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LEFT-TO-RIGHT REGULAR LANGUAGES
AND TWO-WAY RESTARTING AUTOMATA

Friedrich Otto
1

Abstract. It is shown that the class of left-to-right regular languages
coincides with the class of languages that are accepted by monotone
deterministic RL-automata, in this way establishing a close correspon-
dence between a classical parsing algorithm and a certain restricted
type of analysis by reduction.

Mathematics Subject Classification. 68Q45.

1. Introduction

The left-to-right regular grammars were introduced by Čulik and Cohen [4] as
a generalization of LR(k) grammars. As it turned out the class LRR of left-to-right
regular languages, that is, the class of languages that are generated by left-to-right
regular grammars, properly extends the class DCFL of deterministic context-free
languages, while it is strictly included in the class UCFL of unambiguous context-
free languages. Left-to-right regular languages are of interest as they can be parsed
deterministically in linear time by a two-scan algorithm. However, this algorithm
is considered to be impractical for real applications for two reasons (see [1]): first
the finite-state preprocessor, which realizes the first phase of the two-scan algo-
rithm, is assumed to be given together with the grammar. No method is given
for constructing it – in fact, the problem of deciding whether such a preprocessor
exists is undecidable [6]. Secondly, the right-to-left scan of the first phase seems
to be difficult for large inputs. Therefore, various practical implementations of
parsers have been proposed that extend LR(0) parsers by techniques to compute
look-ahead information, even for arbitrary look-aheads [2,5,25]. However, in con-
trast to the linear time bound for the two-scan algorithm, this approach yields
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only a quadratic time bound in the worst case, even though this “rarely (if ever)
occurs in practical situations” (see [2]). Further, these implementations can only
handle certain subclasses of the left-to-right regular languages.

The restarting automaton, on the other hand, was defined by Jančar et al. [7] to
model the analysis by reduction, a technique used in linguistics to analyze sentences
of natural languages with free word-order. A restarting automaton has a finite-
state control and a read/write window of a fixed size that works on a flexible tape
delimited by sentinels. It works in cycles. In each cycle it starts in its initial state
with its read/write window in the leftmost position, scanning the left sentinel and
the prefix of the current tape content. It can move its window on the tape one
cell at a time by performing move-right and move-left steps until, at some place,
it decides to rewrite the part of the tape content in its window by a shorter string,
in this way also shortening the tape. After that it may perform further move
operations until it eventually executes a restart. Such a restart places the window
back over the left hand of the tape and resets the finite-state control to the initial
state. Then the next cycle starts on the now shortened tape. The automaton halts
by either performing an explicit accept instruction, or by entering a configuration
for which its control unit has no further instructions, in which case it rejects.

In fact, many different models of restarting automata have been developed
(see, e.g., [23] for an overview). For example, monotone deterministic R-automata
accept exactly the deterministic context-free languages, while monotone RLWW-
automata characterize the class CFL of context-free languages [8]. Further, de-
terministic RWW-automata accept the Church-Rosser languages (CRL) of [15,19],
which are of interest as they have linear-time decidable membership problems. Ob-
serve, however, that in general a deterministic restarting automaton (of any form)
may execute up to n cycles on an input of length n, which yields a quadratic time-
bound. The class CRL properly includes the deterministic context-free languages,
but it is incomparable under inclusion to the class of unambiguous context-free lan-
guages [9]. The intersection of the classes CRL and CFL has been investigated only
recently [13], and it has been shown that the problem of deciding whether a given
Church-Rosser or context-free language belongs to this intersection is complete for
the second level of the arithmetic hierarchy.

In [11] it is shown that monotone deterministic two-way restarting automata
(that is, det-mon-RL-automata) define a language class that strictly includes the
class DCFL, and that is rather robust in that it is also characterized by various
other types of monotone deterministic two-way restarting automata. Actually,
this class of languages is a proper subclass of CRL [23].

