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RESTRICTED NONDETERMINISTIC READ-ONCE
BRANCHING PROGRAMS AND AN EXPONENTIAL

LOWER BOUND FOR INTEGER MULTIPLICATION ∗, ∗∗
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Abstract. Branching programs are a well established computation
model for Boolean functions, especially read-once branching programs
have been studied intensively. In this paper the expressive power of
nondeterministic read-once branching programs, more precisely the
class of functions representable in polynomial size, is investigated. For
that reason two restricted models of nondeterministic read-once branch-
ing programs are defined and a lower bound method is presented. Fur-
thermore, the first exponential lower bound for integer multiplication
on the size of a nondeterministic nonoblivious read-once branching pro-
gram model is proven.
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1. Introduction and results

Branching programs (BPs) or Binary Decision Diagrams (BDDs) are a well
established representation type or computation model for Boolean functions.

Definition 1. A branching program (BP) or binary decision diagram (BDD) on
the variable set Xn = {x1, . . . , xn} is a directed acyclic graph with one source
and two sinks labeled by the constants 0 or 1, resp. Each non-sink node (or inner
node) is labeled by a Boolean variable and has two outgoing edges, one labeled
by 0 and the other by 1. At each node v a Boolean function fv : {0, 1}n → {0, 1}
is represented. A c-sink represents the constant function c. If fv0 and fv1 are the
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functions at the 0- or 1-successor of v, resp., and v is labeled by xi, fv is defined
by Shannon’s decomposition rule fv(a) := aifv0(a) ∨ aifv1(a). A BP with source
q represents the Boolean function fq. The computation path for the input a in a
BP G is the sequence of nodes visited during the evaluation of a in G.

The size of a branching program G is the number of its nodes and is denoted
by |G|. BP(f) denotes the size of the smallest BP for a function f . The depth of
a branching program is the maximum length of a path from the source to one of
the sinks.

The branching program size of a Boolean function f is known to be a measure
for the space complexity of nonuniform Turing machines and known to lie between
the circuit size of f and its {∧,∨,¬}-formula size (see, e.g. [26]). Hence, one is
interested in exponential lower bounds for more and more general types of BPs
(for the latest breakthrough for semantic linear depth BPs see [1] and [3]). In
order to develop and strengthen lower bound techniques one considers restricted
computation models.

Definition 2. i) A branching program is called read k times (BPk) if each
variable is tested on each path at most k times.

ii) A BP is called oblivious if the node set can be partitioned into levels such
that edges lead from lower to higher levels and all inner nodes of one level
are labeled by the same variable.

Read-once branching programs (BP1s) have been investigated intensively.
Borodin et al. [10] have proved one of the first exponential lower bounds for BPks.
For oblivious branching programs of restricted depth exponential lower bounds
have been proved, e.g. by Alon and Maass [2]. Nondeterminism is one of the most
powerful concepts in computer science. In analogy to the definition for Turing ma-
chines, different modes of acceptance can be studied for branching programs. The
following definition of Ω-branching programs [19] summarizes the most interesting
modes of acceptance.

Definition 3. Let Ω be a set of binary Boolean operations. An Ω-branching
program on the variable set Xn = {x1, . . . , xn} is a directed acyclic graph with
decision nodes for Boolean variables and nondeterministic nodes. Each nonde-
terministic node is labeled by some function ω ∈ Ω and has two outgoing edges
labeled by 0 and 1, resp. A c-sink represents the constant c. Shannon’s decompo-
sition rule is applied at decision nodes. If fv0 and fv1 are the functions at the 0-
or 1-successor of v, resp., and v is labeled by ω, the function fv = ω(fv0 , fv1) is
represented at v.

Definitions of nondeterministic variants of restricted BPs are derived in a
straightforward way by requiring that the decision nodes fulfill the usual restric-
tions as for deterministic BPs. In the following if nothing else is mentioned non-
deterministic BPs means {OR}-BPs or OR-BPs for short. The results of Borodin
et al. [10] for BPks hold (and have been stated by the authors) also for OR-BPks.
Moreover, Thathachar [24] has proved an exponential gap between the size of
OR-BPks and deterministic BP(k + 1)s.
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Besides this complexity theoretical viewpoint people have used branching pro-
grams in applications. Representations of Boolean functions which allow efficient
algorithms for many operations, in particular synthesis (combine two functions
by a binary operation) and equality test (do two representations represent the
same function?) are necessary. In his seminal paper Bryant [11] introduced or-
dered binary decision diagrams (OBDDs) which are up to now the most popular
representation for formal circuit verification.

