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Modélisation Mathématique et Analyse Numérique

RESIDUAL BASED A POSTERIORI ERROR ESTIMATORS FOR EDDY
CURRENT COMPUTATION

RUDI BECK1 , RALF HIPTMAIR2, RONALD H.W. HOPPE 3 AND BARBARA WOHLMUTH3

Abstract. We consider iï(curl; O)-elliptic problems that have been discretized by means of Nédélec's
edge éléments on tetrahedral meshes. Such problems occur in the numerical computation of eddy
currents. From the defect équation we dérive localized expressions that can be used as a posteriori
error estimators to control adaptive refmement. Under certain assumptions on material parameters
and computational domains, we dérive local lower bounds and a global upper bound for the total error
measured in the energy norm. The fundament al tooi in the numerical analysis is a Helmholt z-type
décomposition of the error into an irrotational part and a weakly solenoidal part.

Resumé. Nous considérons des estimateurs d'erreur a posteriori efficaces et fiables pour l'approxima-
tion des champs électromagnétiques par la méthode des éléments finis curl-conformes. En particulier,
en utilisant les éléments à arêtes de Nédélec sur des maillages tétrahédraux, nous dériverons des bornes
inférieures locales et une borne supérieure globale pour Terreur totale mesurée à la norme d'espace
iî(curl;Q). Le moyen fondamental en analyse numérique est une décomposition d'Helmholtz de
l'erreur en une part irrotative et une part faiblement solenoïdale.
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1. INTRODUCTION

The computation of quasistatic electromagnetic fields in conductors usually employs the eddy current model
[2,5,23,33]. For the transient case, if we use formulations based on the electric field, we end up with the
degenerate parabolic initial-boundary value problem

ôt(crE) + curl x curl E — —ôtj in Q
E x n = 0 on T := dSÎ (1)
E(.,0) = Eo infi .

Hère the unknown quantity is the electric field E : Ü x [0,T] i—> R3 and £7 C M3 stands for a connected
bounded polyhedral computational domain. Though the équations are initially posed on the entire space M3,

Keywords and phrases. Residual based a posteriori error estimation, Nédélec's edge éléments, Helmholtz décomposition, eddy
currents.
1 ZIB-Berlin, Takustr. 7, 14195 Berlin, Germany. e-mail: beck@sc.zib-berlin.de
2 SFB 382, Universitât Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany. e-mail: hiptmair@na.uni-tuebingen.de
3 Mathematisches Institut, Universitât Augsburg, Universitatsstr. 14, 86159 Augsburg, Germany.
e-mail: hoppe ©mat h .uni -augsburg. de; wohlmuth@mat h. .uni -augsburg. de

© EDP Sciences, SMAI 2000



160 R. BECK ET AL.

FIGURE 1. A model problem for eddy current computation (cf. Chap. 8 in [24]).

we can switch to a bounded domain by introducing an artificial boundary sufficiently removed from the région
of interest. This is commonplace in engineering simulations [29].

Further, x £ L°°(ÇÏ) dénotes the bounded uniformly positive inverse of the magnetic permeability. We confine
ourselves to linear isotropic media, Le. x is a scalar function of the spatial variable x E O only. Hence, for
some X>X > 0 holds 0 < x < x ^ X a-e- 'iri ^- We rule out anisotropy also for the conductivity a G L°°(£7),
for which holds a > 0 a.e. in ft. Usually, there is a crisp distinction between conducting régions, where a is
bounded away from zero, and insulating régions, where a = 0. We will take for granted that a > g_ > 0, for
some bound g_ > 0, wherever a 7̂  0. The right-hand side j = j(x, i) is a time-dependent vectorfield in L2(f2),
which represents the source current. For physical reasons divj(t,.) = 0 a.e. in ft and for all times. We remark
that in many applications the exciting current, for instance the current in a coil, is provided through an analytic
expression. A typical arrangement is depicted in Figure 1.

We remark that (1) is an ungauged formulation, as we have already dropped the divergence constraint
divE = 0. Obviously, this forfeits uniqueness of the solution in parts of the domain where a = 0. However, the
only relevant quantity there is curlE, which remains unique. Where E is of interest, inside the conductor, we
have a > 0. There E is unique and divE = 0 is satisfied due to the solenoidality of the right-hand side.

For the sake of stability, timestepping schemes for (1) have to be L-stable [38]. This requirement can only be
met by impiicit schemes like SDÏRK-methods. In each timestep they entail the solution of a degenerate elliptic
boundary value problem of the for m

curl x curl u + /3u = f in
u x n = 0 on (2)

In this context, u dénotes the new approximation to E to be computed in the current timestep, and f dépends on
j and the approximation of E in the previous timestep. Note that we can still assume divf = 0. The coefficient
/3 agrées with a except for a scaling by the length of the current timestep; accordingly, 0 < / ö < / Ö < / ö a . e . in
îîo.

Problem (2) cast in weak form yields a variational problem in the Hubert space iï(curl; SI) of L2(Çl)-
vectorfields whose curl is square integrable:

Find u G i?o(curl; ft) such that

(X curl u, curl q)L2 (a ) + (/3u,q)L2(a) = (f,q)L2(n) , Vq G i*0 (3)

A subscript 0 indicates that vanishing tangential traces on dQ, are imposed on the fields (for details on traces
see, e.g. [4,37]).

For P uniformly positive a.e. in Q the Lax-Milgram lemma guarantees existence and uniqueness of a solution
of (3). If ƒ? = 0 on sets of positive measure, we can still expect a unique solution in the quotient space
Ho(curl;£î)/Ker(curl).
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It is now generally accepted that an appropriate finite element discretization of (3) should rely on gen-
uine i?(curl;fi)-conforming schemes that merely enforce the typical tangential continuity of the field across
interelement boundaries [3,21,22]. For simplicial meshes i/(curl; Q)-conforming finite éléments of arbitrary
polynomial order were first introduced by Nédélec [49], generalizing the lowest order Whitney éléments [56].
Similar schemes are also known for other shapes of éléments [34,49]. For all of them standard a priori error
bounds can be established [47,48,52]. Ultimately, the discretization of (3) by these so-called edge éléments
leads to a large sparse system of équations for the degrees of freedom of the finite element space. Usually, an
approximate solution can only be obtained by itérative methods [28,39].

