URNAL

de Théorie des Nombres

e BORDEAUX

anciennement Seminaire de Theorie des Nombres de Bordeaux

A note on the regularity of the Diophantine pair {k, 4k + 4}
Tome 30, n° 3 (2018), p. 879-892.

<http://jtnb.cedram.org/item?id=JTNB_2018__30_3_879_0>

© Société Arithmétique de Bordeaux, 2018, tous droits réservés.

L’acces aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique I’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous
quelque forme que ce soit pour tout usage autre que ’utilisation a
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/


http://jtnb.cedram.org/item?id=JTNB_2018__30_3_879_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Journal de Théorie des Nombres
de Bordeaux 30 (2018), 879-892

A note on the regularity of the Diophantine pair
{k,4k £+ 4}

par Bo HE, KELI PU, RULIN SHEN et ALAIN TOGBE

RESUME. Soit € € {1} et soit k un entier tel que k >2sie=—1let k> 1
si € = 1. Pour tout eniter positif d, nous démontrons que si le produit de deux
éléments distincts de I’ensemble

{k, 4k + 4e, 144K + 240k?c + 124k + 20¢,d}
augmenté de 1 est un carré parfait, alors d = 9k + 6¢ ou
d = 2304k° + 6144k*e + 6112k> + 2784k?c + 569k + 42¢.

Par conséquence, en combinant ce résultat avec un résultat récent de Filipin,
Fujita et Togbé, nous provons que tous les quadruplets diophantiens de la
forme {k,4k + 4e, ¢, d} sont réguliers.

ABSTRACT. Let € € {1} and let k be an integer such that k > 2 if e = —1
and k > 1 if ¢ = 1. For positive integer d, we prove that if the product of any
two distinct elements of the set

{k, 4k + 4e, 144k3 + 240k%c + 124k + 20¢, d}
increased by 1 is a perfect square, then d = 9k + 6¢ or
d = 2304k° + 6144k*e + 6112k3 + 2784k%c + 569k + 42¢.

Consequently, combining this result with a recent result of Filipin, Fujita and
Togbé, we show that all Diophantine quadruples of the form {k, 4k + 4e, ¢,d}
are regular.

1. Introduction

A set {a1,a9,...,an} of m positive integers is called a Diophantine m-
tuple if a;a; + 1 is a perfect square for all 4,5 with 1 < ¢ < j < m. A
folklore conjecture says that there does not exist a Diophantine quintuple.
This conjecture was proved by the first, fourth authors and V. Ziegler [11].

Euler first proved that any Diophantine pair {a, b} can be extended to
a Diophantine triple {a,b,a + b + 2v/ab + 1}. In 1979, Arkin, Hoggatt and

Manuscrit regu le 9 juin 2017, révisé le 2 octobre 2017, accepté le 3 octobre 2017.
2010 Mathematics Subject Classification. 11D09, 11B37, 11J68, 11J86, 11Y65.
Mots-clefs. Diophantine m-tuples, Pell equations, Baker’s method, Reduction method.
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Strauss [1] showed that any Diophantine triple {a, b, c} can be extended to
a Diophantine quadruple

{a,b,c,a+b+c+2abc+2\/(ab+ 1)(ac+ 1)(bc+ 1)}

We call such a Diophantine quadruple regular. The following is a strong
version of the folklore conjecture.

Conjecture 1.1. Any Diophantine quadruple is reqular.

In 1969, by Baker and Davenport [2] who proved that the fourth element
120 in Fermat’s quadruple uniquely extends the Diophantine triple {1, 3, 8}.
In 2004, Dujella [6] proved that there does not exist a Diophantine sextuple
and there are only finitely many Diophantine quintuples. In 2014, Filipin,
Fujita and Togbé [8], [9] studied the extendibility of some Diophantine
pairs. They proved the following result.

Theorem 1.2 (cf. [9, Theorem 1.4]). Let {a,b} be a Diophantine pair with
a < b < 8a and r the positive integer satisfying ab + 1 = r2. Define an
integer ¢ = ¢, (v € {1,2,...},7 € {£}) by

(1.1) o

= o (VR Va2 + (Vo= 7v/a) (= Vab ~2(a+D)).

Suppose that {a,b, c,d}is a Diophantine quadruple with d > ¢ "1 and that
{a,b,d,c}is not a Diophantine quadruple for any ¢ with 0 < < cl_;.

