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TOPOLOGIES, CONTINUITY AND BISIMULATIONS *

J.M. DAVOREN1

Abstract. The notion of a bisimulation relation is of basic impor-
tance in many areas of computation theory and logic. Of late, it has
come to take a particular significance in work on the formai analy-
sis and vérification of hybrid control Systems, where system properties
are expressible by formulas of the modal /x-calculus or weaker tem-
poral logies. Our purpose here is to give an analysis of the concept
of bisimulation, starting with the observation that the zig-zag condi-
tions are suggestive of some form of continuity. We give a topological
characterization of bisimularity for preorders, and then use the topol-
ogy as a route to examining the algebraic semantics for the ju-calculus,
developed in recent work of Kwiatkowska et al., and its relation to
the standard set-theoretic semantics. In our setting, /x-calculus sen-
tences evaluate as clopen sets of an Alexandroff topology, rather than
as clopens of a (compact, Hausdorff) Stone topology, as arises in the
Stone space représentation of Boolean algebras (with operators). The
paper concludes by applying the topological characterization to obtain
the decidability of ^-calculus properties for a class of first-order de-
finable hybrid dynamical Systems, slightly extending and considerably
simplifying the proof of a recent result of Lafferriere et al
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INTRODUCTION

The notion of a bisimulation relation is of basic importance in many areas of
computation theory and logic. In the propositional modal ju-calculus, if stat es x
and y of labeled transition System (LTS) models 9JÎ and 91 are bisimilar, then in
their respective models, x and y satisfy all the same sentences of the language of
LM. The corresponding notions of bisimulation-invariance for other formalisms are
also well-studied: for example, finitary and infinitary polymodal or temporal logies,
and fragments of first-order, infinitary, and monadic second-order logies; [10] is a
comprehensive study.

This paper is motivated by the use of bisimulations in recent work on the formai
analysis and vérification of hybrid control Systems; see [1,8,9,13,14] and références
therein. In that work, the computational model is a structure called a hybrid
automaton, which is an enrichment of a (real-valued) timed automaton. Temporal
logic or /i-calculus spécifications for such Systems are interpreted with respect to
LTS models SPÎ over states spaces X Ç Q x Rn, where Q is a finite set of cöntrol
modes, and the transition relations are of two kinds: continuous évolution for some
duration of time according to the differential équations modeling a given control
mode, and reset relations modeling the effects of discrete jumps between control
modes, which may be controlled or autonomous. The propositional constants
dénote sets of initial states, guard conditions on the jump transitions, target or
desired invariant régions of the state space, and other significant régions of the
state space. The Systems of interest are those in which each the components
of the associated LTS model dJl - the state space, the transition relations and
the sets denoted by propositional constants - are first-order definable in some
structure R = (R; <,+,—, -, 0,1,...) over the reals (or a multi-sorted first-order
structure formed from a finite Q and some R). For definiteness, take R to be
an ordered field, so by the Tarski-Seidenberg élimination of quantifiers, the first-
order definable predicates coincide with the semi-algebraic sets defined by Boolean
combinations of polynomial inequalities. More restrictedly, take R to be the reals
with only order, addition and integer constants, which defines rational polyhedra in
Rn; timed automata and so-called linear hybrid automata fall in this class [1,7,8].
More generally, and moving beyond decidability for first-order théories Th(M), take
R to be an order-minimal or o-minimal structure; for example, R as an ordered
field together with the exponential function, or fmitely many bounded analytic
functions [13,18].

To date, the main focus in formai methods for hybrid Systems has been on
safety/invariance properties of the form "All trajectories of 7i starting in a given
set I of initial states remain in the set P at ail times", or dually, "The comple-
ment of P is not W-reachable from ƒ ". Various system-specific temporal logies have
been developed for the high-level spécification of properties, but for the purposes
of automatic vérification, spécification formulas are translated into the /x-calculus
since it serves as the common language of model-checking Systems. In [6], we
bypass translations from temporal logies and show how to directly use the modal
yu-calculus to quite simply and clearly express a rich array of properties of hybrid
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Systems. The modal /z-calculus is particularly suitable as a logic for hybrid Sys-
tems because its semantics over abstract transition System models, considered as
generalized dynamical Systems, are uniform across the continuous/discrete divide.

In the practice of automatic vérification, symbolic model checking tools for
hybrid and real-time Systems such as HYTECH and KRONOS [1,7,8] are pro-
grams which take as input a représentation of a hybrid System as an LTS model
9Jt, concretely given by explicit first-order définitions in the given language £(R),
together with a /i-calculus spécification sentence </?, and attempt to compute the
value of the denotation set \\(f\\m as a first-order formula in the language £(R).
For finitary modal sentences, there is the well-known and straightforward modal
translation built from the first-order définitions of the components of 3JI. But for
infinitary fixed-point sentences, to have a guarantee that the denotation ||/iZy>||
is a finite union of approximations, it suffices to ensure that the LTS model 9DÎ
has a bisimulation équivalence ~ of finite index. If such is the case, the quotient
transition System Wl^ is a fully-discrete, .finite truth-preserving simulacrum of the
original System. The proof of the existence of a finite bisimulation quotient is
the common core of the many recent results on the decidability of reachability
properties - and more generally, ^-calculus expressible properties - for a variety
of first-order syntactic classes of hybrid and real-time Systems (see [9,13,14], and
références therein).

In this paper, we re-examine the concept of bisimulation from the viewpoint
of gênerai topology. Our point of departure is the observation that the zig-zag
conditions cry out to be analyzed as some variant on the thème of continuity. In
identifying such topological content, we observe a nice symmetry in subject and
object: a preorder (reflexive and transitive relation) =̂  on the state space X is a
bisimulation of an LTS model 9Jt, that is, it respects the structural components
of OT, exactly when the component transition relations and constant sets respect
ü, in the form of its Alexandroff topology 7^ on X. In Section 3, we use this
topological characterization as a route to examining algebraic semantics for the
jx-calculus, developed in recent work of Kwiatkowska et al. [2,4], and its relation to
the standard set-theoretic semantics [12,17,19]. In Section 4, we use our character-
ization of bisimulations to clarify and slightly extend a recent resuit of Lafferriere
et al [13,14] on the existence of finite bisimulations for a class of hybrid Systems
definable in an o-minimal structure R, and its application to the decidability of
/i-calculus sentences. The final Section 5 is a brief discussion of related and future
work.

1. PRELIMINARIES

1.1. BASIC NOTATION AND PREREQUISITES

Our notation and terminology is fairly standard; we review some of it hère.
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M and N dénote, respectively, the sets of real and of natural numbers, and
M+ = { a ; G M | a ; > 0 } dénotes the non-négative reals, which has the structure of
an ordered additive semigroup.

For any set X, V(X) dénotes the family of all subsets of X. We use the term
Boolean algebra of sets to refer to a family A Ç V(X) that is a Boolean algebra
under the finitary set-theoretic opérations of union, intersection and complement.
The unit or top element of such an A is the whole space X, and the zero or bottom
element is 0. Such an A is complete as a lattice and Boolean algebra when it is
closed under arbitrary unions.

The notation ƒ : X —» Y means ƒ is a (single-valued) function with domain the
set X and range contained in the set Y.

When / > 1 is an integer, we may abuse notation by writing i G /, and identi-
fying I with the index set {1,. . . , /}.

We assume the reader is familiar with elementary concepts of gênerai topology,
including the order, subspace and product topologies; connectedness of sets; and
continuity for (single-valued) functions. The handbook article [16] is a good source
for a review.

