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AN ANALYSIS OF THE BOUNDARY LAYER
IN THE 1D SURFACE CAUCHY–BORN MODEL ∗

Kavinda Jayawardana1, Christelle Mordacq2,
Christoph Ortner3 and Harold S. Park4

Abstract. The surface Cauchy–Born (SCB) method is a computational multi-scale method for the
simulation of surface-dominated crystalline materials. We present an error analysis of the SCB method,
focused on the role of surface relaxation. In a linearized 1D model we show that the error committed by
the SCB method is O(1) in the mesh size; however, we are able to identify an alternative “approximation
parameter” – the stiffness of the interaction potential – with respect to which the relative error in the
mean strain is exponentially small. Our analysis naturally suggests an improvement of the SCB model
by enforcing atomistic mesh spacing in the normal direction at the free boundary. In this case we even
obtain pointwise error estimates for the strain.
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1. Introduction

Miniaturization of materials to the nanometer scale has led to unexpected and often enhanced mechanical
properties that are not found in corresponding bulk materials [6,33]. This size-dependence has been experimen-
tally observed to begin around a scale of about 100 nm [27]. A fully atomistic simulation of a nanostructure
of this size would require on the order of 108 atoms, which motivates the need for computationally efficient
multiscale methods.

The underlying cause for the size-dependent mechanical properties is that surface atoms have fewer bonding
neighbours, or a coordination number reduction, as compared to atoms that lie within the material bulk. This
results in the elastic properties of surfaces being different from those of an idealized bulk material [27], which
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becomes important with decreasing structural size and increasing surface area to volume ratio [6]. Additionally,
nanoscale surface stresses [5], which also arise from the coordination number reduction of surface atoms [35],
cause deformation of not only the surfaces, but also the underlying bulk [17], and can result in unique physical
properties such as phase transformations [7], or shape memory and pseudoelasticity effects in FCC nanowires
that are not observed in the corresponding bulk material [18, 25].

To study surface-dominated nanostructures, Park et al. recently developed the surface Cauchy–Born (SCB)
model [22, 23, 26]. The idea is to seek an energy functional of the form

Escb(y) =
∫

Ω

W (∇y) dx +
∫

∂Ω

γ(∇y, ν) ds, (1.1)

where Ω ⊂ R
3 is an elastic body, y : Ω → R

3 a deformation field, W the bulk stored energy function, and γ
a surface stored energy function. The potentials W, γ are chosen such that W (F) denotes the energy per unit
volume in an infinite crystal under the deformation y(x) = Fx, while γ(F, ν) is the surface energy per unit
area of a half-space with surface normal ν, under the deformation y(x) = Fx. Thus, W and γ are derived from
the underlying atomistic model. For W this is a well-understood idea [1, 10, 12, 19]; the novel approach in the
SCB method is to apply the same principle to the surface energy potential. We note, however, that a surface
contribution as in (1.1) was previously derived in [1], as the first-order expansion of an atomistic model with
pair interactions. A more explicit form of the surface energy contribution in polygonal domains is given in [30].

In contrast to the SCB method, most computational models (see, e.g., [13, 15, 40]) are based upon a finite
element discretization of the governing surface elasticity equations of Gurtin and Murdoch [14], where the
constitutive relation for the surface is linearly elastic or uses standard hyperelastic strain energy functions [16].

The SCB model was successfully applied to various nanomechanical boundary value problems, including
thermomechanical coupling [38], resonant frequencies, and elucidating the importance of nonlinear, finite defor-
mation kinematics on the resonant frequencies of both FCC metal [24] and silicon nanowires [20, 21], bending
of FCC metal nanowires [39], and electromechanical coupling in surface-dominated nanostructures [28]. A fur-
ther application that we aim to pursue in future work is the simulation of cracks in bulk crystalline materials
(see [2–4] for related works), which requires the accurate description of the crack surface; in more than one
dimension this will require the development of a coupling mechanism at crystal surfaces.