Definition 4. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A vari-
able ordering π on Xn is a permutation of {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.

i) A π-OBDD for a variable ordering π is a BP where the sequence of tests on
each path is restricted by the variable ordering π, i.e., if an edge leads from
an xi-node to an xj-node, the condition π−1(i) < π−1(j) has to be fulfilled.

ii) An OBDD is a π-OBDD for some variable ordering π.

Unfortunately, several important and also quite simple functions have exponential
OBDD size. Therefore, more general representations with good algorithmic be-
havior are necessary. Gergov and Meinel [14] and Sieling and Wegener [23] have
shown independently how read-once branching programs can be used for verifi-
cation. In order to obtain efficient algorithms for many operations they define a
more general variable ordering.

Definition 5. A graph ordering is a branching program with a single sink. On
each path from the source to the sink there is for each variable xi exactly one node
labeled xi. A graph ordering G is called a tree ordering if G becomes a tree of
polynomial size by eliminating the sink and replacing multiedges between nodes
by simple edges.

A graph-driven (tree-driven) BP1 with respect to a graph ordering G (tree
ordering T ), G-BP1 (T -BP1) for short, is a BP1 with the following additional
property. For an arbitrary input a ∈ {0, 1}n, let L(a) be the list of labels at the
nodes on the computation path for a in the BP1 and similarly let L0(a) be the
list of labels on the computation path for a in G (T ). We require that L(a) is a
subsequence of L0(a).

It is easy to see that an arbitrary read-once branching program is ordered with
respect to a suitably chosen graph ordering. Sieling and Wegener [23] have shown
that sometimes tree-driven BP1s have nicer algorithmic properties. The main
problem for the application of graph-driven BP1s is to find a good graph ordering.
The only graph ordering algorithm tested in experiments is due to Bern et al. [4]
and creates tree orderings.

Nondeterministic concepts also may be useful for applications. But one has
to restrict nondeterminism in the right way or to choose an appropriate mode of
nondeterminism. Partitioned BDDs (PBDDs) introduced by Jain et al. [17] are
obtained by imposing strong structural restrictions on nondeterministic read-once
branching programs.
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Definition 6. A k-PBDD (partitioned BDD with k parts where k may depend
on the number of variables) consists of k OBDDs whose variable orderings may
be different. The output value for an input a is defined as 1 iff at least one of the
k computation paths for a leads to a 1-sink. A PBDD is a k-PBDD for some k.
The size of a k-PBDD is the sum of the sizes of the k OBDDs.

Now, we present a new restricted nondeterministic read-once branching program
model which allows us to bound the power of nondeterminism.

Definition 7. A nondeterministic graph-driven BP1 (tree-driven BP1),
OR-G0-BP1 (OR-T0-BP1) for short, is a nondeterministic BP1 where the Boolean
variables labeling the decision nodes are ordered according to a graph ordering
(tree ordering).

In the rest of this section we motivate our results. In Section 2, we investigate
the classes of functions representable in polynomial size by the restricted variants
of nondeterministic read-once branching programs. This is a first step towards
understanding how the size of nondeterministic read-once branching programs
depends on the number of nondeterministic nodes. Furthermore, we present an
exponential lower bound for nondeterministic tree-driven BP1s for a function even
representable by deterministic BP1s of polynomial size.

For a lot of restricted variants of branching programs exponential lower bounds
are known. Nevertheless, the proof of exponential lower bounds on the size of
BDD models for natural functions is often a challenge.

Definition 8. Integer multiplication is the Boolean function MULTn:{0, 1}2n
→ {0, 1}2n that maps two n-bit integers to their product. That is, MULTn(x, y)=
z2n−1 . . . z0 where x = xn−1 . . . x0 and y = yn−1 . . . y0 and xy = z = z2n−1 . . . z0.
MULTi,n denotes the Boolean function defined as the ith bit of MULTn.