We also assume a basic familiarity with (classical) first-order logic: flrst-order
formulas and languages; (model-theoretic) structures for first-order languages; and
satisfaction and truth. Some prior exposure to modal or temporal logies would be
useful, but all necessary concepts and définitions will be developed in the text.

1.2. RELATIONS/SET-VALUED MAPS

Following Aubin and Frankowska in [3], the notation r : X ^ Y will be used
to mean r : X ~> V{Y) is a set-valued map, with values r(x) Ç Y for x G X, or
equivalently, r Ç X x y is a relation, the graph of a set-valued map. The set of
ail points x G X such that r{x) ^ 0 is called the domain of the relation r. The
expressions:

x -^-> y, xry, (x,y)er and y G r(x)

are to be read as synonymous. The converse (or inverse) relation r : Y ^> X is
given simply by (x, y) G r iff (y, x) G r. The composition of relations r : X "^ Y
and s : Y ^ Z will be written r o $ : X ^> Z (or simply rs) in sequential (word)
order, as is usual in automata theory (the reverse order of functional composition;
cf. [3]). The relational sum r U s : X ^ Y of relations r : X ^ Y and 5 : X ^ Y
is just the set-theoretic union.

A relation r : X ^> Y détermines two pre-image operators (predicate trans-
formers): the lower or existential pre-image a(r) : V(Y) —• V(X) given by:

a(r)(B) - {x G X | (3y G Y)[ x -^ y A y G B]} = {x G X | r(:r) H B ^ 0}
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for 5 ç y , while the upper or universal pre-image operator r(r) : V(Y) —» V(X)
is the dual under set-theoretic complement:

r(r)(B) = X-a{r){Y-B) = {x e X \ r(x) G B}-

In words, x G a(r)(B) iff some r-successor of x lies in B, while x e r(r)(B) iff all
r-successors of x lie in B. The pre-image operators give the Standard relational
Kripke semantics for labeled modal operators {a) and [a] for relations a : X ^ X.
In analogy with the inverse-image operator of a single-valued function, the pre-
image operators are also used to develop purely topological notions of continuity
for relations/set-valued maps; we return to this in Section 2.2.

In [3], the 3-pre-image is known simply as the inverse-image, written r~1(B),
and the V-pre-image is called the core operator, written r+l(B). In [2], following
earlier work of Sambin and Vaccaro, the V-pre-image is written r*, and abstract
algebraic operators of that type are written ra; our notation is an adaption of the
latter. The existential operator <r(r) distributes over arbitrary unions and sends
the empty set to itself; in the framework of Jónsson and Tarski's foundational work
on Boolean algebras with operators [11], a(r) is known as completely additive and
normal with respect to the zero éléments of P{Y) and P(X), r(r) is completely
multiplicative (over intersections) and normal with respect to the unit éléments
of Boolean algebras. What is known as a normal diamond operator in the modal
logic tradition corresponds to a finitely additive and zero-normal operator in [11].

The direct-image or post-image operator mapping a set A Ç X to its image in
Y under r is just a(r) : V{X) -> V(Y); that is, r(A) = a(r)(A), so r(A) is the set
of all points y £ Y which are r-reachable from A, or have some r-predecessor in A.
In [11], a(r) and a(r) are known as conjugate operators on V(X): Aila(r)(B) — 0
iïïa{r)(A)nB = 0.

1.3. TRANSITION SYSTEM MODELS AND THE MODAL /X-CALCULUS

Call a pair (3>,S) consisting of a set $ of propositional constants and a set
E of transition (action) labels a modal signature, and let PVar be a fixed set of
propositional variables. The set of formulas ^ ( $ , S) in a signature (<È>, S) of the
propositional modal /z-calculus is generated by the grammar:

tp ::— p\ Z \ ->y? | (pi V tp2 | (a)(p \ fj,Z.(p

for p e $, Z e PVar, and a G E, with the proviso that in fiZ.ip, the variable
Z occur positively, i.e. each occurrence of Z in cp is within the scope of an even
number of négations. Let <S^($,E) dénote the set of all sentences of .^(«ï», E);
i.e. formulas without any free variables. Also let ƒ"($, S) and <S($, E) dénote,
respectively, the set of all (finitary) modal formulas and sentences in the signature
($,£); i.e. without any.fixed-point quantifiers. Introducé in the usual way the
defined logical constants t t (true) and ff (false), other propositional connectives
(we use —>• for implication and = for équivalence), and dual modalities [a] and
greatest fixed-point quantifier: [a)(p = —«(a)—<̂  and vZ.tp = -ifiZ
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For formulas <pyip € ^ ( ^ E ) , let (p[Z := tfj] dénote the result substituting if; for
all free occurrences of Z. By renaming bound variables in (p if necessary, we can
assume such substitutions do not result in the unintended capture of free variables.

Définition 1.1. A labeled transition System (LTS)> or generalized Kripke model^
of signature ($, E) is a structure:

where X ^ 0 is the state space (set of worlds, configurations) of arbitrary cardi-
nality; for each transition label a 6 E, am : X ^ X is a relation on X\ and for
each atomic proposition (observation or event label) p e $, \\p\\m Ç X is a fixed
subset of X.

For a given LTS model 9Jt, we write J>(9K) (5M(9Jl)) and .F(SDt) {S(Wl)) to
mean, respectively, the set of all /i-calculus formulas (sentences) and the set of all
finitary modal formulas (sentences) in the modal signature of DR.

In the Standard set-theoretic semantics for the /i-caleulus [12,17,19] over LTS
models 97t, propositional variables range over the full power-set algebra V(X) of the
state space. In the more gênerai algebraic semantics of Kwiatkowska et al. in [2,4],
formulas are interpreted with respect to modal frames (SDt, A), where A Ç V(X)
is a modal algebra for dJl: a Boolean algebra of sets which contains each of the
constant sets \\p\\m and is closed under each of the pre-image operators cr(am).
We give the standard set-theoretic semantics here, and return to the algebraic
semantics, and the relationship between the two, in Section 3.

Définition 1.2. Given an LTS model 9K = (X,{aïm}a6E,{||p||ïm}p-€*) of modal
signature ($,E), a (propositional, or second-order) variable assignment in 9Jt is
any map <̂  : PVar —» V{X). Each such assignment £ uniquely extends to a
denotation map \\-\\™ : ̂ ( $ , E ) —> V(X) inductively defined as follows:

\\Z\\f i Ç(Z) for Z e PVar

foraeS

where for A G 'P(^) î the variant assignment £(A/Z) : PVar —» P(-X") is given by:
Ç(A/Z)(W) = £(W) iîW^Z, and £(A/Z)(W) =AHW = Z,

For formulas (p G .?>($, S) and assignments ^ : PVar —• P (X) in DJt, we say:
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• tp is satisfied at state x in (9)t, £), written 971, £, o? 1= y>, iff x G
• </? is £n/e in (971,£), written 971,£ t= y>, iff ||^||^ = X; ie . <p is satisfied at

all states x in (971, £); and
• ip is irue in 9DT, written 9711= tp, iff y? is true in (971, £) for atf assignments £

in 971.

Note that for <p, ip e J>y$, E), we have: 9H, £ 1= <p -> ̂  iff |M| f ç |M|f\ and
for équivalences, 97t,.£ 1= ip = ip iff H^H^ = H l̂lf*- I n temporal and modal
logies, satisfaction relations x E IM)^ are usually written x 1=1* ip, or inthe
forcing notation, x W-^1 ip.