Here we show that the class of languages accepted by det-mon-RL-automata
coincides with the class LRR of left-to-right regular languages. By symmetry it
follows that the class of languages accepted by left-monotone deterministic RL-
automata coincides with the class RLR of right-to-left regular languages of Čulik
and Cohen [4]. In this way we establish a close correspondence between a cer-
tain classical parsing algorithm and a restricted type of analysis by reduction. In
particular, we see that monotone deterministic RL-automata yield recognizers for
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left-to-right regular languages that are asymptotically of the same worst case com-
plexity as the parsers mentioned above. In addition, our results imply immediately
that the class LRR as well as the class RLR are proper subsets of the intersection
of the class CRL of Church-Rosser languages with the class UCFL of unambiguous
context-free languages.

This paper is structured as follows. In Section 2 we describe the types of
restarting automata we will be dealing with in short. In addition, we provide a
new, simplified proof for a result from [11] stating that a language that is ac-
cepted by a left-monotone deterministic RL-automaton can be transformed by an
injective deterministic transduction into the reversal of a deterministic context-
free language. In Section 3 we restate the definition of the left-to-right regular
grammars and languages and some of their main properties from [4]. Then we
establish our main result in Section 4. In its proof the result on left-monotone
deterministic RL-automata mentioned above plays a crucial role. The paper closes
with a number of open problems related to our result.

2. Two-way restarting automata

Here we describe in short the type of restarting automaton we will be dealing
with. More details on restarting automata in general can be found in [22,23].

A two-way restarting automaton, RLWW-automaton for short, is a nondeter-
ministic machine M = (Q, Σ, Γ, c, $, q0, k, δ) with a finite set of internal states Q,
a flexible tape, and a read/write window of a fixed size k ≥ 1. The work space
is limited by the left sentinel c and the right sentinel $, which cannot be removed
from the tape. In addition to the input alphabet Σ, the tape alphabet Γ of M
may contain a finite number of so-called auxiliary symbols. The behaviour of M
is described by the transition relation δ that associates a finite set of transition
steps to each pair (q, u) consisting of a state q and a possible content u of the
read/write window. There are five types of transition steps:

1. A move-right step (MVR) causes M to shift the read/write window one
position to the right and to change the state.

2. A move-left step (MVL) causes M to shift the read/write window one
position to the left and to change the state.

3. A rewrite step causes M to replace the content u of the read/write window
by a shorter string v, thereby shortening the tape, and to change the state.

4. A restart step causes M to place its read/write window over the left end
of the tape, so that the first symbol it sees is the left sentinel c, and to
reenter the initial state q0.

5. An accept step causes M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that
M rejects in this situation. Further, it is required that, when ignoring move
operations, rewrite and restart steps alternate in each computation of M , with a
rewrite step coming first. In general, the automaton M is nondeterministic, that
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is, there can be two or more instructions with the same left-hand side (q, u). If
that is not the case, the automaton is deterministic.

A configuration of M is a string αqβ where q is a state, and either α = λ (the
empty string) and β ∈ {c}·Γ∗ ·{$} or α ∈ {c}·Γ∗ and β ∈ Γ∗ ·{$}; here q represents
the current state, αβ is the current content of the tape, and it is understood that
the window contains the first k symbols of β or all of β when |β| ≤ k. A restarting
configuration is of the form q0cw$, where q0 is the initial state and w ∈ Γ∗; if
w ∈ Σ∗ is an input word, then q0cw$ is called an initial configuration.

We observe that any finite computation of a two-way restarting automaton M
consists of certain phases. A phase, called a cycle, starts in a restarting configura-
tion. The window is moved along the tape by executing MVR and MVL operations
and a single rewrite operation until a restart operation is performed and thus a
new restarting configuration is reached. The part after the last restart operation
is called a tail. By u �c

M v we denote a cycle of M that transforms the restarting
configuration q0cu$ into the restarting configuration q0cv$. By �c∗

M we denote the
reflexive and transitive closure of �c

M .
A word w ∈ Σ∗ is accepted by M , if there is a computation which, starting with

the initial configuration q0cw$, finishes by executing an accept instruction. By
L(M) we denote the language consisting of all words accepted by M ; this is the
language recognized (accepted) by M .