Denoting by u^ the exact solution of the discretized problem and by ü^ some itérative approximation, we are
interested in an efficient and reliable residual based a posteriori error estimator for the total error e := u — ü ,̂
with respect to relevant norms. The most significant is the energy (semi)norm \\-\\C.Q related to problem (1)
defined by

\\n\\%n '•= (xcurlu,curlu) i 2 ( n ) + (/3u,u)L2(n) , u E i/0(curl;fi) .

In the current context, local a posteriori error estimation serves two purposes. Firstly, the error estimator can
be used for adaptive local refinement and coarsening of the underlying triangulation. Since the fields feature
strong singularities at reentrant corners [31] and at irregular material interfaces [32], a higher resolution of
the mesh in these zones is désirable. Precisely how much can only be concluded on the basis of information
about the local error. Secondly, information about the accuracy of the finite element solution is also required
to balance the spatial and temporal errors in the context of adaptive timestepping for the original parabolic
problem [17,18].

We note that a posteriori error estimators for adaptive local grid refinement are well established tools in
the efficient numerical solution of elliptic boundary value problems. In the framework of standard conforming
finite element approaches we acknowledge the pioneering work due to Babuska and Rheinboldt [8,9] and the
more recent articles [11,12,35,36,54,57]. Further références can be found in the survey article by Bornemann
et al. [19] and in the excellent monography by Verfürth [55]. In the context of nonconforming techniques we
mention [41,43]. For mixed finite element methods involving Raviart-Thomas éléments we refer to [1,25,26,42,
44,45]. However, as far as finite element approximations based on Nédélec's curl-conforming edge éléments are
concerned, to the authors' knowledge no work on a posteriori error estimation has been done so far.

The paper is orgànized as follows. In Section 2, we will introducé the curl-conforming approximation of (3)
by Nédélec's edge éléments. In addition we are going to supply a few technical devices required for the proofs.
Then, in Section 3, we consider the variational problem satisfied by the total error e and state the main resuit of
this paper in terms of a cheaply computable, efficient and reliable a posteriori error estimator for ||e||£.Q. As the
main tooi we will use a Helmholtz type décomposition of e into a curl-free part e° and a "/3-weakly solenoidal"
part e-1. In particular, Section 4 contains the estimation of the irrotational part e° whereas Section 5 is devoted
to the weakly solenoidal part e x . In both cases, the estimâtes resuit from an évaluation of the residuum with
respect to a dual norm. In the final section we report on numerical experiments that examine the performance
of the error estimator for a wide range of model problems.

2. FINITE ELEMENT SPACES

We consider the finite element approximation of (3) by means of Nédélec's edge éléments with respect to a
hierarchy 7/^, k 6 NQ, of simplicial triangulations of f2 generated by successive local refinement of an initial
coarse triangulation 7^0. We use the standard refinement process developed by Bank et al [10,11] in the
2D case which has been extended to the 3D setting in [16,50] (cf. also [19]). Alternative schemes are also
available [7,13,46]. For a description of the refinement stratégies we refer to the literature cited above. .

We demand that the coarsest mesh 7^0 can résolve the boundaries of the conductors. This means that any
element either entirely belongs to the conducting région or to the nonconducting région.
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We fix some Thk within the hierarchy and, for notational convenience, omit the lower index k, ie., Th := 7^fc.
For D Ç Ù , the sets of vertices, edges and faces in D are denoted by Afh(D) ̂  £h(D) and Th{D), respectively. If
D = Ù, we will simply write Nh, £h, Fh and refer to A/^nt, £^nt, ̂ n t and J\f£, ££, ̂  a s t n e s e t s °^ vertices, edges
and faces located in the interior of Q and on the boundary F, respectively. Those interior edges that belong to
Clc constitute the set T^ and for the set of éléments in Ctc we write T^ '.

All the edges have to be endowed with a fixed internai orientation (direction). We dénote by hr and hp
the maximal diameter of an element T G Th and a face F G Th- Since the refinement rules imply regularity
and local quasiuniformity of the hierarchy of triangulations (cf. [16]), there exist constants /ci > 0 and K<I > 0
depending only on the local geometry of the initial triangulation TQ :— Th0 such that

hT< < KXhT for T,T' eThyTDT' ^ 0

hF < K2hT for F e fh{T) .

Following Nédélec's construction of simplicial edge éléments in [49], we dénote by Vk{D)i k > 0, the linear space
of multivariate polynomials of degree < fc on D, and refer to Vk(D), k > 0, as the subspace of homogeneous
polynomials of degree k. We define

3

Sk(D) := {p € Vk(Dfy <x,p) := J^aïiPi - 0}, fc > 1 .

Then, for T G Th and k > 1, the local space for the Nédélec element is given by

AT-Dk(T) := Vk-!(D)3 © Sk(D) .

In the special case of lowest order edge éléments, k = 1, we find the représentation

AfDi(T):-{xKa|bxx,a,bei3}. (5)

Appropriate degrees of freedom are provided by linear functionals on A/*X>fc(T) of the form (cf. e.g. f491)

(i) q ^ JE{q,t)pds, p€Pk-i{E), Ee£h(T),

(ii) q ^ / F ( q x n > P ) d a , p e Vk-2(F)2, F e Fh{T),

(ii) q ̂  fT (q, p) dx , p e Vk-3(T)3.

Here, polynomial spaces with négative degree are supposed to be empty. This spécification of the degrees of
freedom ensures that the global finite element space JVï>fc(^;'^i) is contained in H(curl;ft). Then, setting

the curl-conforming finite element approximation of (3) is as follows: Find u^ G Jsf'Dhio{Q\Th) such that

G AfVktQ(Q\Th) . (6)

We recall that Nédélec's finite éléments provide affine equivalent families of finite éléments in the sense of [27],
if the vectorfields are subjected to a covariant transformation: For any T e Th write $ : T h-> T for the affine
mapping of a fixed référence tetrahedron T to T and define

x ) v ( $ ( x ) ) , x e f . (7)
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Then it turns out that Afl>k(T) = $(AfT>k(T)) and the degrees of freedom are invariant under the transfor-
mation (7).

