q (U?H.l/z) ,

711 g AT/Q (n+1/2 +]:7AT/2 (ug+1/2> - ngT/Q <u2+1/2>)

ul ™ =G A7) (U | 2) +F_Ar)2 (unK[f/Q) —G_ar)2 (unK[f/Q) ;
ul =G Aty (U +1/2) +F_Ar)2 (UHKJ:11/2> —G_at)2 (UHKJ11/2>

We hence obtain

-1
n+1/2 =G AT/2(
“n+1/2 = g:lAT/Q {“711 —F_ar)2 (“g+1/2> +G-ary (“gﬂ/zﬂ)

K-1 —1
“n+1/2 ngT/Q

up - F_ary2 (“nK+712/2> +G_ar)2 (“5@32)})
-1 K K-1 K—1

We now collect the above set of relations with the second equation of (17) and obtain the following formulation:

“g+1/2 = g:lAT/2 (u), ups1 = Garye (“g+1/2> J (18)

at iteration k = 0, and next, for any k& > 0,

k1 —1
unil/Q = g—AT/2 {“ﬁ“ —F_ary2 <UZ+1/2) +G-ar)2 (uﬁ+1/2>})

k

“nL Garyz (u (n+11/2) + Fary2 (“Z+1/2> —Gary2 (“Z+1/2) :

We call the scheme (18)—(19) the symmetric parareal scheme.

Remark 1. We have recalled in Section 3.1 that p-reversible schemes have good geometrical properties. By
construction, the scheme (18)-(19) is symmetric. We have checked that it also satisfies condition (9). As a
consequence (see again Sect. 3.1), the scheme (18)—(19) is p-reversible.

We note that, apart from the computation of Q:IAT /20 the scheme (18)-(19) is completely explicit, as soon
as the propagators G and F themselves are explicit. In particular, we point out that the inverse of the fine
propagator F is not needed.

We now show that, in this new algorithm, all the expensive computations (involving F) can actually be

performed in parallel. Assume that, at a given iteration k, we know {ug}ogngN and {uﬁ+1/2}0<n<N71. Then
the correction terms
k k
Fary2 (“n+1/2) —Gar)2 (“n+1/2>
and

F_ary2 (“Zﬂ/z) —G_ar)2 (“§+1/2>

can be computed independently, over each processor. The algorithm can next proceed with sequential, but
inexpensive, computations. Note again that, as pointed out in Section 3.3, we can start the computation of

726 X. DAI ET AL.

}"AT/Q(UZH/Q) and }"_AT/Q(uQH/Q) as soon as uﬁﬂ/? is available (we do not have to wait for all the compu-
tations of iteration k to be completed). The complexity of this algorithm is hence the same as that of the plain
parareal algorithm (4).

Some comments are in order. The parareal scheme (4) is not a one-step scheme defining Uﬁfl from uf*+1, and
hence the symmetric form (18)—(19) cannot be considered, strictly speaking, as a symmetric integrator in the
classical sense. However, several reasons lead us to believe that this algorithm is the appropriate generalization
of symmetric integrators when dealing with parareal-type algorithms.

First, the scheme at iteration k = 0, defined by (18), is exactly the symmetrization (15) of the coarse
propagator Gar.

Second, the flow (18)—(19) is symmetric in the sense that, if for some n and some k,

0 k k41
(un+17 oy Upg Un+1)
is obtained from
0 ko k+1
(un7 ... 5 un7 un)

by the flow implicitly defined in (18)—(19), then

0 ko, k+1
(un7 ... 5 un7 un)
is obtained from
0 k k41
(unJrl? oy Upgs un+1)

by the exact same algorithm reversing the time. In fact, only the consideration (and the storage) of the last
two iterates (in terms of “parareal iterates”) (uf,uf*!) is required to perform the iterations, and the above
argument.

Third, if the coarse propagator happens to be identical to the fine one (which is of course not supposed to

be the case for efficiency of the parareal integrator!), then the symmetrized form (19) reads

k41 o1 k+1 E+1 _ k41
Upy1/2 = ngT/z (un™), uni1=Gar)e (“n+1/2>)
and it thus coincides with the standard symmetrized version of the coarse propagator.
Finally, formally taking the limit & — oo in (19) yields

Uy = Farjz o (Foary) H(uy).