For sentences ip G <SM($,E), the denotation H^H^ is independent of variable
assignments £, so written H l̂l971- Thus 9711= tp iff 9ÏÏ, { N ̂  for am/ assignment ̂ .

The syntactic restriction on formulas fiZ.tp serves to ensure that the operator
tpfz : P(X) -^ V{X) given by (ipfz) (A) = \\<p\\f{A/z) is C-monotone. In the

définition above, H/iZ.^H^ is defined to be the least pre-fixed-point of <pffz- By
the Tarski-Knaster fixed-point theorem for monotone maps on complete lattices,
least pre-fixed-point s are the same as least fixed-points; thus the inclusion can be
replaced with equality. The completeness of V{X) as a lattice ensures (by the
Hitchcock-Park fixed-point theorem) that the set ||juZ.y?||̂  may also be charac-
terized as a transfinite union of an Ç-chain of approximation sets ||/iZ.<^||^ for
ordinals a (of cardinality less than or equal to that of X), beginning with the
empty set, applying the ipfl

z operator at successor ordinals and taking unions
at limit s. The finite approximation sets are dénotât ions of formulas: for n < CJ,
WnZ.tpWfn - yn\\f, where (p° = ff and c^n+1 = tp[Z := ipn]. When the
semantic operator ip^z distrubutes over unions of countable C-chains of sets (or
more generally, distributes over unions of C-directed families of sets, i.e. U-
continuous w.r.t. the Scott topology on P(X)), the ordinal of convergence for

P is at most u>.

1.4. HYBRID SYSTEMS AND THEIR TRANSITION SYSTEMS

A basic hybrid system is essentially a finite collection of dynamical Systems
together with reset relations between them. The définitions given here are the
standard ones from the literature (see, for example [1,8,9,13]), recast from the
viewpoint of gênerai topology.

Définition 1.3. A (basic, évolution time-deterministic) hybrid system ïs a
structure

where
• Q is a finite set of discrete states or control modes;
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• G Ç Q x Q is the control graph of discrete transitions;
• for each q 6 Q,

— J g Ç Rn is the state space for mode g;
— <f)q : Xq x R+ —> Xg is a continuous semi-flow on Xq (e.g. from a System

of Lipschitz diflferential équations or vector field on Xg);
— Invq Ç Xq is the set of invariant states for mode g, or the domain of

permitted évolution within mode q;
— Initg Ç InVq is the set of initial states for mode q (possibly empty);

• for each discrete transition (q, qf) e G,
Ç Xq is the guard set for the jump from q to g';
g ̂  Xqt is a resei relation, modeling the effect on the real-valued— T q % q i

coordinates of jumping from q to q\
The hybrid state space of the System H is the set {<}} x

Xelnit

FIGURE 1. Basic hybrid automaton.

For simplicity, assume a fixed number n of real-valued coordinates; i.e. Xq Ç Rn

for each q € Q. The spaces Xq are taken as equipped with the standard topology
as a subspace of Rn, inherited from the order topology on M. By définition, the
semi-flows <j>q : Xq x ]R+ —» Xg are continuous functions satisfying <pq(x,0) — x
and 0g(o;, i + 5) = 4>q((j>q(x, t)y s) for all x G l ç and £, s G M+.

Définition 1.4. [1,8,13] Given a hybrid System 7i, an LTS model DJln determined
by 7i has the following components:

• the state space X =
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• for each discrete state q G Q, the (time-abstract) constrained évolution
relation eq : Xq ^ Xq defined by:

x-^x' & (3teR+)[ x/ = (j)q(x,t) A (Vse [0,t]) </>q(xy8) elnvq }

• for each discrete transition (g, qf) G G, the controlled jump relation cq^q> :
Xg ^ Xg' defined by:

C «.9 ' f O „ , rqiq> f
X \ rp J-^. nr* cZ ( ''T»// * f\ nr* - v np

7 Jü ^Ï—/^ *A/ V3 \J * UJQ Q' * ^ *Â  * ^

• for each g G Q, a finite collection of constant sets Ag Ç I g , including Xq,
Initq, Invq, and Grdq^ for (g, g') G G.

We adopt the notational convention of identifying, when convenient, sets Aq Ç Xq

and {g} x Aq Ç X; the relations eg : Xq ~> Xq and cg>g/ : Xg -̂> Xg/ can be
"lifted" to relations X ^* X in the obvious (and unique) way. It is immédiate that
the domain of eq is Invq, and cq^ is rq^q> restricted to the domain Grdq%q>. The
transition alphabet for 971-̂  is S^ = {eq} e g U {cq)Q'}/ ç / ^ G , and the alphabet
^-^ of propositional constants include names for each of the sets Aq.

We return to properties of the constrained évolution relations, and their near-
relatives, the orbit relation of a semi-flow, in Section 4.1 below. For now, observe
that each of the relations eq are reflexive on their domains Invq, and are also
transitive.

Définition 1.5. A trajectory of a hybrid System 7i is a finite or infinité séquence
X = (Ai, qi,ji)iei such that for each i G I:

• the duration Ai G R+ U{oo}, with Ai = oo only if / is finite and max(J) = i\

• the curve 7* : [0, Ai] —>• Xqi is such that (gi,7i(0)) —^ (gîî7îw) for ail
t 6 [0,Ai]; and

Over X = XW) the ^̂ o&aü H-reachability relation h : X -^ X is defined by:

(g,x) - ^ (g',^) <ê> (3 7^-trajectory x = {^i,Quli)iei with / = {0,1, ...,n})
ç = qo, ^ = 70(0), q' = qn and x' = 7n(An).

Now let e and c dénote, respectively, the relational sum of the relations eq for
q G Q, and of the relations cq,q> for (qyq') G G. Then the K-reachability relation
satisfies the regular expression: h = (ec)*e = e(ce)*, captured by the dual fixed-
point definable modalities:

(h)(p = fiZ. {e)ipV (e)(c)Z and [h]tp = i/Z. [e](p A[e][c]Z.

Proposition 1.6. Given a hybrid System 7if LTS model DJl = dJluj ft-calculus
formula <p G ̂ ( ^ K , S>^); and variable assignment £ m 971, we have:
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In words, [h] tp dénotes the largest subset of [e] \p that is invariant under both
évolution and controlled jump relations. The safety sentence

Init -> [h] (p

is true in the model Tl = TIn exactly when every W-trajectory that starts in Init
always remains within \\<p\\ . As an example of a liveness property, the sentence

is true in Tl exactly when every maximal W-trajectory from a state in \\<p\\m makes
infinitely many discrete jumps. This is because (c) tt dénotes the domain of c,
which is the union of the guard sets Grdq^qt.

1.5. BISIMULATION RELATIONS

Définition 1.7. Given two LTS models Tl and 9ï of common modal signature
($,£), with state spaces X and Y respectively, a relation =4: X ~» Y is called a
bisimulation or zig-zag between Tt and 91 iff for x,xf G X, y,yf G Y and each
a G S and p € $,

Ziga:

Zaga:

UPp:

Dowrip :

cc ̂ 4 y and.

x*y and

x ^4 y anu.

x =4 y and

X

y

X

y

a

a

G

G

an

~^x' =• (:
a

3yf)[ y —> y' and

ix )[ x —> x and

y € Ibll^

xeibir.

x' =

z' =

^ '

By symmetry, the converse )^:Y ~~> X will also be a bisimulation between 91 and
Tl. The relational composition of two bisimulations is also a bisimulation.

