
INFORMATIQUE THÉORIQUE ET APPLICATIONS

J. C. BRADFIELD
Fixpoint alternation : arithmetic, transition
systems, and the binary tree
Informatique théorique et applications, tome 33, no 4-5 (1999),
p. 341-356
<http://www.numdam.org/item?id=ITA_1999__33_4-5_341_0>

© AFCET, 1999, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1999__33_4-5_341_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Theoretical Informaties and Applications
Theoret. Informaties Appl. 33 (1999) 341-356

FIXPOINT ALTERNATION: ARITHMETIC,
TRANSITION SYSTEMS, AND THE BINARY TREE

J.C. BRADFIELD1 '2

Abstract. We provide an elementary proof of the fixpoint alternation
hierarchy in arithmetic, which in turn allows us to simplify the proof of
the modal mu-calculus alternation hierarchy. We further show that the
alternation hierarchy on the binary tree is strict, resolving a problem
of Niwinski.

AMS Subject Classification. 68Q60, 03D55, 03D70, 03D80.

1. INTRODUCTION

The modal mu-calculus, or Hennessy—Milner logic with fixpoints, is a
popular logic for expressing temporal properties of Systems. It was first stud-
ied by Kozen in [11], and since then there has been much work on both theoretical
and practical aspects of the logic. The feature of the logic that gives it both its
simplicity and its power is that it is possible to have mutually dependent mini-
mal and maximal fixpoint operators. This makes it simple, as the fixpoints are
the only non-first-order operators, and powerful, as by such nesting one can ex-
press complex properties such as "infinitely often" and fairness. A measure of
the complexity of a formula is the alternation depth, that is, the number of al-
ter nating blocks of minimal/maximal fixpoints. Formulae of alternation depth
higher than 2 are notoriously hard to understand, and in practice one rarely pro-
duces them—not least because they are so hard to understand. For some years,
it was not even known whether formulae of high alternation depth were neces-
sary, that is, whether the alternation hierarchy was indeed a strict hierarchy of
expressive power—a problem with several interest ing ramifications, as well as its

Keywords and phrases: Fixpoints, mu-calculus, alternation, modal logic.
1 LFCS, Division of Informaties, University of Edinburgh, Edinburgh EH9 3JZ, U.K., e-mail:
jcb@lfcs.ed.ac.uk
2 BRICS, Department of Computer Science, Aarhus University, Bygning 540, Ny Munkegade,
8000 Ârhus C, Denmark.

© EDP Sciences 1999

342 J.C. BRADFIELD

intrinsic interest. In 1996 the strictness of the hierarchy was established by the
present author [4]; independently, a slightly weaker result was shown by Lenzi [12].
The proof technique in [4] relied on the existence of a similar fixpoint alternation
hierarchy in arithmetic with fixpoints (mu-arithmetic). The basic theory of mu-
arithmetic constituted a somewhat surprising lacuna in existing work. On the
one hand, there is an extensive theory of inductive definability, both over abstract
structures (mainly by Moschovakis) and in the classical setting of recursion theory
(by many people), with particular emphasis on the power of inductive définitions
over classes of operators; on the other hand, first-order logic with fixpoints is a
major topic in finite model theory, not least due to the Immerman—Vardi theo-
rem. Despite these links, the fixpoint logic of the integers, and in particular the
power of alternating fixpoints, appears not to have been studied in itself until the
recursion-theoretic results by Lubarsky [13]. These highly technical results imply
the arithmetic fixpoint alternation hierarchy by characterizing it in terms of an-
other hierarchy, which has a complex définition. Thus the proof of [4] was not
self-contained; furthermore, it was apparently not feasible to exhibit examples of
strict alternation depth n formulae, as the strict mu-arithmetic formulae of [13] are
not constructible with any reasonable amounts of paper, ink and patience—there
is only a high level description of the complex coding required, which is intended
not simply to establish the hierarchy but also to give a précise char act erizat ion in
terms of large admissible ordinals.

Another question is whether the alternation hierarchy remains strict on trees of
bounded branching degree, in particular the binary tree. This is closely related to
another long-standing alternation problem arising from Damian Niwinski's study
of fixpoint algebras over trees. In his papers [14,15] he has a fixpoint logic for such
algebras in which formulae are built from n-ary function symbols, disjunction, and
least and greatest fixpoint operators. The structures are infinité trees such that
each node with n children is labelled with some n-ary function symbol; a node
satisfies the formula ƒ (0i , . . . , <f>n) if the node is labelled by ƒ and the i-th child
satisfies <j>i\ the fixpoints are taken over sets of nodes; a tree satisfies a formula
if its root does. Niwiriski established a number of results about such algebras,
including intimate and now well-known relationships to automata theory. One
result in particular concerns us here: he established a strict hierarchy of tree
languages definable according to the number of alternating fixpoint quantifiers
in the formula. In fact this hierarchy is closely connected to the hierarchy of
Rabin indices in Rabin automata languages. However, in this study, as we have
mentioned, the only boolean operator was union, and nol intersection. Although
intersection is easily added as a function symbol, many of the results rely on it
not being a primitive of the language; and in particular, the alternation hierarchy
theorem is not established for the languages with intersection. This problem has
remained open.