The purpose of the present work is to initiate a mathematical analysis of the accuracy of the SCB method.
We focus on the simplest setting where the only effect is a surface relaxation in normal direction. While the
SCB model does include surface physics that are neglected in the standard Cauchy–Born (CB) model, due
to employing a coarse finite element discretisation it does not resolve the resulting boundary layer; see the
numerical results in [11] as well as Figure 1 for a 1D toy model demonstrating this. It is therefore a priori
unclear to what extent the SCB improves upon the CB model. Figure 1 suggests that, while the error in the
displacement and displacement gradient is indeed of order O(1) in the boundary layer, the displacement error
at finite element nodes is visually negligable, which would imply that the SCB model approximates the mean
strain (and possibly other averaged quantities) to a much higher degree of accuracy. This was indeed observed
in extensive numerical tests presented in [11, 22, 23].

There is no traditional discretisation or approximation parameter in this model with respect to which we
might try to explain this effect. Instead, our analysis measures the SCB error in terms of the stiffness of the
interaction potential. This enables us to identify a suitable asymptotic limit for our analysis on a linearized model
problem. We confirm the analytical predictions with numerical experiments on the fully nonlinear problem in
1D and a periodic semi-infinite 2D domain.

To the best of our knowledge, our work presents the first approximation error results for the SCB method.
Although our analysis is elementary, it makes three novel contributions: (1) we show that the “correct” approxi-
mation parameter is the stiffness of the interaction potential (however, Theil [37] uses similar ideas for an analysis
of surface relaxation); and (2) we show that the mean strain (which is an important quantity of interest) has a
much lower relative error than the strain field. (3) Our results show how to substantially improve the accuracy
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Figure 1. Displacements and displacement gradients of an atomistic solution and a surface
Cauchy–Born solution, relative to the bulk Cauchy–Born solution, for the 1D model problem
described in Sections 2.1 and 2.2. We observe unexpectedly high accuracy of the displacement
at the finite element nodes (marked by diamonds) despite a large error in the displacement
gradient.

of the SCB method at moderate additional computational cost. Finally, we hope that this work will stimulate
further research on computationally efficient multiscale methods for surface-dominated nanostructures.

The issues we address here are closely related to the classical problem of numerical methods for resolving
boundary layers [29]. The main difference in our case is the discrete setting which does not give us the opportunity
to let the mesh-size tend to zero. For a mathematical analysis of thin atomistic structures, surface energies and
surface relaxation we refer to [3, 31, 32, 37] and references therein. Our work also draws inspiration from [8, 9]
where a similar linearised model problem is used to analyze the accuracy of atomistic-to-continuum coupling
methods.

Finally, we remark that we restrict our analysis to a specific choice of the interaction potential, to make
it as simple as possible. The choice of the Morse potential is motivated by the explicit occurance of a model
parameter that controls the “stiffness” of the potential. Qualitatively, we expect that our conclusions apply to
any pair interaction model where the potential has a high second derivative in its minimum and decays rapidly
with increasing bond length.

2. Analysis of a 1D model problem

2.1. Atomistic model

We consider a semi-infinite chain of atoms with reference positions � ∈ N, and deformed positions y�, � ∈
N. We assume that the chain interacts through second-neighbour Morse pair interaction. Hence, a deformed
configuration y has energy (defined formally for the moment; cf. Prop. 2.1)

Ea(y) :=
∞∑

�=0

[
φ(y�+1 − y�) + φ(y�+2 − y�)

]
, (2.1)

where φ is a shifted Morse potential with stiffness parameter α > 0 and potential minimum r0 > 0,

φ(r) = exp(−2α(r − r0)) − 2 exp(−α(r − r0)) − φ0, (2.2)

where φ0 is chosen to that W (1) = 0, where

W (r) := φ(r) + φ(2r), (2.3)
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r0 is defined such that W ′(1) = 0,

r0 = 1 +
1
α

log
(

1 + 2e−α

1 + 2e−2α

)
, (2.4)

and α ≥ 1+
√

3 remains a free parameter. This restriction on α ensures that φ′′(2) ≤ 0, which will be convenient
in the analysis. The shift of the potential by φ0 ensures that Ea(id) is finite.

The potential W is called the Cauchy–Born stored energy density. We have chosen the parameters in the
Morse potential so that 1 is the minimizer of W .

Since Ea is translation invariant, it is convenient to fix y0 = 0. In that case, y� is completely determined by the
forward differences y′

� := y�+1 − y�. Hence we change coordinates from the deformation y� to the displacement
gradient u� := y′

� − 1, and rewrite Ea as

Ea(u) :=
∞∑

�=0

[
φ(1 + u�) + φ(2 + u� + u�+1)

]
.