For OBDDs Bryant [12] has presented an exponential lower bound of size 2n/8

for MULTn−1,n. Woelfel [27] has improved this lower bound up to Ω(2n/2). From
the proof of Bryant’s lower bound for OBDDs it follows by a simple communication
complexity argument that MULTn−1,n cannot be represented in polynomial size
by k-OBDDs which consist of k layers of OBDDs respecting the same ordering [5]
or the various nondeterministic OBDDs [13]. Incorporating Ramsey theoretic ar-
guments of Alon and Maass [2] and using the rank method of communication
complexity Gergov [13] has extended the lower bound to arbitrary linear-length
oblivious BPs. Ponzio [20] was able to prove the first exponential lower bound of
size 2Ω(n1/2) for MULTn−1,n for BP1s. Only recently Bollig and Woelfel [9] have
presented the first strongly exponential lower bound of size Ω(2n/4). They have
combined results and methods for universal hashing with lower bound techniques
for BP1s. Until now an exponential lower bound on the size of MULTn−1,n for a
nondeterministic nonoblivious branching program model is unknown. In Section
3, we present an exponential lower bound for MULTn−1,n on the size of nondeter-
ministic tree-driven BP1s.

Figure 1 summarizes the results (for more details see Sect. 2 of this paper and
Sect. 4 of [8]). For a branching program model M we denote by P (M) the class of
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Figure 1. The complexity landscape for nondeterministic (or-
dered) read-once branching programs and the classification of
MULTn−1,n.

all Boolean functions representable in polynomial size by the respective model M .
Solid arrows indicate inclusions and slashes through the lines proper inclusions. A
dotted line between two classes means that these classes are incomparable. P (M)
surrounded by an oval or an rectangle means MULTn−1,n 6∈ P (M). The ovals
indicate known results (which have been mentioned above) while the rectangles
indicate our new results. A dotted rectangle means that it is unknown whether
the class contains MULTn−1,n. The numbers in the figure refer to the results of
this paper.

2. Restricted models of nondeterministic read-once

branching programs

Sauerhoff [21] has asked how much nondeterminism is required to exploit the
full power of a computation model and how the complexity of concrete problems
depends on the amount of available nondeterminism. He has investigated these
questions for OR-OBDDs and has proved that the requirement to test all non-
deterministic nodes at the top, i.e., at the beginning of the computation, might
blow-up the size exponentially. In order to prove an exponential lower bound for
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parity read-once branching programs Savický and Sieling [22] have recently pre-
sented a hierarchy result for read-once branching programs with restricted parity
nondeterminism. Only at the top of the branching program parity nodes are al-
lowed. Their result also holds (and has been stated by the authors) for OR-BP1s.
The following proposition shows that for nondeterministic graph-driven read-once
branching programs such a hierarchy result cannot exist.

Proposition 1. If a function f on n Boolean variables is representable in poly-
nomial size by nondeterministic graph-driven BP1s with a constant number of
nondeterministic nodes, f is contained in P (BP1).

Proof. It is easy to see that a function representable in polynomial size by a non-
deterministic graph-driven BP1 with a constant number of nondeterministic nodes
can also be represented in polynomial size by a nondeterministic graph-driven BP1
with a constant number of nondeterministic nodes at the top of the branching pro-
gram. Let Gf be a nondeterministic graph-driven BP1 of this kind for f and k
be the number of nondeterministic nodes. A binary synthesis step computing a
graph-driven BP1 Gh according to a graph ordering G for h = g1 ⊗ g2 (⊗ is a
binary Boolean operation) from G-driven BP1s Gg1 and Gg2 for g1 resp. g2 can be
done in time O(|G| · |Gg1 | · |Gg2 |) which is also the bound for the size of Gh [23].
This result also works for k-ary ORs. Therefore, we can construct a deterministic
BP1 for f whose size is bounded by O(|G||Gf |k).