In this paper we address these problems. The first result is an elementary
proof of the alternation hierarchy in mu-arithmetic. This proof uses the standard
technique for recursion-theoretic hiérarchies; thus we remove the reliance on [13].
Furthermore, the proof constructs very simple examples of strict level n formulae

FIXPOÏNT ALTERNATION: ARITHMETIC ... AND THE BINARY TREE 343

of mu-arithmetic; and by using a simplified version of the techniques of [4], we
are able to construct even simpler examples of strict level n modal mu-calculus
formulae. These examples are of just the form that one expects, if one is a modal
mu-calculus hacker. In addition, we can also show that the formulae denning the
existence of a winning strategy in a parity game are examples of strict formulae—
indeed, a référée has observed that this can be shown already from [4]. We then
show how the proof can be carried through for the case of bounded branching
degree Systems, and then for the case of Niwinski's logic, so resolving the problem
left open in [14].

2. PRÉLIMINAIRES

2.1. MODAL MU-CALCULUS

We assume some familiarity with the modal mu-calculus, so in this section we
give brief définitions to establish notations and conventions. Expository material
on the modal mu-calculus may be found in [2,16].

The modal mu-calculus, with respect to some countable set L of labels, has
formulae # defined inductively thus: variables Z and the boolean constants tt, ff
are formulae; if $i and #2 are formulae, so are £1 V ̂ 2 and &i A <&2] if ^ is a
formula and l a label, then [Z]<Ê> and (l)<!> are formulae; and if $ is a formula and
Z a variable, then fj,Z. $ and i/Z. $> are formulae.

Note that we adopt the convention that the scope of the binding operators \i
and v extends as far as possible. For consistency, we also apply this convention to
the V and 3 of nrst-order logic, writing Vx. (3y. P) V Q rather than the logicians'
traditional \/x [3y [P] V Q],

Observe that négation is not in the language, but any closed mu-formula can be
negated by using the usual De Morgan dualities—JJL and v are dual by ->/xZ. $(Z)
= vZ. - I$(- IZ) . Where necessary, we shall assume that free variables can be
negated just by adjusting the valuation. We shall use => etc. freely, though we
must ensure that bound variables only occur positively.

We use the symbol p/ to mean "ƒ/ or v as appropriate".
Given a labelled transition System T = (5, £, —•), where S is a set of states, C

a set of labels, and —> Ç S x C x S is the transition relation (we write 5 —-> 5'),
and given also a valuation V assigning subsets of S to variables, the denotation
ll̂ ll v ^ *5 of a mu-calculus formula $ is defined in the obvious way for the variables
and booleans, for the modalities by

- { S | v s ' . s - ^ s ' => s'e\\$\\v}

344 J.C. BRADFIELD

and for the fixpoints by

\\vz.nl =
It is often useful to think of JJLZ and vZ as meaning respectively finite and infinité
looping from Z back to fiZ (vZ) as one "follows a path of the System through the.
formula". Examples of properties expressible by the mu-calculus are "always (on
a-paths) P", as vZ. P A [a\Z, "eventually (on a-paths) P", as f^Z.PV (a)Z, and
"there is an {a, 6}-path along which b happens inflnitely often", as vY. [iZ. (b)Y V
(a)Z. (For the latter, we can loop around Y for ever, but each internai loop round
Z must terminate.)

There are several notions of alternation. The naive notion is simply to count
syntactie alternations of ji and z/, resulting in the following définition: a formula <&
is said to be in the classes SQM and ITQM iff it contains no fixpoint operators ("S"
for "simple" or "syntactic"). The class T^+iis t n e l e a s t c l a s s containing E^UIT^
and closed under the following opérations: (i) application of the boolean and modal
combinators; (ii) the formation of jiZ.$>, where ^ E Sn+i* Dually, to form the
class Ti-ntii t a ^ e ^nM u n ^ , and close under (i) boolean and modal combinators,
(ii) vZ. <2>, for <2> G n f ^ . Thus the examples above are in ü f \ SfM, and IlfM (but
not EfM) respectively. We shall say a formula is strict SfM if it is in üfM — n^p.

For the modal mu-calculus, it is usual to define stronger notions of alternation
[8,14], which capture the true interdependency of alternat ing fixpoints, rather than
just their syntactic position. In [4], the analysis is carried out for the strongest
notion, that of [14], giving the classes called E ^ in [4], as well as for the simple
notion. In this paper, we shall not worry about the distinction, as the arguments
apply whichever notion is used. Hence we shall just write E£.

2.2. THE ARITHMETIC MU-CALCULUS

In [13] Lubarsky studies the logic given by adding fixpoint construct ors to
first-order arithmetic. Precisely, the logic ("mu-arithmetic" for short) has as basic
symbols the following: function symbols ƒ,g^h\ predicate symbols P:Q,R] first-
order variables x, y, z\ set variables X, Y, Z\ and the symbols V, A, 3, V, /z, v, -i, e.
As with the modal mu-calculus, -> can be pushed inwards to apply only to atomic
formulae, by De Morgan duality.