The next result establishes that Ea is well-defined in a suitable function space setting; the proof is given in
the appendix.

Proposition 2.1. Ea is well-defined and twice Fréchet differentiable in �1(N) with first and second variations
given by

〈δEa(u), v〉 =
∞∑

�=0

[
φ′(1 + u�)v� + φ′(2 + u� + u�+1)(v� + v�+1)

]
,

〈δ2Ea(u)v, w〉 =
∞∑

�=0

[
φ′′(1 + u�)v�w� + φ′′(2 + u� + u�+1)(v� + v�+1)(w� + w�+1)

]
.

2.2. The Cauchy–Born and surface Cauchy–Born models

The Cauchy–Born approximation is designed to model elastic bulk behaviour in crystals. The stored energy
density is chosen so that the Cauchy–Born energy is exact under homogeneous deformations in the absence of
defects (such as surfaces). For the 1D model (2.1) this yields (formally for the moment; cf. Prop. 2.2)

Ecb(y) :=
∫ ∞

0

W (y′) dx, (2.5)

or equivalently, written in terms of the displacement gradient u = y′ − 1,

Ecb(u) =
∫ ∞

0

W (1 + u) dx,

where W (r) = φ(r) + φ(2r) was already defined in (2.3).
We consider a P1 finite element discretisation of the Cauchy–Born model. Let Xh := {X0, X1, . . .} ⊂ N be a

strictly increasing sequence of grid points with X0 = 0, and let hj := Xj+1 − Xj ∈ N. A P1 discretisation of y
corresponds to a P0 discretisation of the displacement gradient u, hence we define for (Uj)∞j=0 ⊂ R, where Uj

denotes the displacement gradient in the element (Xj , Xj+1),

Ecb
h (U) :=

∞∑
j=0

hjW (1 + Uj).
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Figure 2. Visualisation of (2.7): the bond at the left-hand end of the graph is counted half in
the Cauchy–Born model, even though it does not exist in the atomistic model, hence it gives a
contribution − 1

2φ(2y′(0)) to the surface energy.

The Cauchy–Born approximation commits an error at the crystal surface, which the surface Cauchy–Born
(SCB) approximation aims to rectify. The idea of the SCB method (in our 1D setting) is to define (again only
formally; cf. Prop. 2.2)

Escb(y) :=
∫ ∞

0

W (y′) dx + γ(y′(0)), (2.6)

and choose γ such that the energy is exact under homogeneous deformations, which yields the formula

γ(F ) := −1
2
φ(2F ); (2.7)

see also Figure 2. Converting to the displacement gradient coordinate discretised by the P0 finite element method
we obtain

Escb
h (U) := Ecb

h (U) + γ(1 + U0).

The next result establishes that Ecb
h and Escb

h are well-defined in a suitable function space setting; the proof
is given in the appendix.

Proposition 2.2. Ecb
h and hence Escb

h are well-defined and twice Fréchet differentiable in the weighted space
�1
h(Xh) := {V = (Vj)∞j=0} equipped with the norm

‖V ‖�1h
:=

∞∑
j=0

hj|Vj |.

The first and second variations of Escb
h are given, respectively, by

〈δEscb
h (U), V 〉 =

∞∑
j=0

hjW
′(1 + Uj)Vj + γ′(1 + U0)V0, and

〈δ2Escb
h (U)V, W 〉 =

∞∑
j=0

hjW
′′(1 + Uj)VjWj + γ′′(1 + U0)V0W0.