Edge éléments provide one specimen of discrete differential forms [20,40]. This accounts for the exceptional
property that the result that every curl-free vectorfield on a contractible domain is a gradient is preserved in
purely discrete context. The role of the potentials is played by Lagrangian finite element fonctions

SK0(H]Th) := {<f>h e C° ( î î ) , <t>h\Qn = 0, <j>h\T G Vk(T)} •

The following lemma is a special case of Theorem 20 of [40].

L e m m a 1 (Discrete potentials). If the boundary dil is connected, then for any q ,̂ G A/*'Pfc)o(^; %i), k > 1,
with cur lq^ = 0 there exists a unique <j>h G Sk$(H\Th) such that q^ =

3. RESIDUAL BASED ERROR ESTIMATOR

We assume that ü^ G J\fT>k${il\Th) is some itérative approximation of the unique solution u^ of the curl-
conforming finite element solution of (6). It can be obtained, for instance, by the multigrid itérative solution
process as developed in [39]. Denoting the total error by e := u — ü^, it is easy to see that e G J/o(curl;fi)
satisfies the defect équation

(X curl e, curl q)L2(n) + (/3e, q ) i 2 ( n ) = r(q) Vq G Jïo(curl; fi) , (8)

where r(-) stands for the residual

r(q) : = (fï<l)ia(îî) ~ (X curl ü^, curl q ) i 2 ( n ) - (/3üh, q ) i 2 ( n ) , q G Jïo(curl;îî) . (9)

The construction of the error estimator will be based on a direct splitting of the fonction space Jï"o(curl; ft)

H0{cur\; fi) = Hg(curl; SI) © Jï^(curl; fl) . (10)

It may be labelled a "^-orthogonal" Helmholtz type décomposition, since we require

• Both J/g(curl; f2) and J/^(curl; il) are closed subspaces of J/0(curl; f2).
• J/o(curl; f2) := {q G J/o(curl; f2) ; curlq — 0} is the kernel of the curl operator.
• (/3q\ q°)L2(n ) = 0 for all q° G Hg(curl; il), q x G ij£(curl; ÎÎ).

Evidently, a décomposition complying with these requirement is also orthogonal with respect to the energy
seminorm.

The following procedure furnishes a splitting of q G i/o (curl; f2) according to (10): First décompose qjn =
u° © ü x , where u°,üx G H(cur\]ilc) and (/3u°, ïïx)i2(Qc) = 0, curlu0 = 0. If meas(öf2 R dilc) > 0, we
also require that u°, ü x have vanishing trace on <9f2. Write u x for the J/(curl; f2)-extension (cf. [4]) of ü x

to f2. Then, let v x be the unique vectorfield in J/0(curl; il/ilc) such that cur lv x = curlq — cur lu x and
vx_LKer(curl) in i/0(curl; f2/f2c)- Finally set

_i_ ƒ ü x in ilc
q : ~ \ v x + u x in il/ilc •

The fonctions qx thus constructed form a closed subspace of Ho (curl; f2). This can be seen by completeness
arguments.
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Unfortunately, mère existence of such a décomposition is not enough; our theoretical examinations hinge on
the following assumption:

Assumption 2. We assume that a splitting (10) with the above features can be found such that i/^(curl; ft)
is continuously embedded in üf *(f2) n i/0(curl; ft) and, moreover,

curlqx | j i 2 , Vq1" € H

Thus far, the statement of this assumption can be shown only if ftc = ft and ƒ3, x a r e continuously dif-
ferentiable and uniformly bounded away from zero [6,37]. In this case we simply use the true Helmholtz-
decomposition.

A characterization of the kernel of the curl-operator is provided by the continuous version of Lemma 1
(cf. [37]):

Lemma 3. For any q G iï^curl; f2) there exists a unique <fi G HQ(Q,) such that q = grad<j>, provided that the
boundary T o f ft is connected.

If F is not connected, Le. ft has embedded cavities, the entire kernel of curl is not provided by grad HQ (ft).
This is only true modulo a space of small dimension (see Prop. 3.12 in [6]). To avoid technical difficulties we
do not allow cavities in f2.

By means of the décomposition (10) we may split the total error according to e = e° + C1, where e° E
if2(curl; f2) and e1- e ff[J~(curl; f2). We note that e° represents the curl-free part of the total error whereas
e1- stands for a "/3-weakly solenoidal" part. As a matter of course, e° is only meaningful in f2c-

It readily foliows from (8) that e° and e x are the unique solutions of the variâtional équations

= r(q) VqoeJf8(curl;fi),
= r(q) Vqx e "r"L/r l > r^

The irrotational and the /?-weakly solenoidal part of the error will be estimated separately. For simplicity,
throughout the rest of this paper we assume the functions \ a n d & to be elementwise constant.

As far as the irrotational part e is concerned, the estirnate is based on the évaluation uf ulie reaiuual ry)
restricted to Ü"0(curl; fl) = gradi7g(f2). In particular, exploiting that f is solenoidal, Green's formula yields

r(gradt;) = 2 ^ (f - (3nhl grad?;)£2(r)
Terh

where [{n,/3üh)]j dénotes the jump of the normal component of the vector field {3üh across the interelement
face F 6 J-y^1. It is defined as follows: If F 6 ^ n t is the common face of two adjacent éléments Tîn)Tout 6 Th
and n dénotes the unit normal vector on F directed towards the interior of Tin, then

Note that [(•, n)]j does not depend on the spécification of Tin and Tout.
As will be shown in Section 4, the upper and lower bounds for ||e°||i>2/fi\ involve the error terms

(12)
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whose local contributions TJQ , T}Q are given by

,1/2
L2(T) >

=
VPA

where (3A is defined as the average on F, /3 A '-— 0.5(/?jT + /3|T. ). The scaling in the different terms of the
error estimator corresponds to the fact that we measure the error in the energy norm. For éléments and faces
outside ÙQ, we formally set the contributions Ï]Q and 7]$ to zero.