We are also interested in various restricted types of restarting automata. They
are obtained by combining two types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the
first part of the class name): RL- denotes no restriction, RR- means that
no MVL operations are available, R- means that no MVL operations are
available and that each rewrite step is immediately followed by a restart.

(b) Restrictions on the rewrite instructions (expressed by the second part of
the class name): -WW denotes no restriction, -W means that no auxiliary
symbols are available (that is, Γ = Σ), -λ means that no auxiliary symbols
are available and that each rewrite step is simply a deletion (that is, if
(q′, v) ∈ δ(q, u) is a rewrite instruction of M , then v is obtained from u by
deleting some symbols).

Also some generalizations of restarting automata have been introduced and stud-
ied. Here we are interested in the so-called shrinking restarting automaton. A
shrinking RLWW-automaton M = (Q, Σ, Γ, c, $, q0, k, δ) has the same components
as an RLWW-automaton with the exception that it is not required that |v| < |u|
holds for each rewrite instruction (q′, v) ∈ δ(q, u) of M . Instead there must exist a
weight function ϕ : Γ∪{c, $} → N+ such that, for each rewrite step (q′, v) ∈ δ(q, u),
ϕ(u) > ϕ(v) holds. Here ϕ is extended to a morphism ϕ : (Γ ∪ {c, $})∗ → N by
taking ϕ(λ) := 0 and ϕ(wa) := ϕ(w) + ϕ(a) for all w ∈ (Γ ∪ {c, $})∗ and all
a ∈ Γ ∪ {c, $}. We use the prefix s- to denote types of shrinking restarting auto-
mata.

Concerning the expressive power of deterministic restarting automata the fol-
lowing results have been obtained. Here CRL denotes the class of Church-Rosser
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languages of [15,19], which can be seen as the deterministic variants of the growing
context-sensitive languages [21].

Theorem 2.1 [10,20].
CRL = L(det-sRRWW) = L(det-RRWW) � L(det-RLWW).

Here the strictness of the inclusion of CRL in L(det-RLWW) follows from the ob-
servation that there exists a deterministic RLWW-automaton for the copy language
Lcopy := {w#w | w ∈ {a, b}∗ }, which is not even growing context-sensitive [3,14].

Finally, we need two monotonicity conditions for restarting automata. Each
cycle C of a restarting automaton M contains a unique configuration αqβ in which
a rewrite step is applied. Then |β| is called the right distance of C, denoted as
Dr(C), and |α| is called the left distance of C, denoted as Dl(C).

A sequence of cycles S = (C1, C2, . . . , Cn) of M is called monotone (or right-
monotone) if Dr(C1) ≥ Dr(C2) ≥ · · · ≥ Dr(Cn), and it is called left-monotone if
Dl(C1) ≥ Dl(C2) ≥ · · · ≥ Dl(Cn). A computation of M is called monotone (left-
monotone) if the corresponding sequence of cycles is monotone (left-monotone).
Finally, M itself is called monotone (left-monotone) if all its computations that
start from an initial configuration are monotone (left-monotone). We use the
prefix mon- (left-mon-) to denote monotone (left-monotone) types of restarting
automata.

The following results have been obtained on monotone and left-monotone de-
terministic two-way restarting automata. Here wR denotes the reversal (or mirror
image) of a word w, LR denotes the reversal {wR | w ∈ L } of a language L, and
for a language class L, LR = {LR | L ∈ L}.
Theorem 2.2 [11,12].
(a) For all X ∈ {λ, W, WW},L(det-left-mon-(s)RLX) = (L(det-mon-(s)RLX))R.