2.3. Analysis of the linearized models

The parameter r0 for the Morse potential was chosen so that 1 is the minimizer of the Cauchy–Born stored
energy function, which implies that

U cb
j := 0, for j = 0, 1, . . . (2.8)

is the ground state of Ecb
h . More generally, ucb := (0)∞�=0 gives the Cauchy–Born ground state. We now consider

linearisations of Escb
h and Ea about the Cauchy–Born state: δE(0) + δ2E(0)u = 0, where E ∈ {Ea, Escb

h }.
From Proposition 2.2 we obtain the linearised optimality condition for Escb

h ,

γ′(1) + (h0W
′′(1) + γ′′(1))U0 = 0, and hjW

′′(1)Uj = 0 for j = 1, 2, . . . ,
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which gives the linearised surface Cauchy–Born solution

U scb
0 =

−γ′(1)
h0W ′′(1) + γ′′(1)

, and U scb
j = 0, for j = 1, 2, . . . (2.9)

From Proposition 2.1 we obtain the linearised optimality condition for the atomistic model Ea,

φ′(1) + φ′′(1)u0 + φ′(2) + φ′′(2)(u0 + u1) = 0,

φ′(1) + φ′′(1)uj + 2φ′(2) + φ′′(2)(uj−1 + 2uj + uj+1) = 0, j ≥ 1,

which, using the fact that φ′(1) + 2φ′(2) = W ′(1) = 0 can be rewritten in the form

[φ′′(1) + φ′′(2)]u0 + φ′′(2)u1 = φ′(2),
φ′′(2)u�−1 + [φ′′(1) + 2φ′′(2)]u� + φ′′(2)u�+1 = 0, � ≥ 1.

This finite difference equation can be easily solved explicitly, which yields the solution

ua
� :=

φ′(2)λ�

φ′′(1) + φ′′(2)(1 + λ)
, where λ =

√
1 + 4φ′′(2)

φ′′(1) − 1 − 2φ′′(2)
φ′′(1)

2φ′′(2)
φ′′(1)

(2.10)

is the unique solution in (0, 1) of the characteristic equation

φ′′(2)λ2 + [φ′′(1) + 2φ′′(2)]λ + φ′′(2) = 0.

(Note that there is also an exponentially growing solution, but it does not have finite energy).
Since the expressions for (2.9) and (2.10) are somewhat bulky we expand them in the stiffness parameter α

of the Morse potential (2.2). The elementary proof is postponed to the appendix.
Our rationale for expanding in this parameter is as follows:

1. Interactions in crystalline solids are typically fairly stiff; e.g., the Lennard-Jones case corresponds roughly
to α between 4.5 and 5. This may seem only moderate, but note that our estimates are in terms of e−α, and
that e−5 ≈ 0.007.

2. All three models (atomistic, CB, SCB) formally coincide in the limit α → ∞ since in the elastic regime the
second neighbour interaction tends to zero while the nearest neighbour potential tends to a sticky potential.

3. It is common for asymptotic expansions of this type to be accurate in a much wider range than expected;
hence we hope that our results will also yield useful predictions for moderate α.

Proposition 2.3. Asymptotically as α → ∞ we have the expansions

U scb
0 =

e−α

h0α

[
1 −

(
1 +

2
h0

)
e−α + O(e−2α)

]
, and (2.11)

ua
0 =

e−α

α

[
1 − 4e−α + O(e−2α)

]
. (2.12)

Remark 2.4. The asymptotic expansions (2.11) and (2.12) justify a posteriori the linearisation since they show
that the displacements from the Cauchy–Born state are indeed small in the limit as α → ∞.

2.4. Error estimates

We first note that each P0 function U = (Uj)∞j=0 can be understood as a lattice function u = (u�)∞�=0 through
the interpolation

u� = Uj for � = Xj, . . . , Xj+1 − 1, j ∈ N.
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With this interpolation we obtain ucb = 0 and uscb from the linearized CB and SCB solutions U cb and U scb,
given in (2.9).

We are interested in the improvement the SCB model gives over the pure Cauchy–Born model, that is, we
wish to measure the relative errors

Errp :=
‖uscb − ua‖�p

‖ucb − ua‖�p

=
‖uscb − ua‖�p

‖ua‖�p

·

Of particular interest are the uniform error Err∞ and the error in the energy-norm Err2. We shall consider two
separate cases: h0 > 1 and h0 = 1.