(1) If b < 2a, then ¢ < c3.

(2) If 2a < b < 8a, thencgc;

Let ¢ € {£1} and let k be an integer such that k¥ > 2 if ¢ = —1 and
k > 1 if e = 1. Define an integer ¢ = ¢, (v € {1,2,...},7 € {£}) by (1.2)
with
a=k, and b=4k+ 4e.

In [9], Filipin, Fujita and Togbé proved that
Theorem 1.3 (cf. [9, Theorem 1.8]). If {k,4k + 4¢,¢,d} is a Diophantine
quadruple with ¢ # c < d, then d = Cpi1

However, it remains the case of the Diophantine triple
{a,b,c} = {k, 4k + 4e,144K> + 240k>e + 124k + 20¢}.
Note that
cf =9k 4 6e, cf =2304k5 + 6144k e + 6112k3 + 2784k + 569k + 42¢,

such that {a,b,cf,cg} and {a,b,c5,c§} are both regular Diophantine
quadruples. In this paper, we will show the following result.
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Theorem 1.4. If {k,4k +4e,c5,d} is a Diophantine quadruple with c5 <
d, then d = C;;.

Therefore, combining Theorem 1.3 and Theorem 1.4, we show that the
Diophantine quadruples
(k, 4k + 4, ¢, d}
are regular. Moreover, with earlier works of Fujita [10], Bugeaud, Dujella
and Mignotte [3] on Diophantine pairs {k — 1,k + 1}, we have

Corollary 1.5. Any Diophantine quadruple which contains at least two
elements in {k — 1,k + 1,4k} is reqular.

This also extends a result of Dujella [4] on the Diophantine triple {k —
1,k 4+ 1,4k}. It is interesting to mention that in this paper we study the
extension of a Diophantine pair {a, b} to a Diophantine triple {a, b, ¢} with
c= c; In general, it was very difficult to consider

c=cf =4r(r+a)bxr).

This was done by Bugeaud, Dujella and Mignotte [3] when the pair is
{k—1,k+1}. In [11], we have defined an operator on Diophantine triples by

d({a,b,c}) ={a,b,d_(a,b,c)}, for a<b<e,
where
d_=d_(a,b,c) =a+b+c+ 2abc — 2\/(ab+ 1)(ac+ 1)(bc+1)

and the degree of a given Diophantine triple is the number of iterations of
0-operators to arrive at an Euler triple (a triple with ¢ = a + b 4 2r). For
example, when ¢ = ¢ as in (1.2), the triple {a,b,c} = {a,b,c} has just
degree v — 1. In particular, even though we remove the additional condition
b < 8a, the form {a,b, céc} gives all Diophantine triples of degree 1.

The success here is due to the use of new congruences and a linear form in
two logarithms. Moreover, the technique used for the proof of Theorem 1.4
can be used in the study of triples with deg(a,b,c) = 1. Not only in some
special case like {a,b} = {k— 1,k + 1}, {k, 4k £4}, {A%k +2A, (A +1)%k +
2(A+ 1)}, but also in general.

2. Preliminaries

Suppose that {a,b,c,d} is a Diophantine quadruple with a < b < ¢ < d.
Then, there exist positive integers z,y, z such that ad + 1 = z?,bd + 1 =
y?, cd + 1 = 22, Eliminating d from these relations, we obtain

(2.1) ay? — bz =a — b,
(2.2) az’ —cx? =a—c,

(2.3) b2 — ey’ =b—c.
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Assume that a < b < 8a. If ged(a, b) = 1, then [8, Lemma 4.1] implies that
the positive solutions of the Diophantine equation (2.1) are given by

(24) yva+azvb=(\a+Vd)(r+Vab), Xe{£l}, 1>0, (Il odd).
Thus, we may write x = p;, y = V), where

(2.5) po=1, pr=r+Xa, pra=2rp1—p,

(2.6) Vo=XA, Vi=b+Ar, Vigo=2rViy1 — V.