(b) L(det-mon-RL) = L(det-mon-RLWW) = L(det-mon-sRLWW).
(c) L(det-left-mon-RL) = L(det-left-mon-RLWW) = L(det-left-mon-sRLWW)

= L(det-left-mon-RWW) = L(det-left-mon-RRWW).

From the above results we easily obtain the following proper inclusions.

Corollary 2.3 [23]. L(det-mon-RL) � CRL and L(det-left-mon-RL) � CRL.

Proof. As L(det-left-mon-RL) = L(det-left-mon-RRWW) ⊆ L(det-RRWW) = CRL,
we have the second inclusion. Further, as the class CRL is closed under reversal,
and as L(det-mon-RL) = (L(det-left-mon-RL))R, we see that also the first inclusion
holds.

To prove the strictness of these inclusions we consider the language

L := { anbn | n ≥ 0 } ∪ { anbm | m > 2n ≥ 0 }.

In [23] it is shown that L is a Church-Rosser language, while in [8] it is shown
that this language is not accepted by any RR-automaton. As nondeterministic RR-
automata and RL-automata accept exactly the same languages (see, e.g., [24]), and



658 F. OTTO

as L(det-mon-RL)∪L(det-left-mon-RL) ⊆ L(RL), it follows that L is not accepted by
any monotone deterministic RL-automaton nor by any left-monotone deterministic
RL-automaton. �

Below we will need the details of a deterministic transducer that maps the lan-
guage accepted by a left-monotone deterministic RL-automaton onto the reversal
of a deterministic context-free language. Therefore, we provide a detailed descrip-
tion of this construction, which is actually simpler than a similar construction
given in [11].

Let L ∈ L(det-left-mon-RL). Then by Theorem 2.2 (c), there exists a left-
monotone deterministic RWW-automaton M = (Q, Σ, Γ, c, $, q0, k, δ) such that
L(M) = L. This RWW-automaton can be described more succinctly through
a finite sequence of rewriting meta-instructions I1, . . . , In and a single accepting
meta-instruction I0 (see [23]). Here each Ii is of the form Ii = (Ei, ui → vi),
where, for each i = 1, . . . , n, Ei is a regular language, and ui and vi are words
satisfying k ≥ |ui| > |vi|. By adjusting the size of the read/write window of
M accordingly, we may even assume that |vi| ≥ 2, implying that vi is neither
empty nor that it is just a sentinel. Further, I0 = (E0, Accept), where E0 is a
regular language. In a restarting configuration q0cw$, the meta-instruction Ii is
applicable, if w admits a factorization of the form w = w1uiw2 such that cw1 ∈ Ei

holds. In this situation q0cw$ yields the restarting configuration q0cw1viw2$ in
one cycle, that is, w �c

M w1viw2 holds. If cw$ ∈ E0, then I0 is applicable to the
restarting configuration q0cw$, and M accepts in a tail computation.

As M is deterministic, we can assume that to any given restarting configuration
at most a single meta-instruction is applicable. In fact, we may assume that the
regular languages Ei, 1 ≤ i ≤ n, are chosen in such a way that each word w ∈ Γ∗

admits at most one factorization of the form w = w1uw2 such that there exists an
index i with cw1 ∈ Ei and u = ui.

Now we associate a deterministic transducer to the RWW-automaton M as
follows. For i = 1, . . . , n, let Ai = (Qi, Γ ∪ {c, $}, δi, q

(i)
0 , Fi) be a complete deter-

ministic finite-state acceptor (DFA) for the language c ·Ei. Then we can construct
the product automaton P := (QP , Γ∪{c, $}, δP , q

(P )
0 , QP ) of the DFAs A1, . . . , An,

that is, QP := Q1 × · · · ×Qn, q
(P )
0 := (q(1)

0 , . . . , q
(n)
0 ), and δP ((q(1)

i1
, . . . , q

(n)
in

), a) :=
(δ1(q

(1)
i1

, a) . . . , δn(q(n)
in

, a)) for all states q
(j)
ij

∈ Qj , 1 ≤ j ≤ n, and all a ∈ Γ∪{c, $}.
The deterministic transducer G is defined as G := (QG, Γ, Δ, δG, λG, q