This result can be extended to AND- and PARITY-nondeterminism as well.
Furthermore, it can be shown that each function representable by nondeterministic
graph-driven BP1s with p(n) nondeterministic nodes, where p is a polynomial, can
be represented by nondeterministic graph-driven BP1s with p(n)−k nodes, where
k is an arbitrary constant. We only want to mention that this does not hold
for the restricted parity nondeterministic BP1 model introduced by Savický and
Sieling [22].

The function 1-VECTORn is defined on n×n Boolean matrices X and outputs
1 iff the matrix X contains either an odd number of ones and a row consisting of
ones only or an even number of ones and a column consisting of ones only.

Proposition 2. The function 1-VECTORn can be represented by OR-BP1s of
size O(n2) with one nondeterministic node and by OR-OBDDs of size O(n3). But
for OR-G0-BP1s with a constant number of nondeterministic nodes the size is
2Ω(n1/2).

Proof. Nondeterministic OBDDs are a restricted variant of nondeterministic tree-
driven BP1s. It is easy to see that the function 1-VECTORn can be represented
by OR-OBDDs with O(n) nondeterministic nodes in size O(n3). We can guess the
row or the column consisting of ones only and check whether the number of ones
in the matrix is odd or even. Remarkably the size does not depend on the chosen
variable ordering.

Bollig and Wegener [8] have shown that 1-VECTORn can be represented by 2-
PBDDs of size O(n2). Obviously, PBDDs are very restricted OR-BP1s with non-
deterministic nodes only at the top of the branching program. Furthermore, Bollig
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and Wegener have proved that deterministic BP1s representing 1-VECTORn need
size 2Ω(n1/2). Now, our lower bound follows from Proposition 1.

The 2-PBDD for 1-VECTORn given by Bollig and Wegener [8] can also be seen
as a restricted parity nondeterministic BP1 with only one parity node at the top
of the branching program. It follows that the restricted parity nondeterministic
read-once branching program model investigated by Savický and Sieling [22] is
more powerful than parity nondeterministic graph driven BP1s if the number of
nondeterministic nodes is bounded by a constant. It is open whether the expressive
power of the two models ist incomparable if the number of nondeterministic nodes
is polynomially bounded.

The question whether P (OR-G0-BP1) is a proper subclass of P (OR-BP1) is
unsolved. The situation is different for P (OR-T0-BP1) and P (OR-G0-BP1). The
hidden weighted bit function HWB outputs xsum where sum is the number of ones
in the input. Sieling and Wegener [23] have shown that HWB needs deterministic
tree-driven BP1s of exponential size but has polynomial-size deterministic graph-
driven BP1s. Now, we prove that in the nondeterministic case the expressive power
of the two models is different too. Therefore, we start with a generalization of the
reduction criterion for deterministic tree-driven BP1s.

Lemma 1 (Reduction criterion). Let fn be a Boolean function on n variables.
If for all subfunctions resulting from fn by fixing O(log n) arbitrary variables by
constants the size of Ω-OBDDs is 2Ω(nε), 0 < ε ≤ 1, then the size of Ω-T0-BP1s
is 2Ω(nε) too.

Proof. We assume that fn has nondeterministic tree-driven BP1s of subexponen-
tial size s(n) with respect to a tree ordering T . In T there exists a path from the
source to the sink which contains only O(log n) branching nodes, i.e., nodes with
different 0- and 1-successor. Fixing the variables labeling these branching nodes in
an appropriate way the result is a subfunction of fn which has to be represented
by a nondeterministic OBDD of size O(s(n)). Since for all subfunctions result-
ing from fn by fixing O(log n) variables by constants the size of nondeterministic
OBDDs is exponential, there is a contradiction and we are done.

Using communication complexity Hromkovič and Sauerhoff [16] have presented
an exponential lower bound of 2Ω(n) on the size of OR-OBDDs for the function
monochromatic rows or columns which is defined in the following way. Let X be
an n× n Boolean matrix and z be a Boolean variable. Then

MRCn(X) :=

z ∧ ∧
1≤i≤n

(xi,1 ≡ · · · ≡ xi,n)

 ∨
z ∧ ∧

1≤i≤n
(x1,i ≡ · · · ≡ xn,i)

 .