The fundamental bisimulat ion-invariance property for sentences of the /x-calculus
is the following.

Proposition 1.8. ([17] Sect. 5.3). If =4 is a bisimulation betweenTl and^ft, then
for ail x G X and y G Y, and ail sentences tp G *S (̂̂ 5 ̂ )?

ce lMr * y<

Proof The conditions Up p and Downp give the base case of the induction, for
atomic p G $, and the Ziga and Zaga conditions give the induction step for the
(a) modalities. For /i-sentences ftZ.(p, one proves x G |Mla iff y € IML by
transfinite induction on ordinals a, D

For states x G X, define
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to be the set of all ^-sentences satisfied by x in Tl. The relation PÖ^?1'91: X -^ Y
given by:

is that of logical équivalence or indistinguishabihty under /i-calculus sentences;
replacing <Ŝ  with S gives logical équivalence under modal sentences. Then the
bisimulation invariance property in Proposition 1.8 is the implication:

x ^ y => x âfj* y.

When Tl = 9Î and =^=~ is also an équivalence relation on X, ~ is called a
bisimulation équivalence on 9Jt. In this case, the (single-valued) quotient map
g : 9JI —> Tlr^ is a bisimulation between Tl and the quotient LTS model 9Jt^; the
quotient is defined as:

where for équivalence classes C, C" G X^, we have C —• C" ifF a: —• rc' for some
x 6 C and xf € C", iff C H cr(~)(C") ^ 0; and for the propositional constants,
\\p\\m~ = {C G X^\ CD \\p\\m ï 0} - cr(-)(||p||an). The bisimulation condi-
tions ensure that the quotient Ti^ is well-defined. When ~ is a bisimulation équiv-
alence on Tl, it follows by Proposition 1.8 that for each sentence (p G <SM($,£),
the denotation set \\(p\\ is a union of ~ équivalence classes. In particular, if ^
is a bisimulation équivalence of ftnite index J, then for each fixed-point sentence
fiZ.(f e 5M(#,E), the denotation ||//Z.< |̂| is a finite union of approximations
\\<pn\\m over 0 < n < / , where ^° = ff and <pn+l = <p[Z := <̂ n] for n < w. It
follows that for each /x-calculus sentence jjbZ.ip G *SAt(#, E), there is a finitary modal
sentence ip e <S(#, S) such that Tt \=

2. BISIMULATIONS AND CONTINUITY

2.1. BISIMULATION PREORDERS

In our analysis of bisimulation relations, we narrow the focus and consider
relations =̂ : X ^ X on single LTS model Söt. A bisimulation =̂  is a structuring on
the state space X in a manner which preserves the component transition relations
am : X ^> X and constant sets )|p||9!)î. In order to manifest this notion of préser-
vation as a continuity property, we seek to recast the relational zig-zag clauses as
conditions on the préservation of families of sets of states.

Définition 2,1. Given a relation r : X ^ X, we call a set A Ç X:
• up-r-closed ïïï a(r)(A) Ç A ffi A Ç T(r)(A)\
• down-r-closed iff a(r)(A) Ç 4̂ iff A Ç r
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Let Up(r), Dn{r) Ç V(X) dénote, respectively, the families of all up-r-closed and
down-r-closed subsets of X.

In temporal logic or in the topological dynamics of set-valued fonctions,
up-r-closed sets A Ç I are also called positive- or future-invariant under r. When
r ==^ is a preorder or partial order, it is usually written f A — A. For r = am

a transition relation of 9Jt, a set \\ip\\ is respectively, \xp-am-invariant or down-
a^-invariant, exactly when 9Jt 1= <p —> [a]ip or 9Jt \= (a)(p —> ip. For arbitrary
relations r : X ^ X, each of the families Up(r) and Dn(r) are closed under
both arbitrary unions and arbitrary intersections, since the pre-image operators
cr(r) and r(r) are completely additive and completely multiplicative respectively,
and we can exploit the duality between r and r. Moreover, the two families are
duals under complement: A G Up(r) iff —A G Dn(r). Thus the family of sets
UpDn(r) = Up(r) n Dn(r) is a complete Boolean algebra.

We now further narrow the focus to preorders (reflexive and transitive relations)
^: X ~> X. In this case: A G UpDn(^) iff a()p)a(^)(A) = A iff a(=^)(A)
= A = r(=^)(A) iff A is a (disjoint) union of ^-clusters; that is, sets C Ç X such
that for ail a?, y € C, x =3! y (all pairs of points in C are mutually ^-accessible).

Proposition 2.2. Given an LTS ffî = (X, {aO T} a e S , (HPII^JPG^); and a preorder
=4 on X, we have for each a G E aruZ p e $ ; and a/Z A G V(X),

^ sate^es Ziga iff A G C/p(^) =» a(am)(A) G
^ satisfies Zaga iff A G Dn(^) >̂ a(am)(A) G
^ 5ate^e5 Up p iff \\p\\m G

^ satisfies Downp iff. HPII^ G

Proof. The condition Ziga for ^ is equivalent to the relational inclusion:

* o am Ç am o ^

and this is in turn equivalent to the set-inclusion:

Q m ( )

for ail A G V(X). Then using the reflexivity of =̂ , so A G *7p(^} iff A = cr(>)(A),
the stated équivalence follows. For the Zaga condition, replace > by =̂ . The
équivalence for Up p and Downp is immédiate from Définition 1.7. D

2.2. SEMI-CONTINUITY OF RELATIONS

For relations/set-valued maps, the purely topological notion of continuity was
introduced by Kuratowski and Bouligand in the 1930's, and generalizes that for
single-valued functions.

Définition 2.3. Given a topological space (X,T), let O(T) = T and C(T)
dénote,- respectively, the open and closed sets of T.
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A relation r : (X, T) ~> (Y, S) is called:

lower semi-continuous (l.s.c.) iff U € O(S) => a(r)(U) G O(T)

upper semi-continuous (u.s.c.) iff U G Ö(S) => r(r)(U) G O(T)

iff CGC(S) => a(r)(C)eC(T)

continuous iff both l.s.c. and u.s.c.

Let Clop(T) = Ö(T) n C(T) dénote the Boolean algebra (under the fmitary
set-theoretic opérations) of clopen subsets of (X, T). The two semi-continuity
properties together imply that for every A G Clop(S), we have a(r)(A) G Clop(T).
In particular, the domain dom(r) = a(r)(Y) G Clop(T)i since Y G Clop{S).

A related notion of continuity for relations is examined in [2] Section 9.1, where
in the context of Stone duality, the interest is in spaces (X, A), where A is a
Boolean algebra of sets that serves as a clopen basis for a topology T4 on X;
the open sets in T4 are arbitrary unions of clopens, and dually, the closed sets are
arbitrary intersections. A Boolean algebra of sets A Ç V(X) is both perfect (every
ultrafilter of A is determined by a point x € X) and reduced (every pair of distinct
points in X can be separated by sets A, — A G -4) exactly when the topology T4
is a Stone space (compact, Hausdorff and totally disconnected). In [2], a relation
r : (X,-A) ~> (F, B) is said to be continuous if for all B e i ? , r(r)(B) G A.