(G)
0 , QG),

where QG := QP ∪ {q(G)
0 }, the output alphabet is Δ := Γ × QP , the transition

function δG is defined through

δG(q(G)
0 , a) := δP (q(P )

0 , ca) for all a ∈ Γ,
δG(q, a) := δP (q, a) for all q ∈ QP and all a ∈ Γ,

and the output function λG is given through

λG(q(G)
0 , a) := (a, δP (q(P )

0 , c)) for all a ∈ Γ,
λG(q, a) := (a, q) for all q ∈ QP and all a ∈ Γ.
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Let a1, a2, . . . , am ∈ Γ, and let pi := δP (q(P )
0 , ca1 . . . ai) for all i = 0, 1 . . . , m. Then

δG(q(G)
0 , a1a2 . . . ai) = pi for all i = 1, . . . , m, and

G(a1a2 . . . am) = (a1, p0)(a2, p1) . . . (am, pm−1).

Now the main property of this construction is given by the following lemma.

Lemma 2.4. The language G(L) is the reversal of a deterministic context-free
language, that is, (G(L))R ∈ DCFL.

Proof. As the class DCFL of deterministic context-free languages coincides with the
class of languages that are accepted by monotone deterministic RWW-automata [8],
we present a monotone deterministic RWW-automaton M ′ with input alphabet
Γ × QP and tape alphabet (Γ × QP ) ∪ Γ for the language L′ := (G(L))R. For
describing M ′, we need the morphism ρ : ((Γ × QP ) ∪ Γ)∗ → Γ∗, which is defined
by (a, q) 
→ a and a 
→ a for all a ∈ Γ and q ∈ QP .

Let w ∈ Σ∗ be an input word. Given the word w′ := (G(w))R as input, M ′

will simulate the computation of M on input w. Scanning w′ from left to right,
M ′ tries to find the rewrite step that M would apply to w. At the same time it
simulates a DFA A0 for the language ER

0 in its finite-state control. If cw$ ∈ E0,
that is, if M accepts w in a tail computation, then M ′ will recognize this through
the simulation of A0, and accordingly it will accept w′ in a tail computation, too.
Assume now that w �c

M z holds, where meta-instruction Ii is applied for some
1 ≤ i ≤ n. Then w = w1uiw2 such that cw1 ∈ Ei, and z = w1viw2. Then
G(w) = G(w1uiw2) = G(w1)UiW2, where Ui and W2 denote the output that G
produces for the infix ui and the suffix w2, respectively, while processing w1uiw2.
Given (G(w))R = WR

2 UR
i (G(w1))R as input, M ′ will detect the image UR

i of the
factor ui to be rewritten from the information provided by the state of P encoded
by the transducer G in the first letter of the suffix (G(w1))R. Then M ′ will replace
the factor UR

i by the string vR
i . Actually, in order to ensure that this approach

works, M ′ needs a read/write window of size k + 1.
Through the above rewrite process the tape contents cWR

2 vR
i (G(w1))R$ is ob-

tained, which is not anymore of the form c(G(x))R$ for any x ∈ Γ∗, as vi is
non-empty by our assumption above. However, the RWW-automaton M is left-
monotone, that is, the next rewrite step it executes on cw1viw2$ has left distance
at most |w1| + 1, that is, it replaces a factor that starts at the same place as the
factor vi or to the left of that place. Thus, the necessary information about this
rewrite step is still encoded in the word G(w1). Accordingly, when M ′ starts the
next cycle with tape contents cWR

2 vR
i (G(w1))R$, then it simply has to perform

move-right steps until it discovers the suffix (G(w1))R, from which it can then
extract the necessary information on the next rewrite step of M that it has to
simulate. If another rewrite step is detected, then M ′ simulates it as above; oth-
erwise, it scans the tape completely from left to right, thereby simulating the DFA
A0 on c · ρ(WR

