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THRESHOLD CIRCUITS FOR ITERATED MATRIX
PRODUCT AND POWERING*

CARLO MEREGHETTI1 AND BÉATRICE PALANO2

Abstract. The complexity of computing, via threshold circuits, the
iterated product and powering of fixed-dimension k x k matrices with
integer or rational entries is studied. We call these two problems IMPk
and MPOWk, respectively, for short. We prove that:

(i) For k > 2, IMPk does not belong to TC°, unless TC° = NC1.
(ii) For stochastic matrices: IMP2 belongs to TC° while, for k > 3,

IMPk does not belong to TC°, unless TC° = NC1.
(iii) For any k, MP0Wk belongs to TC°.

AMS Subject Classification. 68Q05, 68Q15, 68Q25.

INTRODUCTION

In this work, we study the parallel complexity of performing some matrix opér-
ations. As computational model, we use threshold circuits [12]. We are interested
in solving problems by using threshold circuits of constant depth. In this regard,
we focus on the class TC° [7] of problems solvable by constant depth families of
(unbounded fan-in) threshold circuits of polynomial size. Several arithmetic and
linear algebra opérations lie in TC°: the iterated sum and product of integers and
rationals, integer division, matrix multiplication, etc. (see [7,8,16]). We know that
TC° is contained in NC1, the class of problems solvable by families of (bounded
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fan-in) AND/OR/NOT-circuits of polynomial size and logarithmic depth [2]. (We do
not impose any uniformity condition on circuit families.) It is widely accepted,
although still unproved, that TC° ^ NC1, as the opposite would cause the unlikely
collapse of the hierarchy {TC^}rf>i (see Sect. 1 for a brief discussion).

The first problem we shall be dealing with is the computation of the itérâted
product of fixed-dimension kx k matrices with integer or rational entries. We call
this problem IMP^ for short. It can be easily seen that IMPk is in NC1. Here,
we investigate whether IMPk can be solved in TC° as well. By considering the
algebraic characterization of regular languages in TC° proposed by Barrington
et ai in [1], we show that: if TC° ^ NC1 then, for any k > 2, IMPk does not
belong to TC°.

We then focus on studying the parallel complexity of IMPk on the relevant class
of stochastic matrices. The interest in such a class of matrices is related to the
study of fast parallel algorithms for recognizing probabilistic languages [9,10]. We
prove a slightly better situation: IMP2 for stochastic matrices belongs to TC°. On
the other hand, if TC° ^ NC1 then, for any k > 3, IMPk for stochastic matrices
does not belong to TC°.

The second problem we shall consider is powering fixed-dimension kxk matrices
with integer or rational entries. We call this problem MPOVVk, for short. By using
notions from linear algebra plus fast mat hématies on polynomials, we are able to
show that, for any k, MPOWk belongs to TC°. So, in sharp contrast with IMPk,
fixing matrix dimension leads to a full feasibility resuit for MPOWk-

The paper is organized as follows: Section 1 contains basic définitions and
results concerning circuits and algebraic automata theory. In Section 2, we eval-
uate the hardness of computing the iterated product of flxed-dimension matrices,
both in the case of integer or gênerai rational matrices, and in the particular case
of stochastic matrices. In Section 3, we exhibit an algorithm to power in TC°
fixed-dimension integer or rational matrices.

The results presented here are contained in a preliminary form in [9], where
related issues concerning the possibility of accepting in TC° regular and proba-
bilistic languages are addressed, too (see also [10] for this latter topic).

1. PRELIMINARIES

We assume some familiarity with the complexity classes defined via traditional
and threshold circuits [2,7,12,15]. We recall that TC^ is the class of probiems
solvable by families of (unbounded fan-in) threshold circuits of polynomial weights
and size, and constant depth d. Then, the class TC° — |J^TC°, introduced in [7],
contains the probiems solvable by families of threshold circuits of polynomial size
and constant depth. Typical probiems in TC° are: the iterated sum of integers
(in TC2), integer division (in TC3), iterated product of integers (in TC4), iterated
sum and product of rat ionals, matrix multiplication, and modular arithmetics (the
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reader is referred to [7,8,16] where he can find a deep study on the exact number
of layers in threshold circuits for several tasks).