The language has expressions of three kinds, individual terms, set terms, and
formulae. The individual terms comprise the usual terms of first-order logic. The
set terms comprise set variables and expressions ji{x, X). <fi and v(x, X). <f>, where
X occurs positively in the formula (f). Here \x binds bot h an individual variable and
a set variable; henceforth we shall write just fxX, <fi, and assume that the individual
variable is the lower-case of the set variable. The formulae are built by the usual
first-order construct ion, together with the rule that if r is an individual term and
E is a set term, then r € S is a formula.

FIXPOINT ALTERNATION: ARITHMETIC ... AND THE BINARY TREE 345

This language is interpreted over the structure N of first-order arithmetic with
all recursive functions and predicates—in particular, let (-,-), (-)o and (-)i be
standard pairing and unpairing functions. The semantics of the first-order connec-
tives is as usual; r G S is interpreted naturally; and the set term fj,X.<p(x,X) is
interpreted as the least fixpoint of the functional X i-> { m G N | 0(m, X) } (where
XÇN) .

The simplest examples of mu-arithmetic just use least fixpoints to represent an
inductive définition. For example, JJLX. X = 0 V (x > 1 A (x — 2) G X) is the set of
even numbers. Of course, the even numbers are also the complement of the odd
numbers: the odd numbers are defined by fiX.x = 1 V (x > 1 A (x — 2) G X),
so by negating we can express the even numbers by means of a maximal fixpoint
vX.x / 1 A (x > 1 => (x — 2) G X). To produce natural examples involving
alternating fixpoints is rather difficult, since even one induction is already very
powerful, and most natural mathematical objects are simple.

One can define the syntactic alternation classes for arithmetic just as for the
modal mu-calculus: first-order formulae are EQ and IIQ, as are set variables. The
^>n+i formulae and set terms are formed from the E^ Ull£ formulae and set terms
by closing under (i) the first-order connectives A, V, V, 3, G, and (ii) forming JJLX. 0
for (p G X£+1. If 4> is ££, then - 0 is lig.

A crucial lemma is the following:

Lemma 2.1. [4,13] A ££ formula of mu-arithmetic can be put into a normal
form of the following shape:

Tn G JJ,Xn.Tn-i G l/Xn-i.Tn-2 ^ VXn-2- • • • Tl G \VX\. 4>

where <fi is first-order—that is, a string of alternating fixpoint quantifier s, and a
first-order body.

(See [4] for detailed définitions and proof.)
The analysis of [13] provides the following

Theorem 2.2. [13] The hierarchy of the sets ofintegers definable by E£ formulae
of the arithmetic mu-calculus is a strict hierarchy.

2.3. SUMMARY OF [4]

The results of this paper require the results and proof techniques of [4], so we
now give a summary of these, skipping the fine details.

We define a recursively presented transition system (r.p.t.s.) to be a labelled
transition system (<S,£,—>) such that S is (recursively codable as) a recursive
set of integers, C likewise, and —> is recursive. Henceforth we consider only
recursively presented transition Systems, with recursive valuations for the free
variables. We have the following theorem, which is proved by a trivial translation
of the semantics of the modal mu-calculus into mu-arithmetic:

Theorem 2.3. [4] For a modal mu-calculus formula 0 G ££ ; the denotation \\$\\
in any r.p.t.s. is a ££ definable set of integers.

346 J.C. BRADFIELD

We also have the converse

Theorem 2.4. [4] Let <f>(z) be a E£ formula of mu-arithmetic. There is a r.p.t.s.
T with recursive valuation V and a £££ formula & of the modal mu-calculus such
that 4>((s)o) iff s e H^llv' (Thus if <p is not Ti^_1-definable, neither is \\$\\.)

This theorem is not inherently difficult; it is established by coding the évaluation
of mu-arithmetic formulae into a r.p.t.s. and a modal mu-calculus formula, in such
a way that arithmetic computation is handled by the transitions of the system,
and the fixpoints of <f> are handled by the fixpoints of 3>. The proof is then a fairly
straight for war d induction. In this paper, we shall see a simplified version of this
technique.

These two theorems establish the modal alternation hierarchy: use Theorem 2.4
to code an arithmetic strict ££ set of integers by a strict E£ modal mu-formula
^ on a r.p.t.s. T; by Theorem 2.3, no S^_x modal formula can have the same
denotation in T, and so no E^_x modal formula is logically equivalent to ^.

2.4. TREE ALGEBRAS

Niwinski's papers [14,15] contain an extensive study of fixpoint algebras. For
our purposes here, we consider just the most concrete versions, namely those over
trees. Refer to [15], which is an excellent exposition, for further details and for the
generalizations which do not concern us here.

Let E be a signature containing a finit e number of operators each with an arity.
For example, take E = {a(—,—),&(—),c}, with one binary, one unary and one
nullary operator. A tree over E is a possibly infinité tree with nodes labelled by
operators, such that a node labelled by ƒ has arity(/) children.

Define a fixpoint logic over E thus: variables Z, and tb and ff are formulae;
conjunct ion A and disjunction V of formulae are formulae; for each operator f E E
with arity n and formulae <£i,... }<frn, f {<t>u • • • , <t>n) is a formula; for a formula <p
with free variable Z, fiZ.(j> and i/Z.cfi are formulae.