2 vR
i (G(w1))R) · $. In case the A0-computation being simulated is

accepting, M ′ accepts as well.
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It follows that M ′ is a deterministic RWW-automaton, and that it is monotone.
For all words w ∈ Σ∗, we see that M ′ accepts on input (G(w))R if and only if
w ∈ L, that is, L(M ′)∩(G(Σ∗))R = L′. Thus, L(M ′) is a deterministic context-free
language that has the property that L(M ′) ∩ (G(Σ∗))R = L′. As the class DCFL
is closed under intersection with regular languages, it follows that the language L′

is in DCFL, too. �

3. Left-to-right regular languages

Here we restate the relevant definitions and results on left-to-right regular gram-
mars and languages from [4].

Let G = (N, T, P, S) be a context-free grammar, where N is the set of nonter-
minals, T is the set of terminals, S ∈ N is the start symbol, and P ⊆ N ×(N ∪T )∗

is a finite set of productions. By ⇒∗ we denote the derivation relation induced
by G, and L(G) := {w ∈ T ∗ | S ⇒∗ w } is the language generated by G. Without
loss of generality we may assume that S does not occur on the right-hand side of
any production. By R⇒∗ we denote the rightmost derivation relation induced by G.
A right sentential form is any string α ∈ (N ∪ T )∗ such that S

R⇒∗ α holds.

Definition 3.1. Let π = {E1, E2, . . . , En} be a partition of T ∗ into n disjoint
regular sets. Then x ≡ y mod(π) denotes the fact that x and y belong to the same
subset Ei.

A context-free grammar G = (N, T, P, S) is called LR(π), if, for any right-most
derivations of the form

S
R⇒∗ α1A1y1

R⇒α1γy1 and S
R⇒∗ α2A2y3

R⇒α1γy2,

where A1, A2 ∈ N , α1, α2, γ ∈ (N ∪ T )∗, and y1, y2, y3 ∈ T ∗, y1 ≡ y2 mod(π)
implies that A1 = A2, α1 = α2 and y2 = y3.

A context-free grammar is called left-to-right regular (LR-regular) if it is LR(π)
for some regular partition π of T ∗. A language L is left-to-right regular if L = L(G)
for some LR-regular grammar G. By LRR we denote the class of left-to-right regular
languages.

Concerning the language class LRR the following results are known.

Theorem 3.2 [4].
(1) DCFL � LRR � UCFL.
(2) The class LRR is incomparable under inclusion to the class DCFLR.
(3) The class LRR is an abstract family of deterministic languages, that is,

it is closed under marked union, marked Kleene star, and inverse marked
GSM mappings.

(4) It is decidable whether a given left-to-right regular language is regular.

By RLR we denote the class of right-to-left regular languages. These are just the
mirror images of the left-to-right regular languages, that is, RLR = LRRR.
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4. Main result

Here we will establish our main result.

Theorem 4.1. LRR = L(det-mon-RL).

By symmetry this yields the following result.

Corollary 4.2. RLR = L(det-left-mon-RL).

Proof. Theorem 4.1 yields RLR = LRRR = (L(det-mon-RL))R, which implies
RLR = L(det-left-mon-RL) by Theorem 2.2 (a). �

It remains to prove Theorem 4.1. From the results on monotone and left-
monotone deterministic RL-automata mentioned above it follows quite easily that
each left-to-right regular language is accepted by a monotone deterministic RL-
automaton.

Lemma 4.3. LRR ⊆ L(det-mon-RL).

Proof. Let L be generated by an LR(π) grammar. Then according to the proof
of Theorem 2.1 of [4], there exists a particular deterministic transducer G such
that the language L0 := (G(LR))R is deterministic context-free. Hence, there
exists a monotone deterministic R-automaton M0 such that L(M0) = L0 [8]. Now
a deterministic shrinking RLWW-automaton M can recognize the language L by
proceeding as follows:

• M first moves its read/write window all the way across its tape, checking
that no auxiliary symbols are on the tape. In the affirmative it knows that
it has started from an initial configuration, while otherwise it realizes that
it has already executed one or more cycles.