2.3. PREORDERS AND ALEXANDROFF TOPOLOGIES

Given a preorder ^ o n l , the Alexandroff topology T^ on X determined by =4
is simply T^ = Ö{T^) — Up{-4) and C(T^) = Dn(^). Thus T^ is closed under
arbitrary intersections as well as unions, and for all A Ç X,

and dT+{A) - G{

In particular, Clop(%<) — UpDn(=4) is a complete Boolean algebra. The topology
T^ has as a basis the collection of all sets B^(x) = a(^)({x}) = {y G X \ x =4 y},
and B^(x) is the intersection of all open sets in T^ containing x.

More generally, a topology T on X is called Alexandroff if it has the property
that for every point x G X, there is a smallest open set containing x. In particular,
every finite topology on a (arbitrary) set X is Alexandroff. For a preorder =̂  on
X, the topology T^ is of course Alexandroff. Going the other way, any topology
T on X détermines a relation ^ r on X, called the specialization preorder of T,
given by:

x^ry iff (yUeT)[xeU=>yeU].

Note that ^ r isa partial order exactly when T is To, and is trivial (the identity
relation) when T is Ti. Alexandroff topologies are those that can be completely
recovered from their specialization preorder: for any preorder ^ on X, ^ r ^ ^ ^ ,
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and if T is AlexandrofT, then T^T =T. The Alexandroff topology on a preordered
space can also be seen as a crude cousin of the Scott topology Tçona dcpo (X, Ç),
which satisfies =^7-c=& s^e [16], Section 2.4.

In the modal logic tradition, preorders give the relational Kripke semantics for
S4 modalities, with cr(^) interpreting O and r(=^) interpreting D. From work
of McKinsey and Tarski in the 1940's, S4 also admit s a more gênerai topological
semantics in addition to the (historically later) relational Kripke semantics using
preorders. The axioms for D correspond to those of an arbitrary topological inte-
rior operator intr? and dually, O corresponds to topological closure. Alexandroff
topologies arise when one eorrelates the two semantics (see [5], where they go by the
name D-topology, for "digital"). In earlier work on hybrid Systems [15], Alexan-
droff spaces arising from finite sub-topologies of standard topologies on X Ç M.n

(by the name "small" or AD-topologies) are used to model the conversion of sensor
data into an input signal to a finite control automaton ([15], Sect. 5).

2.4. TOPOLOGICAL CHARACTERIZATION OF BISIMULATION PREORDERS

It follows immediately from Proposition 2.2 and Définition 2.3 that if (X, T)
is an Alexandroff space, then aP31 : {X,T) ~» {X}T) is l.s.c. with respect to
T iff =4T satisfies Ziga, and am is u.s.c. with respect to T iff =4r satisfies
Zaga. The Alexandroff hypothesis is essential for this characterization of lower
semi-continuity, but for arbitrary topological spaces (Jf,T), upper semi-continuity
implies =4T satisfies Zaga (in longer words, a?*1 is upper-^r-monotonic); see [16],
Section 4.4.

We now have our topological characterization of bisimulation preorders.

Proposition 2.4. Let Tl = (X, {am}aex, {\\p\\m}Pe$) be an LTS model and let
T be an Alexandroff topology X. Then:

^4r is CL bisimulation preorder on DJl

iff for each a € E ; am : (X,T) ^ (XyT) is continuous, and
for each pe$, \\p\\m e Clop(T).

Moreover} the preorder

V iff (VA e Clop(T))[ x E A => y e A }

includes =4T o/ad is symmetrie, thus an équivalence relation ~ciop{T)' When
is a bisimulation preorder on 9Ul? ~ciop(T) i>s a bisimulation équivalence.

The last statement also follows from Proposition 2.2 and Définition 2.3, using
the fact that Clop(T) — Up(~ciop{T)) = Dn(~ciop{T))> Note that although ^ r
and )^T are bot h bisimulations if either is such, the topological équivalence (Stone
TQ quotient) ~T = (=̂ 7- n ^T) can fail to be a bisimulation. If B<r{x) — B^T{x)
and CV(#) = clx({x}) are, respectively, the smallest open and the smallest closed
sets containing a point x, then under ~ T , the équivalence classes are ET{X) =
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BT(X) n Cr(x). In contrast, the équivalence class DCiOp(T){x), is the smallest
clopen or =4r-cluster containing both Br(x) and Cr(%)-

More generally, if ~ is any équivalence relation on X, and ZL, is the Alexandroff
topology of ~, then the basic open sets are just the équivalence classes under
~, and Xv = Clop(T^) = Up{~) = Dn(~) is the complete Boolean algebra of
all unions of équivalence classes. The bisimulation équivalence conditions UpDnp

and ZigZaga and reduce, respectively, to the requirement that \\p\\m G UpDn(~),
and that UpDn(~) be closed under a(am).

In the light of our excursion_into gênerai topology, we.restate-the basic truth-
preservation property of bisimulations from Proposition 1.8.

Proposition 2.5. Let M = (X}{am}aej:,{\\p\\m}p^) be an LTS model and let
^ be a bisimulation preorder on Söt.

Then for every sentence (p G SM($, S),

hence \\tp\\m e Clop{T^) - UpDn(^).

Proof. The truth-preservation propert
and the reflexivity of ^ gives the rest of the inclusions. D
Proof. The truth-preservation property is: a(^)(\\<p\\m) Ç

3. ALGEBRAIC APPROACHES TO THE MODAL /X-CALCULUS

3.1. MODAL ALGEBRAS AND MODAL FRAMES

For bisimulation preorders on SDÎ, the algebras of sets Clop(%>) are clearly of
interest since they contain the dénotât ions in dJl of all /x-calculus sentences.. An
algebraic approach to the semantics of the /x-calculus is taken up in the recent
work of Kwiatkowska et al. in [2,4]. The enterprise in those papers is to ex-
tend the framework of Stone duality for Boolean algebras to modal algebras with
fixed-points, and in the process, give an algebraic completeness proof for Kozen's
axiomatization L^ of the /x-calculus, using a Henkin-style canonical model con-
struction over the space of ultrafilters of the Lindenbaum algebra of the logic LM.
Their language for the /x-calculus contains logical constants ff and tt, but no
alphabet $ of propositional constants. We make the obvious extension.

Définition 3.1. A structure {A, {cr£}aex, {\\p\\A}Pe<5>) is called a modal algebra
of signature ($, E), with carrier A, iff

(1) (.4; V, A, -n, 0,1) is a Boolean algebra, with lattice order ^;
(2) for eachp<E$, \\p\\A e A;
(3) for each a G S, a^ : A —> A is a finitely additive and normal operator with

values in A: a£(A V B) = a£(A) V a£(B) and c^(0) = 0.



372 J.M. DAVOREN

For modal formulas y?, the denotation ||<p|L in A with respect to variable
assignments £ : PVar -* A is defined as usual by induction on formulas, parallel
to Définition 1.2.

Such a structure is called a modal ji-algebra if for each formula jiZ.ip G .?>($, E),
the ^-monotone operator A H-> IMI^/^) n a s a l e a s t pre-fixed-point in .A, in which
case:

.À | \\<p\\{{A/z) = A}-

Définition 3.2. A modal frame of signature (3>, £) is a pair (371, .A) consisting of
an LTS model 371 = (X, {aO T} a e S , {IWI^jpe*) and a modal algebra A for M, by
which we mean:

(1) A is a Boolean algebra under the nnitary set-theoretic opérations;
(2) A contains each of the sets \\p\\m for p e $ ; and
(3) A is closed under each of the pre-image operators a(am) for a G E.

A modal /i-frame is a modal frame (371, *4) such that A is a modal //-algebra. An
LTS model Tl is identified with the modal /i-frame (m,V(X)).