Given a particular tree t, this logic is interpreted over the set of nodes of t in
the obvious way: a node satisfies ƒ (4>i,... <pn) if it is labelled by ƒ and its children
satisfy respectively <j>i,... <j>n. The fixpoints are interpreted as in the modal mu-
calculus: a formula with free variable Z defines a function on the power set lattice
of nodes. We define the fixpoint alternation classes of formulae in the usual way.

We say that a tree satisfies <j> if its root does. An important property of these
logies is the "internalization property" [15]: given a tree t and a node n of £, the
node n satisfies a formula <fi iff the subtree of t rooted at n satisfies <£.

For examples of this logic with the signature above, we can consider the
following. piZ.a{Z, Z) V b(Z) V c defines the set of finite trees; vZ.b{Z) defines
the infinité linear tree b —> b —> * • • ; i/Y.fxZ.a^c, Y) V a(Z, Z) V b(Z) defines the set
of trees such that on every path there are infinitely many a nodes with a c leffc
child, and c only occurs as the left child of a.

A tree algebra is then the set of all trees over a given signature, with the
opérations defined by the interprétations of the logical operators. We have no need

FIXPOINT ALTERNATION: ARITHMETIC ... AND THE BINARY TREE 347

to consider the algebraic view, and can stick to the logic. The problem left open by
Niwinski can be stated as follows: is there a signature E such that the hierarchy
of sets of trees definable by E£ formulae is strict? For the case where intersection
A is not a primitive symbol of the logic [14] showed strictness; however, the proof
does not go through for the case with intersection, and indeed the exhibited hard
££ formulae for the int er section-f ree case are in f act all equivalent to alternation
depth 2 formulae with intersection.

3. A SIMPLE PROOF OF THE ALTERNATION HIERARCHY
IN MU-ARITHMETIC

The first result of this paper is to observe that the alternation hierarchy theorem
in mu-arithmetic can be proved simply along the lines of the proof of the strictness
of the Kleene arithmetic hierarchy. The technique is to show that the truth of ££;
formulae can itself be expressed by a E£ formula, and to use a diagonalization
argument to show that this formula cannot be equivalent to any II£ formula.

Firstly, take a suitable Gödel numbering of mu-arithmetic. We consider only
formulae without free set variables; w log, we may assume that all encoded formu-
lae are in'normal form, and are normalized so that the free individual variables
are zo, - -. , z^, the first-order quantifiers bind Zfc+i,... , and for a formula of alter-
nation depth n, the fixpoint variables are Xn , . . . ,Xi, with associated individual
variables xn , . . . , xi. We use sans-serif type to indicate that the variable is being
seen as part of an encoded object-level formula; normal italic type indicates a
meta-level variable. We use corner quotes to dénote the Gödel coding. We also
need coded assignments which map an encoded variable to a value: we write [v/z]
for the assignment that maps z (strictly, the code rzn) to the integer v, and a[v/z]
for the updating of a by \v/z\. We use double quotes to indicate the appropriate
meta-language formalization of the informai statement inside the quotes.

Now suppose that Satn(a;, y) is a formula of mu-arithmetic expressing the truth
of E£ formulae, so that if <f> is a £^ formula and a an assignment of values v to
the free variables z of <f>, then SsLtn(

r<f>~1, a) is true just in case 4>{v/z) is true. We
have the

Lemma 3.1. Satn(^0, [ZQ/ZQ]) is not equivalent to any II£ formula.

Proof. The proof is exactly as for the arithmetical hierarchy. Suppose the contrary,
ie. that ~>Satn(zo,.[^o/zo]) is equivalent to some E£ formula 9(z0). Then we have
ö(r(9n) iff -»Satn(rön, [rÖn/z0]) iff ^ö(r6»n), which is a contradiction. D

It remains to show that Satn exists and is indeed a E^ formula.

Theorem 3.2. Satn is a E£ formula of mu-arithmetic, for n > 0.

Proof We start by constructing Sat0, truth in first-order arithmetic, both as a
formula and as a 11^ formula. Sato(x,t/) is deflned as:

348 J.C. BRADFIELD

(x,y) € n{w,W)."(w)o = rP(T)n and pred(rP"1,eval(rr"1, H J)) "
V « H o = r<Pi A ̂ and ((r ^ r , H i) e W A (r<£2

n, H i > € W)>'
V " H o = r<£i V <kT and (f ^ - i , H a) € W V C"^"1, H i > e W)"
V " H o = r 3 Z i . fc"" and 3v. <r< î"1, M i [«/*]> e W"
V «(tü)o = rVzi, ̂ and Vw. (r<£i"\ H i K * i]) e W"

where eval(i, a) is the recursive function which évaluâtes a coded term t = r r n

under the variable assignment a, and pred(p, x) is the computable predicate which
is true if the value x satisfies the predicate coded by p = rP~'.

We have here skipped the details of the coding, which are standard. For exam-
ple, if we look in more detail at the clause for V, it actually says:

/ (Ho) = rV^ AV«.(S(Wo),MWi.».s'(Wo))> e W

where ƒ extracts the top-level connective of a coded formula, g extracts the body
of a V formula and g' extracts the bound variable, and h{a,v,z) takes the variable
assignment a and updates the variable whose code is z by the value v. The fact
that these functions ƒ, p, h are recursive is obvious, and since we allow ourselves
ail recursive functions as primitives, that is sufncient; but explicit définitions in
standard arithmetic may be found in références such as [10].