Here, we investigate a very similar function MRC∗n : {0, 1}n2 → {0, 1} which is
only defined on an n× n Boolean matrix X by

MRC∗n(X) :=
∧

1≤i≤n
(xi,1 ≡ · · · ≡ xi,n) ∨

∧
1≤i≤n

(x1,i ≡ · · · ≡ xn,i).
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We prove an exponential lower bound on the OR-OBDD size for MRC∗n by reducing
the equality function EQn−1 : {0, 1}n−1×{0, 1}n−1→ {0, 1} to MRC∗n. Using the
fact that the nondeterministic communication complexity of EQn−1 is n − 1 it
follows that MRC∗n 6∈ P (OR-OBDD). (See, e.g. [15] and [18] for the theory of
communication complexity.)

Theorem 1. There exists a function fn on n3 Boolean variables which needs ex-
ponential size for OR-T0-BP1s but is contained in P (BP1) and P (2-PBDD).

Proof. The function fn : {0, 1}n3 → {0, 1} is defined as disjunction of n disjoint
copies of MRC∗n. Let Xi, 1 ≤ i ≤ n, be an n× n Boolean matrix and

fn(X1, . . . , Xn) := ORn(MRC∗n(X1), . . . ,MRC∗n(Xn)).

We assume that fn has nondeterministic tree-driven BP1s of subexponential size.
For any subfunction resulting from fn by fixing O(log n) variables by constants
there are n− o(n) Boolean matrices Xi, 1 ≤ i ≤ n, for which all variables are free,
i.e., all n2 Boolean variables of Xi are not replaced by constants. We choose one
of these Boolean matrices Xi and fix all other variables not belonging to Xi in
such a way that the resulting subfunction of fn equals MRC∗n(Xi). Now, we use
the above mentioned lower bound. There is a contradiction and we are done.

For the first upper bound we construct a BP1 for fn(X1, . . . , Xn) of size O(n3).
First, ORn is represented on the pseudo variables y1, . . . , yn by an OBDD of size
n. Afterwards, each yi-node is replaced by a BP1 for MRC∗n on the Xi-variables.
In order to describe the BP1 for MRC∗n we use an auxiliary graph ordering which
is defined in the following way. We start to test the variables according to a
rowwise variable ordering. If the first row contains only 0-entries or only 1-entries,
we can proceed with a rowwise variable ordering, otherwise we continue with a
columnwise ordering. The width of this graph ordering is bounded above by 2n.
It turns out that this graph ordering is even a tree ordering. It is not difficult to
see that the size of the tree ordering as well as the size of the tree-driven BP1 for
MRC∗n is O(n2). We summarize our result. Although MRC∗n has deterministic
tree-driven BP1s of polynomial size, the disjunction of n disjoint copies of MRC∗n
has exponential size for nondeterministic tree-driven BP1s.

Now, we prove an upper bound of O(n3) for the 2-PBDD size of fn. The
first part checks whether there exists a matrix with monochromatic rows. All Xi-
variables, 1 ≤ i ≤ n, are tested one after another in a rowwise variable ordering.
The second part uses a columnwise variable ordering and tests whether there is a
matrix consisting of monochromatic columns.

Proposition 2 and the proof of Theorem 1 also show that the class of functions
representable by deterministic tree-driven BP1s and P (OR-OBDD) are incompa-
rable. The function 1-VECTORn can be represented by OR-OBDDs of size O(n3)
but even graph-driven BP1s need exponential size. On the other hand, MRC∗n
has exponential OR-OBDD size but small representations by tree-driven BP1s.
Furthermore, it is not difficult to see that P (k-OBDD), k constant, is a proper
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subclass of P (OR-OBDD) which has been already stated implicitly in [8]. Prov-
ing that there are efficient algorithms for the manipulation of k-OBDDs Bollig
et al. [6] have decomposed a k-OBDD representing a function fn into an OR-
OBDD of size O(|G|2k−1) for fn. Therefore, all functions representable by poly-
nomial size k-OBDDs, k constant, can also be represented by OR-T0-BP1s of
polynomial size. Moreover, Bollig and Wegener [8] have shown that there are
functions in P (2-OBDD) which cannot be represented by k-PBDDs, k constant,
of polynomial size. It follows that there are functions in P (OR-OBDD) which
cannot be represented by k-PBDDs of polynomial size. (For a further comparison
of the expressive power of OR-OBDDs and PBDDs see also [16].)

