
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JEFFREY L. MEYER
A reciprocity congruence for an analogue of the
Dedekind sum and quadratic reciprocity
Journal de Théorie des Nombres de Bordeaux, tome 12, no 1 (2000),
p. 93-101
<http://www.numdam.org/item?id=JTNB_2000__12_1_93_0>

© Université Bordeaux 1, 2000, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_2000__12_1_93_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


93-

A Reciprocity Congruence for an Analogue of the
Dedekind Sum and quadratic reciprocity

par JEFFREY L. MEYER

RÉSUMÉ. Une loi de réciprocité est établie pour des sommes appa-
raissant dans les formules de transformations pour les logarithmes
des fontions theta, sommes qui sont les analogues des sommes de
Dedekind dans la transformation du logarithme de la fonction eta.

ABSTRACT In the transformation formulas for the logarithms of
the classical theta-functions, certain sums arise that are analogous
to the Dedekind sums in the transformation of the logarithm of
the eta-function. A new reciprocity law is established for one
of these analogous sums and then applied to prove the law of
quadratic reciprocity.

1. INTRODUCTION

In Berndt [1] and Goldberg [2] the sum S4(d,c) is defined for c &#x3E; 0 by

.,

The sum is one of several involved in the multiplier systems for transfor-
mations of the logarithms of the classical theta-functions. We define two
of them here. Let q = and for Im(z) &#x3E; 0 define

We prove a new reciprocity theorem for the sum S4(d, c). As an application
of the theorem, we deduce the law of quadratic reciprocity.

the principal branch of the logarithm at all times. Berndt [1] proved that

Manuscrit requ le 9 juin 1999.
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if b is even, then

Goldberg [2] gives the following formula. If a is even and b, c and d are
odd, then

z q 4

With the reciprocity theorem for the Dedekind sum s(d, c) and connec-
tions between s(d, c) and the Legendre-Jacobi symbol (~), one can deduce
the quadratic reciprocity law (See Rademacher and Grosswald [3],pp. 34-

35). Berndt [1] proved elegant reciprocity theorems for several sums that
arise in the transformation formulas of the logarithms of the classical theta-
functions. None of these reciprocity theorems allow for both of the argu-
ments in the sum to be odd. For the application of the sums arising in
the theta-function transformations to quadratic reciprocity, however, we
need a new reciprocity theorem where c and d are both odd. And, unlike
the Dedekind sum, the sum S4(d, c) does not possess a reciprocity theo-
rem. However, a reciprocity relation modulo 8 for the sum S4(d, c) does
exist and this is sufficient to deduce the quadratic reciprocity theorem. For
additional properties of S4(d, c) see [7] and [6].
To establish the connection between S4(d, c) and the Legendre-Jacobi

symbol, we turn to Rademacher’s book [8] (pp. 180-182) for the needed
results. We use the same double subscript notation as Rademacher to state
the theorem. For Im(z) &#x3E; 0 and {0,1}, let

Thus

Note that we may allow integers other that 1 and 0 as subscripts since it
can be shown that

We state one of Rademacher’s transformation formulas.

Theorem 1. and c is odd and positive, then
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where

2. RECIPROCITY THEOREM FOR S4 (d, C)
The next result is the foundation on which the new reciprocity theorem

is based.

Theorem 2. Let c and d be positive, coprime, odd integers. Then

Proof. Choose a and b with b &#x3E; d, b even and ad - bc = 1 and set

Then

Note that in each matrix the upper right entry is even and the determinant
is 1. We use (1) with V replaced with VW to find that

Then we apply (1) with z replaced by Wz to see that

and finally we use (1) with V replaced by W to deduce that

We replace log 84(W z) in (6) with (7) and then combine the result with
(5) to conclude that

We have used the following lemma [5] to conclude that there are no branch
changes with the logarithms, so the complete cancellation is justified.



96

Lemma 1. Let A, B, C, and D be real with A and B not both zero and
C &#x3E; 0. Then for Im(z)&#x3E; 0,

where k is independent of z and

Next we multiply (8) by 4/ (7ri), rearrange, and use the fact that

S4(-c, d) _ -S4(c, d) to conclude that

The symmetry between c and d on the left-hand side of the equation in
Theorem 3 leads immediately to the next result.