The upper bound also involves the itération error

(0) - üh] (13)

On the other hand, concerning bounds for e x , for q G HQ{CMT\\ fi) the residual r(q) can be written as

l , cu r lq ) I / 2 ( T ) |

([nxE
Ko) = E {(f

= E ( f -
Terh

We note that a localization of the residual is not feasible due to the global character of the space iï^(curl; fi).
Instead, we will use a localization by means of an interpolation with respect to the entire discrete space
J\fT>k,o(QTh)- As we shall see in Section 5, this is at the expense of a coupling between e° and e x . However,
this will not thwart the primary goal of obtaining an efficient and reliable estimate of the total error in the
energy norm. In particular, the bounds for \e^- |g<n comprise the error terms

(14)

(15)m :=

with the local contributions 77^, 1 < y < 2, and r}[ given by

1
7i;i := hT

1

lTrhf - curlx curl nh - f3üh]

(f "

[n x

where XA is defined as the average on F, XA '~ 0.5(xi-rout + X\T- )• Hère, vr̂ f dénotes the L2-projection of f

Again, the itération error

T& : = | | u h - ü f c | L . n (16)
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will enter the upper bound. Be aware that using a fast asymptotically optimal itération scheme, we can quickly
teil the truncation error from the size of the correction to the current iterate. Good bounds for rj>t and ?][t
are at our disposai, thus.

As the main resuit of this paper we state the following a posteriori estimât e for the total error e measured
in the energy norm.

TVi^nr^m d Tpi n-, •— rj(°) 4- n^ ' n,. •— r r ^ -I-rr ' ?#»Y/Ï rA0) r r ' rr -* rr ' niiipn hu /7?) / /P) / / / ) nr7r/x i i t i u i t ï i i i *±. ijtsb f i\ .— //v n^ /ƒ2 j ' / i t •— 'l^t \ '/i^ (JUÙLIÙ ff j ij-^ y Iw, > /it yfiUC'iL uy yxoj, yi/uj, yx^.j, UIÙLL

(16), respectively. If assumption 2 holds true, then there exist constants 71/, IV > O, 1 < v < 2, depending only

on Q, x > P> X j P an^ on the local geometry of Th0 such that

71^1 — 72?72 < llell(£;n — Fl(??l + Tj2) •

Eventually, we need an estimate for the energy of the error on each element. Such an element oriented error
estimator can be constructed by assigning half of the contribution of a face to either adjacent element. To
offset the impact of jumps in the coefficients it is advisable to resort to additional scaling. As the actual error
estimator we then get for each T e Th

êr

Here PA and XA stand for the averages of the material parameters (3 and x over the two éléments adjacent to
the face F.

Since only local information is needed, the évaluation of fjT is cheap. Low order numerical quadrature is
sufflcient to compute the local norms. Of course 77̂ 2 is elusive, but 7^ has been chosen such that for smooth f
this quantity can be expected to decrease faster than the other contributions to the error estimator.

For lowest order edge éléments and locally constant coefficients, we can capitalize on the simple local ansatz
space (5). First note that it contains only piecewise linear, divergence-free vectorflelds. Therefore, xcurlü^ is
locally constant and we end up with the simplified local error estimator

fir = ^ K f - / 3 ü , > | | 2
i 2 ( T ) +

(18)

Here, ir h can be a suitable interpolation onto the space of piecewise linear vectorfields. Moreover, Gaussian
quadrature formulas that are exact for quadratic polynomials on T and F} respectively, can be used to evaluate
all the norms. Thus, only the values of degrees of freedom in a neighborhood of T and the local geometry of
the mesh will show up in an explicit expression for fj^.

4. ESTIMATOR OF THE IRROTATIONAL PART OF THE ERROR

Here, we will consider the irrotational part e° of the error e. Upper and lower bounds for (/3e°,e°)^2^,

will be established by means of 7/0) and the itération error. The starting point for the error analysis is the
variational problem (11). The defect problem (8) restricted to the curl-free subspace of ü"o(curl; ü) gives rise
to the following uniformly positive definite variational problem on

Find ip G H^(nc) such that

= r(grad0) =: f(
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Here, the space H^(Qc) is defined as follows:

=0}} ifmeas(ôncn3îî) = 0rri r o ï = ƒ {v^Hl(^c)\(
r l C)' \ {veH1(nc)\vl

and the residual r(-) is defined in (9). Thanks to Lemma 3 we have e° = g rad^ in Qc We will also write ip
for the harmonie extension to a fonction in HQ(Q).

Following the same lines as in the iï1(O)-elliptic setting [55], the dual norm of f(-) restricted on H^(Qc)
provides bounds for (/3e°, e°) L2/m • The upper bound for (/3e°, e°) L2rn) is obtained by applying Green's formula.
Observing Lemma 1 and Galerkin orthogonality

r(iph) = (0(üh-uh

Here, Sk{^c]%i) C H^(Qc) dénotes the Pk conforming finite element space. We find for iph G

(°°) . (20)

In particular, r(iph) = 0 if the itération error u^ — iïh is zero. Upper bounds for the right side are obtained by a
suitable choice of iph- We set iph '•= Ph^^ where P* : H^(Ttc) —• Sk{£lc\Th) is a locally defined projection-like
operator satisfying approximation and stability properties

) (21)

^ C0^ | | g rad^ | | i 2 ( D F ) , (22)

(23)

Here, DT and DF contain all éléments in Th sharing at least one vertex with T and F, respectively. Such
operators can be defined preserving boundary conditions by the use of dual basis functions. We refer to [51,53]
for more details. In the case of a posteriori error estimâtes, the interpolation operator of Clement is very often
used [30]. However, the Clément operator restricted on Sk(^c]%,) is not the identity. Using Green's formula,
the approximation properties (21), (22) of P£, and divf = 0, we get

<

Here, we set [<n, 0üh)]j \F •= 0 if F c dQc n dü and [(n, 0ûh)]j \F := 0ùhnT if F c dQc \dQ, F c dT. An
upper bound for the second term on the right side of (20) is obtained by means of (23). The stability of the
projection-like operator Pfc yields

((3(ùh - üh),gradP^)i2(fic) C I ^ K ü,)!
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and thus

R. BECK ET AL.

We point out that in the proof for the upper bound of || y/j3e° \\L2/çi ^ •> the stability and approximation properties
of a suitable quasi-interpolation operator from H^(Qc) onto S^Qc'-Th) play sm important role.