If we relax the restriction for OR-T0-BP1s that the deterministic variables have
to be tested according to a tree ordering to the requirement that the labels of
nondeterministic and deterministic nodes respect a tree ordering, we obtain a
BDD model which can represent all functions of P (PBDD) in polynomial size.
But until now no function with polynomial size for OR-BP1s but exponential size
for PBDDs with a polynomial number of parts is known.

3. An exponential lower bound for multiplication

We prove that nondeterministic tree-driven read-once branching programs com-
puting integer multiplication require size 2Ω(n/ log n). This is the first nontrivial
lower bound for multiplication on nondeterministic branching programs that are
not oblivious. (See, e.g. [15] and [18] for the theory of communication complexity.)

Lemma 2. The nondeterministic communication complexity of the problem to de-
cide for l-bit numbers x (given to Alice) and y (given to Bob) whether |x|+ |y| ≥
2l − c, where c is a constant of length l with o(l) ones, is Ω(l).

Proof. Let l∗ be of order l−o(l). The proof idea is a rectangular reduction from the
problem GTl∗ which outputs 1 for two l∗-bit numbers x∗ and z∗ iff |x∗| > |z∗|. It is
well-known that the nondeterministic communication complexity of the function
GTl∗ is Ω(l∗). Since l∗ is of order l − o(l) = Ω(l) we obtain the desired lower
bound.

For our problem we have to decide whether |x| ≥ 2l − c − |y|. If ci = 1,
we set xi = 0 and yi = 0. Now, each input consists of l∗ free bits where l∗ =
l− o(l) and 2l is transformed to 2l

∗
. Hence, we are left with the problem to decide

whether |x∗| ≥ 2l
∗ − |y∗| for l∗-bit numbers x∗ and y∗. This problem is identical

to the decision whether |x∗| > |z∗| := 2l
∗ − 1− |y∗|.

Theorem 2. The size of nondeterministic tree-driven read-once branching pro-
grams representing MULTn−1,n is 2Ω(n/ log n).

Proof. Using the reduction criterion (Lem. 1) it is sufficient to show that for each
replacement of O(log n) variables by arbitrary constants we find a subfunction of
MULTn−1,n which essentially equals the problem from Lemma 2. For this we use
the ideas of Bryant’s proof [12] but for our case we need some more arguments to
limit the influence of the already fixed variables.
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Figure 2. A sequence of indices j, j+1, . . . , j+ l−1 of maximal
length such that xj , . . . , xj+l−1 and yn−1−j−l+1, . . . , yn−1−j are
free. Variables xi, i ∈ Cx, and yk, k ∈ Cy , are labeled by ∗.

We consider an arbitrary subset of O(logn) variables and an assignment of
these variables to constants. Let Cx and Cy be the sets of indices of these x- and
y-variables. Variables xj , j 6∈ Cx, and yj , j 6∈ Cy, are called free. Let c be the
result of MULTn if we additionally set all free variables to 0 and let C be the set
of indices of the 1-bits of c. Obviously |C| = O(log2 n).

The proof idea is the following one. We decompose x = (xn−1, . . . , x0) in two
numbers x′ = (x′n−1, . . . , x

′
0) and x′′ = (x′′n−1, . . . , x

′′
0 ) with x = x′ +x′′. The first

number x′ is created by setting all free x-variables to 0. For the second number
x′′ all variables xi, i ∈ Cx, are set to 0. Similarly y is decomposed into y′ and y′′.
Now, the product z := xy can be written as (x′ + x′′)(y′ + y′′). By definition x′y′

is equal to c. Our aim is to find two subvectors in x′′ and y′′ consisting of free
bits and to replace parts of these subvectors by 0 such that the influence of the
sum x′y′′ + x′′y′ to the output bit MULTn−1,n is limited. Afterwards, we can use
Bryant’s proof for the rest of x′′ and y′′.