Moreover, by Lemma 1 in [6] the positive solutions of Diophantine equa-
tions (2.2) and (2.3) are respectively given by

(2.7) 2va+ zv/e = (z0v/a + xov/c)(s + Vac)™, m >0,
(2.8) Vb4 yve = (z1Vh+y1Ve)(t + Vbe)', n >0,

where m, n are non-negative integers, and (zg, o), (21, y1) are fundamental
solutions of (2.2), (2.3), respectively. We have z = v,,, = wy,, where

(2.9) Vg = 20, V1 = 820+ CTo, Umt2 = 28Vpmt1 — U,
(2.10) wy =21, w1 =1tz + Y1, Wpiro = 2tWpt1 — Wy.
We may also write ¢ = q,,,, y = W,,, where
(2.11) g0 =To, 1 =5To+az20, Gm+2 = 25¢m+1 — Im,
(2.12) Wo=1wvy1, Wi=ty1+bz1, Wyio=2tW,11 — W,.
In our case,
a=Fk, b=4k+4e, c=cy = 144k3 + 240ek® 4 124k + 20¢,

r=2%k+e, s=12k>+10ek+1, t= 24k>+ 32k +9.

We have some special relations in our case.

Lemma 2.1. If (a,b,c) = (k,4k + 4e,c ), then s =t = —1 (mod 2r) and
¢ =0 (mod 4r).

Proof. The results directly come from
s+1 = 2(2k+e)(3k+e) = 2r(3k+e), t+1 = 2(2k+e)(6k+5e) = 2r(6k+5¢),
and

¢ =4(2k +¢)(3k + €)(6k + 5¢) = 4r(3k + €)(6k + 5¢). O

The following result is just Lemma 3.1 of [9].

Lemma 2.2 ([9, Lemma 3.1(4)]). If (a,b,c) = (k,4k + 4e,c5), then
Vomt1 F Wap and vy, # Wont1. Moreover, there are two types of fun-
damental solution to equation (2.2) and (2.3):

(1) If voy = wap, then zo = z1 = A\ € {£1}.

(2) If vam+1 = want1, then zg = ot and z1 = Aas with Ao € {£1}.
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We prove the following results.

Lemma 2.3. We have A = 1. Moreover,
(1) If voy = way, then 1 is even.
(2) If vom41 = waont1, then 1 is odd.

Proof. By Lemma 2.2, when vy, = way,, then |z1| = 1 implies y; = 1. When
Vom+t1 = Want1, the fact |z1] = s provides y; = r. From (2.12) and t = 1
(mod b), we have

1,1,1,1,...
(Wn mod b)n>0: ( T )7 .
- (T, rr,r, ... ), if V2m+1 = Wan+1-
On the other hand, from (2.6), we have
(Vi mod b);>0 = (A, Ar, A, Ar, ..

Since y = V; = W,,, consider the two cases. Therefore, the lemma is proved.
d

if v, = wop,

Lemma 2.4. We have

(1) If voy, = wap, then 2m = 2n =0 (mod r) or m = —4n = —2ec)\;
(mod 7).
(2) If vom41 = Wonyt1, then 2m+1=2n+1==+1 (mod r).

Proof. In our proof, we will use the congruences s =t = —1 (mod r) and
¢ =0 (mod 4r) (cf. Lemma 2.1).

Case (1). We have vy, = way,. From (2.4), we have
yva+2vVb = (Va+ Vo) (r + Vab)*
= (Va+ Vb)(2r® — 1 + 2rVab)!

(2.13) = +(va+ Vb) (mod 2r).
Thus, by (2.5) we deduce
(2.14) x=py =+1 (mod 2r).

From (2.7) and Lemma 2.1, we obtain
Vit eve = (Mva + ve)(s + vaoP™
= (Mva + Ve)(2ac + 1 + 2sy/ac)™
= (Mva+ Vo) (1 - 2vac)™
= (\va+ Vo)1 — 2my/ad)
= Ava+ (1 =2 \am)/c (mod 2r).
Thus, from (2.11) we get
(2.15) T =qom =1—2 \am (mod 2r).
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Using (2.14) and (2.15), we have +1 = 1 — 2A\;am (mod 2r). This implies
2A1am = 0,2 (mod 7). Since a = k, r = 2k + ¢, then 2a = —¢ (mod r).
This implies —eA\ym = 0,2 (mod r). Thus, we have

(2.16) m=0,-2c\; (mod 7).
Similarly, from (2.13) we have
(2.17) y=Vy==+1 (mod 2r).