We establish the lower bound exploit ing properties of local bubble functions: Two different types of bubble
functions XT and Ai? defined on T are used. We set

AT := 256
1=1

where Xi;x, 1 < 2 < 4 are the barycentric coordinates of T associated with the vertices pi. The face F is spanned
by the vertices pFl, 1 < Z < 3 of T. We set out from the following norm équivalences

L2(T)
€ Pk(T)

(24)

The independence of the constants of the éléments and faces can be seen by an affine équivalence argument. The
two local components of the error estimator are estimated separately. In a first step, we consider the element
oriented contribution and show local upper bounds for T]Q . Using (24), an inverse inequality and taking into
account that AT = 0 on the boundary of T, we find

M

<

r <cf ~(div/3ü
T

-C I /3(ü/l,grad(Ardivü/l)) dx

HT

Local upper bounds for T/Q are obtained in a similar fashion. The basic tools to establish the bounds are (24),
Green's formula and an inverse estimate. Let T\ and T2 be the éléments such that dT\ f] 8X2 = F. Then we
can transform the L2-norm on F into an intégral on T\ and T^-

2

L*(F)

iCIrJa-
^ J^J (/?(üh)grad([(nÏJöü/l)]J;TiAF))+div^ü^[{n,^ü/l)]J;TiAF) dx.

Here, the function [(n,/3ü/l)]J on F is extended by a continuous piecewise polynomial function [{n,/8ü^)]J.T. to
Ti U T2 such that
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Now, we are in a position to give an upper bound for T}Q by means of 77̂  and e°

169

^1/2||^e°

Using the upper bound for TJQ , we finally obtain an upper bound for T]Q in terms of | |v^ö e°| | i2(T U T ), and thus

FcdT

where $IT is the union of all éléments T' sharing at least one face with T. Keep in mind that C > 0 does not
depend on the meshsize. This is the desired local lower bound for the curl-free part of the error.

5. ESTIMATION OF THE /3-WEAKLY SOLENOIDAL PART OF THE ERROR

To establish upper bounds for the "/3-weakly solenoidal" part e1- of the error, we basically follow the same
ideas as before. Now, we have to apply Green's formula for the curl-operator. Furthermore, the scalar locally
defined quasi-interpolation operator P£ will be replaced by a vector-valued counterpart ^p£. Again, nodal
interpolation is not suitable, since the degrees of freedom located on edges cannot be extended to continuous
functionals on H1^) [6].

Lemma 5. ForT eThy F e J^nt and E e £^\ let D\, Dl
F, and DE be given by

There exists a linear projection

DE := U { T e T h , E e £h(T)} ,

= U{DE, E€£h(T)},

= U{DE, Ee£h(F)}.

n H0(cur\\ ü) ^ AfT>k)0(Ç}] Th) such that for all q G Hl(Q)

D1?

Dl
F

where the constants
mesh Th-

1 (
25

)

, (26)

,T) , (27)

(£>,.) , (28)

> 0 do neither depend on q nor on T, but only on the shape regularity of the

Proof Details will only be given for the lowest order case k = 1, where the degrees of freedom are plain path
intégrais along the edges of the éléments. We adopt the notation w#, E G £h-> for the canonical basis function
of JVZ>I(Q;7^) attached to edge E.

Piek any F e Th with vertices {ai, a2) a3} and edges {EuE2iEs} = £h(F). With e*, 2 = 1,2, 3, we abbreviate
the length of the edge Ei and set s2 := e\ + e\ + e\. Then define A :— (a^) G M3'3 by

/3 /4s 2 - e f l / 4 S
2 - e § l/4s2 - e |

A = 6 l/4s2 - e | 3/4s2 - e| l/4s2 - e2

\ l / 4 s 2 - e 2 l / 4 s 2 - e 2 3/4s2 - i

er1

0
0

0

0

0
0

e7
(29)
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and set

3

<(>j (x) := ± 2 J Q>kj (x — a.k), x G T .
Jt=i

The sign takes into account the orientation of the edges, which will be irrelevant for our considérations. Straight-
forward computations show

n, <f>f (•)) da = 5i3 , i, j = 1,2,3 . (31)

Following this procedure, for each face F we construct three functions <f>E, E 6 Eh{F), indexed by the edges of
the face, so that they satisfy relations like (31).

Next, to each E € Eh we assign one of its adjacent faces and call it FE £ J~h- We have to comply with the
restriction that for E e ££ also FE £ ƒ*£. Then we can define

(•) x n ' * £ O ) ^ • w £ . (32)

By virtue of (31) this defmes a projection. Obviously, boundary conditions are respected.
Prom the formulas (29) and (30) we conclude that

<ChZ
" F

I±ere C > 0 represents a gcncric constant that dépends on the angles of the face only. Thanks to shape
regularity of T^ this means that the constants can be chosen independently of F. As all </>̂ , E € £h(F)> &re

linear polynomials, the inverse estimât e

IU) (33)

follows from shape regularity. It yields for all E € £h(F), F e f ^ ,

Now, consider T € Th and recall that, again as a conséquence of shape regularity, for v^ e J\f'Di(Q,; %,) we have
{cf. [39])

Eeeh(T) JE

2
ds
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Combining this with estimate (33) and the définition (32) we end up with the estimate (25):

J(q(-)xn,4>F
E(-))da

B€£h{T)
WE

< chT Y: >
Eeeh{T)

The final estimate is possible, as shape reguiarity ensures that the number of éléments sharing an edge is
uniformly bounded.

To get the remaining estimâtes (26)-(28), we have to resort to affine équivalence techniques, mapping T to a
référence simplex, where a Bramble-Hilbert argument {cf. [27]) is available. We will skip the technicalities and
refer to [52] for an application of those tricks to edge éléments. •

When we compare the properties of P^ and ̂ 3^ we see that both operators are stable and possess the same
approximation properties. The variational problem (11) yields an expression for the energy norm of e-1:

\\e±\\%n = r(e±) = r(e±-yk
he

±)+r

We apply Green's formula on the first term on the right side and find

Terh

- ^2 ([n x x curl üh]J} e
x - ^ e J

By means of the approximation properties (27), (28) of ̂ 3^, it is easy to obtain upper bounds for r (e x —

C\T ^(f-/?üh-curl(xcurlüh))|\T€Th

' 2

Due to the Galerkin orthogonality, the second part r(^p^e-L) is equal to zero, if the itération error is zero. The
estimate for this term involves the stability (25), (26) of the operator ̂ J^

At this point we have to resort to the reguiarity Assumption 2 to switch from lï1(Q)-norms back to the relevant
energy norm. Taking Assumption 2 for granted we can combine the upper estimâtes for r (e x — £p£ex), r(^P^eJ-).
Thus, an upper bound for ||eJ"||^.^ is provided by the sum of 77̂  , 772 and 77^.