It is clear that this fixpoint formula simply encodes directly the définition of
truth in arithmetic. The formula is Tî^, but since the encoded recursive function
terminâtes on ail arguments—it is just a définition by induction on the structure
of formulae—it does not matter whether we use a minimal or maximal fixpoint to
achieve the recursion. Thus we may also obtain Sato as a 11^ formula.

In order to encode within mu-arithmetic the évaluation of formulae with
fixpoints, it is necessary to have the same fixpoint structure in the Sat formula
as in the formula it's evaluating. Recall that we assume pair-normal form, and
suppose that we wish to evamate H£ formulae where n is odd, that is, formulae of
the form

n_i G z/Xn_ir2 €

where 4> is first-order. The interprétation of the pure first-order part of (j> may
be done with the S^ version of Sato—but 0 may also now contain formulae
r G Xi. We cannot code as integers the sets referred to by the X ,̂ so they must be
represented by set variables in the meta-language. We use the meta-level variable
Xi to represent the object variable X ,̂ and extend the body of Sato by the clauses
(for each 1 < % < n)

V "(w)o = rr e Xi"1 and eval(rr^ (w)!)) e Xj\

Let Sató dénote the adjusted Sato.

FIXPOINT ALTERNATION: ARITHMETIC ... AND THE BINARY TREE 349

With these adjustments, we have that (*) is true with free variable assigment
a just in case

eval(rTn
n,a) G

eval(rrn_i"l,a[a?n/xn]) G vXn-\. • • •
eval(rrr, a[xn,... , x 2 /x n , . . . , x2])

ó

Now we just parametrize on (*): let fi(x,y) be the function that given x
encoding a S£ formula (*) and an assignment y, computes eval(rrn

n, y), and so
on, and let g(x) extract the body of (*). Then we have Satn(:c, y) in the form

fn(x, y) e fiXn.fn-i(x, y[xn/xn}) e vXn-i...
h(x,y}[xn,... ,aj2 /x,i , . . . ,x2]) € fj,X1.SB,tto(g(x)i y[xni...

which is ££J as required. If n is even, we use the n£ version of Sato instead.
The fact that Satn does indeed code truth is easily shown: show by induction

on i that each meta-level fixpoint set Xi coincides with the object-level set X .̂
The base case follows from the correctness of Satg, and the induction step is easy.

It may be noted that we have also skipped details of what the functions / i
etc. should do if given ill-formed arguments. Any convenient trick may be used;
the details are unimportant. •

4. THE SIMPLE EXAMPLES IN THE MODAL MU-CALCULUS

To construct examples of strict ££ formulae in the modal mu-calculus, it would
suffice to apply the gênerai construction of Theorem 2.4 to Satn. However, Satn

contains a large number of function symbols, and the translation would contain
many labels. By specializing the gênerai construction, we can eliminate most
of these labels, and obtain very simple examples. The following présentation is
self-contained, but terse; for a longer explanation of the technique, see [4].

We aim to construct a transition System T and a S£ modal mu-calculus formula
^ such that the set of states satisfying ^ is defined by the strict S£ arithmetic
formula Satn.

The transition System T should be viewed as a machine for evaluating arithmetic
expressions in the same way that Satn does: the computation happening in the
body of Sató will be dealt with by the définition of the transitions of T, ànd the
arithmetic fixpoints are translated into modal fixpoints in #.

The states of T encode several pièces of information. Namely, a state s contains:
a formula ips of the form (*), and a variable assignment as, and a pointer ps into
ips which keeps track of where we are in the évaluation. We use the notation of
(*) to refer to parts of ips.

The labels of T are used to distinguish various steps of computation; we shall
start with enough labels to make the construct ion clear, and then argue the number
down a little. In the interests of clarity, we shall use roman letters for the modal

350 J.C. BRADFIELD

labels: so x is a meta-level arithmetic variable, x is an object-level arithmetic
variable, and x is a modal label associâted with x.

The transitions of T from a state s are defined thus:
• if ps points at TÏ (or after p/Xi+i., which we consider to be the same), then

5 -^-> sf where ipS' = tps, and a8* — a5[eval(ri, as)/xi] and ps* points after
jj/Xi. That is, the term r% is evaluated in the current assignment, x̂ is set to
its value, and we start evaluating the inner fixpoint.

Otherwise, ps points at a subformula of </>-. The transition from 5 mimics the
appropriate clause of Sato. The tp component is not altered by any transition, and
the a component is unchanged unless otherwise stated.

• If Ps points at P(T), then s ——> sa (V for atom), where sa is a special state
with no structure, only if P(r) is true with variable assignment as ; otherwise
there are no transitions from s.

• If ps points at ^ A ^ , then 5 -̂ -> Sk ("c" for conjunct ion) for k = 1,2, where
pSk points at 0fe.

• If Ps points at Vzi.^i, then 5 —> S& (universai quantification is treated as
conjunction) for fcGN, wheré pSk points at </>i, and aSk = as[k/zi\.