Proposition 2.5 (strain error). Let p ∈ [1,∞] and h0 > 1, then

Errp = Cp + O(e−α), (2.13)

where 1
2 ≤ Cp ≤ 2. If h0 = 1, then

Errp = 21/pe−α + O(e−2α). (2.14)

Proof. We consider the case h0 = 1 first. In that case (2.10) gives us( ∞∑
�=1

|uscb
� − ua

� |p
)1/p

=

( ∞∑
�=1

|ua
� |p
)1/p

= λua
0

(
1 − λp

)−1/p
,

and similarly, ‖ua‖�p = ua
0(1 − λp)−1/p. Using the asymptotic expansions (A.5) for λ it is straightforward to

show that
(1 − λp)−1/p = 1 + O(λ) = 1 + O(e−α);

hence employing also (2.12) we obtain

‖ua‖�p =
e−α

α
+ O

(
e−2α

α

)
, and

( ∞∑
�=1

|uscb
� − ua

� |p
)1/p

=
e−2α

α
+ O

(
e−3α

α

)
· (2.15)

For � = 0, since h0 = 1, we have

∣∣uscb
0 − ua

0

∣∣ =
∣∣∣∣∣e

−α

α

[
1 − 3e−α + O(e−2α)

]
− e−α

α

[
1 − 4e−α + O(e−2α)

]

=
e−2α

α
+ O

(
e−3α

α

)
·

Combined with (2.15) this gives

Errp =
‖ua − uscb‖�p

‖ua‖�p

=
21/p e−2α

α + O
(

e−3α

α

)
e−α

α + O
(

e−2α

α

) = 21/pe−α + O(e−2α),

which concludes the proof of (2.14).
In the case h0 > 1 the convenient cancellation of first-order terms in uscb

0 − ua
0 does not occur. Instead, using

(2.15) we obtain

‖ua − uscb‖�p =
e−α

α

(∣∣∣∣1 − 1
h0

∣∣∣∣
p

+
X1−1∑
�=1

∣∣∣∣ 1
h0

∣∣∣∣
p
)1/p

+ O
(

e−2α

α

)
·

This immediately gives (2.13). �
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We see from (2.13) that if we use a coarse finite element mesh up to the boundary, then the error in the
displacement gradient will be typically of the order 50% or more. By contrast, if we refine the finite element mesh
to atomistic precision at the boundary then the relative error is exponentially small in the stiffness parameter α.

The quantity Errp measures the error in a pointwise sense. However, in some cases we are only interested in
correctly reproducing certain macroscopic quantities such as the mean strain error

Err :=
∣∣∣∣
∑∞

�=0(u
scb
� − ua

�)∑∞
�=0 ua

�

∣∣∣∣ ·
Note that, up to higher order terms, this error also bounds the error in the displacements at the finite element
nodes, which we observed in Figure 1 to be much smaller than the strain error. We also remark that, even
though the mean strain is a macroscopic quantity, the fact that domain is infinite shows that the macro-scale
(i.e. the domain size) does not play a role. As a matter of fact, all displacements are highly localised near the
domain boundary.

In the following result we confirm that, indeed, the mean strain error is an order of magnitude smaller than
the pointwise strain error.

Proposition 2.6 (mean strain error). Asymptotically as α → ∞, the mean strain error satisfies

Err = 2
(

1 − 1
h0

)
e−α + O(e−2α). (2.16)

Proof. We first compute the mean strains in the atomistic and the SCB models. For the atomistic model we
have

ua :=
∞∑

�=0

ua
� =

ua
0

1 − λ
·

Since (1 − λ)−1 = 1 + e−α + O(e−2α) we obtain

ua =
e−α

α

[
(1 − 4e−α)(1 + e−α) + O(e−2α)

]
=

e−α

α

[
1 − 3e−α + O(e−2α)

]
·

For the SCB model, we have

uscb =
∞∑

j=0

hjU
scb
j = h0U

scb
0 =

e−α

α

[
1 −

(
1 +

2
h0

)
e−α + O(e−2α)

]
,

and hence the error is given by

uscb − ua = 2
(

1 − 1
h0

)
e−2α

α
+ O

(
e−3α

α

)
·

This immediately implies (2.16). �

Remark 2.7. Since Ea and Escb are Fréchet differentiable in suitable function spaces it should be possible, using
nonlinear analysis techniques such as the inverse function theorem, to extend the results from the linearized
model problem to the fully nonlinear problem, provided that the stiffness parameter α is sufficiently large.
Techniques of this kind have been used, for example, in [37].
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Figure 3. Relative error in the W 1,2-seminorm of the 1D nonlinear SCB model for varying
stiffness parameter α and two types of finite element grids; cf. Section 2.5.