To obtain a lower bound for ll6*1"!!̂ .̂ ? we consider the local contributions of 77̂  separately. The global error
is localized by means of the bubble functions XT and Xp introduced in Section 4. We start with an upper bound
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for 77̂ JL and set j/j :=

R. BECK ET AL.

T \ 2

C

Observing that (\Tjh)\aT = 0 and applying Green's formula yields

dx.

(r(XTih) - f (f " *hf, XTj

< C [h?1 | |e| |e ;T -f

and we get

We remark, that in gênerai XT}H is not an element of jFf^(curl; Q).- As a conséquence, the upper bound for rf[;1

involves not only the solenoidal part of the error e-1 but the total error e. The estimate for an upper bound
for Ï][ follows the same lines. Here, we use the bubble function Ai?. The face contribution r}[ involves the
two adjacent éléments Xi and T2, dT\ n dT<i. We extend the jump [n x xcurlü^]j defined on the face F to a
polynomial function defined on T\ and T2 such that for 1 < i < 2

Setting jh|T. ;— [n x X c u r lü/!]j .T . and using the norm équivalence (24), we find

= II[n < C J {[n x Xcurlüh}j,}hXF) da. (34)

Green's formula applied on (34) yields

TiUT2

(f - curl(xcurlüft,

< C + vïh + + + + r/^)) XAVÏ

Combining the bound for 77^ with the last inequality provides an upper bound for rif in terms of the local
^ 7 7 ^energy norm of the total error and 77^, 77̂ 2

Vi < C (||e||€;Ti + ||e||€;T2 +
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6. NUMERICAL EXPERIMENTS

In order to demonstrate the performance of the proposed error estimator for a variety of settings, we provide
several numerical examples. Throughout we use lowest order edge éléments on an unstructured tetrahedral grid.
The stiffness matrix and load vector corresponding to (6) are computed using Gaussian quadrature of order 5.
Interpolation of boundary values is of the same order. The linear Systems of équations are approximately solved
by means of a multigrid preconditioned conjugate gradient method [14,15]. The itérations are terminated, when
the Euclidean norm of the algebraic residual for the current iterate is less than 10"10 times the Euclidean norm
of the vector on the right-hand side. Thus, the truncation error rja can be neglected.

In all cases the local error estimator (17) in the form of (18) was used to provide the local and global error
estimâtes. Most of the examples were chosen so that the exact solution and, hence, the energy norm T]T of the
true error were available for each element T.

To gauge the quality of the error estimator in particular settings we evaluate different functionals:
• The effectivity index e := fj/rj, which gives the ratio between the estimated and the true discretization

error. Here, rj := ||e||g.n and f}2 := ^2T fjj*. This quantity merely reflects the quality of the global estimate.
For a good error estimator, the effectivity index is to approach a constant rapidly as refinement proceeds.
We point out that, since we can only expect équivalence of the estimated energy of the error and its true
energy, the effectivity index may be far off the idéal value 1.

• The proportion (i^ of "incorrect décisions", measuring how much refinement controlled by the actual
estimator differs from refinement based upon an "idéal" estimator. Consider the set of éléments marked
for refinement by the error estimator

A:=\T£Th : r& > a— V f)l i , (35)

where a = 0.95 and n? = # ^ j and the set of éléments that should have been marked

A := l T € Th : r)\ > a^-

Then we define

M(!) := — # {{A H CA) U {CA O A)\ •

If the estimator performs satisfactorily, we expect fi^ to stay bounded well below 1 as refinement proceeds.
A measure fi^ for the "severity of incorrect décisions", which gives crude information how much smaller
the discretization error might have been, if an "idéal" estimator had steered local refinement. Since lowest
order edge éléments provide a first order approximation in the energy norm, we expect a réduction of
the error on a single element by local refinement roughly like rj^ —>• \rjx- Thus the total error on the
adaptively refined mesh can be expressed as

iw = \ E *& + E ^ •
TeÂ TecÂ

If A is substituted for A, a case we regard as "optimal" local refinement, we end up wit h an error

Irï2 — r>2 I
(2) l '/new Voptl

[i 7
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TABLE 1. Quality measures for the residual based error estimator on the unit cube (Exp. 1).

Level 0 1

Effectivity

P =
0 =
0 =
0 =
0 =

io-4

io-2

1.0
IO2

IO4

index
4.05
4.05
3.01
2.29
2.33

e
8.05
8.05
7.64
4.27
4.23

8.18
8.17
7.78
4.70
4.66

8.24
8.23
7.84
4.95
4.86

8.27
8.27
7.87
5.20
4.95

8.29
8.29
7.89
5.26
5.00

p = io~4

p = io-2

0 = 1.0
/ ? = IO2

0 = 1O4

0.33
0.33
0.33

0
0

0.17
0.17
0.25
0.42
0.44

0.12
0.12
0.18

0.088
0.11

0.1
0.1

0.14
0.14
0.15

0.1
0.1

0.13
0.15
0.16

0.
0.
0
0
0

085
086
.13
.16
.16

0=KT4

p = io-2

0=1.0
0-1O2

0=1O4

0.28
0.28
0.29

0
0

0.41
0.41
0.056
0.091
0.26

0.057
0.056
0.0039
0.014
0.078

0.033
0.033
0.013

0.0085
0.074

0.014
0.014
0.034
0.0039
0.065

1
0.0062
0.0062
0.038
0.0034
0.047

p = io-4

0 - HT2

0= 1.0
0-1O 2

0 = 1O4

0.2
0.2
0.2
0.22
0.21

0.078
0.078
0.084
0.081
0.08

0.026
0.026
0.025
0.024
0.024

0.0079
0.0079
0.0077
0.0086
0,0082

0.0026
0.0026
0.0026
0.0032
0.0029

0.
0.
0.
0
0

00089
00089
00089
.0012
.0011

ïf /i/2' stays neatly bounded, the error estimator perforais satisfactoriry.
• To be able to zero in on singularities, the error estimator must detect local errors. We define the quantity

)

/*<»> :=
\

E \aT\ 117)2 |l \\V2\\»

with

E l^2|i

This quantity will be big, if the estimator fails to tell the approximate spatial distribution of the dis-
cretization error.