• If p5 points at <j>\ V <j>2t then s —> s& ("d" for disjunction) for k = 1,2, where
pSfc points at 0&.

• If p s points at Bẑ . ç!>i, then s —> s& (existential quantification is treated as
disjunction) for k G N, where pSfe points at </>i, and aSfc = as[k/zj\.

m If p s points at r G X ,̂ then s ^-> s', where ps/ points after ^X^., and
<V = as[eval(r, as)/xi]. That is, the term r is evaluated, copied to the input
variable x̂ of the fixpoint X ,̂ and évaluation of the fixpoint started.

It is clear that T is a recursively presented transition System.
Now consider the following modal mu-calculus formula:

MuSatn =
(a)tt V ((cJttAtc]^) V (d)W
V (x1)X1 V . . . V (xn)Xn.

By the construct ion of T, we have:

Theorem 4.1. s \= MuSatn just in case ps points at %j)s, and Satn(r '0sn,as).
Hence MuSatn is a strict E£ modal formula.

Proof. The proof is a special case of the proof of Theorem 2.4, the details of which
are in [4]. D

MuSat™ is already quite a simple formula, but it is interesting to try to simplify
it further, which we shall do in stages.

Firstly, is it necessary to have the double occurrence of (x^), or can we remove
the guards from the fixpoint formulae? Yes, we can: consider the formula

FIXPOINT ALTERNATION: ARITHMETIC ... AND THE BINARY TREE 351

where ^ is formed from the body of MuSatn by priming the J*Qs. The relation
between MuSatn and MuSat^ is that Xf

n = . . . = X[= Xi (note that in MuSat^,
we have Xi 2 X2 U . . . U Xn), and conversely Xi = (x^X^ for i = n , . . . ,2. The
denotation of MuSat^ is still a strict ££ set, since the denotation of MuSatn is a
projection of it.

Next, the occurrence of (c)tfc is irritating. lts purpose is to assert that ps is
indeed pointing at an A- or V-subterm of ip_s—of course, [c]W is true at any state
with no c-transitions from it. However, we can render it unnecessary by modifying
T: if s is any state other than an A- or V-subterm state, then add a transition
s -̂ -» 5. Since W is a least fixpoint variable, if W is true at a state with a c-loop,
it is true by virtue of some other disjunct than [c]W, and it is not true if it was
not true before the loop was added.

We can also eliminate the requirement for a separate a-transition, by modifying
the modification: for all those states 5 with an a-transition, remove the c-loop
added in the previous paragraph; now [c]W is true at those states, so we can
discard the (a)tt clause.

Finally, we note thàt W = X{, and they are adjacent least fixpoints, so we can
amalgamate them; further, the job of the d transition can as well be done by xi,
since they work on disjoint sets of states.

Hence we arrive at the following very simple example of a strict ££; modal
formula (replacing X' by X again):

MuSa< d= txXn.vX»-! M * I - [C] * I V (x ^ V . . . V (xn)Xn.

5. RELATION TO PARITY GAMES

In a preliminary version of this paper, I showed that if one chooses to look at
models with no action labels, but with atomic propositions, the above formula
appears in a form that is the same as the formula describing the existence of a
winning strategy in a parity game of rank n, and hence that formula is strict ££.

When that paper was submitted to STACS, one of the référées pointed out that
the strictness of the winning strategy formula can be shown directly from [4] and
the game interprétation of modal mu-calculus [7], without requiring the explicit
use of the arithmetic formula Satn. As this is an elegant proof, I outline it hère,
and then comment on the similarities to MuSat.

A parity game of rank n [7] is played on a directed graph with the following
properties: every vertex belongs either to Player or Opponent, and every vertex
has an index between 1 and n. If the current vertex belongs to player A, then A
moves by choosing a successor vertex. (In [7], the graph is bipartite so that Player
and Opponent alternate, but this is not essential.) In a given play, Player wins
if either Opponent gets stuck, or if the greatest index occurring infinitely often is
even. ("greatest" is sometimes replaced by "least", e.g. in [17].) For simplicity,
assume henceforth that n is odd.

352 J.C. BRADFIELD

Given such a graph, let P be true at Player vertices, O be true at Opponent
vertices, and Ri true at vertices of index i. It can be shown [7,17] that the modal
mu-calculus formula

Parn = fjbXn.i/Xn-1....fjLX1.

{P => 0 Ai<i<n(«i =* Xi)) A (° =» D Ax<i<„(«i =* *0)

defines exactly the set of vertices from which Player has a winning strategy.
Now take a strict ££ formula <j>(z) of mu-arithmetic, and construct the r.p.t.s.

T and modal formula ^ of Theorem 2.4. Given a ££ modal formula, one can
easily, and recursively, construct a parity game G of rank n, whose vertices are
pairs (s, \P) of states of T and subformulae of $, such that Player wins from (s, ïF)
iff s | = r #. Hence (s,#) h=G Parn iff 4>(so). Therefore ||Parn||G is an arithmetic
S^-hard set, and so by Theorem 2.3 we conclude

Theorem 5.1. Parn is a strict £££ modal formula.