So by définition, modal algebras A for ÜJl are subalgebras of the full power-set
algebra V(X), considered as a Boolean algebra under the nnitary set-theoretic op-
érations, and a modal algebra with respect to the operators a{aPK). The définition
also entails that for each purely modal sentence ip G <S(3>,E), the denotation set

9* e A Define

to be the family of all denotations in 9Jt of modal sentences £($, E), and likewise
define S^1 by the denotations of ^-calculus sentences in 9JI. Then Sm and S^1

are both modal algebras for 9Jt, and S^1 is a modal /i-algebra: an assignment £
in S^1 maps variables Vi to sets H^H , so for any formula fiZ.ip G ̂ ( ^ S ) , we
have \\tJ.Z.<p\\f - \\liZ.ip\Vi := ipi]\\m G Sjf. Thus S3* (5®1) is the intersection of
all modal algebras (modal /x-algebras) for SDÎ.

In the Stone duality algebraic approach of [2,4]., one takes a modal algebra A
and générâtes a topology T4 by taking A as a clopen basis. Here, we take an
(Alexandroff) topology T, and consider the algebra Clop(T). In both cases, the
algebras of clopens provide the denotations of modal formulas, but we switch the
dynamic between the algebra and the topology.

3.2. SEMANTIC AGREEMENT AND BISIMULATIONS

In this section, we examine the relationship between the standard set-theoretic
semantics in LTS models [12,17,19], and the algebraic semantics over modal frames
or //-frames. For purely modal formulas (p G ̂ 7($, E), the semantics in (Wl,V(X))
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and in any modal frame (ïïl,A) are in agreement: \\ip\\c = \\<p\\f for all variable
assignments £ : PVar —> A But in gênerai, they part company on /x-formulas,
since the smallest set in A such that some condition holds will in gênerai be larger
than the smallest of all subsets of X such that the same condition holds. This
motivâtes the following définition.

Définition 3.3. Given an LTS model Tl and a modal ^-algebra A Ç V(X) for SDt,
we say the frame (371, A) is in semantic agreement with the underlying model Tl if
for all formulas 9? G *?>($, S) and all assignments £ in A, we have: \\(p\\f — ||^||^ .

In other words, such algebras A yield the "true" denotation of formulas, as
determined by the standard set-theoretic semantics in Tl, In establishing semantic
agreement, the task is to show that for assignments £ in A, each set H/ii^ll^ is
in A\ it then follows readily that H/xZ.̂ H^ is the least pre-fixed-point of A

) ' with induction on the complexity of formulas. The

available means to prove ||^Z.<p||^ G A is by transfinite induction that each of the
a-approximations ||^Z.(p||^a G A. If A is a complete, then closure under unions
at limit ordinals is immédiate; the task then reduces to proving closure under the
vffz operator.

In particular, the algebra of standard denotations of ^/-calculus sentences S^1

is always in semantic agreement with 971, thus it is the smallest modal ^-algebra
for Tl in semantic agreement with Tl.

Our analysis of bisimulation preorders leads to a simple condition for semantic
agreement.

Proposition 3.4. If =4 is a bisimulation preorder on an LTS model Tl, then
is in semantic agreement with Tl.

Proof. From Proposition 2.4, Clop(%>) is a modal algebra for Tl, since it contains
each IIPII^1 and is closed under a(am). The completeness of ClopiT^) as a Boolean
algebra ensures that it is also a //-algebra, since the relevant pre-fixed-points exist
in Clop(T^). From Proposition 2.5, for ail sentences <p G <SM(<3>, H), we have
\\ip\\m e Clop{T^). To prove that | |^| |f G Clop(T^) for ail formulas tp G ƒ*„($, S)
and any assignment £ in Clop(T^), use transfinite induction as above. •

Corollary 3.5. If A is any complete modal algebra for an LTS model Tl, then
(9Jt, A) is in semantic agreement with Tl.

Proof Consider the équivalence relation ^A on X defined by:

x ~A V iff (V̂ 4 e A)[x G A <̂> y G A ].

In virtue of the closure conditions on A as a modal algebra for 971, ~A is a

bisimulation équivalence on 071, and by the completeness of A as a Boolean al-
gebra, A = Clop(T^^). The resuit then follows from Proposition 3.4. •
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4. FlNITE BISIMULATIONS OF HYBRID SYSTEMS

4.1. SEMI-FLOWS AND THEIR ORBIT RELATIONS

In the définition of an LTS model of a hybrid System, the continuons évolution
relations eq are defined in terms of the semi-flows <j>q, but in a non-elementary way.
We start by investigating a more primitive relation determined by a semi-flow.

Définition 4.1. Given a semi-flow <j> : X x M+ - ^ l o n a topological space X,
define the (positive) orbit relation f : X ^ X of <p by:

x - ^ x' <ê> (3t £ M+) x1 = (f)(x, t).

For each point x G X, the set f(x) = {<f>(x,t) \ t G M+} is the positive orbit of x
under <f>,

The pre-image operators of the orbit relation are such that x G a(f)(A) iff the
flow from x reaches A at some time t G R+, while x G r(f)(A) iff the flow from x
remains inside A for all time £ G M+, for A G V(X).

Observe that by the semi-group properties of a semi-flow 0, the orbit relation
ƒ is both reflexive and transitive. It is also (weakly) connected in the sense that

x —> #i and x — • X2 => \xi —> x2 or X2 —>

Equivalently, the postive orbit f(x) of any point x is linearly pre-ordered by ƒ T

ie . linearly ordered modulo cycles. The conjunction of reflexivity, transitivity
and connectedness entails that ƒ is (weakly) n-fold connected: if x —> Xi for
i = 1, ...,n, then there exists a permutation TT on the letters {1, ...,n} such that

X > X 7 r ( 1 ) — > Xn(2) > * • ' ^ ^Tr(n)-

When a semi-flow <fi : X x R+ —> X is in fact a flow, which means each of
the functions <pt : X —> X for t G M+ is invertible, then the relational converse ƒ
coincides with the orbit relation of the reverse flow (f)'1 : X x M+ —> X given by

Implicit in the définition of continuous transitions eq as évolution constrained
within Invq is the idea that the domains Invq be convex with respect to their fiows
<pq, in the sense that any intégral curve of <pq Connecting two points in Invq should
remain within Invq at all intermediate points; wandering outside Invq and then
returning is to be ruled out. The gênerai form of this notion of "in-between-ness"
is captured in the following définition.

Définition 4.2. Given a relation r : X ^ X , we call a set A Q X r- convex if for
all x,y,z G X,

if x,y E A and x - ^ z -^ yy then z G A.

Equivalent!^ a(r)(A) H a(r)(A) Ç A.



TOPOLOGIES, CONTINUITY AND BISIMULATIONS 375

For ƒ : X ~> X the orbit relation of a semi-flow </>, a set A Ç X is /-convex iff for
all x G A and all £ e R+, if <£(a;, t ) e A then for all s G [0, £], 0(x, s) 6 A. Moreover,
when A is /-convex, then the relation e : X ~> X of évolution constrained within
A given by:

x -1+ z' <ê> (3t € R+)|x' = 0(ar, *) A (Vs G [0, *]) 0(x, 5) G A]

(as in the définition of an LTS model of a hybrid system) admits the décomposition
e = fC\(AxA)i hence the pre-image operators satisfy: a(e)(Z) = Ar\a(f)(Zf)A).
In concrete examples of hybrid Systems in the literature, the domains of évolution
Invq are invariably /^-convex.