It is easy to see that TC° Ç NC1, where NC1 is the class of problems that can be
solved in logarithmic depth by families of (bounded fan-in) AND/OR/NOT-circuits of
polynomial size [2]. It is still an open problem to décide whether such an inclusion
is proper. Indeed, TC° = NC1 would imply the collapse, from a certain level on,
of the hierarchy TC? C TC£ C TC£ Ç TC° C ... (see, e.g. [14], Th. IX.1.6) which
is a hardly believed event (notice that the first three levels of the hierarchy have
already been separated [7]). Thus, it is customarily and reasonably assumed that
TC° ^NC 1 .

A problem ƒ is TC° -reducible to a problem g whenever ƒ can be solved by a
family of TC° circuits with oracle gâtes for g. It is easy to see that g G TC°
implies ƒ e TC° as well.

Here, we impose no uniformity condition on our circuit families. As it turns
out, this makes no différence to our conclusions (see [1] and [14], Sect. VIIL2 for
a discussion).

Let us now briefly review some elementary notions from algebraic automata
theory. For more details, we refer the reader to [4,6]. Given an alphabet £,
£* dénotes the free monoid of ail strings on £. Given a language L Ç £*, the
syntactic monoid ^f(L) is the quotient monoid £* /^£ , where ^L ç £* x £* is
the congruence defined as: x ~L y whenever vxw G L if and only if vyw E £, for
any v,w G £*.

A deterministic (this attribute will always be understood) automaton A =
(Q, £,5, qo,F) consists of the finite set Q of states, the input alphabet £, the
initial state ço» the set F Ç Q of final states, and the transition function ö :
Q x £ —> Q that extends to strings as usual. The language recognized by A is the
set L(A) = {x e £* | ö(qo,x) G F}.

The recognizing group-like automaton on a group1 (G, •) is defined as ©i =
(G, G, -, i, {i}) with i, the identity of (G, •), being both the initial and the unique
final state. It is easy to see the relation

^(L(©0) = G, (1)

where "=" stands for "isomorphic to".

A séminal resuit in [1] relates the possibility for a regular language to be
recognized in TC° with the "group structure" of its syntactic monoid. To see
this, we first need some terminology. Given a class Jff of algebras, we let the
classes: H(JT) of ail homomorphic images, and S(Jêr) of all subalgebras, of alge-
bras in Jê^. A group is called simple whenever it has no other normal subgroups
but the trivial ones. Thus, we have:

Theorem 1.1. ([1], Th. 8 (b)) Let L be a regular language. /ƒ TC° ^ NC1 then
L e TC° if and only if each simple group in HS(^f(L)) is Abelian.

1We will always be considering finite groups.



42 C. MEREGHETTI AND B. PALANO

This theorem can be rewritten for recognizing group-like automata as:

Proposition 1.2. Let Öt be the recognizing group-like automaton on a group
(G, •)• /ƒ TC° ^ NC1 then L(0 t) e TC° if and only if each simple group in
HS(G) is Abelian.

Proof. Just observe that ^(L((3i)) = G, as Relation (1) shows. Thus, the claimed
result follows at once from Theorem 1.1. D

Proposition 1.2 will be our main tooi in the next section, where we inspect
the possibility of performing iterated matrix multiplications with constant depth
threshold circuits.

2. THE COMPLEXITY OF ITERATED MATRIX MULTIPLICATION

We begin by studying the complexity of computing the iterated product of
fixed-dimension integer matrices. Formally, this problem can be stated as

• ITERATED kxk MATRIX PRODUCT (IMPfc)
INPUT: Integer matrices Mi,M2,. . . ,Mn of dimension k x fc, with n-bit
entries.
OUTPUT: The iterated product Mi • M2 • ... • Mn.