Corollary 1. If c and d are coprirrte, odd, positive integers, then
n n

The final step towards the desired reciprocity relation is the following
congruence relation.

Lemma 2. Let d be an odd prime and c &#x3E; d be an odd, positive integer
coprime to d. Then

Proof. Using the definition of S4(d, c) and the fact that

we see that

If m and n are positive and coprime integers, recall that (see [4] p. 186, for
example)
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We now apply (10) to the first of the final two sums in (9) and separate the
terms in the second sum on the right according to the parity of j. Thus (9)
becomes

Let

where = x - (~~ denotes the fractional part of x. The final sum in (11)
can be simplified since d  c and [d 2/2] = (d2 - 1)/2 for d odd. Note that

We conclude from (11) and (13) that

Since d is odd and thus d2 - 1 (mod 8), we deduce the congruence

We claim that N is even. Let

where LPRI (m) denotes the least positive residue of m modulo the positive
integer l. Observe that

if and only if there exists a positive integer k such that

We rewrite (16) in the form
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Since the interval (k(cd + 1)/d2, k(cd + 1)/d2 + 1/2) has length 1/2, it

contains an integer j if and only if k satisfies

or, in other words, if and only if LPRd2(k(cd + 1)) &#x3E; d2/2. Thus N = n.
The final claim in the proof of the congruence is the following: The

number n defined above is even.
The proof of this claim is a careful application of the method used in the

standard proof of Gauss’s Lemma (see [4], p. 133 , for example).
Let r1,r2,... rn be the n residues of k(cd + 1), 1  k  (d2 - 1)/2,

falling in the upper half of the least positive residue system (mod d2) and
let sl, s2, ... , sl be those in the lower half. Then n + I = (d2 - 1)/2. Next
we consider r~ = d2 - ri for i = 1, 2, ... , n. Each of the r~ are distinct and
we can say further that no r! for any i and j.

Note that there are [(d2 - 1)/(2d)~ _ (d - 1)/2 positive multiples of d
that are less than (d2 - 1)/2. Now for k = md, 1  m  (d - 1)/2,

From (18), we conclude that

Thus all of the residues produced when 1~ is a multiple of d are among the
Sj and are in fact the positive multiples of d that are less than d2 /2. We
remove them from the list I s 17. 0 . reindex this set and put

’I 1

So now we consider the n rz’s, and the l’ sj’s, with n -t- l’ = d(d - 1)/2
residues altogether. By the distinctness of the r~, we conclude that the r2
and the Sj are some rearrangement of the numbers 1, 2, ... , (d2 -1)/2 with
the multiples of d removed. Thus

or, by definition of the r( ,
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yielding the congruence

Now we rewrite (19) with the ri and the Sj in their original form, with some
possible rearrangement, to get

Recall the exclusion of the multiples of d on each side. Because d is prime,
we may cancel the common factors from each side of the congruence (20)
and conclude that

But by the binomial theorem,

From (21) and (22), we deduce that n is even and the proof of the claim is
complete. And thus, from (14), we have

We now assemble Theorem 3, Corollary 1, and Lemma 2 to reach our
reciprocity result.

Theorem 3. Let d be an odd prime and c &#x3E; d be an odd, positive integer
coprime to d. Then

3. THE LAW OF QUADRATIC RECIPROCITY

As an application of Theorem 4, we offer a new proof of the law of
quadratic reciprocity.

Theorem 4. Let c and d be distinct odd primes. Then
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Proof. Given c and d, there are integers a and b with b even such that

ad-6c = 1. Let V a b and HW == -b -a . Note that a is necessarilyad-bc = 1. Let V = 
e dJ 

and W = de. Note that a is necessarily
odd. From (3), (4) and recalling that a, c, and d are odd and b is even, we
see that

and

From Theorem 1, (23) and (24), we have

and

We also have, from (1) and (2),

and

Next, we multiply (25) and (26) and partially simplify the result to
deduce that

We exponentiate and then multiply (27) and (28) to see that
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From (29), (30) and Lemma 1, we deduce that

Next, we simplify (31) to find that

Note that since d is odd and ad-bc = 1, we have that a - d+dbc (mod 8).
From this fact and the application of Theorem 3 to (32), we conclude that

, , , -,

, , , ,

A straight-forward calculation shows that
,_ .. - - -- - - - - - - ,

Using (34) in (33), we deduce that

as desired.
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