The property of /-convexity is identified by Laflferriere et al. in [13] under the
name property (P), and is of fondamental importance in their construction of a
finite bisimulation for classes of hybrid Systems, to which we now turn.

4.2. FINITE BISIMULATIONS OF O-MINIMAL FLOWS

Définition 4.3. [18], Chap. 1. Let R = (M; <,...) be a (model-theoretic)
structure over the reals M equipped with at least a dense linear order without
endpoints, and let C(R) be the first-order language of R. The structure M is said
to be o-minimal if every set A Ç 1 definable in £(R) is a finite union of (open)
intervals and points.

The term o-minimal structure is also used to refer to any séquence (<Sn)neN of
Boolean algebras Sn Ç P(Rn) of R-definable sets such that for each n G N:

(1) the sets {(xi, ...,xn) G Rn \ Xi = Xj} G Sn]
(2) if A G ̂  then A x R G <Sn+i and R x A G <Sn+i;
(3) if A G <Sn+i then n(A) G <Sn, where ir is the projection onto the first n

coordinates;
(01) {(xux2)eR2 \x1 <x2} G <S2;
(02) the sets in S\ are exactly the finite unions of open intervals and points.

Van den Dries' monograph [18] is a comprehensive and highly readable study
of spaces and maps definable in o-minimal structures, and their "tameness" as
manifested in a cell-decomposition property: any definable set A Ç Rn has only
finitely many connected components (with respect to the standard topology on Rn

inherited from the order on R). For our purposes, all we need is one conséquence
of cell-decomposition: a uniform bound result for definable relations r : X ^ Y,
which in [18] go by the name definable families (rx)xex-

Lemma 4.4. Fix an o-minimal structure R. Given an R-definable space X Ç Rn
)

an R-definable relation r : X -^ X and an R-definable set A Ç X, there is a
positive integer N(r,A) such that the number of connected components of the set
r(x) n A is bounded by N(r,A), independent of x G X.

Proof Apply [18], Corollary 3.3.6. D
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The following result and its proof are the product of a close analysis of the
construction of a finite bisimulation in [13]. Our reformulation of the task as the
construct ion of a finite topology yields a conceptual clarification of that work.

Theorem 4.5. [13] Let R = (R; <, +,0,...) be an o-minimal structure expanding
the reals as an ordered Abelian group. Suppose dJl = (X, f,{Pk}keK) i$ o> LTS
model that is first-order definable in R, with X Ç W1, f : X ^> X the positive
orbit relation of an invertible flow 4> : X x R+ —• X, and K finite. Then %Jt has a .
bisimulation équivalence of finite index, which is also first-order definable in R.

Proof By Proposition 2.4, it suffices to produce a finite topology T on X such
that each P& G Clop{T) and ƒ is bot h u.s.c. and l.s.c. with respect to T.

Stage 1: Let {Aj}jej be a list of the (non-empty) atoms of the finite Boolean
algebra generated by the sets Pk • Each Aj is a finite Boolean combination of literals
over {Pk}keK, and hence R-defmable. Without loss of generality, we may assume
for convenience that the modal signature of Sût includes for each j a propositional
constant Aj denoting Aj.

Stage 2: By Lemma 4.4, for each j G J, there is an integer Nj such that for
all x G X, the number of connected components of the set f(x) n Aj is bounded
by'Nj.

Now consider the modal operator deflned by

((f))Z = ZA[f](-«Z^[f]-iZ) = ZA[f]((f)Z->Z).

Thus ((f ))Z dénotes the set of points in Z from which if the flow ever leaves Z, it
never returns. Now for each j G J, consider the further partition of Aj int o sets
Aj recursively defined by the modal formulas:

Thus A^ is the "/-sink" of A^ : that part of Aj from which the flow never leaves
(possibly empty), and A^+1 is the result of applying ((f)) to the n-th remainder
Aj — Ufc=o ^j * Hence each of the sets A™ is R-definable. The finiteness of this
subpartition process is established by the lemma:

Lemma 4.6. For each j e J, each n>2, and each x E A™, the set f(x)f)Aj has
at least n connected components. Hence A™ = 0 for all n > Nj.

The proof of Lemma 4.6 dépends on four claims:

Claim 4.7. For each j 6 J, and each n > 0, the set A™ is /-convex.

Claim 4.8. For each j € J, each n > 2 and for each x € A™, there exists
yn-i,...,2/i,an-i,...,:ci G X such that

X =



TOPOLOGIES, CONTINUITY AND BISIMULATIONS 377

and for 1 < k < n, xk G f(x) n A^ and */& € f(x) - Aj.

Claim 4.9. For any set A Ç X, and x G X,

if A is /-convex, then the set f(x) n A is connected.

Claim 4.10. ([13], Lem. 5.3) For I-definable sets A,C ÇX, and x G l ,

if C is a connected component of f(x) C\ A, then C is /-convex.

Proof of Lemma 4.6. Fix n > 2 and x G A™. By Claims 4.7 and 4.9, for each
fc) 0 < k < ra, the set /9(x) n A^ is (path) connected, and thus contained in a
connected component of f(x) fï Aj. Now fix fc, 1 < fc < n, and let Ck be the
connected component of f(x)DAj that contains f(x)P\Ak. By Claim 4.10, the set
Ck = f(x)nCk is /-convex. Now suppose, for a contradiction, that Ck Pi A™ ̂  0
for some m^k, 1 < m < n; w.l.o.g., assume k < m. Then by Claim 4.8, starting
from zm G Ck H A!™ Ç f(x) n AJ1, the relation leaves A, (and hence Cfc) at
least once before returning to f(x) D A^ Ç Cfc, contradicting the /-convexity of
Cfc. Thus Cfc n A f = 0 for ail m ^ fe, 1 < m < n, hence Ck = /(x) n A£ is
a connected component of f(x) n Aj. Hence /(x) H Aj has at least n connected
components. D

Claims 4.7 and 4.8 can be proved using only the transitivity of ƒ, together
with the définition of the partition séquence Ak. Claim 4.9 is immédiate from the
définition of a semi-flow, its positive orbit relation, and /-convexity. Claim 4.10
is a reformulation of Lemma 5.3 of [13]; the proof given there makes essential
use of the assumption that the semi-flow is invertible, together with o-minimal
definability.

Let {Si}iei be a list of all the non-empty sets A*, for j G J and k < Nj, and
again for convenience, assume the modal signature of 9JÎ includes a propositional
constant Si denoting S^ for each i. Now {Si}iei forms an /-convex partition of
the state space X. This means that any curve of the flow 4> will pass through a
partition set Si at most once, since by /-convexity, if the flow passes through Si
and leaves, it never returns to S», and if the flow enters Si from some other Sj,
then it has never passed through Si before.

Stage 3: We now build a finite topology T on X such that each Si G Clop(T)
and ƒ is both u.s.c. and l.s.c. with respect to T.

Let Sg = { + , - } , and for modal formulas <p G (̂SDT), define +v? = tp and
—{p = -1 tp. Consider the collection of modal sentences Q generated by the gram-
mar:

i{> ::= ^ I ̂  A rj (f) $

where % G I and 77 G Sg. Thus each sentence ip G G is uniquely characterized by
an alternating séquence a = (1,771, Ji, .••iVniJn) £ I x (Sg x I)n', for some n > 0,
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where we define

1>(a) - ^ A m(f)(Sn A V2(f)(SJ2 A m(î)(... A î f e - i t f X S ^ A rj^SjJ.,.))).