• If M started from an initial configuration, then, beginning at the right
end of the tape, it simulates the deterministic transducer G (but without
writing down the output generated) moving left until it reaches the left-
most letters of the tape content. These are then replaced by their images
under G, and M restarts. Obviously a weight function can be chosen in
such a way that this process is indeed weight reducing.

• If M started from a non-initial restarting configuration, then, beginning at
the right end of the tape, it simulates the deterministic transducer G (but
without writing down the output generated) moving left until it reaches
the position where the last rewrite step was performed. This place is
easily detected through the presence of auxiliary symbols. If at that place
a rewrite step of M0 is applicable, then M executes this step and restarts;
otherwise it replaces the next few symbols to the right of that position by
their images under G and restarts.

As M0 is monotone, these two processes (the simulation of G and the simula-
tion of the subsequent computation of M0) can indeed be interleaved in the way
described above. Thus, L(M) = L holds. In addition, it follows immediately
that the resulting deterministic shrinking RLWW-automaton is monotone. Hence,
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L ∈ L(det-mon-RL) by Theorem 2.2 (b), which implies that LRR ⊆ L(det-mon-RL)
holds. �

The proof of the converse inclusion is somewhat more involved.

Lemma 4.4. L(det-mon-RL) ⊆ LRR.

Proof. Assume that the language L ⊆ Σ∗ is accepted by a monotone deterministic
RL-automaton. Then its mirror image LR is accepted by a left-monotone determin-
istic RL-automaton (Thm. 2.2 (a)). Thus, by Theorem 2.2 (c) it is also accepted
by a left-monotone deterministic RWW-automaton M = (Q, Σ, Γ, c, $, q0, k, δ). As
described in detail in the paragraphs preceding Lemma 2.4 we can construct a par-
ticular deterministic transducer G from M such that the language L′ := (G(LR))R

is deterministic context-free.
For each state q of the product automaton P considered in the construction of

G, let πq := {w ∈ Σ∗ | δP (q(P )
0 , cwR) = q }. Then π := (πq)q∈QP is a finite regular

partition of Σ∗, as all component automata A1, . . . , An of P are complete DFAs.
We say that two words x, y ∈ Σ∗ are congruent mod π, denoted as x ≡ y mod(π),
if x and y belong to the same set πq. In fact, this relation is a left congruence
on Σ∗. If x, y, z ∈ Σ∗ are any words satisfying x ≡ y mod(π), then δP (q(P )

0 , cxR) =
δP (q(P )

0 , cyR). Hence,

δP (q(P )
0 , c(zx)R) = δP (q(P )

0 , cxRzR) = δP (q(P )
0 , cyRzR) = δP (q(P )

0 , c(zy)R),

which shows that zx ≡ zy mod(π) holds.
Let w = am . . . a2a1, where a1, . . . , am ∈ Σ. Further, let p0 := δP (q(P )

0 , c), and
let pi := δP (q(P )

0 , ca1 . . . ai) (1 ≤ i ≤ m), that is, pi is the index of the subset
of π that contains the suffix ai . . . a1 of w. Then it follows immediately from the
construction of G that G(wR) = (a1, p0)(a2, p1) . . . (am, pm−1) holds. We now
define a mapping fπ : Σ∗ → c · (Σ × QP )∗ · $ by taking

fπ(am . . . a1) := c(am, pm−1) . . . (a1, p0)$,

that is, fπ(w) = c·(G(wR))R ·$. Obviously, fπ is an injective mapping. Further, let
hπ : ((Σ×QP )∪{c, $})∗ → Σ∗ be the morphism that is defined through (a, q) 
→ a
(a ∈ Σ, q ∈ QP ), c 
→ λ, and $ 
→ λ. If Rπ denotes the range Rπ := fπ(Σ∗) of fπ,
then f−1