• The gain from adaptive refinement is illustrated by plotting the discretization error versus the total number
of degrees of freedom both for uniform and adaptive refinement.

Ail numerical experiments are conducted on uniformly refîned meshes, some of them also on meshes generated
by adaptive refinement. The latter relies on an averaging strategy, which singles out the éléments in the set A
from (35) for refinement. When we do so, we also monitor the decrease of the true error against the degrees of
freedom for both uniform and adaptive cases in order to assess the gain of adaptivity.
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TABLE 2. Measures for quality of residual based error estimator for Exp. 2.

175

p = io-4

p = io-2

/? = 1.0
p = 102

0 = 104

0.31
0.31
0.055
0.74
0.9

0.043
0.062
0.084
0.39
0.36

0.054
0.059
0.048
0.11
0.18

0.037
0.036
0.029
0.068

0.1

0.041
0.041
0.039
0.015
0.069

0.044
0.044
0.042
0.01
0.057

7(3)

0.06
0.065
0.065
0.11
0.12

0.033
0.033
0.032
0.037
0.04

0.013
0.013
0.012
0.01

0.011

0.0044 0.0015
0.0044 0.0015
0.0043 0.0015
0.0032 0.001
0.0034 0.001

The numerical experirnents 1 to 5 are carried out on the unit cube Q := ]0,1[3. Dirichlet boundary conditions
are applied on dQ. In order to be able to evaluate the true discretization errors, we choose boundary data and
right-hand sides such that an analytical expressions for the solutions of the continuous problems are available.
In each case we start with a coarse grid (level 0) consisting of 6 tetrahedrons, which is refined uniformly up to
level 5.

In our first experiment the coefficients a and 0 are kept constant all over the domain; x is always set to 1.
In this situation the regularity Assumption 2 is fulfilled. Different values for 0 are taken into account, because
in the case of implicit timestepping 0 will be scaled by the size of the timestep. Therefore, it is essential that
the error estimator is robust with respect to the relative scaling of x a n ( i fi- The solution is rather smooth and
is given by u = (0,0, sin(7ra;i)). Consequently there are no particular local features to be detected.

The results are reported in Table 1 and bear out a decent performance of the estimator for this benign setting.
We also observe that the error estimator is not severely affected by different values for 0.

For our second experiment boundary data and right-hand sides are chosen such that the solenoidal solution
u — curl(sin(7TX2X3),cos(7ra:ia:3),sin(7ra:iX2)) is generated. We included this experiment to study how the error
estimator responds to a smooth divergence-free solution.

We refer to Table 2 for the results. Little différence compared to the previous experiment can be seen.
In the third experiment we generate a smooth irrotational solution u = grad(xyz). The coefficients x a n d 0

are chosen like in the previous experiments. In this case the irrotational part of the error is the only remaining
component.
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TABLE 3. Measures for the quality of the residual based error estimator on the unit cube (Exp. 3).

Level

Effectivity
p = io~4

p = HT2

P = 1.0
P=IO2

p = io4

p = io~4

p = HT2

/? = 1.0
P = ltf
/? = 1 0 4

MC2J

p = 10"4

p = io~2

/? = 1.0
P=IQ2

p = io4 ,

p = io - 4

p = HT2

/ 3= 1.0
£ - 1 0 2

P = 104

0

index
4.21
4.21
4.21
4.22
4.22

0.5
0.5
0.5
0.33
0.33

0.46
0.46
0.46
0.32
0.32

0.24
0.24
0.24
0.24
0.24

1

e

4.70
4.70
4.70
4.68
4.66

0.042
0.042
0.042

0.1
0.12

0.054
0.054
0.054
0.057
0.083

0.095
0.095
0.095
0.082
0.077

2

4.90
4.90
4.89
4.87
4.84

0.13
0.13
0.13
0.13
0.14

0.042
0.042
0.047
0.04
0.051

0.032
0.032
0.032
0.03
0.028

3

4.98
4.98
4.98
4.96
4.92

0.14
0.14
0.14
0.14
0.13

0.037
0.037
0.037
0.036
0.026

0.01
0.01
0.01

0,0098
0.0088

4

5.01
5.01
5.01
5.01
4.96

0.14
0.14
0.14
0.14
0.14

0.034
0.034
0.034
0.032
0.019

0.0034
0.0034
0.0034
0.0033
0.003

5

5.03
5.03
5.03
5.03
4.99

0.14
0.14
0.14
0.14
0.14

0.023
0.023
0.023
0.023
0.016

0.0011
0.0011
0.0011
0.0011
0.001

es fQT* the different ^uâ-lit^ mesisures are ^iven in Tsible 3. Tlie^7 show thsit the error estimator is insensitive
to irrotational solutions.

Our fourth experiment deals with constant /? = 1, whereas the other coefficient is varying on the domain:
x(x) = 1.5 -hsin(27TXi) sin(27TX2) sin(27r#3). We choose the smooth solution £ = (0,0, sin(7r;ri)). In this case the
energy norm features a certain anisotropy, but the coefficients are still smooth.

How the error estimator behaves can be seen from Table 4. All the observations made in the previous
expérimenta remain true.

TABLE 4. Measures for the quality of the residual based error estimator on the unit cube (Exp. 4).

Level

e

0

5.59
0.67
0.32
0.26

1

9.80
0.31
0.28
0.077

2

11.20
0.21
0.072
0.028

3

11.46
0.2
0.1

0.0095

4

11.57
0.19
0.11

0.0033

5

11.61
0.19
0.11

0.0011

The fifth experiment exchanges the roles of the coefficients. Now x is set to 1 throughout the domain and P
is given by /3(x) = 1.5 + sin(27rxi) sin(27nr2) sin(27TX3). Again the solution is u = (0,0, sin(TTXi)).

See Table 5 for information about the performance of the error estimator. We remark that the performance
remains satisfactory.
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TABLE 5. Measures for the quality of the residual based error estimator on the unit cube (Exp. 5).

Level

e

0

2.92

0.33

0.29

0.22

1

7.83

0.35

0.071

0.085

2

8.18

0.19

0.0027

0.025

3

8.97

0.18

0.025

0.0082

4

11.47

0.17

0.083

0.0032

5

18.37

0.18

0.15

0.0014

Our sixth experiment is again carried out on the unit cube Q := ]0,1[3 with x = 1> but we enforce a vanishing
zero-order term on part of the domain. Thus we départ from the situation where the regularity assumption
holds. As far as the coefficients are concerned, this experiment comes fairly close to the arrangements in realistic
eddy current computations.