This shows that the limit of the symmetric parareal algorithm in terms of parareal iterations coincides with a
standard symmetrized form of the map Fap. Note also that this latter algorithm is not the symmetrized version
of the fine propagator, since symmetrization does not occur after each time step, but after AT/(25t) time steps.

These observations show the formal consistency of our notion of symmetrization for parareal-type integrators
with the classical notion of symmetry.

Remark 2. Instead of considering (15) to symmetrize a given scheme War, one can alternatively consider the
symmetric scheme

1
Un+1 = (Y_ars2) ©War/2(Uy).

In the parareal context, this yields an algorithm with similar properties as the above algorithm (18)—(19), and
with comparable numerical results. In the sequel, for the sake of brevity, we only consider the symmetrization
procedure (15).

SYMMETRIC PARAREAL ALGORITHMS FOR HAMILTONIAN SYSTEMS 727

4.2. Numerical examples

We again consider the example of the harmonic oscillator (10), and integrate this Hamiltonian system with
our newly constructed symmetric parareal algorithm (18)—(19). Note that system (10) is an integrable reversible
Hamiltonian system, and thus belongs to a class of problems for which symmetric integrators have been shown
to preserve energy ([22], Chap. XI), as has been recalled in Section 3.1.

The results obtained with this symmetrized version of the algorithm are disappointing: they are indeed very
similar, both qualitatively and quantitatively, to those obtained with the plain parareal scheme (4) (see Sect. 3.2,
Fig. 1). Similar conclusions are drawn for the Kepler problem.

It is useful and instructive to now explain such a poor behavior, using the following formal elements of
analysis. We first observe that a parareal integrator may be seen, at parareal iteration k, as an integrator of a
system consisting of k+ 1 identical replicas of the original system under consideration. From (18), we know that
the first replica is integrated by a symmetric algorithm. If the system under study is an integrable reversible
Hamiltonian system, its energy is thus preserved in the long time by the simulation at parareal iteration k = 0
(this is confirmed by numerical experiments). Next, since the replicas are noninteracting, the system of replicas
is evidently an integrable reversible system, and has an energy that is equal to k + 1 times the energy of the
original system. Assume now that the symmetric propagator (18)—(19) applied to the system of k£ + 1 identical
replicas conserves the energy of the global system (i.e. the sum ZIZZO H(q%,p") of the energies of the replicated
systems), as we could expect from a symmetric scheme applied to an integrable reversible Hamiltonian system.
Under this assumption, it follows, by induction on k, that the energy is preserved along the trajectory, at
each parareal iteration k. This is clearly in contradiction with the observed numerical results! The flaw in the
above argument is that, for a symmetric scheme to preserve the energy of an integrable reversible system, we
have recalled that, among other conditions, the frequencies present in the system have to satisfy a non-resonant
diophantine condition ([22], Condition X.2.4 and Thm. XI.3.1). This is precisely not the case here for the system
of replicas, by replication of the original frequencies!

The theoretical argument showing energy preservation does not apply, and numerical results confirm that
energy is indeed not well-preserved, in the long-time limit. The symmetric parareal scheme (18)—(19) hence
needs to be somehow amended.

4.3. Symmetric parareal algorithm with frequency perturbation

To prevent the different replicas from being resonant, a possibility is to consider, at each parareal iteration
k, a system slightly different from the original system. For instance, in the case of the harmonic oscillator, we
may consider at each iteration k£ a harmonic oscillator with a specific frequency wyg:

1
—w?g?.

1
Hi(q,p) = =p* + 5

2
The unperturbed case corresponds t0 Wi = Wexact = 1 in the above energy. Provided the wy are all different
from one another (and non-resonant), the system of replicas is non-resonant. The shift is chosen such that it
vanishes when k — oo, i.e. limy_ oo Wr = Wexact- Likewise, for the Kepler problem, we introduce a perturbation
by considerin