π is simply the restriction of hπ to Rπ. Thus, hπ is one-to-one on Rπ.
As the language (G(LR))R is deterministic context-free, the language fπ(L) =

c ·(G(LR))R ·$ is generated by an LR(0) grammar G′. By replacing each occurrence
of each terminal symbol in G′ by its image under hπ, we obtain a grammar G. This
grammar generates the language hπ(fπ(L)) = L, and according to Lemma 3.2 of [4]
it is an LR(π) grammar. This implies that L is a left-to-right regular language.
This completes the proof of Lemma 4.4. �

Based on Theorem 4.1 and Corollary 2.3 we now obtain the following proper
inclusions.
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Corollary 4.5. LRR � CRL ∩ UCFL and RLR � CRL ∩ UCFL.

Proof. It is an immediate consequence of our results that both LRR and RLR are
contained in CRL. Further, LRR is contained in UCFL by Theorem 3.2, and as
UCFL is closed under reversal, it follows that RLR is contained in UCFL, too.

To prove that these inclusions are strict we again consider the language L =
{ anbn | n ≥ 0 } ∪ { anbm | m > 2n ≥ 0 } from the proof of Corollary 2.3. As
shown there this language separates both LRR = L(det-mon-RL) and RLR =
L(det-left-mon-RL) from the class CRL. It remains to show that L is an unam-
biguous context-free language. However, it is easily seen that L is generated by
the context-free grammar G := (N, {a, b}, S, P ), where N := {S, A, B, C} and
P := {S → A + B, A → aAb + λ, B → aBbb + C, C → bC + b}. As this grammar
is clearly unambiguous, it follows that L ∈ CRL ∩ UCFL. �

Observe that the language classes CRL and UCFL are incomparable under in-
clusion. This follows from the fact that CRL contains some non-context-free lan-
guages [15] and the fact that the unambiguous context-free language Lpal :=
{wwR | w ∈ {a, b}∗ } is not Church-Rosser [9].

5. Concluding remarks

In [18] the so-called nonforgetting restarting automaton was introduced, which,
when executing a restart operation, simply changes its internal state as with any
other operation, instead of resetting it to the initial state. In [16,17] various types
of monotone nonforgetting restarting automata are investigated. Among others
the following results are obtained, where the prefix nf- is used to denote classes of
nonforgetting restarting automata.

Theorem 5.1 [16,17].

DCFL = L(det-mon-nf-RWW) � L(det-mon-nf-RR)
� L(det-mon-nf-RRW) � L(det-mon-nf-RRWW)
= L(det-mon-nf-RLWW) = L(det-mon-RL).

Thus, with L(det-mon-nf-RR) and L(det-mon-nf-RRW) we have two language classes
that are strictly above DCFL and below the class LRR. Can these two classes also
be characterized in terms of more classical types of grammars or automata?

In [26] it is shown that there is a strict hierarchy of language classes that strictly
include the class LRR and that are included in UCFL. Among these are the so-called
BCP(m, n) languages and the LR(k,∞) languages (see [26] for the definitions). For
example, it is shown there that the language

L := { anbncmdm+k | n, m, k ≥ 1 } ∪ { anb2ncmdm | n, m ≥ 1 }

is a BCP(1, 1) language that does not belong to the class LRR. Which of these
language classes is still contained in CRL (and therewith in the intersection of CRL
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and UCFL)? For example, the above language L is easily seen to be accepted by a
left-monotone deterministic RL-automaton, and so it is contained in RLR. Further,
the language L′ := { ancbn, ancb2n | n ≥ 1 } is an LR(1,∞) language that is not
generated by any FSPA(k) grammar (see [26]). However, analogously to the proof
that the language considered in the proof of Corollary 2.3 is Church-Rosser, it can
be shown that L′ is Church-Rosser, too. Thus, the intersection of CRL with UCFL
contains languages that are not even generated by any FSPA(k) grammars.
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