2.5. Numerical results

We confirm through numerical experiments that the results of Propositions 2.5 and 2.6 are still valid in
the nonlinear setting. In these experiments we choose r0 = 1 instead of (2.4), choose a finite chain with
31 atoms, and let α vary between 2 and 7. For experiments with h0 = 5 the gridpoints for the Cauchy–Born
and SCB models are chosen as Xh = (0, 5, 10, . . . , 30). For experiments with h0 = 1, the gridpoints are chosen
as Xh = (0, 1, 5, . . . , 25, 29, 30).

For each model, the associated energy is minimized over the associated admissible space: the space P0(Xh)
for the CB and SCB models, and the space P0({0, 1, . . . , 30}) for the atomistic model.

The results of the experiments are displayed in Figures 3 and 4. All results except for the relative error
in the mean strain with h0 = 1 confirm our analytical results in the linearized case. We have, at present, no
explanation why the mean strain error Err with h0 = 1 is of the order O(e−3α) instead of the predicted O(e−2α).
An asymptotic analysis in the linearized case to higher order gives the expansion Err = 2e−2α + O(e−3α), and
hence does not shed any light on this issue.

3. Numerical results in 2D

In this section we investigate numerically, to what extent the 1D results might extend to the 2D setting. We
will formulate a problem in a semi-infinite strip, where we anticipate relaxation only in the normal direction
to the surfaces, and we therefore expect the same behaviour as in the 1D case. This is fully confirmed by the
results of our numerical experiment.

3.1. Formulation of the SCB method

In 2D one expects (this is rigorously proven only for large stiffness parameter α [36]) that the ground-
state under Morse potential interaction is the triangular lattice. Hence we choose as the atomistic reference
configuration a subset Λ ⊂ AZ

2, where

A =
[
1 1/2
0
√

3/2

]
.
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h0 = 5
h0 = 1

)b()a(

Figure 5. Computational domain used in the numerical experiment described in Section 3.
The small disks denote the set Λ; the dotted grid is the micro-triangulation Ta; the the large
black disks denote the finite element nodes; the large white discs denote finite element nodes
that are periodically repeated; the black lines denote the macro-triangulation Th.

For future reference, we define a1 := (1, 0), a2 := (1/2,
√

3/2) and a3 := (−1/2,
√

3/2), which are the directions
of nearest-neighbour bonds.

Specifically, we choose N1, N2 ∈ N and define

Λ :=
{
A(n1, n2)T ∈ AZ

2
∣∣ 1 < n1 ≤ N1, 0 ≤ n2 ≤ N2

}
,

as the computatinal cell of the strip Λ# := {A(n1, n2)T ∈ AZ
2
∣∣ 0 ≤ n2 ≤ N2}; cf. Figure 5. The corresponding

continuous domain is Ω := A((0, N1] × (0, N2]).
An admissible deformed configuration is a map y : Λ# → R

2, which is periodic in the a1-direction, that is,
y(ξ + N1a1) = y(ξ) + N1a1.
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Figure 6. (a) Third interaction neighbourhood. (b) Construction of γ: bonds A, B are
underestimated by the Cauchy–Born approximation (counted only half), while the bonds C,
D, E are overestimated (they do not exist in the atomistic model but are counted half in the
Cauchy–Born model).

For simplicity we consider only second-neighbour interactions (measured in hopping distance). For each
ξ ∈ Λ let Nξ := {η ∈ Λ#, |η − ξ| ≤ 2} denote the interaction neighbourhood of ξ, then the potential energy of a
deformed configuration is given by

Ea(y) :=
∑
ξ∈Λ

1
2

∑
η∈Nξ

φ
(
|y(η) − y(ξ)|

)
,

where φ is again the Morse potential.
To evaluate the deformation gradient ∇y of a discrete deformation y, we note that Λ# has a natural trian-

gulation Ta (see Fig. 5), and identify y with its continuous piecewise affine interpolant in P1(Ta; R2).
Let Th be a coarse triangulation of Ω (which can be repeated periodically) and let P1(Th; R2) denote the

space of continuous and piecewise affine deformations of Ω, such that yh(x + N1a1) = yh(x) + N1a1, then the
SCB energy of a deformation yh ∈ P1(Th; R2) is given by