Equation (2.8) and Lemma 2.1 imply

Vb4 yve = (Vb + e (t + Vo)™
= (M Vb 4 ve)(2bc + 1 + 2tVbe)"
= (MVb+ Vo) (1 - 2vbe)"
)

= (MVDh+ Ve)(1 - 2nVbe)

= MVb+ (1 —2\bn)v/e (mod 27).
Thus, we get
(2.18) y =W, =1—-2\;bn (mod 2r).

From (2.17) and (2.18), we have +1 = 1 — 2A\1bn (mod 2r). It follows that
AMbn =0,1 (mod 7). By b =4k +4e, r = 2k +¢, we have b = 2¢ (mod 2r).

(2.19) 2n=0,eA;  (mod 7).
Combining (2.16) and (2.19), the first part of the lemma is proved.

Case (2). Now, we consider voy,+1 = wan41. It has been shown by Lem-
ma 2.3 that [ is odd. From (2.4), we have

yva +2vb = (Va+ Vb)(r + Vab)*
= (Va+ vb)(Vab)™™!
(=)' (va+ Vb)Vab
(=Dva+ (—=1)'avb  (mod 7).

(2.20)

Thus, we see that
(2.21) z=pys1 = (=1)la  (mod r).
From (2.7) and Lemma 2.1, we have
2va+ xv/e = (Matv/a + r/6)(s + Vac) 2T
= —\va(—1 + Vac)*™ !
= —Mva(—1+ (2m+ 1)Vac)
= Xova — X2(2m + 1)ay/c (mod 7).
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Thus, we have
(2.22) T = @m+1 = —X2(2m+1)a (mod r).

Using (2.21) and (2.22), we deduce that (2m +1)a = (—1)""!X2a (mod r).
Since ged(a,r) = 1, thus we get

(2.23) 2m+1=(-1)"X\; (mod 7).
Similarly, from (2.13) we have
(2.24) y="Vagr = (-1 (modr).

We see that equation (2.8) and Lemma 2.1 imply
Vb4 yv/e = (AasVb + /e (t + Vbe)?
= —AVb(—1 + Voe) 1
= —\Vb(—1 4 (2n + 1)Vbe)
= Vb — Ao(2n 4 1)by/c (mod ).

Thus, we have

(2.25) y=Wont1 = —X2(2n+1)b (mod 7).

From (2.24) and (2.25), we have (—1)'b = —X2(2n + 1)b (mod 7). Since
ged(b, ) = 1, then

(2.26) on+1= (D" (mod r).

Therefore, from (2.23) and (2.26) we have

(2.27) 2m+1=2n+1=(-1)"h =41 (modr).

This completes the proof of Lemma 2.4. O

The following computational result can help us to have information about
“very small” cases.

Lemma 2.5 (cf. [9, Lemma 1.3(2)]). Suppose that {a,b,c,d} is a Diophan-
tine quadruple with a < b < ¢ < dy < d. If 2a < b < 8a, then b > 1.3 -10°.

Therefore, in order to proof our main theorem, we assume that k£ >
32499.

3. Proof of Theorem 1.4 for large k
In this section, our goal is proof Theorem 1.4 for k > 7.84 - 105. Let us

denote
ot a2 VRt MVA)
M =5+ vae, 3_\/6(ﬁ+)\1\/6)’
_ Vb(ry/c + \atr/a)
as =t+Vbe, a4= Jalryet )\25\/5).
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By formula (60) of [6], if v,y = w, has a solution with m’,n’ > 0, then we
have

8 ,
(3.1) 0 < m'loga; —n'logas +logas < gacal_Qm
Define
A1 = 2mlogay — 2nlog as + log ag, for vo,, = way,

Ay =(2m+1)loga; — (2n + 1)logag + log ag,  for vom+1 = wapt1-
Then, we have

am 4dm—2

0<A < gacaf and 0< Ay < gacaf

We will transform the forms A4 o into linear forms in two logarithms in order
to apply the following result due to Laurent that we recall. See Corollary 1
n [12]. For any non-zero algebraic number « of degree D over Q, whose
minimal polynomial over Z is A H]D:1(X —~1), we denote by

h(y) = % (logA—i— zD:logmaX (1, 'y(j)’))
j=1

its absolute logarithmic height.