The alternative approach for showing the strictness of Par„ is to work from
the transition System T of Theorem 4.1, and replace the action labels by atomic
propositions, so that P is true at disjunctive states, O at conjunctive states, and
Ri at Xi states. With a little manipulation along the lines of the construction of
MuSat^ from MuSatn, one obtains exactly the formula Parn as the modal encoding
of Satn. Thus we use Satn explicité and use a specialization of the proof of
Theorem 2.4. The STACS référée's suggestion avoids this work, and so pro duces
the Parn examples from [4] without using the simple proof of the mu-arithmetic
hierarchy.

6. MODAL MU-CALCULUS ALTERNATION
ON BOUNDED-BRANCHING SYSTEMS

Our next step is to show that the alternation hierarchy remains strict even
on bounded-branching Systems, and in particular on Systems with a maximum
branching degree of 2.

Consider the formula

Hardn
 d= /iX„.i/Xn_i.. -. PXL <a)tt V «c)tt A [c\X1)

V{d)X1V{x1)X1V...V{xn)Xn

which is the same as MuSat^ except that we have amalgamated the adjacent
fixpoints X\ and W\ The transition System on which we considered this formula
has the convenient proper ty that every state has outgoing transitions of only one
label. However, many states had infinitely many successors; we need to address
this. To solve Niwinski's problem, we shall also need to deal with the issue that
the formula uses n + 2 different labels; but this is a simple encoding issue.

FIXPOINT ALTERNATION: ARITHMETIC ... AND THE BINARY TREE 353

For reasons that will become apparent when we consider Niwinski's trees, we
should like to have a transition System with exactly two labels, Z, r such that every
state has no successor or one l and one r successor.

Using standard techniques, we build a new transition System 7^ in which the
new labels code the old labels. For concreteness, let us say that if 5 -̂ -> t in Tny

where a is a or x*, t.hen in T£ we have

and if s —• U, where (3 is c or d, and 1 < i < k for k = 2 or /c = oo, according as 5
has two successors (when coding a conjunction or disjunction) or infinitely many
successors (when coding a box or diamond), then

i i i i
S > U\ > • • - > Uk • UQ

Tp t\ - - tk

where the u states are new "junk" states, and Ta is a particular finite binary tree
coding the label. For example, Ta might be the binary tree •, Tc the tree (•,•),
Td the tree ((•,•),•), and so on. Let \I/a be a modal formula characterizing Ta:
for example, 9C would be (Z)[]ff V (r)[]ff.

We now need to translate the formula Hardn for the new System. Obviously
we can translate (xi)£> into (r)^Xi A {l)<& etc., but the translation of the c and
d modalities requires introducing additional fixpoints. The (sometimes infinité)
branching box (c)tt A [c\X\ becomes (r)&c A [Z]̂ F.[Z]y A [r]X1\ and the branching
diamond <d>Xi becomes (r)\Pd A (ÏJiiY.föXx V {l)Y.

Since the construction of 7^ is recursive, the new formula Hard^ still dénotes
an arithmetic S^-hard set of states. Unfortunately, Hard^ is now a modal S^+i
formula, owing to the introduction of the new fixpoints! This is still sufficient to
establish the hierarchy, since it cannot be equivalent to any modal II£ formula.
However, we could also obtain a direct proof that it cannot be equivalent to any
modal ü^ + 1 formula, since it can be shown, by extending an analysis of [3], that
on a bounded degree recursive transition System a modal ££ formula dénotes a
set of at most arithmetic ££_! complexity.

We now have the resuit

Theorem 6.1. There is a class of transition Systems with branching degree < 2
on which the modal mu-calculus alternation hierarchy is strict.

7. ALTERNATION IN TREE ALGEBRAS

Owing to the way in which we have set up 7^, the transfer to tree algebras
is almost immédiate. We take the signature E with a binary function symbol a

354 J.C. BRADFIELD

and a nullary function symbol c. The left and right children of a node labelled a
correspond to the l and r successors of a non-leaf node in Tn\ thus a tree over this
signature is a transition System of the for m specifled for 7^, and conversely the
unwinding T£ of 7^ is a tree over this signature. Since unwinding is a recursive
opération, we can say that given a S£ tree mu-formula, the set of nodes of %['
satisfying it is of arithmetic complexity ££_!- However, we can translate Hard^
into a tree formula

V a{iiY.a(Y, tt) V a(tt, Xi), ipd)

where^a is the translation of #<*, for example if)^ — c,tpc = a(c,c),^d = a(a(c,c),c)
and so on. Hence the nodes of 7^' satisfying Hard^ are exactly those that are
the unwindings of states of 7^ satisfying Hard^; and hence this set is arithmetic
S^-hard. It follows that for any formula <f> of lower alternation depth, there is a
node on which <j> and Hard^ disagree. Now by the crucial fact that a node satis-
fies a formula iff the subtree rooted at that node satisfies it (the "internalization
property" of [15]), there is a tree on which <f> and Hard^ disagree. Hence we have

Theorem 7-1. The fixpoint alternation hierarchy over the Niwinski tree logic with
signature {a(—, —),c} and intersection is strict

Of course, as for the intersection-free result of [15], this signature is the minimal
signature: we need at least one constant with arity 2, and at least one other
symbol. With a more generous signature, the coding is less messy, and simpler hard
formulae can be presented, as was done in [6] (for the signature {a(—, —),6(—)})-

It is interesting to note that even though we are establishing a hierarchy with
intersection, the hard formulae do not themselves use intersection once they are
expressed in the tree logic; they need only the "irnplicit" intersection given by the
binary syrnbol a. However, unlike the hard formulae of [15], which are in fact
all equivalent to level Ef formulae in the intersection-full hierarchy, the implicit
conjunction conjoins different fixpoints. One may also compare the disjunctive
formulae of [9].