In particular, we choose f3 as follows:

max{|xi -
elsewhere.

, \x2 - 0.5|, |x 3 -0 .5 |} < 0.25

Boundary data and right-hand side are again adjusted to produce the smooth solution u = (0,0,sin(7rxi)). Of
course, in this respect we fail to capture the usual singular behavior of the electric field at the edges of the
conductor.

The results of the computations are recorded in Table 6. All measures for the quality of the error estimator
reveal a flawless performance.

TABLE 6. Measures for the quality of the residual based error estimator on the unit cube (Exp. 6).

Level

e

Mt3J

0

5.18

0.17

0.099

0.12

1

7.22

0.081

0.027

0.05

2

7.46

0.066

0.011

0.017

• 3

7.52

0.051

0.0026

0.0058

4

7.53

0.047

0.0031

0.0021

Owing to the smooth solution adaptive refinement does not really pay off in this situation (cf. Fig 2).
Nevertheless, we report the quality measures in Table 7 to show that non-uniform meshes do not make a
différence.

TABLE 7. Measures for the quality of the residual based error estimator on the unit cube in
the adaptive case (Exp. 6).

Level

e

0

5.18

0.17

0.099

0.12

1

7.29

0.11

0.083

0.048

2

7.89

0.15

0.024

0.032

3

7.89

0.17

0.1

0.014

4

7.81

0.14

0.11
0.0054

5

7.73

0.11

0.039

0.0036

6

7.88

0.17

0.076

0.0022

For the seventh experiment we employ the domain and coefficients of the previous one. But now we enforce
homogeneous Dirichlet boundary conditions u x n = 0 on the boundary and a smooth right hand side f = (1,1,1).
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0.5

0.05

io2 103 IO4 IO5 IO6

degrees of freedom

FIGURE 2. True error for uniform and adaptive mesh refinement on the unit cube (Exp. 6).

TABLE 8. Measures for the quality of the residual based error estimator on the unit cube (Exp. 7).

Level

e

• „ ( 2 )

0

15.19
0.1
0.24
0.076

1

10.70
0.094
0.016
0.046

2

9.89
0.093
0.051
0.021

3

10.34
0.1

0.079
0.0083

TABLE 9. Measures for the quality of the residual based error estimator on the unit cube in
the adaptive case (Exp. 7).

Level

e

pW

0

15.15
0.1
0.24
0.076

1

11.03
0.29
0.046
0.04

2

10.41
0.22
0.23
0.024

3

10.81
0.12
0.072
0.015

4

10.52
0.18
0.079
0.0075

5

11.86
0.14
0.14

0.0041

Thus the vector field will be non-smooth and cannot be described analytically. Now, all the features of an actual
eddy current problem are present.

To estimate the true errors, we carried out two refinement steps more than reported in Tables 8 and 9,
respectively, and compare the discrete solutions to those obtained on the finest levels. The results are collected
in Table 8 for uniform refinement and in Table 9 for adaptive refinement. Evidently, the additional singularities
in the solution hardly affect the error estimator in either case.
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TABLE 10. Measures for the quality of the residual based error estimator on the L-shaped
domain (Exp. 8).

179

Level

e

Mt3J

0

3.39

0.27

0.17

0.11

1

3.73

0.1

0.079

0.07

2

3.85

0.047

0.07

0.047

3

3.94

0.029

0.018

0.032

4

3.99

0.019

0.013

0.022

TABLE 11. Measures for the quality of the residual based error estimator on the L-shaped
domain in the adaptive case (Exp. 8).

Level

e

M(1)

0

3.39

0.27

0.17

0.11

1

3.67

0.18

0.11

0.065

2

3.82

0.12

0.08

0.11

3

4.05

0.12

0.018

0.037

4

4.18

0.11

0.012

0.02

5

4.28

0.096

0.021

0.0056

6

4.37

0.088

0.025

0.0027

0.1

(D

0.01
io3 io4 105

degrees of freedom

FIGURE 3. True error for uniform and adaptive mesh refinement on the unit cube (Exp. 7).

Surprisingly, the singularities do hardly reward adaptive refinement, as can be seen from Figure 3. However,
as the right tails of the curves indicate, adaptivity might pay off on higher levels. But due to lacking computer
resources we could not proceed wit h grid refinement in our experiment.

The eighth experiment deals with an edge singularity of the field. We use a non-convex "L-shaped" domain
ü :=] - 1,1[3 \ [0, l]2 x [-1,1]. The coarsest grid comprises 52 tetrahedra.
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FIGURE 4. True error for uniform and adaptive mesh refinement on the L-shaped domain (Exp. 8).

FIGURE 5. The L-shaped domain of Exp. 8. On the left-hand side the initial triangulation is
shown; the other figure displays a cross section of the grid after five adaptive refinement steps.

We set x anc* /3 to 1 and employ such boundary conditions and right-hand side that the solution is given (in
polar coordinates) by u = grad(rt sin(|0). The gradient field u is both irrotational and divergence-free and
does not even belong to i3"1(f2).

How this affects the error estimator is conveyed by Table 10 for the case of uniform refinement and Table 11
for local grid adaptation. The numbers illustrate that the error estimator can be relied upon even under these
extreme circumstances.
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Now that the vectorfield is singular along the concave edge of the L-shaped domain, local mesh refinement
should provide favourable grids. Indeed, Fig. 4 reveals a clearly superior performance in the adaptive case.
Figure 5 gives a view of both the initial and an adaptively reflned triangulation; observe how the grid adaption
concentrâtes on the concave edge of the domain.

7. CONCLUSION

In the present paper we have designed a local a posteriori error estimator for iï(curl;£2)-elliptic problems
by taking into account the dual norm of the residual. We could show that this estimator is efficient, Le. apart
from scaling it provides a local lower bound for the energy norm of the error. Under additional assumptions we
could establish that it is also reliable in the sense that we can also obtain a global upper bound. However, the
assumptions are hardly ever met in realistic settings. Nevertheless, the numerical results offer strong évidence
that the error estimator performs excellently beyond the scope of the theoretical analysis. Hence, it would be
désirable to extend the rigorous treatment to the case of discontinuous coefficients.
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