Lemma 3.1. Letv; > 1 and y2 > 1 be two real multiplicatively independent
algebraic numbers, y1 > 1, v2 > 1, logy1, logvys are real and positive, by
and by are positive integers and

A = by log~yz — by log 1.
Let D := [Q(71,72) : Q. Let

logvi| 1
hiZmaX{h(%),|Og’Y| } for i=1,2

D 'D
and
bl [
b/ > ‘
~ Dhy + D h;
Then

30 1)\?
log |A| > —17.9- D* (max {log b +0.38, o 2}) hiho.

Remark 3.2. One can also use Theorem 2 of [12] to get a better result

than the use of the above lemma. However, we still need to run a program
of the Baker—Davenport reduction method. So we just choose this lemma.

We will consider two cases: von, = way, and Vo1 = Wont1.
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Even case, i.e. v2,;, = wa,. By Lemma 2.4(1), if vy, = wy, has a
solution, then 2m = 2n = 0 (mod r) or m = —4n = —2e\; (mod 7). So
we set

2m =mar —4p; and  2n = nir + pg,

with some positive integers mi,n; and p; € {0,£1}. Then, we rewrite A;
into the form

Ay = (mar — 4pg) log ag — (n1r + p1)log az + log as

(3.2) = rlog (a?:) —log <W> .

In order to apply Lemma 3.1, we set

4.0 H1 mi
D:4’ bl :1, bzzr, ’Yl:My ’)/2: aiﬂg

The multiplicative independence of v; and v, is easy to check, so we omit
it. To ensure that log v, and log 2 are positive, if logy; < 0 and log~ys < 0,
we use 1/71, 1/7v2 instead of 71, 72, respectively. Then, we work on —A;
and exchange the indexes. Or, if one of log~y; (i = 1,2) is negative and the
other is positive, then we have a contradiction to

4 <b5logag —1< ‘log(o/llag) — |log ag\’
1

~ 6ac’

4m

< [logy| < |A1] < gacaf

for py = £1 or
1<(1_ a>_ ve o Vbe—+ac
1 b) Vet Vet vab
= logw < [log az| = [logm| < [A1] < i,

va(ve+vb)

for yui1 = 0, where we used [logas| < 1 and log(1 +z) > {7 for z > —1.

Ve — y/ac
<10g(1+M)

We have h(aq) = 3logaq, h(az) = %log ap. Since the absolute values of
the conjugates of a3 greater than one are

VBWE+Va) VBt VE)  VBWE-Va) VB Va)
Valye+vh) Va(e—vh)' Valve+r Vi) Valye—vb)

then

1 v’ (c—a)? 1
< 2] —_ab)?. . 21 1 '
h(as) < 198 ((GC ab) 2 (b2 < 5 og(be) < log ag
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It follows that
(3.3) h(m) < 4h(en) + h(a2) + h(as)

< 2logay + %log ag + log as < 3.51og aa.
Moreover, we have

llogvi| < 4logay + log ag + |log as| < 5log ag + 1.

Put Ty, + Ky vac == o™, Py, + Qu,Vbe := 4. One can check that
the leading coeflicient of the irreducible polynomial of of"'/ag® is 1. If
af"t > a4, then the absolute values of conjugates of o] /a5’ greater than
one are

T, + Kmvac Ty, + Ky W/ac

P?’Ll —I_in\/%7 Pnl_in\/%
We deduce that h(y2) = %t logai. Similarly, if o' < oy, then h(y2) =
2 log ap. By Lemma 2.5, we have r > 6.49 - 10*. We use (3.1) and (3.2)
to get

m n 1 8 _
llog vo| = %logal — ?llogozg < . <| log 1| + 3000 4)
1
< 5. (5logaz + 1+ 0.001) < 0.00L,
r
So we have
(3.4) h(y2) < % log a1 + 0.001.
We set m
hi =35logas, he = flog a1 +0.001
and
b1 bg r 1 T

= I <
4hy = 4hy 14 log an + 2mq log ap +0.004 ~ 14log ao
We have

+0.03 =:¥.

P> 2k — 1 > 188
14logas = 14log(48k2 + 64k + 18) '

Applying Lemma 3.1, it results
log |A1] > —17.9 - 4* (log b/ + 0.38)° hyhs.