We are going to give a fine - in terms of k - évaluation of the difficulty of IMP .̂
To this purpose, for each prime power p m > 3, consider the sethF(2,prn) of 2x2

matrices of determinant unity, with entries in the Galois field GF(prn). Moreover,
let "•" be the usual row-column product with arithmetics performed in GF(pm).
It is a very well-known fact in group theory (see, e.g. [3], Chap. I (Second Part))
that:

Theorem 2.1. (LF(2,pm),-) is a simple nonabelian group of order p ^ - ï "^
(2 ; 1 depending on p > 2 ; p = 2).

Now, let us consider the group (LF(2, 5), •) whose matrices have entries in GF(5)
which actually is Z5. We can show that

Theorem 2.2. /ƒ TC° ̂  NC1 then IMP2 on LF(2,5) does not belong to TC°.

Proof. Let £${ be the recognizing group-like automaton on the group (LF(2,5), •)
in which arithmetics is performed "mod 5" (i dénotes the 2 x 2 identity matrix).
If IMP2 on LF(2, 5) was in TC°, then membership in £(£&) could be checked in
TC° as well.

In fact, to décide whether a string (of LF(2, 5) matrices) ^1^2 * • • Mn belongs to
L(£Çi), we could compute in TC° the iterated product £ii • £*2 • • • • • Mn, and accept
if and only if the resulting matrix is i.

So, we would get that £(£&) e TC° but this, under the assumption TC° /
NC1, would contradict Proposition 1.2, since HS(LF(2,5)) contains LF(2,5) itself
which is a simple nonabelian group, as pointed out in Theorem 2.1. D
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Thus, IMP2 turns out to be hard for a fimte group (namely, LF(2,5) which has
exactly 60 éléments) of integer matrices with very small entries. Hence, a fortiori,
the gênerai IMP2 is hard, since otherwise we could apply (in TC°, see Sect. 1)
the "mod 5" transformation and solve IMP2 on LF(2, 5) in TC°. The unique easy
instance of IMP& is then the trivial IMPi, i.e., the iterated product of integers
which is in TC°, as observed in Section 1.

A brief remark is in order. It is quite obvious that the complexity analysis so f ar
exhibited would remain unchanged if IMPk referred to k x k matrices with rational
entries expressed as pairs of n-bit integers (numerator, denominator). Thus, it is
fair to use IMP^ even to dénote the problem of performing iterated multiplications
of fixed-dimension rational matrices.

Summing up, we have that: ƒ̂ TC° ^ NC1 then IMPk for rational matrices
belongs to TC° if and only if k = 1.

Let us now focus on a relevant subclass of rational matrices: the stochastic
matrices, i.e., matrices whose entries are rational mimbers in the interval [0,1],
and where each row sum equals 1. Our interest in stochastic matrices comes also
from the fact that fast algorithms for computing their iterated product would imply
fast récognition of probabihstic languages^ a topic that is investigated in [9,10].

We soon discover that IMPj< for stochastic matrices turns out to be a slightly
more feasible problem. In fact, contrary to Theorem 2.2, we can show that

Theorem 2.3. For stochastic matrices, IMP2 belongs to TC°.

Proof. First, notice that any 2x2 stochastic matrix can be written as ( £ °, J,

where a and b are rational numbers in [0,1]. Thus, it is not hard to see that the

iterated product Pi • F2 * • • • -Pn of 2 x 2 stochastic matrices, with Pt = ( °? " a* ),

yields the 2 x 2 stochastic matrix P = ( ai } ~ a i j where, for ^ = 1 , 2 , we have

i = £ = l
otherwise.

n ( -£n l Cbl 11

l 6' Ot

We stipulate that the inner product yields 1 whenever the lower index exceedes
the upper one. Hence, computing the entries of P reduces to sum a linear amount
of products each one involving a linear amount of rationals. All this can be done
in TC°, as seen in Section 1. •

Unfortunately, this is the only case of feasible iterated product for stochastic
matrices, as witnessed by the following:

Theorem 2.4. There exzsts a fimte set Së of 3 x 3 stochastic matrices for which
the iterated product does not belong to TC°; unless TC° = NC1.

Proof. We are to show that IMP2 on the fimte group LF(2,5) is TC°-reducible
to the iterated product on a set SB of 3 x 3 stochastic matrices, having the same
cardinality as LF(2,5). Then, by Theorem 2.2, we get the claimed result.