Escb(yh) =
∫

Ω

W (∇yh) dx +
∫

Γ

γ(∇yh, ν) dx,

where Γ ⊂ ∂Ω denotes the free boundary, that is the portion of the boundary with normal ν = ±(0, 1), W is
the Cauchy–Born stored energy function and γ the SCB surface energy function, which are defined as follows:

– If we denote by Ncb the interaction neighbourhood of the origin in the infinite lattice AZ
2 (see Fig. 6a), then

the Cauchy–Born stored energy function is given by

W (F) =
1

detA

∑
η∈Ncb

φ
(
|Fη|

)
.

– To define γ, we assume throughout that all surfaces of Ω are aligned with one of the three directions a1, a2,
or a3, that is, ν ⊥ aj =: ν⊥. Then the requirement that the SCB energy is exact under homogeneous
deformations, in domains without corners, yields the expression

γ(F, ν) =
1
2
φ
(
|Fν⊥|

)
+

1
2
φ
(
2|Fν⊥|

)
− 1

2
φ
(√

3|Fν|
)
− 1

2
φ
(
2|FQ12ν|

)
− 1

2
φ
(
2|FQT

12ν|
)
,

where Q12 denotes a rotation through arclength 2π/12; see Figure 6b for an illustration. A rigorous proof of
this formula follows immediately from Shapeev’s bond density lemma [34]; see also [30] for general results
in this direction.
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Figure 7. Relative error in the W 1,2-seminorm of the 2D SCB model in the flat interface
example described in Section 3, for varying stiffness parameter α and two types of finite element
grids.

3.2. Numerical results

In the numerical experiments we consider two types of finite element grids: a uniform grid with spacing
h = h0 = 5 (cf. Fig. 5a), and a grid with an additional layer of elements at the free boundary, atomic spacing
h0 = 1 in the normal direction and uniform spacing h = 5 in the tangential direction (cf. Fig. 5b). We will again
measure the following relative errors:

Err2 :=
‖∇yscb

h −∇ya‖L2

‖∇ycb
h −∇ya‖L2

, and Err :=

∣∣ ∫
Ω

(∇yscb
h −∇ya) dx

∣∣∣∣ ∫
Ω(∇ycb

h −∇ya) dx
∣∣ ,

where ya, yscb
h , and ycb

h denote the minimizers of, respectively, Ea, Escb, and Escb with γ = 0. That is, Err2 and
Err measure the improvement of SCB over the pure Cauchy–Born model.

We remark, that the additional computational cost for the mesh with h0 = 1 compared with h0 = 5 is fairly
moderate. Indeed, Figure 5 makes it clear that the extra cost scales with surface area. For surface dominated
materials in 3D this would become more significant, but at worst only increase the cost by a moderate constant
factor.

The numerical results are displayed in Figures 7 and 8. They do not as clearly display the predicted con-
vergence rates, as in the 1D case. It cannot be concluded whether or not the errors approach these rates for
increasing values of α. However, it is again clear that the average strain has a much higher accuracy than
the pointwise strain field, and that the additional mesh layer again substantially improves the accuracy of the
method.

Moreover, we note the interesting fact that the numerical rates in the intervals α ∈ [6, 7] in Figures 7 and 8,
while lower than predicted, are nevertheless consistent with each other in the following sense: the rates for Err2
with h0 = 1 and for Err with h0 > 1 are approximately the same while the rate for Err with h0 = 1 is doubled.

4. Conclusion

We presented an error analysis of the SCB method in the case where the dominant effect is surface relaxation
in the normal direction. Our main results are: (1) we showed that a suitable “approximation parameter” is the
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Figure 8. Relative error for the mean strain of the 2D SCB model applied to the flat interface
example described in Section 3, for varying stiffness parameter α and two types of finite element
grids.

stiffness of the interaction potential. (2) We showed that the mean strain (which is an important quantity of
interest) has a much lower error than the strain field. (3) We showed that adding a single mesh layer at the free
boundary with atomic spacing in the normal direction yields a substantial improvement to the accuracy of the
SCB method with only moderate increase in the computational cost.