8. REMARKS

Although this approach has solved the problem of Niwinski, one might reason-
ably object to it on aesthetic grounds. It should be possible to solve a problem
about a fairly weak logic on the binary tree without resorting to the use of arith-
metic and Gödel encodings. Indeed, one might hope that the diagonalization
argument, used to prove this hierarchy as many others, could be carried out di-
rect ly on the trees. This hope is not vain: by the time this work was presented at

FIXPOINT ALTERNATION: ARITHMETIC ... AND THE BINARY TREE 355

FICS, Arnold [1] had discovered an elegant technique which uses a form of diago-
nalization on the binary tree, together with some basic (ultra-)metric space theory,
to show the hardness of all the exarnple formulae produced by myself, Lenzi, and
others.

I especially thank A. Simpson, who suggested looking at a simple proof of the
mu-arithmetic hierarchy along these lines. Thanks also to I. WaLukiewicz, who pointed
me at the parity game formulae. In addition to the referee who provided the im-
proved proof for parity game formulae, other référées provided helpful suggestions; I
am grateful to them. I am supported by an Advanced Fellowship (AF/97/0322) from the
United Kingdom Engineering and Physical Sciences Research Council; also BRIGS, the
Danish National Research Foundation Centre for Basic Research In Computer Science,
is supporting my visit to Aarhus.The material of Sections 3—5 was flrst presented at
STACS '98 [5]; Sections 6—7 were presented at FICS in Brno in 1998 [6].

REFERENCES

[1] A. Arnold, The //-calculus alternation-depth hierarchy is strict on binary trees, this volume^
p. 329.

[2] J.C. Bradneld, Verifying Temporal Properties of Systems. Birkhauser, Boston (1991).
[3] J.C. Bradfield, On the expressivity of the modal mn-calculus, C. Puech and R. Reischuk,

Eds., in Proc. STACS '96. Springer, Berlin, Lecture Notes in Comput. Sci. 1046 (1996)
479-490.

[4] J.C. Bradfield, The modal mu-calculus alternation hierarchy is strict. Theoret. Comput.
Sci. 195 (1997) 133-153.

[5] J.C. Bradneld, Simplifying the modal mu-calculus alternation hierarchy, M. Morvan,
C. Meinel and D. Krob, Eds., in Proc. STACS 98: Springer, Berlin, Lecture Notes in
Comput Sci. 1373 (1998) 39-49.

[6] J.C. Bradfield, Fixpoint alternation on the binary tree, Workshop on Fixpoints in Computer
Science (FICS). Brno (1998).

[7] E.A. Emerson and C.S. Jutla, Tree automata, mu-calculus and determinacy, in Proc- FOCS
91 (1991).

[8] E.A. Emerson and C.-L. Lei, Efficient model checking in fragments of the propositional
mu-calculus, in Proc. Ist LICS. IEEE, Los Alamitos, CA (1986) 267-278.

[9] D. Janin and I. Walukiewicz, Automata for the /x-calculus and related results, in Proc.
MFCS '95. Springer, Berlin, Lecture Notes in Comput Sci. 969 (1995) 552-562.

[10] R. Kaye, Models of Peano Arithmetic. Oxford University Press, Oxford (1991).
[11] D. Kozen, Results on the propositional mu-calculus. Theoret Comput. Sci. 27 (1983)

333-354.
[12] G. Lenzi, A hierarchy theorem for the mu-calculus, F. Meyer auf der Heide and B. Monien,

Eds., in Proc. ICALP '96. Springer, Berlin, Lecture Notes in Comput. Sci. 1099 (1996)
87-109.

[13] R.S. Lubarsky, /j-defmable sets of integers, J. Symbolic Logic 58 (1993) 291-313.
[14] D. Niwinski, On fixed point clones, L. Kott, Ed., in Proc. 13th ICALP. Springer, Berlin,

Lecture Notes in Comput. Sci. 226 (1986) 464-473.

356 J.C. BRADFIELD

[15] D. Niwiriski, Fixed point characterization of infinité behavior of finite state Systems. Theoret.
Comput Sci. 189 (1997) 1-69.

[16] C.P. Stirlingj Modal and temporal logies, S. Abramsky, D. Gabbay and T. Maibaum, Eds.
Oxford University Press, Handb. Log. Comput. Set 2 (1991) 477-563.

[17] I. Walukiewicz, Monadic second order logic on tree-like structures, C. Puech and Rüdiger
Reischuk, Eds., in Proc. STACS '96. Springer, Berlin, Lecture Notes in Comput. Sci. 1046
(1996) 401-414.

Received November 2, 1998. Revised June 2, 1999.