This and [A;| < $aca;™™ give

8
4mlogay < 17.9 - 4* (log b’ + 0.38)2 hihs + log (3ac) .
Then, we get

m < 17.9- 4% (log' + 0.38)* (3.51og az) (721 + 0.00l) +0.5.
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As 2m = mqr — 4py > myr — 4, we have
0.9987 < 17.9 - 4% (log b’ + 0.38)* (3.5log aa) 4 5
and so

5.011

B —0.03=—— < 286.974 (log b’ + 0.38)% + ———.
141og an

14 1og ap
We simplify it to have

(3.5) b < 286.974 (log b’ + 0.38)% + 0.05.

By a straightforward computation, we get b’ < 33461.2. Therefore, we get
the inequality
r < 468456.41og as.

Recall that r = 2k + ¢ and ag = t + Vbe < 2t = 2(24k% + 32ek + 9), we
have

2k — 1 < 468456.41og(48k> + 64k + 18).
This gives k < 8.38 - 106.
Odd case, i.e. V241 = Wapt1. Also, from Lemma 2.4(2), if vopq1 =
Won+1, then 2m +1 = 2n + 1 = £1 (mod 7). Let 2m + 1 = mor + ug,

2n + 1 = ngr + ueo, for some nonnegative integers mo,ny and ps € {£1}.
We have

Ao = (mar + p2)log ay — (nar + p2) log as + log oy

aq \ H2 a;m)
3.6 =1 — —rl .
@9 oe (o (52) ) —rios (G

We set (by replacing 1 and 2 by their reciprocals, if necessary)

a? o1 2]
D:4, blzT, b2:1, ’71:%2, ’722014() .
Oél (%)

Similarly to the proof in the even case,
(3.7) h(m) < % log iy + 0.001.

Since the absolute values of conjugates of a4 greater than one are

Vi(rve+t/a)  Virve+tva)  Vi(r/e—t/a)
VarJe+s\b) Valrye—svB) Valry/e—svb)’

then

3/2 .
h(O{4) < ilog <a2(c_b)2 b c—a T\/E+t\/a>

P e sV

1 3
< 1 log (4a1/2b3/202r2) < 510g Qas.
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So we get
(3.8) h(y2) < h(ar) 4+ h(ag) + h(ay) < 2.5log as.

One can see that the values of h(7;) are not exceeding those in the even
case. Hence, after applying Lemma 3.1, we get that the upper bound of &
is not exceeding 8.38 - 10°. We summarize it here.

Proposition 3.3. If {k,4k + 4¢,cf,d} is a Diophantine quadruple with
cy <d, then d = cgf for k > 8.38 - 105.

4. Final Computation

In order to deal with the remaining cases 32499 < k < 8.38 - 106, we will
use a Diophantine approximation algorithm called the Baker—Davenport re-
duction method. The following lemma is a slight modification of the original
version of the Baker-Davenport reduction method (see [7, Lemma 5al).

Lemma 4.1. Assume that M is a positive integer. Let p/q be the convergent
of the continued fraction expansion of a real number k such that g > 6 M
and let

n = llngll = M - |[~ql,
where || - || denotes the distance from the nearest integer. If n > 0, then the
inequality
0<Ji—K+pu<AB™/

has no solutions in integers J and K with

log (Aa/m) _ 5 - as
logB —  —
To apply the above lemma, we use
A =m'loga; —n'logas + log as 4
with
A =A; =2mloga; — 2nlogas + logas, for vy, = won,
A=Ary=02m+1)loga; — (2n+ 1)log as + logay, for vo,4+1 = wany1.

We set

J=m/, K=n/, Hzlogal’ :loga374'
log o log ao

Since 0 < A < %acaIQm/, then we take

~ 8ac/3
~ log o’

A B=al.
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Before running the program, we need to determine the value of M. This
is an absolute upper bound of m’. From formula (40) of [5], we have
/

m
logm/

As ¢ < 144k3 +240k> 4124k +20 and k < 8.38-10°, we have m’ < 4-10%° =:
M. We ran a GP program in 8 hours to check no more than 8 - 8.38 - 10°
cases. We obtained m’ < 2. Thus we have

< 2.867-10" log? c.

Proposition 4.2. If {k,4k + 4¢,cf,d} is a Diophantine quadruple with
cy < d, then d = cg for k < 8.38-105.

Combining Proposition 3.3 and Proposition 4.2, we complete the proof
of Theorem 1.4.
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