Now, we make these ideas precise. First, we are looking for a sequence of indices
j, j+1, . . . , j+l−1 of maximal length such that the input variables xj , . . . , xj+l−1

and yn−1−j−l+1, . . . , yn−1−j are free (see Fig. 2 for the choice of the sequence).
Using the pigeonhole principle we prove a lower bound on the length of such a
sequence by l = Ω(n/ logn). For the ease of description we assume that l can
be divided by 10. Let X = {xj , . . . , xj+l−1} and Y = {yn−1−j−l+1, . . . , yn−1−j}
be the sets of free variables belonging to such a sequence of maximal length. We
choose X ′ = {xj+(2/5)l, . . . , xj+(3/5)l−1}. Later we set almost all variables of Y
and X\X ′ to 0 to avoid an undesirable influence of the variables which are not
free. In Figures 3 and 4 some of these replacements are illustrated.

Let π be an arbitrary variable ordering. The top part T of π contains the
first (1/10)l X ′-variables with respect to π and the bottom partB the other (1/10)l
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Figure 3. The choice of X ′ and some assignments to the other
x- and y-variables.

Figure 4. The x-vector after the replacement of some variables.

variables. The set of pairs P = {(xi1 , xi2)|xi1 ∈ T, xi2 ∈ B} has size (1/10 l)2. By
a counting argument we find some set I ⊆ {j+(2/5)l, . . . , j+(3/5)l−1} and some
distance parameter d such that P ′ = {(xi, xi+d)|i ∈ I} ⊆ P , |P ′| = |I| ≥ (1/20)l,
and max(I) < min(I) + d.
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We replace the variables in the following way:

- yk is replaced by 1 for k = n− 1−max(I) and k = n− 1−max(I)− d;
- all other free y-variables are replaced by 0;
- xk is replaced by 1 iff k 6∈ I, min(I) ≤ k ≤ max(I), and k+ (n− 1−max(I))
6∈ C;

- xmin(I) and xmin(I)+d are both replaced by 0;
- xmax(I)+d is replaced by 0 and xmax(I) is replaced by 1 if n−1 ∈ C, otherwise
xmax(I)+d and xmax(I) are both replaced by 0;

- all other free x-variables except xi, xi+d, i ∈ I, are replaced by 0.

All the replacements are possible since all considered variables are free.
What is the effect of these replacements? Since only two free y-variables are

replaced by 1, y contains these two ones and ones at the positions k where k ∈ Cy
and yk is set to 1. Hence, multiplication is reduced to the addition of x shifted by
n−1−max(I) positions and x shifted by n−1−max(I)−d positions and x shifted
by k positions if k ∈ Cy and yk is set to 1. The variables xj , . . . , xj+(2/5)l−1 as well
as the variables xj+(3/5)l, . . . , xj+l−1 and all variables from Y except yn−1−max(I)

and yn−1−max(I)−d are set to 0. Therefore, the output bit of MULTn−1,n only
depends on c and the assignments to xj+(2/5)l, . . . , xj+(3/5)l−1, yn−1−max(I), and
yn−1−max(I)−d. Carry bits resulting from x′y′′ + x′′y′ are eliminated, since there
only exist O(log2 n) ones in C which could propagate a possible carry bit.

We are left with the situation to add two numbers and the constant c.
MULTn−1,n equals the most significant bit of this sum. Variables xi, i ∈ {j +
(2/5)l, . . . , j + (3/5)l− 1} and i /∈ I or i− d /∈ I, have no influence on the output
bit of MULTn−1,n since they are already replaced by constants. Together with
some bits of c these variables propagate a carry if existent.

Now the result follows from Lemma 2.

Since Lemma 2 can be extended to AND- and PARITY-nondeterminism, similar
lower bounds for MULTn−1,n can be proven for AND-T0-BP1 and PARITY-T0-
BP1 in a straightforward way. This is the first nontrivial lower bound even for
an important function on nonoblivious branching programs with an unlimited
number of parity nodes. Furthermore, an extension of the proof of Theorem 2
shows that all subfunctions of MULTn−1,n obtained by the replacement of up to
(n/ logn)1/2−ε variables by constants have exponential size for nondeterministic
OBDDs.

We only want to mention that we obtain similar exponential lower bounds for
the arithmetic functions squaring, inversion, and division by so-called read-once
projections [7].
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