Define the degree of such an aiternating séquence a to be n, which is just the modal
degree (depth of nesting of modal operators) of the sentence ip(ct). Let G{I) dénote
the finite subcollection of sentences ip(a) G G such that a G Uo<n<i ^ x (Sg x I)n->
and for each i e l , let 0(7", i) dénote the subcollection of all ip(a) e (y (/) such that
a begins with i. So for ip G (?(/), the sentence ip —y Si is true in dJl ïïï ip £

We now take T to be the finite topology gênerated from the sets ĤH for
ip G G(I) by closing under finite unions .and intersections.

Lemma 4.11. T is closed under complement, hence T = Clop(T) and for each
iel, SiGClop(T).

Proof. The sets in T are modally defined by disjunctions and conjunct ions of
sentences in <7(/), so it suffices to show that ||—>I/Jj)971 G T for each ip e G(I)-
Proceed by induction on the modal degree of t/j, using the équivalence in Wl:

- ( S * A 77<f>V(a))= V S, V (S , A

G

Lemma 4.12. The flow relation ƒ is both u.s.c. and l.s.c. with respect to T.

Proof. By Lemma 4.11, it suffices to show that the Boolean algebra T = Clop(T)
is closed under cr(/), so ƒ is l.s.c; the u.s.c. property will then follow by Boolean
duality. For each of the generating formulas ip G G(I), it is immédiate that
\\(()^\\m € T, since in fDt,

Si A (f) ^(a) ) = V

IIAnd since (f) distributes over disjunctions, we have (f)

whenever \\<pj\\ € T for each j € J.
To conclude the proof, observe that every atom of the algebra T = Clop(T) is

modaily defined by a conjunction f\keK ^jt, where each conjunct ẑfc G G(I>i) for
some one i e / . Since each set in T is modally representable as a finite disjunction
of atoms, the required closure under (f) follows from two further claims.

Claim 4.13, For each iel and ip e ö(/,i), the following sentence is true in ÜJt:
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Claim 4.13 is proved by induction on modal degree, using the connectedness and
transitivity of ƒ together with the /-convexity of the sets Si. The sentence asserts
that whenever x G [1̂ 11̂ 5 then every flow successor of x that is in Si is in f act in

Claim 4.14. For each i e l and each finite family ipk G G{I^i) for k G K, the
following équivalence is true in Tl:

For Claim 4.14, the left-to-right implication is always true. For the converse,
fix x G llAfceK (0^11 , where each f̂c G É/(/,z). So for each k G ÜT, there

is an Xk G H f̂eH^ such that x —• x^. Thus each Xk G S*. Then since ƒ is
i^-fold connected, there exists a permutation TT on the letters {1,..., K} such that

x -^ xnW - ^ xn{2) - ^ • • • -^ XTT(K) - Set x* = x7r(x). Then x* G 5» and

x —> Xk —> x* for each k £ K. By Claim 4.13, since x* G Si is an /-successor of
each of the points x& G ĤfcH , we must have x* G | | ^ | | for each k € K. Hence
x G Ij (f) (/\keK ipk)\\m, as required.

This concludes the proof of Theorem 4.5. D

4.3. FINITE TOPOLOGIES FOR HYBRID SYSTEMS

Theorem 4.5 yields a finite topology for an o-minimal LTS model equipped with
a single flow relation. In applying this to an LTS model of a hybrid System, we
can separately produce for each discrete control mode g G Q.% a finite topology Tq

on the space Xq Ç W1 such that the flow relation fq : Xq ^> Xq is continuous
w.r.t. 7^, and for any finite number of constant sets Aq Ç Xq, we can ensure
Aq G Clop(Tq) = Tq, When the domains of évolution Invq are /^-convex, the
équation a(eq)(Z) — Invq P\a(fq)(Z P\Invq) entails that eq will also be continuous
w.r.t. Tq.

The difrlculty comes in dealing with the reset relations vq^, The required
compatibility property between the topologies Tq and Tq* is the continuity of the
relation rq^q> : (XqiTq) ^> {Xq^Tq'). However, in the absence of special assump-
tions on the reset relations, we have no reason to believe that the appropriate
continuity properties would hold.

The solution in [13] is to make the radical restriction to reset relations which are
set-valued constant, which means r = A x B, so r(x) = B for all x G A = dom(r).
The existential pre-image of a constant set-valued r : X ^ Y satisfies a(r)(Z) = A
if Z H B =£ 0 and a(r)(Z) = 0 otherwise. Hence for any topologies T on X and
S on Y\ r : (X, T) ^ (Y,S) is continuous exactly when the domain A G Clop(T).

We consider a slightly more gênerai class of relations: we say r : X ^ Y is
piecewise set-valued constant when r is the relational sum of a finite family of
set-valued constant relations r^ = Ak x Bk, so r — \JkeK (^k x Bk)- Then for
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any topologies T on X and S on Y, r : (X, T) ^ (F, 5) is continuous exactly
when Ak € Clop(T) for each k £ K. Note that the sets 4̂/c may overlap, and if
x G Akl n A/c2 then r(ar) = ^ U .Bfc2.

Theorem 4.15. Le£ R = (R ;<,+,() , . . . ) be an o-minimal structure expanding the
reals as an ordered Abelian group. Suppose ?ï = (Q, Gj{Xq, <f>q, Initq, Invq}q^Q^
{rg,<?'> Grrdq,q'}(q,q')€G) ^s a hybrid system each ofwhose components are first-order
definable in R, and where each of the reset relations rq^ are piecewise set-valued
constant, and let %Jln 6e an LTS model for H which includes among its constant
sets each of the pièces that form the domains of the reset relations. Then $Jln has
a finite bisimulation équivalence of finite index.

When the structure R is such that the first-order theory Th(R) is decidable, then
under the hypotheses of Theorem 4.15, for any //-calculus sentence tp G S (Tin),
we can effectively décide whether SÖÏ-̂  1= <p. To dérive ^i-calculus decidability
from Theorem 4.15 for more gênerai o-minimal structures, we need to examine the
decidability of the relevant modal fragments of the first-order language £(R), and
identify decidable modal algebras of first-order formulas. The work of Lafferriere
et al. in [14] on the decidability of hybrid Systems whose flows are defined using
the exponential function (arising from linear vector fields x = Ax where the matrix
A is nilpotent, diagonalizable or has purely imaginary eigenvalues) can be recast
in this light.

5. DISCUSSION AND CONCLUSION

Our investigation of topological content in the notion of a bisimulation relation
has shed some new light on the nature of the structure-préservation conditions,
and in application to hybrid Systems, our characterization as a continuity property
is put to useful service.

For the /x-calculus, topics of further research include a deeper examination of
the Henkin-style canonical model construction in [2,4] and its semantic agreement
with the standard'set-theoretic semantics, in order to properly relate the algebraic
completeness result in that work with Walukiewicz's completeness result in [19].

Regarding the construction of finite bisimulations for hybrid Systems, several
lines of inquiry present themselves. In the proof of Theorem 4.5, it would be more
satisfying to produce a finite topology T for which T / Clop(T)\ one approach
is to consider only formulas encoding positive accessibility information between
/-convex partition blocks. There is a clear need to identify more gênerai reset
relations for which the required continuity properties can be established. And
moving beyond time-determinism in the continuous dynamics requires a deeper
study of set-valued and parametrized semi-flows and their orbit relations.
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