44 C. MEREGHETTI AND B. PALANO

We make use of the following transformation F, easily seen to be implemented

in TC°: let P = f a n a i 2 ) be a 2 x 2 matrix in LF(2,5), and hence with

entries in Z5; we define the 3 x 3 matrix

r(P) =

V o

Q>22 1 _

2
3

o
Next, we let m = {F(P) | P € LF(2, 5)}. Obviously, SB is a set of 3 x 3 stochastic
matrices, with the same cardinality as LF(2,5). At this point, it is easy to see
that, for any given n-tuple Px, P2,•• • , Pn of matrices in LF(2, 5), we have

r(p1)-r(p2)-...-r(p„) =
P i • P* • • • • • P-n.

0 o
which is a 3 x 3 stochastic matrix, where ai (resp. 0:2) equals the sum of the entries
in the first (resp. second) row of Px • P2 •... • Pn- Hence, to compute Pi • P2 -. . . • Pn

in LF(2, 5), we first compute F (Pi) in TC°, and then use an oracle to evaluate the
iterated product F(Pi) • F(P2) • . . . • r(Pn) . Finally, we read ofF Px • P2 • . . . • Pn

from the resulting matrix, and transform (in TC°) the entries "mod 5". D

Indeed, the hardness of IMP3 on
stochastic matrices, for any k > 3.

implies the hardness of IMP& for gênerai

3. THE COMPLEXITY OF MATRIX POWERING

Let us now turn to study the parallel complexity of powering fixed-dimension
integer matrices. The problem formalizes as:

• kxk MATRIX POWERING (MPOWfc)
INPUT: An integer matrix M of dimension k x k, with n-bit entries.
OUTPUT: The n-th power Mn.

We are going to show that MPOWfc is in TC°; for any k.

To this aim, we need to recall a few elementary notions from linear algebra (see,
e.g. [13]). Let Mbeaicxlc integer matrix. lts characteristic polynomial is defined
as PM(X) — det(M — xl) = (—l)kxk H- Cfc_ixfc~1 + • • • + c\x + Co, where / is the
k x k identity matrix, while each Ci is known to be the sum of all the principal
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minors of order (k — i), taken with the sign (—1)\ The Cayley-Hamilton theorem
states that

pM(M) = 0, (2)

with 0 being the k x k zero matrix. Let us see how to use this fact to efiiciently
compute Mn. If we divide xn by PM{%), we obtain the équation

xn =q(x)pM(x) +TM(X), (3)

where the remainder TM(X) is a polynomial of degree not exceeding k — 1. Evalu-
ating équation (3) in M yields Mn = q(M) PM(M) +TM(M) and, by équation (2),
we get

Mn=rM(M).

This leads to the following algorithm to compute Mn:

(i) compute PM(%)\
(ii) compute TM{X) = xn mod PM(%)]

(iii) evaluate TM{M).

Such an algorithm can be implemented in TC°.

Here, we will not examine the technical details of the implementation for which
we refer the reader to [11] (where the number of neuron layers is also investigated).
However, we would briefly argue that each step of the algorithm is in TC°.

STEP (i): To get the i-th coefficient oî PM(X), for 0 < i < k — 1, we basically
have to sum (k_z) déterminants of (k — i) x (k — i) submatrices of M; this
can be clearly done in constant depth. Hence, by Computing in parallel all
such coefficients, we obtain pu(x) in TC°.

STEP (ii): We can refer to fast parallel algorithms for dividing polynomials
presented, e.<?., in [5]. This would suffice to show that VM(%) can be computed
in TC°. In [11], we have preferred to suitably transform polynomials into
integer s, and then to operate with such integers.

STEP (iii): The polynomial TM{X) has degree at most k—l. Hence, computing
ru{M) amounts to computing a linear combination of powers M% with
i < k — 1. Even this task is easily seen to be in TC°.

Thus, we can conclude that:

Theorem 3-1. For any k, MP0Wfc belongs to TC°.

We wish to thank Alberto Bertoni, Giovanni Pighizzini, and Sebastiano "seba" Vigna for
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