We also performed numerical experiments for domains with corners, which remain inconclusive so far. At
corners there is an interplay between the normal stress and tangential stress of adjacent edges, which creates
additional elastic fields. A finer analysis of this case is still required. In particular, it would be interesting to
understand whether normal or tangential forces dominate the behaviour of the system in that case. Further
corrections to the energy at corners may also be required, for example, as proposed by Rosakis [30].

Acknowledgements. We thank an anonymous referee for a detailed critique of our original manuscript and many useful
suggestions that substantially improved the quality of this work.

Appendix A. Proofs

Proof of Propositions 2.1 and 2.2. For each � ∈ N we have

φ(1 + u�) + φ(2 + u� + u�+1) = φ(1) + φ′(1 + θ
(1)
� )u� + φ(2) + φ′(2 + θ

(2)
� )(u� + u�+1)

= φ′(1 + θ
(1)
� )u� + φ′(2 + θ

(2)
� )(u� + u�+1), (A.1)

where (θ(j)
� )�∈N ∈ �1 by Taylor’s theorem, and we used the fact that φ(1) + φ(2) = W (1) = 0. Since �1 ⊂ �∞, it

follows that the coeffcients φ′′(j + θ
(j)
� ) are bounded independently of �. Thus we deduce that � �→ φ(1 + u�) +

φ(2 + u� + u�+1) belongs to �1 and hence Ea : �1 → R is well-defined.
Repeating the foregoing argument for a perturbation from a general state u �= 0, but expanding to second or

third order, establishes the Fréchet differentiability of Ea. Here, we also need to use the embeddings �1 ⊂ �2 ⊂ �3.
The same argument can be applied to prove Proposition 2.2. (Since the mesh size satisfies hj ≥ 1 the

embedding �1
h ⊂ �p

h for p ≥ 1 holds again in this case). �



122 K. JAYAWARDANA ET AL.

Proof of Proposition 2.3. Inserting the definition of r0 from (2.4) into φ′′(1) yields

φ′′(1) = 4α2e−2α(1−r0) − 2α2e−α(1−r0) = 4α2

(
1 + 2e−α

1 + 2e−2α

)2

− 2α2

(
1 + 2e−α

1 + 2e−2α

)
·

Expanding
1 + 2e−α

1 + 2e−2α
= 1 + 2e−α + O(e−2α),

we obtain

φ′′(1) = 4α2(1 + 4e−α) − 2α2(1 + 2e−α) + O(α2e−2α) = 2α2 + 12α2e−α + O(α2e−2α). (A.2)

Similar calculations yield the expansions

φ′(2) = 2αe−α + 2αe−2α + O(αe−3α), and (A.3)
φ′′(2) = − 2α2e−α + O(α2e−3α). (A.4)

Writing out U scb
0 in terms of the Morse potential, and using the fact that 2 ≤ 4 − 2/h0 ≤ 4, which ensures

that φ′′(1) + (4 − 2/h0)φ′′(2) ≥ W ′′(1) > 0, we obtain

h0U
scb
0 =

φ′(2)
φ′′(1) + (4 − 2/h0)φ′′(2)

=
φ′(2)
φ′′(1)

1

1 + (4 − 2/h0)
φ′′(2)
φ′′(1)

=
φ′(2)
φ′′(1)

[
1 −

(
4 − 2

h0

)
φ′′(2)
φ′′(1)

+ O
((

φ′′(2)
φ′′(1)

)2
)]

·

Inserting the expansions (A.2) to (A.4) gives (2.11).
To prove (2.12) we first expand λ in terms of β := φ′′(2)

φ′′(1) , and then in terms of e−α,

λ =
1
2β

(√
1 + 4β − 1 − 2β

)

=
1
2β

(
1 +

1
2
(4β) − 1

8
(4β)2 +

1
16

(4β)3 + O(β4) − 1 − 2β

)
= − β + 2β2 + O(β3) = e−α − 4e−2α + O(e−3α). (A.5)

Inserting this result into (2.10) and a brief computation yield

ua
0 =

φ′
2

φ′′
1 + φ′′

2 (1 + λ)
=

e−α

α
− 4

e−2α

α
+ O

(
e−3α

α

)
·

Since ua
� = ua

0λ
−� the result (2.12) follows easily. �
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